1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * VFIO PCI config space virtualization
4 *
5 * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6 *     Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * Derived from original vfio:
9 * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
10 * Author: Tom Lyon, pugs@cisco.com
11 */
12
13/*
14 * This code handles reading and writing of PCI configuration registers.
15 * This is hairy because we want to allow a lot of flexibility to the
16 * user driver, but cannot trust it with all of the config fields.
17 * Tables determine which fields can be read and written, as well as
18 * which fields are 'virtualized' - special actions and translations to
19 * make it appear to the user that he has control, when in fact things
20 * must be negotiated with the underlying OS.
21 */
22
23#include <linux/fs.h>
24#include <linux/pci.h>
25#include <linux/uaccess.h>
26#include <linux/vfio.h>
27#include <linux/slab.h>
28
29#include "vfio_pci_priv.h"
30
31/* Fake capability ID for standard config space */
32#define PCI_CAP_ID_BASIC	0
33
34#define is_bar(offset)	\
35	((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
36	 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
37
38/*
39 * Lengths of PCI Config Capabilities
40 *   0: Removed from the user visible capability list
41 *   FF: Variable length
42 */
43static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
44	[PCI_CAP_ID_BASIC]	= PCI_STD_HEADER_SIZEOF, /* pci config header */
45	[PCI_CAP_ID_PM]		= PCI_PM_SIZEOF,
46	[PCI_CAP_ID_AGP]	= PCI_AGP_SIZEOF,
47	[PCI_CAP_ID_VPD]	= PCI_CAP_VPD_SIZEOF,
48	[PCI_CAP_ID_SLOTID]	= 0,		/* bridge - don't care */
49	[PCI_CAP_ID_MSI]	= 0xFF,		/* 10, 14, 20, or 24 */
50	[PCI_CAP_ID_CHSWP]	= 0,		/* cpci - not yet */
51	[PCI_CAP_ID_PCIX]	= 0xFF,		/* 8 or 24 */
52	[PCI_CAP_ID_HT]		= 0xFF,		/* hypertransport */
53	[PCI_CAP_ID_VNDR]	= 0xFF,		/* variable */
54	[PCI_CAP_ID_DBG]	= 0,		/* debug - don't care */
55	[PCI_CAP_ID_CCRC]	= 0,		/* cpci - not yet */
56	[PCI_CAP_ID_SHPC]	= 0,		/* hotswap - not yet */
57	[PCI_CAP_ID_SSVID]	= 0,		/* bridge - don't care */
58	[PCI_CAP_ID_AGP3]	= 0,		/* AGP8x - not yet */
59	[PCI_CAP_ID_SECDEV]	= 0,		/* secure device not yet */
60	[PCI_CAP_ID_EXP]	= 0xFF,		/* 20 or 44 */
61	[PCI_CAP_ID_MSIX]	= PCI_CAP_MSIX_SIZEOF,
62	[PCI_CAP_ID_SATA]	= 0xFF,
63	[PCI_CAP_ID_AF]		= PCI_CAP_AF_SIZEOF,
64};
65
66/*
67 * Lengths of PCIe/PCI-X Extended Config Capabilities
68 *   0: Removed or masked from the user visible capability list
69 *   FF: Variable length
70 */
71static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
72	[PCI_EXT_CAP_ID_ERR]	=	PCI_ERR_ROOT_COMMAND,
73	[PCI_EXT_CAP_ID_VC]	=	0xFF,
74	[PCI_EXT_CAP_ID_DSN]	=	PCI_EXT_CAP_DSN_SIZEOF,
75	[PCI_EXT_CAP_ID_PWR]	=	PCI_EXT_CAP_PWR_SIZEOF,
76	[PCI_EXT_CAP_ID_RCLD]	=	0,	/* root only - don't care */
77	[PCI_EXT_CAP_ID_RCILC]	=	0,	/* root only - don't care */
78	[PCI_EXT_CAP_ID_RCEC]	=	0,	/* root only - don't care */
79	[PCI_EXT_CAP_ID_MFVC]	=	0xFF,
80	[PCI_EXT_CAP_ID_VC9]	=	0xFF,	/* same as CAP_ID_VC */
81	[PCI_EXT_CAP_ID_RCRB]	=	0,	/* root only - don't care */
82	[PCI_EXT_CAP_ID_VNDR]	=	0xFF,
83	[PCI_EXT_CAP_ID_CAC]	=	0,	/* obsolete */
84	[PCI_EXT_CAP_ID_ACS]	=	0xFF,
85	[PCI_EXT_CAP_ID_ARI]	=	PCI_EXT_CAP_ARI_SIZEOF,
86	[PCI_EXT_CAP_ID_ATS]	=	PCI_EXT_CAP_ATS_SIZEOF,
87	[PCI_EXT_CAP_ID_SRIOV]	=	PCI_EXT_CAP_SRIOV_SIZEOF,
88	[PCI_EXT_CAP_ID_MRIOV]	=	0,	/* not yet */
89	[PCI_EXT_CAP_ID_MCAST]	=	PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
90	[PCI_EXT_CAP_ID_PRI]	=	PCI_EXT_CAP_PRI_SIZEOF,
91	[PCI_EXT_CAP_ID_AMD_XXX] =	0,	/* not yet */
92	[PCI_EXT_CAP_ID_REBAR]	=	0xFF,
93	[PCI_EXT_CAP_ID_DPA]	=	0xFF,
94	[PCI_EXT_CAP_ID_TPH]	=	0xFF,
95	[PCI_EXT_CAP_ID_LTR]	=	PCI_EXT_CAP_LTR_SIZEOF,
96	[PCI_EXT_CAP_ID_SECPCI]	=	0,	/* not yet */
97	[PCI_EXT_CAP_ID_PMUX]	=	0,	/* not yet */
98	[PCI_EXT_CAP_ID_PASID]	=	0,	/* not yet */
99	[PCI_EXT_CAP_ID_DVSEC]	=	0xFF,
100};
101
102/*
103 * Read/Write Permission Bits - one bit for each bit in capability
104 * Any field can be read if it exists, but what is read depends on
105 * whether the field is 'virtualized', or just pass through to the
106 * hardware.  Any virtualized field is also virtualized for writes.
107 * Writes are only permitted if they have a 1 bit here.
108 */
109struct perm_bits {
110	u8	*virt;		/* read/write virtual data, not hw */
111	u8	*write;		/* writeable bits */
112	int	(*readfn)(struct vfio_pci_core_device *vdev, int pos, int count,
113			  struct perm_bits *perm, int offset, __le32 *val);
114	int	(*writefn)(struct vfio_pci_core_device *vdev, int pos, int count,
115			   struct perm_bits *perm, int offset, __le32 val);
116};
117
118#define	NO_VIRT		0
119#define	ALL_VIRT	0xFFFFFFFFU
120#define	NO_WRITE	0
121#define	ALL_WRITE	0xFFFFFFFFU
122
123static int vfio_user_config_read(struct pci_dev *pdev, int offset,
124				 __le32 *val, int count)
125{
126	int ret = -EINVAL;
127	u32 tmp_val = 0;
128
129	switch (count) {
130	case 1:
131	{
132		u8 tmp;
133		ret = pci_user_read_config_byte(pdev, offset, &tmp);
134		tmp_val = tmp;
135		break;
136	}
137	case 2:
138	{
139		u16 tmp;
140		ret = pci_user_read_config_word(pdev, offset, &tmp);
141		tmp_val = tmp;
142		break;
143	}
144	case 4:
145		ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
146		break;
147	}
148
149	*val = cpu_to_le32(tmp_val);
150
151	return ret;
152}
153
154static int vfio_user_config_write(struct pci_dev *pdev, int offset,
155				  __le32 val, int count)
156{
157	int ret = -EINVAL;
158	u32 tmp_val = le32_to_cpu(val);
159
160	switch (count) {
161	case 1:
162		ret = pci_user_write_config_byte(pdev, offset, tmp_val);
163		break;
164	case 2:
165		ret = pci_user_write_config_word(pdev, offset, tmp_val);
166		break;
167	case 4:
168		ret = pci_user_write_config_dword(pdev, offset, tmp_val);
169		break;
170	}
171
172	return ret;
173}
174
175static int vfio_default_config_read(struct vfio_pci_core_device *vdev, int pos,
176				    int count, struct perm_bits *perm,
177				    int offset, __le32 *val)
178{
179	__le32 virt = 0;
180
181	memcpy(val, vdev->vconfig + pos, count);
182
183	memcpy(&virt, perm->virt + offset, count);
184
185	/* Any non-virtualized bits? */
186	if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
187		struct pci_dev *pdev = vdev->pdev;
188		__le32 phys_val = 0;
189		int ret;
190
191		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
192		if (ret)
193			return ret;
194
195		*val = (phys_val & ~virt) | (*val & virt);
196	}
197
198	return count;
199}
200
201static int vfio_default_config_write(struct vfio_pci_core_device *vdev, int pos,
202				     int count, struct perm_bits *perm,
203				     int offset, __le32 val)
204{
205	__le32 virt = 0, write = 0;
206
207	memcpy(&write, perm->write + offset, count);
208
209	if (!write)
210		return count; /* drop, no writable bits */
211
212	memcpy(&virt, perm->virt + offset, count);
213
214	/* Virtualized and writable bits go to vconfig */
215	if (write & virt) {
216		__le32 virt_val = 0;
217
218		memcpy(&virt_val, vdev->vconfig + pos, count);
219
220		virt_val &= ~(write & virt);
221		virt_val |= (val & (write & virt));
222
223		memcpy(vdev->vconfig + pos, &virt_val, count);
224	}
225
226	/* Non-virtualized and writable bits go to hardware */
227	if (write & ~virt) {
228		struct pci_dev *pdev = vdev->pdev;
229		__le32 phys_val = 0;
230		int ret;
231
232		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
233		if (ret)
234			return ret;
235
236		phys_val &= ~(write & ~virt);
237		phys_val |= (val & (write & ~virt));
238
239		ret = vfio_user_config_write(pdev, pos, phys_val, count);
240		if (ret)
241			return ret;
242	}
243
244	return count;
245}
246
247/* Allow direct read from hardware, except for capability next pointer */
248static int vfio_direct_config_read(struct vfio_pci_core_device *vdev, int pos,
249				   int count, struct perm_bits *perm,
250				   int offset, __le32 *val)
251{
252	int ret;
253
254	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
255	if (ret)
256		return ret;
257
258	if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
259		if (offset < 4)
260			memcpy(val, vdev->vconfig + pos, count);
261	} else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
262		if (offset == PCI_CAP_LIST_ID && count > 1)
263			memcpy(val, vdev->vconfig + pos,
264			       min(PCI_CAP_FLAGS, count));
265		else if (offset == PCI_CAP_LIST_NEXT)
266			memcpy(val, vdev->vconfig + pos, 1);
267	}
268
269	return count;
270}
271
272/* Raw access skips any kind of virtualization */
273static int vfio_raw_config_write(struct vfio_pci_core_device *vdev, int pos,
274				 int count, struct perm_bits *perm,
275				 int offset, __le32 val)
276{
277	int ret;
278
279	ret = vfio_user_config_write(vdev->pdev, pos, val, count);
280	if (ret)
281		return ret;
282
283	return count;
284}
285
286static int vfio_raw_config_read(struct vfio_pci_core_device *vdev, int pos,
287				int count, struct perm_bits *perm,
288				int offset, __le32 *val)
289{
290	int ret;
291
292	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
293	if (ret)
294		return ret;
295
296	return count;
297}
298
299/* Virt access uses only virtualization */
300static int vfio_virt_config_write(struct vfio_pci_core_device *vdev, int pos,
301				  int count, struct perm_bits *perm,
302				  int offset, __le32 val)
303{
304	memcpy(vdev->vconfig + pos, &val, count);
305	return count;
306}
307
308static int vfio_virt_config_read(struct vfio_pci_core_device *vdev, int pos,
309				 int count, struct perm_bits *perm,
310				 int offset, __le32 *val)
311{
312	memcpy(val, vdev->vconfig + pos, count);
313	return count;
314}
315
316/* Default capability regions to read-only, no-virtualization */
317static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
318	[0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
319};
320static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
321	[0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
322};
323/*
324 * Default unassigned regions to raw read-write access.  Some devices
325 * require this to function as they hide registers between the gaps in
326 * config space (be2net).  Like MMIO and I/O port registers, we have
327 * to trust the hardware isolation.
328 */
329static struct perm_bits unassigned_perms = {
330	.readfn = vfio_raw_config_read,
331	.writefn = vfio_raw_config_write
332};
333
334static struct perm_bits virt_perms = {
335	.readfn = vfio_virt_config_read,
336	.writefn = vfio_virt_config_write
337};
338
339static void free_perm_bits(struct perm_bits *perm)
340{
341	kfree(perm->virt);
342	kfree(perm->write);
343	perm->virt = NULL;
344	perm->write = NULL;
345}
346
347static int alloc_perm_bits(struct perm_bits *perm, int size)
348{
349	/*
350	 * Round up all permission bits to the next dword, this lets us
351	 * ignore whether a read/write exceeds the defined capability
352	 * structure.  We can do this because:
353	 *  - Standard config space is already dword aligned
354	 *  - Capabilities are all dword aligned (bits 0:1 of next reserved)
355	 *  - Express capabilities defined as dword aligned
356	 */
357	size = round_up(size, 4);
358
359	/*
360	 * Zero state is
361	 * - All Readable, None Writeable, None Virtualized
362	 */
363	perm->virt = kzalloc(size, GFP_KERNEL);
364	perm->write = kzalloc(size, GFP_KERNEL);
365	if (!perm->virt || !perm->write) {
366		free_perm_bits(perm);
367		return -ENOMEM;
368	}
369
370	perm->readfn = vfio_default_config_read;
371	perm->writefn = vfio_default_config_write;
372
373	return 0;
374}
375
376/*
377 * Helper functions for filling in permission tables
378 */
379static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
380{
381	p->virt[off] = virt;
382	p->write[off] = write;
383}
384
385/* Handle endian-ness - pci and tables are little-endian */
386static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
387{
388	*(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
389	*(__le16 *)(&p->write[off]) = cpu_to_le16(write);
390}
391
392/* Handle endian-ness - pci and tables are little-endian */
393static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
394{
395	*(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
396	*(__le32 *)(&p->write[off]) = cpu_to_le32(write);
397}
398
399/* Caller should hold memory_lock semaphore */
400bool __vfio_pci_memory_enabled(struct vfio_pci_core_device *vdev)
401{
402	struct pci_dev *pdev = vdev->pdev;
403	u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
404
405	/*
406	 * Memory region cannot be accessed if device power state is D3.
407	 *
408	 * SR-IOV VF memory enable is handled by the MSE bit in the
409	 * PF SR-IOV capability, there's therefore no need to trigger
410	 * faults based on the virtual value.
411	 */
412	return pdev->current_state < PCI_D3hot &&
413	       (pdev->no_command_memory || (cmd & PCI_COMMAND_MEMORY));
414}
415
416/*
417 * Restore the *real* BARs after we detect a FLR or backdoor reset.
418 * (backdoor = some device specific technique that we didn't catch)
419 */
420static void vfio_bar_restore(struct vfio_pci_core_device *vdev)
421{
422	struct pci_dev *pdev = vdev->pdev;
423	u32 *rbar = vdev->rbar;
424	u16 cmd;
425	int i;
426
427	if (pdev->is_virtfn)
428		return;
429
430	pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__);
431
432	for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
433		pci_user_write_config_dword(pdev, i, *rbar);
434
435	pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
436
437	if (vdev->nointx) {
438		pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
439		cmd |= PCI_COMMAND_INTX_DISABLE;
440		pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
441	}
442}
443
444static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
445{
446	unsigned long flags = pci_resource_flags(pdev, bar);
447	u32 val;
448
449	if (flags & IORESOURCE_IO)
450		return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
451
452	val = PCI_BASE_ADDRESS_SPACE_MEMORY;
453
454	if (flags & IORESOURCE_PREFETCH)
455		val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
456
457	if (flags & IORESOURCE_MEM_64)
458		val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
459
460	return cpu_to_le32(val);
461}
462
463/*
464 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
465 * to reflect the hardware capabilities.  This implements BAR sizing.
466 */
467static void vfio_bar_fixup(struct vfio_pci_core_device *vdev)
468{
469	struct pci_dev *pdev = vdev->pdev;
470	int i;
471	__le32 *vbar;
472	u64 mask;
473
474	if (!vdev->bardirty)
475		return;
476
477	vbar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
478
479	for (i = 0; i < PCI_STD_NUM_BARS; i++, vbar++) {
480		int bar = i + PCI_STD_RESOURCES;
481
482		if (!pci_resource_start(pdev, bar)) {
483			*vbar = 0; /* Unmapped by host = unimplemented to user */
484			continue;
485		}
486
487		mask = ~(pci_resource_len(pdev, bar) - 1);
488
489		*vbar &= cpu_to_le32((u32)mask);
490		*vbar |= vfio_generate_bar_flags(pdev, bar);
491
492		if (*vbar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
493			vbar++;
494			*vbar &= cpu_to_le32((u32)(mask >> 32));
495			i++;
496		}
497	}
498
499	vbar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
500
501	/*
502	 * NB. REGION_INFO will have reported zero size if we weren't able
503	 * to read the ROM, but we still return the actual BAR size here if
504	 * it exists (or the shadow ROM space).
505	 */
506	if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
507		mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
508		mask |= PCI_ROM_ADDRESS_ENABLE;
509		*vbar &= cpu_to_le32((u32)mask);
510	} else if (pdev->resource[PCI_ROM_RESOURCE].flags &
511					IORESOURCE_ROM_SHADOW) {
512		mask = ~(0x20000 - 1);
513		mask |= PCI_ROM_ADDRESS_ENABLE;
514		*vbar &= cpu_to_le32((u32)mask);
515	} else
516		*vbar = 0;
517
518	vdev->bardirty = false;
519}
520
521static int vfio_basic_config_read(struct vfio_pci_core_device *vdev, int pos,
522				  int count, struct perm_bits *perm,
523				  int offset, __le32 *val)
524{
525	if (is_bar(offset)) /* pos == offset for basic config */
526		vfio_bar_fixup(vdev);
527
528	count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
529
530	/* Mask in virtual memory enable */
531	if (offset == PCI_COMMAND && vdev->pdev->no_command_memory) {
532		u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
533		u32 tmp_val = le32_to_cpu(*val);
534
535		tmp_val |= cmd & PCI_COMMAND_MEMORY;
536		*val = cpu_to_le32(tmp_val);
537	}
538
539	return count;
540}
541
542/* Test whether BARs match the value we think they should contain */
543static bool vfio_need_bar_restore(struct vfio_pci_core_device *vdev)
544{
545	int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
546	u32 bar;
547
548	for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
549		if (vdev->rbar[i]) {
550			ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
551			if (ret || vdev->rbar[i] != bar)
552				return true;
553		}
554	}
555
556	return false;
557}
558
559static int vfio_basic_config_write(struct vfio_pci_core_device *vdev, int pos,
560				   int count, struct perm_bits *perm,
561				   int offset, __le32 val)
562{
563	struct pci_dev *pdev = vdev->pdev;
564	__le16 *virt_cmd;
565	u16 new_cmd = 0;
566	int ret;
567
568	virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
569
570	if (offset == PCI_COMMAND) {
571		bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
572		u16 phys_cmd;
573
574		ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
575		if (ret)
576			return ret;
577
578		new_cmd = le32_to_cpu(val);
579
580		phys_io = !!(phys_cmd & PCI_COMMAND_IO);
581		virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
582		new_io = !!(new_cmd & PCI_COMMAND_IO);
583
584		phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
585		virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
586		new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
587
588		if (!new_mem)
589			vfio_pci_zap_and_down_write_memory_lock(vdev);
590		else
591			down_write(&vdev->memory_lock);
592
593		/*
594		 * If the user is writing mem/io enable (new_mem/io) and we
595		 * think it's already enabled (virt_mem/io), but the hardware
596		 * shows it disabled (phys_mem/io, then the device has
597		 * undergone some kind of backdoor reset and needs to be
598		 * restored before we allow it to enable the bars.
599		 * SR-IOV devices will trigger this - for mem enable let's
600		 * catch this now and for io enable it will be caught later
601		 */
602		if ((new_mem && virt_mem && !phys_mem &&
603		     !pdev->no_command_memory) ||
604		    (new_io && virt_io && !phys_io) ||
605		    vfio_need_bar_restore(vdev))
606			vfio_bar_restore(vdev);
607	}
608
609	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
610	if (count < 0) {
611		if (offset == PCI_COMMAND)
612			up_write(&vdev->memory_lock);
613		return count;
614	}
615
616	/*
617	 * Save current memory/io enable bits in vconfig to allow for
618	 * the test above next time.
619	 */
620	if (offset == PCI_COMMAND) {
621		u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
622
623		*virt_cmd &= cpu_to_le16(~mask);
624		*virt_cmd |= cpu_to_le16(new_cmd & mask);
625
626		up_write(&vdev->memory_lock);
627	}
628
629	/* Emulate INTx disable */
630	if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
631		bool virt_intx_disable;
632
633		virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
634				       PCI_COMMAND_INTX_DISABLE);
635
636		if (virt_intx_disable && !vdev->virq_disabled) {
637			vdev->virq_disabled = true;
638			vfio_pci_intx_mask(vdev);
639		} else if (!virt_intx_disable && vdev->virq_disabled) {
640			vdev->virq_disabled = false;
641			vfio_pci_intx_unmask(vdev);
642		}
643	}
644
645	if (is_bar(offset))
646		vdev->bardirty = true;
647
648	return count;
649}
650
651/* Permissions for the Basic PCI Header */
652static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
653{
654	if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
655		return -ENOMEM;
656
657	perm->readfn = vfio_basic_config_read;
658	perm->writefn = vfio_basic_config_write;
659
660	/* Virtualized for SR-IOV functions, which just have FFFF */
661	p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
662	p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
663
664	/*
665	 * Virtualize INTx disable, we use it internally for interrupt
666	 * control and can emulate it for non-PCI 2.3 devices.
667	 */
668	p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
669
670	/* Virtualize capability list, we might want to skip/disable */
671	p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
672
673	/* No harm to write */
674	p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
675	p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
676	p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
677
678	/* Virtualize all bars, can't touch the real ones */
679	p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
680	p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
681	p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
682	p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
683	p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
684	p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
685	p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
686
687	/* Allow us to adjust capability chain */
688	p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
689
690	/* Sometimes used by sw, just virtualize */
691	p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
692
693	/* Virtualize interrupt pin to allow hiding INTx */
694	p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
695
696	return 0;
697}
698
699/*
700 * It takes all the required locks to protect the access of power related
701 * variables and then invokes vfio_pci_set_power_state().
702 */
703static void vfio_lock_and_set_power_state(struct vfio_pci_core_device *vdev,
704					  pci_power_t state)
705{
706	if (state >= PCI_D3hot)
707		vfio_pci_zap_and_down_write_memory_lock(vdev);
708	else
709		down_write(&vdev->memory_lock);
710
711	vfio_pci_set_power_state(vdev, state);
712	up_write(&vdev->memory_lock);
713}
714
715static int vfio_pm_config_write(struct vfio_pci_core_device *vdev, int pos,
716				int count, struct perm_bits *perm,
717				int offset, __le32 val)
718{
719	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
720	if (count < 0)
721		return count;
722
723	if (offset == PCI_PM_CTRL) {
724		pci_power_t state;
725
726		switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
727		case 0:
728			state = PCI_D0;
729			break;
730		case 1:
731			state = PCI_D1;
732			break;
733		case 2:
734			state = PCI_D2;
735			break;
736		case 3:
737			state = PCI_D3hot;
738			break;
739		}
740
741		vfio_lock_and_set_power_state(vdev, state);
742	}
743
744	return count;
745}
746
747/* Permissions for the Power Management capability */
748static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
749{
750	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
751		return -ENOMEM;
752
753	perm->writefn = vfio_pm_config_write;
754
755	/*
756	 * We always virtualize the next field so we can remove
757	 * capabilities from the chain if we want to.
758	 */
759	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
760
761	/*
762	 * The guests can't process PME events. If any PME event will be
763	 * generated, then it will be mostly handled in the host and the
764	 * host will clear the PME_STATUS. So virtualize PME_Support bits.
765	 * The vconfig bits will be cleared during device capability
766	 * initialization.
767	 */
768	p_setw(perm, PCI_PM_PMC, PCI_PM_CAP_PME_MASK, NO_WRITE);
769
770	/*
771	 * Power management is defined *per function*, so we can let
772	 * the user change power state, but we trap and initiate the
773	 * change ourselves, so the state bits are read-only.
774	 *
775	 * The guest can't process PME from D3cold so virtualize PME_Status
776	 * and PME_En bits. The vconfig bits will be cleared during device
777	 * capability initialization.
778	 */
779	p_setd(perm, PCI_PM_CTRL,
780	       PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS,
781	       ~(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS |
782		 PCI_PM_CTRL_STATE_MASK));
783
784	return 0;
785}
786
787static int vfio_vpd_config_write(struct vfio_pci_core_device *vdev, int pos,
788				 int count, struct perm_bits *perm,
789				 int offset, __le32 val)
790{
791	struct pci_dev *pdev = vdev->pdev;
792	__le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
793	__le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
794	u16 addr;
795	u32 data;
796
797	/*
798	 * Write through to emulation.  If the write includes the upper byte
799	 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
800	 * have work to do.
801	 */
802	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
803	if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
804	    offset + count <= PCI_VPD_ADDR + 1)
805		return count;
806
807	addr = le16_to_cpu(*paddr);
808
809	if (addr & PCI_VPD_ADDR_F) {
810		data = le32_to_cpu(*pdata);
811		if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
812			return count;
813	} else {
814		data = 0;
815		if (pci_read_vpd(pdev, addr, 4, &data) < 0)
816			return count;
817		*pdata = cpu_to_le32(data);
818	}
819
820	/*
821	 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
822	 * signal completion.  If an error occurs above, we assume that not
823	 * toggling this bit will induce a driver timeout.
824	 */
825	addr ^= PCI_VPD_ADDR_F;
826	*paddr = cpu_to_le16(addr);
827
828	return count;
829}
830
831/* Permissions for Vital Product Data capability */
832static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
833{
834	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
835		return -ENOMEM;
836
837	perm->writefn = vfio_vpd_config_write;
838
839	/*
840	 * We always virtualize the next field so we can remove
841	 * capabilities from the chain if we want to.
842	 */
843	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
844
845	/*
846	 * Both the address and data registers are virtualized to
847	 * enable access through the pci_vpd_read/write functions
848	 */
849	p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
850	p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
851
852	return 0;
853}
854
855/* Permissions for PCI-X capability */
856static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
857{
858	/* Alloc 24, but only 8 are used in v0 */
859	if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
860		return -ENOMEM;
861
862	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
863
864	p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
865	p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
866	return 0;
867}
868
869static int vfio_exp_config_write(struct vfio_pci_core_device *vdev, int pos,
870				 int count, struct perm_bits *perm,
871				 int offset, __le32 val)
872{
873	__le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
874				  offset + PCI_EXP_DEVCTL);
875	int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
876
877	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
878	if (count < 0)
879		return count;
880
881	/*
882	 * The FLR bit is virtualized, if set and the device supports PCIe
883	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec
884	 * requires it to be always read as zero.  NB, reset_function might
885	 * not use a PCIe FLR, we don't have that level of granularity.
886	 */
887	if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
888		u32 cap;
889		int ret;
890
891		*ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
892
893		ret = pci_user_read_config_dword(vdev->pdev,
894						 pos - offset + PCI_EXP_DEVCAP,
895						 &cap);
896
897		if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) {
898			vfio_pci_zap_and_down_write_memory_lock(vdev);
899			pci_try_reset_function(vdev->pdev);
900			up_write(&vdev->memory_lock);
901		}
902	}
903
904	/*
905	 * MPS is virtualized to the user, writes do not change the physical
906	 * register since determining a proper MPS value requires a system wide
907	 * device view.  The MRRS is largely independent of MPS, but since the
908	 * user does not have that system-wide view, they might set a safe, but
909	 * inefficiently low value.  Here we allow writes through to hardware,
910	 * but we set the floor to the physical device MPS setting, so that
911	 * we can at least use full TLPs, as defined by the MPS value.
912	 *
913	 * NB, if any devices actually depend on an artificially low MRRS
914	 * setting, this will need to be revisited, perhaps with a quirk
915	 * though pcie_set_readrq().
916	 */
917	if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
918		readrq = 128 <<
919			((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
920		readrq = max(readrq, pcie_get_mps(vdev->pdev));
921
922		pcie_set_readrq(vdev->pdev, readrq);
923	}
924
925	return count;
926}
927
928/* Permissions for PCI Express capability */
929static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
930{
931	/* Alloc largest of possible sizes */
932	if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
933		return -ENOMEM;
934
935	perm->writefn = vfio_exp_config_write;
936
937	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
938
939	/*
940	 * Allow writes to device control fields, except devctl_phantom,
941	 * which could confuse IOMMU, MPS, which can break communication
942	 * with other physical devices, and the ARI bit in devctl2, which
943	 * is set at probe time.  FLR and MRRS get virtualized via our
944	 * writefn.
945	 */
946	p_setw(perm, PCI_EXP_DEVCTL,
947	       PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
948	       PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
949	p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
950	return 0;
951}
952
953static int vfio_af_config_write(struct vfio_pci_core_device *vdev, int pos,
954				int count, struct perm_bits *perm,
955				int offset, __le32 val)
956{
957	u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
958
959	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
960	if (count < 0)
961		return count;
962
963	/*
964	 * The FLR bit is virtualized, if set and the device supports AF
965	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec
966	 * requires it to be always read as zero.  NB, reset_function might
967	 * not use an AF FLR, we don't have that level of granularity.
968	 */
969	if (*ctrl & PCI_AF_CTRL_FLR) {
970		u8 cap;
971		int ret;
972
973		*ctrl &= ~PCI_AF_CTRL_FLR;
974
975		ret = pci_user_read_config_byte(vdev->pdev,
976						pos - offset + PCI_AF_CAP,
977						&cap);
978
979		if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) {
980			vfio_pci_zap_and_down_write_memory_lock(vdev);
981			pci_try_reset_function(vdev->pdev);
982			up_write(&vdev->memory_lock);
983		}
984	}
985
986	return count;
987}
988
989/* Permissions for Advanced Function capability */
990static int __init init_pci_cap_af_perm(struct perm_bits *perm)
991{
992	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
993		return -ENOMEM;
994
995	perm->writefn = vfio_af_config_write;
996
997	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
998	p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
999	return 0;
1000}
1001
1002/* Permissions for Advanced Error Reporting extended capability */
1003static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
1004{
1005	u32 mask;
1006
1007	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
1008		return -ENOMEM;
1009
1010	/*
1011	 * Virtualize the first dword of all express capabilities
1012	 * because it includes the next pointer.  This lets us later
1013	 * remove capabilities from the chain if we need to.
1014	 */
1015	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1016
1017	/* Writable bits mask */
1018	mask =	PCI_ERR_UNC_UND |		/* Undefined */
1019		PCI_ERR_UNC_DLP |		/* Data Link Protocol */
1020		PCI_ERR_UNC_SURPDN |		/* Surprise Down */
1021		PCI_ERR_UNC_POISON_TLP |	/* Poisoned TLP */
1022		PCI_ERR_UNC_FCP |		/* Flow Control Protocol */
1023		PCI_ERR_UNC_COMP_TIME |		/* Completion Timeout */
1024		PCI_ERR_UNC_COMP_ABORT |	/* Completer Abort */
1025		PCI_ERR_UNC_UNX_COMP |		/* Unexpected Completion */
1026		PCI_ERR_UNC_RX_OVER |		/* Receiver Overflow */
1027		PCI_ERR_UNC_MALF_TLP |		/* Malformed TLP */
1028		PCI_ERR_UNC_ECRC |		/* ECRC Error Status */
1029		PCI_ERR_UNC_UNSUP |		/* Unsupported Request */
1030		PCI_ERR_UNC_ACSV |		/* ACS Violation */
1031		PCI_ERR_UNC_INTN |		/* internal error */
1032		PCI_ERR_UNC_MCBTLP |		/* MC blocked TLP */
1033		PCI_ERR_UNC_ATOMEG |		/* Atomic egress blocked */
1034		PCI_ERR_UNC_TLPPRE;		/* TLP prefix blocked */
1035	p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
1036	p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
1037	p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
1038
1039	mask =	PCI_ERR_COR_RCVR |		/* Receiver Error Status */
1040		PCI_ERR_COR_BAD_TLP |		/* Bad TLP Status */
1041		PCI_ERR_COR_BAD_DLLP |		/* Bad DLLP Status */
1042		PCI_ERR_COR_REP_ROLL |		/* REPLAY_NUM Rollover */
1043		PCI_ERR_COR_REP_TIMER |		/* Replay Timer Timeout */
1044		PCI_ERR_COR_ADV_NFAT |		/* Advisory Non-Fatal */
1045		PCI_ERR_COR_INTERNAL |		/* Corrected Internal */
1046		PCI_ERR_COR_LOG_OVER;		/* Header Log Overflow */
1047	p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
1048	p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
1049
1050	mask =	PCI_ERR_CAP_ECRC_GENE |		/* ECRC Generation Enable */
1051		PCI_ERR_CAP_ECRC_CHKE;		/* ECRC Check Enable */
1052	p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
1053	return 0;
1054}
1055
1056/* Permissions for Power Budgeting extended capability */
1057static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
1058{
1059	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
1060		return -ENOMEM;
1061
1062	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1063
1064	/* Writing the data selector is OK, the info is still read-only */
1065	p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
1066	return 0;
1067}
1068
1069/*
1070 * Initialize the shared permission tables
1071 */
1072void vfio_pci_uninit_perm_bits(void)
1073{
1074	free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
1075
1076	free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
1077	free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
1078	free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
1079	free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
1080	free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
1081
1082	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1083	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1084}
1085
1086int __init vfio_pci_init_perm_bits(void)
1087{
1088	int ret;
1089
1090	/* Basic config space */
1091	ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
1092
1093	/* Capabilities */
1094	ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
1095	ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
1096	ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
1097	cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1098	ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
1099	ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
1100
1101	/* Extended capabilities */
1102	ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1103	ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1104	ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1105	ecap_perms[PCI_EXT_CAP_ID_DVSEC].writefn = vfio_raw_config_write;
1106
1107	if (ret)
1108		vfio_pci_uninit_perm_bits();
1109
1110	return ret;
1111}
1112
1113static int vfio_find_cap_start(struct vfio_pci_core_device *vdev, int pos)
1114{
1115	u8 cap;
1116	int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
1117						 PCI_STD_HEADER_SIZEOF;
1118	cap = vdev->pci_config_map[pos];
1119
1120	if (cap == PCI_CAP_ID_BASIC)
1121		return 0;
1122
1123	/* XXX Can we have to abutting capabilities of the same type? */
1124	while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
1125		pos--;
1126
1127	return pos;
1128}
1129
1130static int vfio_msi_config_read(struct vfio_pci_core_device *vdev, int pos,
1131				int count, struct perm_bits *perm,
1132				int offset, __le32 *val)
1133{
1134	/* Update max available queue size from msi_qmax */
1135	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1136		__le16 *flags;
1137		int start;
1138
1139		start = vfio_find_cap_start(vdev, pos);
1140
1141		flags = (__le16 *)&vdev->vconfig[start];
1142
1143		*flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
1144		*flags |= cpu_to_le16(vdev->msi_qmax << 1);
1145	}
1146
1147	return vfio_default_config_read(vdev, pos, count, perm, offset, val);
1148}
1149
1150static int vfio_msi_config_write(struct vfio_pci_core_device *vdev, int pos,
1151				 int count, struct perm_bits *perm,
1152				 int offset, __le32 val)
1153{
1154	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
1155	if (count < 0)
1156		return count;
1157
1158	/* Fixup and write configured queue size and enable to hardware */
1159	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1160		__le16 *pflags;
1161		u16 flags;
1162		int start, ret;
1163
1164		start = vfio_find_cap_start(vdev, pos);
1165
1166		pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1167
1168		flags = le16_to_cpu(*pflags);
1169
1170		/* MSI is enabled via ioctl */
1171		if  (vdev->irq_type != VFIO_PCI_MSI_IRQ_INDEX)
1172			flags &= ~PCI_MSI_FLAGS_ENABLE;
1173
1174		/* Check queue size */
1175		if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1176			flags &= ~PCI_MSI_FLAGS_QSIZE;
1177			flags |= vdev->msi_qmax << 4;
1178		}
1179
1180		/* Write back to virt and to hardware */
1181		*pflags = cpu_to_le16(flags);
1182		ret = pci_user_write_config_word(vdev->pdev,
1183						 start + PCI_MSI_FLAGS,
1184						 flags);
1185		if (ret)
1186			return ret;
1187	}
1188
1189	return count;
1190}
1191
1192/*
1193 * MSI determination is per-device, so this routine gets used beyond
1194 * initialization time. Don't add __init
1195 */
1196static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1197{
1198	if (alloc_perm_bits(perm, len))
1199		return -ENOMEM;
1200
1201	perm->readfn = vfio_msi_config_read;
1202	perm->writefn = vfio_msi_config_write;
1203
1204	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1205
1206	/*
1207	 * The upper byte of the control register is reserved,
1208	 * just setup the lower byte.
1209	 */
1210	p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1211	p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1212	if (flags & PCI_MSI_FLAGS_64BIT) {
1213		p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1214		p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1215		if (flags & PCI_MSI_FLAGS_MASKBIT) {
1216			p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1217			p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1218		}
1219	} else {
1220		p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1221		if (flags & PCI_MSI_FLAGS_MASKBIT) {
1222			p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1223			p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1224		}
1225	}
1226	return 0;
1227}
1228
1229/* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
1230static int vfio_msi_cap_len(struct vfio_pci_core_device *vdev, u8 pos)
1231{
1232	struct pci_dev *pdev = vdev->pdev;
1233	int len, ret;
1234	u16 flags;
1235
1236	ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1237	if (ret)
1238		return pcibios_err_to_errno(ret);
1239
1240	len = 10; /* Minimum size */
1241	if (flags & PCI_MSI_FLAGS_64BIT)
1242		len += 4;
1243	if (flags & PCI_MSI_FLAGS_MASKBIT)
1244		len += 10;
1245
1246	if (vdev->msi_perm)
1247		return len;
1248
1249	vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL_ACCOUNT);
1250	if (!vdev->msi_perm)
1251		return -ENOMEM;
1252
1253	ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1254	if (ret) {
1255		kfree(vdev->msi_perm);
1256		return ret;
1257	}
1258
1259	return len;
1260}
1261
1262/* Determine extended capability length for VC (2 & 9) and MFVC */
1263static int vfio_vc_cap_len(struct vfio_pci_core_device *vdev, u16 pos)
1264{
1265	struct pci_dev *pdev = vdev->pdev;
1266	u32 tmp;
1267	int ret, evcc, phases, vc_arb;
1268	int len = PCI_CAP_VC_BASE_SIZEOF;
1269
1270	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1271	if (ret)
1272		return pcibios_err_to_errno(ret);
1273
1274	evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1275	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1276	if (ret)
1277		return pcibios_err_to_errno(ret);
1278
1279	if (tmp & PCI_VC_CAP2_128_PHASE)
1280		phases = 128;
1281	else if (tmp & PCI_VC_CAP2_64_PHASE)
1282		phases = 64;
1283	else if (tmp & PCI_VC_CAP2_32_PHASE)
1284		phases = 32;
1285	else
1286		phases = 0;
1287
1288	vc_arb = phases * 4;
1289
1290	/*
1291	 * Port arbitration tables are root & switch only;
1292	 * function arbitration tables are function 0 only.
1293	 * In either case, we'll never let user write them so
1294	 * we don't care how big they are
1295	 */
1296	len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1297	if (vc_arb) {
1298		len = round_up(len, 16);
1299		len += vc_arb / 8;
1300	}
1301	return len;
1302}
1303
1304static int vfio_cap_len(struct vfio_pci_core_device *vdev, u8 cap, u8 pos)
1305{
1306	struct pci_dev *pdev = vdev->pdev;
1307	u32 dword;
1308	u16 word;
1309	u8 byte;
1310	int ret;
1311
1312	switch (cap) {
1313	case PCI_CAP_ID_MSI:
1314		return vfio_msi_cap_len(vdev, pos);
1315	case PCI_CAP_ID_PCIX:
1316		ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1317		if (ret)
1318			return pcibios_err_to_errno(ret);
1319
1320		if (PCI_X_CMD_VERSION(word)) {
1321			if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1322				/* Test for extended capabilities */
1323				pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1324						      &dword);
1325				vdev->extended_caps = (dword != 0);
1326			}
1327			return PCI_CAP_PCIX_SIZEOF_V2;
1328		} else
1329			return PCI_CAP_PCIX_SIZEOF_V0;
1330	case PCI_CAP_ID_VNDR:
1331		/* length follows next field */
1332		ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1333		if (ret)
1334			return pcibios_err_to_errno(ret);
1335
1336		return byte;
1337	case PCI_CAP_ID_EXP:
1338		if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1339			/* Test for extended capabilities */
1340			pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1341			vdev->extended_caps = (dword != 0);
1342		}
1343
1344		/* length based on version and type */
1345		if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
1346			if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1347				return 0xc; /* "All Devices" only, no link */
1348			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1349		} else {
1350			if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1351				return 0x2c; /* No link */
1352			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1353		}
1354	case PCI_CAP_ID_HT:
1355		ret = pci_read_config_byte(pdev, pos + 3, &byte);
1356		if (ret)
1357			return pcibios_err_to_errno(ret);
1358
1359		return (byte & HT_3BIT_CAP_MASK) ?
1360			HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1361	case PCI_CAP_ID_SATA:
1362		ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1363		if (ret)
1364			return pcibios_err_to_errno(ret);
1365
1366		byte &= PCI_SATA_REGS_MASK;
1367		if (byte == PCI_SATA_REGS_INLINE)
1368			return PCI_SATA_SIZEOF_LONG;
1369		else
1370			return PCI_SATA_SIZEOF_SHORT;
1371	default:
1372		pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n",
1373			 __func__, cap, pos);
1374	}
1375
1376	return 0;
1377}
1378
1379static int vfio_ext_cap_len(struct vfio_pci_core_device *vdev, u16 ecap, u16 epos)
1380{
1381	struct pci_dev *pdev = vdev->pdev;
1382	u8 byte;
1383	u32 dword;
1384	int ret;
1385
1386	switch (ecap) {
1387	case PCI_EXT_CAP_ID_VNDR:
1388		ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1389		if (ret)
1390			return pcibios_err_to_errno(ret);
1391
1392		return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1393	case PCI_EXT_CAP_ID_VC:
1394	case PCI_EXT_CAP_ID_VC9:
1395	case PCI_EXT_CAP_ID_MFVC:
1396		return vfio_vc_cap_len(vdev, epos);
1397	case PCI_EXT_CAP_ID_ACS:
1398		ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1399		if (ret)
1400			return pcibios_err_to_errno(ret);
1401
1402		if (byte & PCI_ACS_EC) {
1403			int bits;
1404
1405			ret = pci_read_config_byte(pdev,
1406						   epos + PCI_ACS_EGRESS_BITS,
1407						   &byte);
1408			if (ret)
1409				return pcibios_err_to_errno(ret);
1410
1411			bits = byte ? round_up(byte, 32) : 256;
1412			return 8 + (bits / 8);
1413		}
1414		return 8;
1415
1416	case PCI_EXT_CAP_ID_REBAR:
1417		ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1418		if (ret)
1419			return pcibios_err_to_errno(ret);
1420
1421		byte &= PCI_REBAR_CTRL_NBAR_MASK;
1422		byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1423
1424		return 4 + (byte * 8);
1425	case PCI_EXT_CAP_ID_DPA:
1426		ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1427		if (ret)
1428			return pcibios_err_to_errno(ret);
1429
1430		byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1431		return PCI_DPA_BASE_SIZEOF + byte + 1;
1432	case PCI_EXT_CAP_ID_TPH:
1433		ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1434		if (ret)
1435			return pcibios_err_to_errno(ret);
1436
1437		if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1438			int sts;
1439
1440			sts = dword & PCI_TPH_CAP_ST_MASK;
1441			sts >>= PCI_TPH_CAP_ST_SHIFT;
1442			return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1443		}
1444		return PCI_TPH_BASE_SIZEOF;
1445	case PCI_EXT_CAP_ID_DVSEC:
1446		ret = pci_read_config_dword(pdev, epos + PCI_DVSEC_HEADER1, &dword);
1447		if (ret)
1448			return pcibios_err_to_errno(ret);
1449		return PCI_DVSEC_HEADER1_LEN(dword);
1450	default:
1451		pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n",
1452			 __func__, ecap, epos);
1453	}
1454
1455	return 0;
1456}
1457
1458static void vfio_update_pm_vconfig_bytes(struct vfio_pci_core_device *vdev,
1459					 int offset)
1460{
1461	__le16 *pmc = (__le16 *)&vdev->vconfig[offset + PCI_PM_PMC];
1462	__le16 *ctrl = (__le16 *)&vdev->vconfig[offset + PCI_PM_CTRL];
1463
1464	/* Clear vconfig PME_Support, PME_Status, and PME_En bits */
1465	*pmc &= ~cpu_to_le16(PCI_PM_CAP_PME_MASK);
1466	*ctrl &= ~cpu_to_le16(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS);
1467}
1468
1469static int vfio_fill_vconfig_bytes(struct vfio_pci_core_device *vdev,
1470				   int offset, int size)
1471{
1472	struct pci_dev *pdev = vdev->pdev;
1473	int ret = 0;
1474
1475	/*
1476	 * We try to read physical config space in the largest chunks
1477	 * we can, assuming that all of the fields support dword access.
1478	 * pci_save_state() makes this same assumption and seems to do ok.
1479	 */
1480	while (size) {
1481		int filled;
1482
1483		if (size >= 4 && !(offset % 4)) {
1484			__le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1485			u32 dword;
1486
1487			ret = pci_read_config_dword(pdev, offset, &dword);
1488			if (ret)
1489				return ret;
1490			*dwordp = cpu_to_le32(dword);
1491			filled = 4;
1492		} else if (size >= 2 && !(offset % 2)) {
1493			__le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1494			u16 word;
1495
1496			ret = pci_read_config_word(pdev, offset, &word);
1497			if (ret)
1498				return ret;
1499			*wordp = cpu_to_le16(word);
1500			filled = 2;
1501		} else {
1502			u8 *byte = &vdev->vconfig[offset];
1503			ret = pci_read_config_byte(pdev, offset, byte);
1504			if (ret)
1505				return ret;
1506			filled = 1;
1507		}
1508
1509		offset += filled;
1510		size -= filled;
1511	}
1512
1513	return ret;
1514}
1515
1516static int vfio_cap_init(struct vfio_pci_core_device *vdev)
1517{
1518	struct pci_dev *pdev = vdev->pdev;
1519	u8 *map = vdev->pci_config_map;
1520	u16 status;
1521	u8 pos, *prev, cap;
1522	int loops, ret, caps = 0;
1523
1524	/* Any capabilities? */
1525	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1526	if (ret)
1527		return ret;
1528
1529	if (!(status & PCI_STATUS_CAP_LIST))
1530		return 0; /* Done */
1531
1532	ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1533	if (ret)
1534		return ret;
1535
1536	/* Mark the previous position in case we want to skip a capability */
1537	prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1538
1539	/* We can bound our loop, capabilities are dword aligned */
1540	loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1541	while (pos && loops--) {
1542		u8 next;
1543		int i, len = 0;
1544
1545		ret = pci_read_config_byte(pdev, pos, &cap);
1546		if (ret)
1547			return ret;
1548
1549		ret = pci_read_config_byte(pdev,
1550					   pos + PCI_CAP_LIST_NEXT, &next);
1551		if (ret)
1552			return ret;
1553
1554		/*
1555		 * ID 0 is a NULL capability, conflicting with our fake
1556		 * PCI_CAP_ID_BASIC.  As it has no content, consider it
1557		 * hidden for now.
1558		 */
1559		if (cap && cap <= PCI_CAP_ID_MAX) {
1560			len = pci_cap_length[cap];
1561			if (len == 0xFF) { /* Variable length */
1562				len = vfio_cap_len(vdev, cap, pos);
1563				if (len < 0)
1564					return len;
1565			}
1566		}
1567
1568		if (!len) {
1569			pci_dbg(pdev, "%s: hiding cap %#x@%#x\n", __func__,
1570				cap, pos);
1571			*prev = next;
1572			pos = next;
1573			continue;
1574		}
1575
1576		/* Sanity check, do we overlap other capabilities? */
1577		for (i = 0; i < len; i++) {
1578			if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1579				continue;
1580
1581			pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n",
1582				 __func__, pos + i, map[pos + i], cap);
1583		}
1584
1585		BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1586
1587		memset(map + pos, cap, len);
1588		ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1589		if (ret)
1590			return ret;
1591
1592		if (cap == PCI_CAP_ID_PM)
1593			vfio_update_pm_vconfig_bytes(vdev, pos);
1594
1595		prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1596		pos = next;
1597		caps++;
1598	}
1599
1600	/* If we didn't fill any capabilities, clear the status flag */
1601	if (!caps) {
1602		__le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1603		*vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1604	}
1605
1606	return 0;
1607}
1608
1609static int vfio_ecap_init(struct vfio_pci_core_device *vdev)
1610{
1611	struct pci_dev *pdev = vdev->pdev;
1612	u8 *map = vdev->pci_config_map;
1613	u16 epos;
1614	__le32 *prev = NULL;
1615	int loops, ret, ecaps = 0;
1616
1617	if (!vdev->extended_caps)
1618		return 0;
1619
1620	epos = PCI_CFG_SPACE_SIZE;
1621
1622	loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1623
1624	while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1625		u32 header;
1626		u16 ecap;
1627		int i, len = 0;
1628		bool hidden = false;
1629
1630		ret = pci_read_config_dword(pdev, epos, &header);
1631		if (ret)
1632			return ret;
1633
1634		ecap = PCI_EXT_CAP_ID(header);
1635
1636		if (ecap <= PCI_EXT_CAP_ID_MAX) {
1637			len = pci_ext_cap_length[ecap];
1638			if (len == 0xFF) {
1639				len = vfio_ext_cap_len(vdev, ecap, epos);
1640				if (len < 0)
1641					return len;
1642			}
1643		}
1644
1645		if (!len) {
1646			pci_dbg(pdev, "%s: hiding ecap %#x@%#x\n",
1647				__func__, ecap, epos);
1648
1649			/* If not the first in the chain, we can skip over it */
1650			if (prev) {
1651				u32 val = epos = PCI_EXT_CAP_NEXT(header);
1652				*prev &= cpu_to_le32(~(0xffcU << 20));
1653				*prev |= cpu_to_le32(val << 20);
1654				continue;
1655			}
1656
1657			/*
1658			 * Otherwise, fill in a placeholder, the direct
1659			 * readfn will virtualize this automatically
1660			 */
1661			len = PCI_CAP_SIZEOF;
1662			hidden = true;
1663		}
1664
1665		for (i = 0; i < len; i++) {
1666			if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1667				continue;
1668
1669			pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n",
1670				 __func__, epos + i, map[epos + i], ecap);
1671		}
1672
1673		/*
1674		 * Even though ecap is 2 bytes, we're currently a long way
1675		 * from exceeding 1 byte capabilities.  If we ever make it
1676		 * up to 0xFE we'll need to up this to a two-byte, byte map.
1677		 */
1678		BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1679
1680		memset(map + epos, ecap, len);
1681		ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1682		if (ret)
1683			return ret;
1684
1685		/*
1686		 * If we're just using this capability to anchor the list,
1687		 * hide the real ID.  Only count real ecaps.  XXX PCI spec
1688		 * indicates to use cap id = 0, version = 0, next = 0 if
1689		 * ecaps are absent, hope users check all the way to next.
1690		 */
1691		if (hidden)
1692			*(__le32 *)&vdev->vconfig[epos] &=
1693				cpu_to_le32((0xffcU << 20));
1694		else
1695			ecaps++;
1696
1697		prev = (__le32 *)&vdev->vconfig[epos];
1698		epos = PCI_EXT_CAP_NEXT(header);
1699	}
1700
1701	if (!ecaps)
1702		*(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1703
1704	return 0;
1705}
1706
1707/*
1708 * Nag about hardware bugs, hopefully to have vendors fix them, but at least
1709 * to collect a list of dependencies for the VF INTx pin quirk below.
1710 */
1711static const struct pci_device_id known_bogus_vf_intx_pin[] = {
1712	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
1713	{}
1714};
1715
1716/*
1717 * For each device we allocate a pci_config_map that indicates the
1718 * capability occupying each dword and thus the struct perm_bits we
1719 * use for read and write.  We also allocate a virtualized config
1720 * space which tracks reads and writes to bits that we emulate for
1721 * the user.  Initial values filled from device.
1722 *
1723 * Using shared struct perm_bits between all vfio-pci devices saves
1724 * us from allocating cfg_size buffers for virt and write for every
1725 * device.  We could remove vconfig and allocate individual buffers
1726 * for each area requiring emulated bits, but the array of pointers
1727 * would be comparable in size (at least for standard config space).
1728 */
1729int vfio_config_init(struct vfio_pci_core_device *vdev)
1730{
1731	struct pci_dev *pdev = vdev->pdev;
1732	u8 *map, *vconfig;
1733	int ret;
1734
1735	/*
1736	 * Config space, caps and ecaps are all dword aligned, so we could
1737	 * use one byte per dword to record the type.  However, there are
1738	 * no requirements on the length of a capability, so the gap between
1739	 * capabilities needs byte granularity.
1740	 */
1741	map = kmalloc(pdev->cfg_size, GFP_KERNEL_ACCOUNT);
1742	if (!map)
1743		return -ENOMEM;
1744
1745	vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL_ACCOUNT);
1746	if (!vconfig) {
1747		kfree(map);
1748		return -ENOMEM;
1749	}
1750
1751	vdev->pci_config_map = map;
1752	vdev->vconfig = vconfig;
1753
1754	memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1755	memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1756	       pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1757
1758	ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1759	if (ret)
1760		goto out;
1761
1762	vdev->bardirty = true;
1763
1764	/*
1765	 * XXX can we just pci_load_saved_state/pci_restore_state?
1766	 * may need to rebuild vconfig after that
1767	 */
1768
1769	/* For restore after reset */
1770	vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1771	vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1772	vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1773	vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1774	vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1775	vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1776	vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1777
1778	if (pdev->is_virtfn) {
1779		*(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1780		*(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1781
1782		/*
1783		 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
1784		 * does not apply to VFs and VFs must implement this register
1785		 * as read-only with value zero.  Userspace is not readily able
1786		 * to identify whether a device is a VF and thus that the pin
1787		 * definition on the device is bogus should it violate this
1788		 * requirement.  We already virtualize the pin register for
1789		 * other purposes, so we simply need to replace the bogus value
1790		 * and consider VFs when we determine INTx IRQ count.
1791		 */
1792		if (vconfig[PCI_INTERRUPT_PIN] &&
1793		    !pci_match_id(known_bogus_vf_intx_pin, pdev))
1794			pci_warn(pdev,
1795				 "Hardware bug: VF reports bogus INTx pin %d\n",
1796				 vconfig[PCI_INTERRUPT_PIN]);
1797
1798		vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
1799	}
1800	if (pdev->no_command_memory) {
1801		/*
1802		 * VFs and devices that set pdev->no_command_memory do not
1803		 * implement the memory enable bit of the COMMAND register
1804		 * therefore we'll not have it set in our initial copy of
1805		 * config space after pci_enable_device().  For consistency
1806		 * with PFs, set the virtual enable bit here.
1807		 */
1808		*(__le16 *)&vconfig[PCI_COMMAND] |=
1809					cpu_to_le16(PCI_COMMAND_MEMORY);
1810	}
1811
1812	if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
1813		vconfig[PCI_INTERRUPT_PIN] = 0;
1814
1815	ret = vfio_cap_init(vdev);
1816	if (ret)
1817		goto out;
1818
1819	ret = vfio_ecap_init(vdev);
1820	if (ret)
1821		goto out;
1822
1823	return 0;
1824
1825out:
1826	kfree(map);
1827	vdev->pci_config_map = NULL;
1828	kfree(vconfig);
1829	vdev->vconfig = NULL;
1830	return pcibios_err_to_errno(ret);
1831}
1832
1833void vfio_config_free(struct vfio_pci_core_device *vdev)
1834{
1835	kfree(vdev->vconfig);
1836	vdev->vconfig = NULL;
1837	kfree(vdev->pci_config_map);
1838	vdev->pci_config_map = NULL;
1839	if (vdev->msi_perm) {
1840		free_perm_bits(vdev->msi_perm);
1841		kfree(vdev->msi_perm);
1842		vdev->msi_perm = NULL;
1843	}
1844}
1845
1846/*
1847 * Find the remaining number of bytes in a dword that match the given
1848 * position.  Stop at either the end of the capability or the dword boundary.
1849 */
1850static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_core_device *vdev,
1851					   loff_t pos)
1852{
1853	u8 cap = vdev->pci_config_map[pos];
1854	size_t i;
1855
1856	for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1857		/* nop */;
1858
1859	return i;
1860}
1861
1862static ssize_t vfio_config_do_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1863				 size_t count, loff_t *ppos, bool iswrite)
1864{
1865	struct pci_dev *pdev = vdev->pdev;
1866	struct perm_bits *perm;
1867	__le32 val = 0;
1868	int cap_start = 0, offset;
1869	u8 cap_id;
1870	ssize_t ret;
1871
1872	if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1873	    *ppos + count > pdev->cfg_size)
1874		return -EFAULT;
1875
1876	/*
1877	 * Chop accesses into aligned chunks containing no more than a
1878	 * single capability.  Caller increments to the next chunk.
1879	 */
1880	count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1881	if (count >= 4 && !(*ppos % 4))
1882		count = 4;
1883	else if (count >= 2 && !(*ppos % 2))
1884		count = 2;
1885	else
1886		count = 1;
1887
1888	ret = count;
1889
1890	cap_id = vdev->pci_config_map[*ppos];
1891
1892	if (cap_id == PCI_CAP_ID_INVALID) {
1893		perm = &unassigned_perms;
1894		cap_start = *ppos;
1895	} else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1896		perm = &virt_perms;
1897		cap_start = *ppos;
1898	} else {
1899		if (*ppos >= PCI_CFG_SPACE_SIZE) {
1900			WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1901
1902			perm = &ecap_perms[cap_id];
1903			cap_start = vfio_find_cap_start(vdev, *ppos);
1904		} else {
1905			WARN_ON(cap_id > PCI_CAP_ID_MAX);
1906
1907			perm = &cap_perms[cap_id];
1908
1909			if (cap_id == PCI_CAP_ID_MSI)
1910				perm = vdev->msi_perm;
1911
1912			if (cap_id > PCI_CAP_ID_BASIC)
1913				cap_start = vfio_find_cap_start(vdev, *ppos);
1914		}
1915	}
1916
1917	WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1918	WARN_ON(cap_start > *ppos);
1919
1920	offset = *ppos - cap_start;
1921
1922	if (iswrite) {
1923		if (!perm->writefn)
1924			return ret;
1925
1926		if (copy_from_user(&val, buf, count))
1927			return -EFAULT;
1928
1929		ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1930	} else {
1931		if (perm->readfn) {
1932			ret = perm->readfn(vdev, *ppos, count,
1933					   perm, offset, &val);
1934			if (ret < 0)
1935				return ret;
1936		}
1937
1938		if (copy_to_user(buf, &val, count))
1939			return -EFAULT;
1940	}
1941
1942	return ret;
1943}
1944
1945ssize_t vfio_pci_config_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1946			   size_t count, loff_t *ppos, bool iswrite)
1947{
1948	size_t done = 0;
1949	int ret = 0;
1950	loff_t pos = *ppos;
1951
1952	pos &= VFIO_PCI_OFFSET_MASK;
1953
1954	while (count) {
1955		ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1956		if (ret < 0)
1957			return ret;
1958
1959		count -= ret;
1960		done += ret;
1961		buf += ret;
1962		pos += ret;
1963	}
1964
1965	*ppos += done;
1966
1967	return done;
1968}
1969
1970/**
1971 * vfio_pci_core_range_intersect_range() - Determine overlap between a buffer
1972 *					   and register offset ranges.
1973 * @buf_start:		start offset of the buffer
1974 * @buf_cnt:		number of buffer bytes
1975 * @reg_start:		start register offset
1976 * @reg_cnt:		number of register bytes
1977 * @buf_offset:	start offset of overlap in the buffer
1978 * @intersect_count:	number of overlapping bytes
1979 * @register_offset:	start offset of overlap in register
1980 *
1981 * Returns: true if there is overlap, false if not.
1982 * The overlap start and size is returned through function args.
1983 */
1984bool vfio_pci_core_range_intersect_range(loff_t buf_start, size_t buf_cnt,
1985					 loff_t reg_start, size_t reg_cnt,
1986					 loff_t *buf_offset,
1987					 size_t *intersect_count,
1988					 size_t *register_offset)
1989{
1990	if (buf_start <= reg_start &&
1991	    buf_start + buf_cnt > reg_start) {
1992		*buf_offset = reg_start - buf_start;
1993		*intersect_count = min_t(size_t, reg_cnt,
1994					 buf_start + buf_cnt - reg_start);
1995		*register_offset = 0;
1996		return true;
1997	}
1998
1999	if (buf_start > reg_start &&
2000	    buf_start < reg_start + reg_cnt) {
2001		*buf_offset = 0;
2002		*intersect_count = min_t(size_t, buf_cnt,
2003					 reg_start + reg_cnt - buf_start);
2004		*register_offset = buf_start - reg_start;
2005		return true;
2006	}
2007
2008	return false;
2009}
2010EXPORT_SYMBOL_GPL(vfio_pci_core_range_intersect_range);
2011