1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Driver for SanDisk SDDR-09 SmartMedia reader
4 *
5 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
6 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
7 * Developed with the assistance of:
8 *   (c) 2002 Alan Stern <stern@rowland.org>
9 *
10 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
11 * This chip is a programmable USB controller. In the SDDR-09, it has
12 * been programmed to obey a certain limited set of SCSI commands.
13 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
14 * commands.
15 */
16
17/*
18 * Known vendor commands: 12 bytes, first byte is opcode
19 *
20 * E7: read scatter gather
21 * E8: read
22 * E9: write
23 * EA: erase
24 * EB: reset
25 * EC: read status
26 * ED: read ID
27 * EE: write CIS (?)
28 * EF: compute checksum (?)
29 */
30
31#include <linux/errno.h>
32#include <linux/module.h>
33#include <linux/slab.h>
34
35#include <scsi/scsi.h>
36#include <scsi/scsi_cmnd.h>
37#include <scsi/scsi_device.h>
38
39#include "usb.h"
40#include "transport.h"
41#include "protocol.h"
42#include "debug.h"
43#include "scsiglue.h"
44
45#define DRV_NAME "ums-sddr09"
46
47MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
48MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
49MODULE_LICENSE("GPL");
50MODULE_IMPORT_NS(USB_STORAGE);
51
52static int usb_stor_sddr09_dpcm_init(struct us_data *us);
53static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
54static int usb_stor_sddr09_init(struct us_data *us);
55
56
57/*
58 * The table of devices
59 */
60#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
61		    vendorName, productName, useProtocol, useTransport, \
62		    initFunction, flags) \
63{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
64  .driver_info = (flags) }
65
66static struct usb_device_id sddr09_usb_ids[] = {
67#	include "unusual_sddr09.h"
68	{ }		/* Terminating entry */
69};
70MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
71
72#undef UNUSUAL_DEV
73
74/*
75 * The flags table
76 */
77#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
78		    vendor_name, product_name, use_protocol, use_transport, \
79		    init_function, Flags) \
80{ \
81	.vendorName = vendor_name,	\
82	.productName = product_name,	\
83	.useProtocol = use_protocol,	\
84	.useTransport = use_transport,	\
85	.initFunction = init_function,	\
86}
87
88static struct us_unusual_dev sddr09_unusual_dev_list[] = {
89#	include "unusual_sddr09.h"
90	{ }		/* Terminating entry */
91};
92
93#undef UNUSUAL_DEV
94
95
96#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
97#define LSB_of(s) ((s)&0xFF)
98#define MSB_of(s) ((s)>>8)
99
100/*
101 * First some stuff that does not belong here:
102 * data on SmartMedia and other cards, completely
103 * unrelated to this driver.
104 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
105 */
106
107struct nand_flash_dev {
108	int model_id;
109	int chipshift;		/* 1<<cs bytes total capacity */
110	char pageshift;		/* 1<<ps bytes in a page */
111	char blockshift;	/* 1<<bs pages in an erase block */
112	char zoneshift;		/* 1<<zs blocks in a zone */
113				/* # of logical blocks is 125/128 of this */
114	char pageadrlen;	/* length of an address in bytes - 1 */
115};
116
117/*
118 * NAND Flash Manufacturer ID Codes
119 */
120#define NAND_MFR_AMD		0x01
121#define NAND_MFR_NATSEMI	0x8f
122#define NAND_MFR_TOSHIBA	0x98
123#define NAND_MFR_SAMSUNG	0xec
124
125static inline char *nand_flash_manufacturer(int manuf_id) {
126	switch(manuf_id) {
127	case NAND_MFR_AMD:
128		return "AMD";
129	case NAND_MFR_NATSEMI:
130		return "NATSEMI";
131	case NAND_MFR_TOSHIBA:
132		return "Toshiba";
133	case NAND_MFR_SAMSUNG:
134		return "Samsung";
135	default:
136		return "unknown";
137	}
138}
139
140/*
141 * It looks like it is unnecessary to attach manufacturer to the
142 * remaining data: SSFDC prescribes manufacturer-independent id codes.
143 *
144 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
145 */
146
147static struct nand_flash_dev nand_flash_ids[] = {
148	/* NAND flash */
149	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
150	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
151	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
152	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
153	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
154	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
155	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
156	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
157	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
158	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
159	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
160	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
161	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
162
163	/* MASK ROM */
164	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
165	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
166	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
167	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
168	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
169	{ 0,}
170};
171
172static struct nand_flash_dev *
173nand_find_id(unsigned char id) {
174	int i;
175
176	for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
177		if (nand_flash_ids[i].model_id == id)
178			return &(nand_flash_ids[i]);
179	return NULL;
180}
181
182/*
183 * ECC computation.
184 */
185static unsigned char parity[256];
186static unsigned char ecc2[256];
187
188static void nand_init_ecc(void) {
189	int i, j, a;
190
191	parity[0] = 0;
192	for (i = 1; i < 256; i++)
193		parity[i] = (parity[i&(i-1)] ^ 1);
194
195	for (i = 0; i < 256; i++) {
196		a = 0;
197		for (j = 0; j < 8; j++) {
198			if (i & (1<<j)) {
199				if ((j & 1) == 0)
200					a ^= 0x04;
201				if ((j & 2) == 0)
202					a ^= 0x10;
203				if ((j & 4) == 0)
204					a ^= 0x40;
205			}
206		}
207		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
208	}
209}
210
211/* compute 3-byte ecc on 256 bytes */
212static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
213	int i, j, a;
214	unsigned char par = 0, bit, bits[8] = {0};
215
216	/* collect 16 checksum bits */
217	for (i = 0; i < 256; i++) {
218		par ^= data[i];
219		bit = parity[data[i]];
220		for (j = 0; j < 8; j++)
221			if ((i & (1<<j)) == 0)
222				bits[j] ^= bit;
223	}
224
225	/* put 4+4+4 = 12 bits in the ecc */
226	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
227	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
228
229	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
230	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
231
232	ecc[2] = ecc2[par];
233}
234
235static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
236	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
237}
238
239static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
240	memcpy(data, ecc, 3);
241}
242
243/*
244 * The actual driver starts here.
245 */
246
247struct sddr09_card_info {
248	unsigned long	capacity;	/* Size of card in bytes */
249	int		pagesize;	/* Size of page in bytes */
250	int		pageshift;	/* log2 of pagesize */
251	int		blocksize;	/* Size of block in pages */
252	int		blockshift;	/* log2 of blocksize */
253	int		blockmask;	/* 2^blockshift - 1 */
254	int		*lba_to_pba;	/* logical to physical map */
255	int		*pba_to_lba;	/* physical to logical map */
256	int		lbact;		/* number of available pages */
257	int		flags;
258#define	SDDR09_WP	1		/* write protected */
259};
260
261/*
262 * On my 16MB card, control blocks have size 64 (16 real control bytes,
263 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
264 * so the reader makes up the remaining 48. Don't know whether these numbers
265 * depend on the card. For now a constant.
266 */
267#define CONTROL_SHIFT 6
268
269/*
270 * On my Combo CF/SM reader, the SM reader has LUN 1.
271 * (and things fail with LUN 0).
272 * It seems LUN is irrelevant for others.
273 */
274#define LUN	1
275#define	LUNBITS	(LUN << 5)
276
277/*
278 * LBA and PBA are unsigned ints. Special values.
279 */
280#define UNDEF    0xffffffff
281#define SPARE    0xfffffffe
282#define UNUSABLE 0xfffffffd
283
284static const int erase_bad_lba_entries = 0;
285
286/* send vendor interface command (0x41) */
287/* called for requests 0, 1, 8 */
288static int
289sddr09_send_command(struct us_data *us,
290		    unsigned char request,
291		    unsigned char direction,
292		    unsigned char *xfer_data,
293		    unsigned int xfer_len) {
294	unsigned int pipe;
295	unsigned char requesttype = (0x41 | direction);
296	int rc;
297
298	// Get the receive or send control pipe number
299
300	if (direction == USB_DIR_IN)
301		pipe = us->recv_ctrl_pipe;
302	else
303		pipe = us->send_ctrl_pipe;
304
305	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
306				   0, 0, xfer_data, xfer_len);
307	switch (rc) {
308		case USB_STOR_XFER_GOOD:	return 0;
309		case USB_STOR_XFER_STALLED:	return -EPIPE;
310		default:			return -EIO;
311	}
312}
313
314static int
315sddr09_send_scsi_command(struct us_data *us,
316			 unsigned char *command,
317			 unsigned int command_len) {
318	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
319}
320
321#if 0
322/*
323 * Test Unit Ready Command: 12 bytes.
324 * byte 0: opcode: 00
325 */
326static int
327sddr09_test_unit_ready(struct us_data *us) {
328	unsigned char *command = us->iobuf;
329	int result;
330
331	memset(command, 0, 6);
332	command[1] = LUNBITS;
333
334	result = sddr09_send_scsi_command(us, command, 6);
335
336	usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
337
338	return result;
339}
340#endif
341
342/*
343 * Request Sense Command: 12 bytes.
344 * byte 0: opcode: 03
345 * byte 4: data length
346 */
347static int
348sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
349	unsigned char *command = us->iobuf;
350	int result;
351
352	memset(command, 0, 12);
353	command[0] = 0x03;
354	command[1] = LUNBITS;
355	command[4] = buflen;
356
357	result = sddr09_send_scsi_command(us, command, 12);
358	if (result)
359		return result;
360
361	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
362			sensebuf, buflen, NULL);
363	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
364}
365
366/*
367 * Read Command: 12 bytes.
368 * byte 0: opcode: E8
369 * byte 1: last two bits: 00: read data, 01: read blockwise control,
370 *			10: read both, 11: read pagewise control.
371 *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
372 * bytes 2-5: address (interpretation depends on byte 1, see below)
373 * bytes 10-11: count (idem)
374 *
375 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
376 * A read data command gets data in 512-byte pages.
377 * A read control command gets control in 64-byte chunks.
378 * A read both command gets data+control in 576-byte chunks.
379 *
380 * Blocks are groups of 32 pages, and read blockwise control jumps to the
381 * next block, while read pagewise control jumps to the next page after
382 * reading a group of 64 control bytes.
383 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
384 *
385 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
386 */
387
388static int
389sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
390	     int nr_of_pages, int bulklen, unsigned char *buf,
391	     int use_sg) {
392
393	unsigned char *command = us->iobuf;
394	int result;
395
396	command[0] = 0xE8;
397	command[1] = LUNBITS | x;
398	command[2] = MSB_of(fromaddress>>16);
399	command[3] = LSB_of(fromaddress>>16);
400	command[4] = MSB_of(fromaddress & 0xFFFF);
401	command[5] = LSB_of(fromaddress & 0xFFFF);
402	command[6] = 0;
403	command[7] = 0;
404	command[8] = 0;
405	command[9] = 0;
406	command[10] = MSB_of(nr_of_pages);
407	command[11] = LSB_of(nr_of_pages);
408
409	result = sddr09_send_scsi_command(us, command, 12);
410
411	if (result) {
412		usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
413			     x, result);
414		return result;
415	}
416
417	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
418				       buf, bulklen, use_sg, NULL);
419
420	if (result != USB_STOR_XFER_GOOD) {
421		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
422			     x, result);
423		return -EIO;
424	}
425	return 0;
426}
427
428/*
429 * Read Data
430 *
431 * fromaddress counts data shorts:
432 * increasing it by 256 shifts the bytestream by 512 bytes;
433 * the last 8 bits are ignored.
434 *
435 * nr_of_pages counts pages of size (1 << pageshift).
436 */
437static int
438sddr09_read20(struct us_data *us, unsigned long fromaddress,
439	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
440	int bulklen = nr_of_pages << pageshift;
441
442	/* The last 8 bits of fromaddress are ignored. */
443	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
444			    buf, use_sg);
445}
446
447/*
448 * Read Blockwise Control
449 *
450 * fromaddress gives the starting position (as in read data;
451 * the last 8 bits are ignored); increasing it by 32*256 shifts
452 * the output stream by 64 bytes.
453 *
454 * count counts control groups of size (1 << controlshift).
455 * For me, controlshift = 6. Is this constant?
456 *
457 * After getting one control group, jump to the next block
458 * (fromaddress += 8192).
459 */
460static int
461sddr09_read21(struct us_data *us, unsigned long fromaddress,
462	      int count, int controlshift, unsigned char *buf, int use_sg) {
463
464	int bulklen = (count << controlshift);
465	return sddr09_readX(us, 1, fromaddress, count, bulklen,
466			    buf, use_sg);
467}
468
469/*
470 * Read both Data and Control
471 *
472 * fromaddress counts data shorts, ignoring control:
473 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
474 * the last 8 bits are ignored.
475 *
476 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
477 */
478static int
479sddr09_read22(struct us_data *us, unsigned long fromaddress,
480	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
481
482	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
483	usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
484	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
485			    buf, use_sg);
486}
487
488#if 0
489/*
490 * Read Pagewise Control
491 *
492 * fromaddress gives the starting position (as in read data;
493 * the last 8 bits are ignored); increasing it by 256 shifts
494 * the output stream by 64 bytes.
495 *
496 * count counts control groups of size (1 << controlshift).
497 * For me, controlshift = 6. Is this constant?
498 *
499 * After getting one control group, jump to the next page
500 * (fromaddress += 256).
501 */
502static int
503sddr09_read23(struct us_data *us, unsigned long fromaddress,
504	      int count, int controlshift, unsigned char *buf, int use_sg) {
505
506	int bulklen = (count << controlshift);
507	return sddr09_readX(us, 3, fromaddress, count, bulklen,
508			    buf, use_sg);
509}
510#endif
511
512/*
513 * Erase Command: 12 bytes.
514 * byte 0: opcode: EA
515 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
516 *
517 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
518 * The byte address being erased is 2*Eaddress.
519 * The CIS cannot be erased.
520 */
521static int
522sddr09_erase(struct us_data *us, unsigned long Eaddress) {
523	unsigned char *command = us->iobuf;
524	int result;
525
526	usb_stor_dbg(us, "erase address %lu\n", Eaddress);
527
528	memset(command, 0, 12);
529	command[0] = 0xEA;
530	command[1] = LUNBITS;
531	command[6] = MSB_of(Eaddress>>16);
532	command[7] = LSB_of(Eaddress>>16);
533	command[8] = MSB_of(Eaddress & 0xFFFF);
534	command[9] = LSB_of(Eaddress & 0xFFFF);
535
536	result = sddr09_send_scsi_command(us, command, 12);
537
538	if (result)
539		usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
540			     result);
541
542	return result;
543}
544
545/*
546 * Write CIS Command: 12 bytes.
547 * byte 0: opcode: EE
548 * bytes 2-5: write address in shorts
549 * bytes 10-11: sector count
550 *
551 * This writes at the indicated address. Don't know how it differs
552 * from E9. Maybe it does not erase? However, it will also write to
553 * the CIS.
554 *
555 * When two such commands on the same page follow each other directly,
556 * the second one is not done.
557 */
558
559/*
560 * Write Command: 12 bytes.
561 * byte 0: opcode: E9
562 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
563 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
564 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
565 *
566 * If write address equals erase address, the erase is done first,
567 * otherwise the write is done first. When erase address equals zero
568 * no erase is done?
569 */
570static int
571sddr09_writeX(struct us_data *us,
572	      unsigned long Waddress, unsigned long Eaddress,
573	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
574
575	unsigned char *command = us->iobuf;
576	int result;
577
578	command[0] = 0xE9;
579	command[1] = LUNBITS;
580
581	command[2] = MSB_of(Waddress>>16);
582	command[3] = LSB_of(Waddress>>16);
583	command[4] = MSB_of(Waddress & 0xFFFF);
584	command[5] = LSB_of(Waddress & 0xFFFF);
585
586	command[6] = MSB_of(Eaddress>>16);
587	command[7] = LSB_of(Eaddress>>16);
588	command[8] = MSB_of(Eaddress & 0xFFFF);
589	command[9] = LSB_of(Eaddress & 0xFFFF);
590
591	command[10] = MSB_of(nr_of_pages);
592	command[11] = LSB_of(nr_of_pages);
593
594	result = sddr09_send_scsi_command(us, command, 12);
595
596	if (result) {
597		usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
598			     result);
599		return result;
600	}
601
602	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
603				       buf, bulklen, use_sg, NULL);
604
605	if (result != USB_STOR_XFER_GOOD) {
606		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
607			     result);
608		return -EIO;
609	}
610	return 0;
611}
612
613/* erase address, write same address */
614static int
615sddr09_write_inplace(struct us_data *us, unsigned long address,
616		     int nr_of_pages, int pageshift, unsigned char *buf,
617		     int use_sg) {
618	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
619	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
620			     buf, use_sg);
621}
622
623#if 0
624/*
625 * Read Scatter Gather Command: 3+4n bytes.
626 * byte 0: opcode E7
627 * byte 2: n
628 * bytes 4i-1,4i,4i+1: page address
629 * byte 4i+2: page count
630 * (i=1..n)
631 *
632 * This reads several pages from the card to a single memory buffer.
633 * The last two bits of byte 1 have the same meaning as for E8.
634 */
635static int
636sddr09_read_sg_test_only(struct us_data *us) {
637	unsigned char *command = us->iobuf;
638	int result, bulklen, nsg, ct;
639	unsigned char *buf;
640	unsigned long address;
641
642	nsg = bulklen = 0;
643	command[0] = 0xE7;
644	command[1] = LUNBITS;
645	command[2] = 0;
646	address = 040000; ct = 1;
647	nsg++;
648	bulklen += (ct << 9);
649	command[4*nsg+2] = ct;
650	command[4*nsg+1] = ((address >> 9) & 0xFF);
651	command[4*nsg+0] = ((address >> 17) & 0xFF);
652	command[4*nsg-1] = ((address >> 25) & 0xFF);
653
654	address = 0340000; ct = 1;
655	nsg++;
656	bulklen += (ct << 9);
657	command[4*nsg+2] = ct;
658	command[4*nsg+1] = ((address >> 9) & 0xFF);
659	command[4*nsg+0] = ((address >> 17) & 0xFF);
660	command[4*nsg-1] = ((address >> 25) & 0xFF);
661
662	address = 01000000; ct = 2;
663	nsg++;
664	bulklen += (ct << 9);
665	command[4*nsg+2] = ct;
666	command[4*nsg+1] = ((address >> 9) & 0xFF);
667	command[4*nsg+0] = ((address >> 17) & 0xFF);
668	command[4*nsg-1] = ((address >> 25) & 0xFF);
669
670	command[2] = nsg;
671
672	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
673
674	if (result) {
675		usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
676			     result);
677		return result;
678	}
679
680	buf = kmalloc(bulklen, GFP_NOIO);
681	if (!buf)
682		return -ENOMEM;
683
684	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
685				       buf, bulklen, NULL);
686	kfree(buf);
687	if (result != USB_STOR_XFER_GOOD) {
688		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
689			     result);
690		return -EIO;
691	}
692
693	return 0;
694}
695#endif
696
697/*
698 * Read Status Command: 12 bytes.
699 * byte 0: opcode: EC
700 *
701 * Returns 64 bytes, all zero except for the first.
702 * bit 0: 1: Error
703 * bit 5: 1: Suspended
704 * bit 6: 1: Ready
705 * bit 7: 1: Not write-protected
706 */
707
708static int
709sddr09_read_status(struct us_data *us, unsigned char *status) {
710
711	unsigned char *command = us->iobuf;
712	unsigned char *data = us->iobuf;
713	int result;
714
715	usb_stor_dbg(us, "Reading status...\n");
716
717	memset(command, 0, 12);
718	command[0] = 0xEC;
719	command[1] = LUNBITS;
720
721	result = sddr09_send_scsi_command(us, command, 12);
722	if (result)
723		return result;
724
725	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
726				       data, 64, NULL);
727	*status = data[0];
728	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
729}
730
731static int
732sddr09_read_data(struct us_data *us,
733		 unsigned long address,
734		 unsigned int sectors) {
735
736	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
737	unsigned char *buffer;
738	unsigned int lba, maxlba, pba;
739	unsigned int page, pages;
740	unsigned int len, offset;
741	struct scatterlist *sg;
742	int result;
743
744	// Figure out the initial LBA and page
745	lba = address >> info->blockshift;
746	page = (address & info->blockmask);
747	maxlba = info->capacity >> (info->pageshift + info->blockshift);
748	if (lba >= maxlba)
749		return -EIO;
750
751	// Since we only read in one block at a time, we have to create
752	// a bounce buffer and move the data a piece at a time between the
753	// bounce buffer and the actual transfer buffer.
754
755	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
756	buffer = kmalloc(len, GFP_NOIO);
757	if (!buffer)
758		return -ENOMEM;
759
760	// This could be made much more efficient by checking for
761	// contiguous LBA's. Another exercise left to the student.
762
763	result = 0;
764	offset = 0;
765	sg = NULL;
766
767	while (sectors > 0) {
768
769		/* Find number of pages we can read in this block */
770		pages = min(sectors, info->blocksize - page);
771		len = pages << info->pageshift;
772
773		/* Not overflowing capacity? */
774		if (lba >= maxlba) {
775			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
776				     lba, maxlba);
777			result = -EIO;
778			break;
779		}
780
781		/* Find where this lba lives on disk */
782		pba = info->lba_to_pba[lba];
783
784		if (pba == UNDEF) {	/* this lba was never written */
785
786			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
787				     pages, lba, page);
788
789			/*
790			 * This is not really an error. It just means
791			 * that the block has never been written.
792			 * Instead of returning an error
793			 * it is better to return all zero data.
794			 */
795
796			memset(buffer, 0, len);
797
798		} else {
799			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
800				     pages, pba, lba, page);
801
802			address = ((pba << info->blockshift) + page) <<
803				info->pageshift;
804
805			result = sddr09_read20(us, address>>1,
806					pages, info->pageshift, buffer, 0);
807			if (result)
808				break;
809		}
810
811		// Store the data in the transfer buffer
812		usb_stor_access_xfer_buf(buffer, len, us->srb,
813				&sg, &offset, TO_XFER_BUF);
814
815		page = 0;
816		lba++;
817		sectors -= pages;
818	}
819
820	kfree(buffer);
821	return result;
822}
823
824static unsigned int
825sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
826	static unsigned int lastpba = 1;
827	int zonestart, end, i;
828
829	zonestart = (lba/1000) << 10;
830	end = info->capacity >> (info->blockshift + info->pageshift);
831	end -= zonestart;
832	if (end > 1024)
833		end = 1024;
834
835	for (i = lastpba+1; i < end; i++) {
836		if (info->pba_to_lba[zonestart+i] == UNDEF) {
837			lastpba = i;
838			return zonestart+i;
839		}
840	}
841	for (i = 0; i <= lastpba; i++) {
842		if (info->pba_to_lba[zonestart+i] == UNDEF) {
843			lastpba = i;
844			return zonestart+i;
845		}
846	}
847	return 0;
848}
849
850static int
851sddr09_write_lba(struct us_data *us, unsigned int lba,
852		 unsigned int page, unsigned int pages,
853		 unsigned char *ptr, unsigned char *blockbuffer) {
854
855	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
856	unsigned long address;
857	unsigned int pba, lbap;
858	unsigned int pagelen;
859	unsigned char *bptr, *cptr, *xptr;
860	unsigned char ecc[3];
861	int i, result;
862
863	lbap = ((lba % 1000) << 1) | 0x1000;
864	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
865		lbap ^= 1;
866	pba = info->lba_to_pba[lba];
867
868	if (pba == UNDEF) {
869		pba = sddr09_find_unused_pba(info, lba);
870		if (!pba) {
871			printk(KERN_WARNING
872			       "sddr09_write_lba: Out of unused blocks\n");
873			return -ENOSPC;
874		}
875		info->pba_to_lba[pba] = lba;
876		info->lba_to_pba[lba] = pba;
877	}
878
879	if (pba == 1) {
880		/*
881		 * Maybe it is impossible to write to PBA 1.
882		 * Fake success, but don't do anything.
883		 */
884		printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
885		return 0;
886	}
887
888	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
889
890	/* read old contents */
891	address = (pba << (info->pageshift + info->blockshift));
892	result = sddr09_read22(us, address>>1, info->blocksize,
893			       info->pageshift, blockbuffer, 0);
894	if (result)
895		return result;
896
897	/* check old contents and fill lba */
898	for (i = 0; i < info->blocksize; i++) {
899		bptr = blockbuffer + i*pagelen;
900		cptr = bptr + info->pagesize;
901		nand_compute_ecc(bptr, ecc);
902		if (!nand_compare_ecc(cptr+13, ecc)) {
903			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
904				     i, pba);
905			nand_store_ecc(cptr+13, ecc);
906		}
907		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
908		if (!nand_compare_ecc(cptr+8, ecc)) {
909			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
910				     i, pba);
911			nand_store_ecc(cptr+8, ecc);
912		}
913		cptr[6] = cptr[11] = MSB_of(lbap);
914		cptr[7] = cptr[12] = LSB_of(lbap);
915	}
916
917	/* copy in new stuff and compute ECC */
918	xptr = ptr;
919	for (i = page; i < page+pages; i++) {
920		bptr = blockbuffer + i*pagelen;
921		cptr = bptr + info->pagesize;
922		memcpy(bptr, xptr, info->pagesize);
923		xptr += info->pagesize;
924		nand_compute_ecc(bptr, ecc);
925		nand_store_ecc(cptr+13, ecc);
926		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
927		nand_store_ecc(cptr+8, ecc);
928	}
929
930	usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
931
932	result = sddr09_write_inplace(us, address>>1, info->blocksize,
933				      info->pageshift, blockbuffer, 0);
934
935	usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
936
937#if 0
938	{
939		unsigned char status = 0;
940		int result2 = sddr09_read_status(us, &status);
941		if (result2)
942			usb_stor_dbg(us, "cannot read status\n");
943		else if (status != 0xc0)
944			usb_stor_dbg(us, "status after write: 0x%x\n", status);
945	}
946#endif
947
948#if 0
949	{
950		int result2 = sddr09_test_unit_ready(us);
951	}
952#endif
953
954	return result;
955}
956
957static int
958sddr09_write_data(struct us_data *us,
959		  unsigned long address,
960		  unsigned int sectors) {
961
962	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
963	unsigned int lba, maxlba, page, pages;
964	unsigned int pagelen, blocklen;
965	unsigned char *blockbuffer;
966	unsigned char *buffer;
967	unsigned int len, offset;
968	struct scatterlist *sg;
969	int result;
970
971	/* Figure out the initial LBA and page */
972	lba = address >> info->blockshift;
973	page = (address & info->blockmask);
974	maxlba = info->capacity >> (info->pageshift + info->blockshift);
975	if (lba >= maxlba)
976		return -EIO;
977
978	/*
979	 * blockbuffer is used for reading in the old data, overwriting
980	 * with the new data, and performing ECC calculations
981	 */
982
983	/*
984	 * TODO: instead of doing kmalloc/kfree for each write,
985	 * add a bufferpointer to the info structure
986	 */
987
988	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
989	blocklen = (pagelen << info->blockshift);
990	blockbuffer = kmalloc(blocklen, GFP_NOIO);
991	if (!blockbuffer)
992		return -ENOMEM;
993
994	/*
995	 * Since we don't write the user data directly to the device,
996	 * we have to create a bounce buffer and move the data a piece
997	 * at a time between the bounce buffer and the actual transfer buffer.
998	 */
999
1000	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1001	buffer = kmalloc(len, GFP_NOIO);
1002	if (!buffer) {
1003		kfree(blockbuffer);
1004		return -ENOMEM;
1005	}
1006
1007	result = 0;
1008	offset = 0;
1009	sg = NULL;
1010
1011	while (sectors > 0) {
1012
1013		/* Write as many sectors as possible in this block */
1014
1015		pages = min(sectors, info->blocksize - page);
1016		len = (pages << info->pageshift);
1017
1018		/* Not overflowing capacity? */
1019		if (lba >= maxlba) {
1020			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1021				     lba, maxlba);
1022			result = -EIO;
1023			break;
1024		}
1025
1026		/* Get the data from the transfer buffer */
1027		usb_stor_access_xfer_buf(buffer, len, us->srb,
1028				&sg, &offset, FROM_XFER_BUF);
1029
1030		result = sddr09_write_lba(us, lba, page, pages,
1031				buffer, blockbuffer);
1032		if (result)
1033			break;
1034
1035		page = 0;
1036		lba++;
1037		sectors -= pages;
1038	}
1039
1040	kfree(buffer);
1041	kfree(blockbuffer);
1042
1043	return result;
1044}
1045
1046static int
1047sddr09_read_control(struct us_data *us,
1048		unsigned long address,
1049		unsigned int blocks,
1050		unsigned char *content,
1051		int use_sg) {
1052
1053	usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1054		     address, blocks);
1055
1056	return sddr09_read21(us, address, blocks,
1057			     CONTROL_SHIFT, content, use_sg);
1058}
1059
1060/*
1061 * Read Device ID Command: 12 bytes.
1062 * byte 0: opcode: ED
1063 *
1064 * Returns 2 bytes: Manufacturer ID and Device ID.
1065 * On more recent cards 3 bytes: the third byte is an option code A5
1066 * signifying that the secret command to read an 128-bit ID is available.
1067 * On still more recent cards 4 bytes: the fourth byte C0 means that
1068 * a second read ID cmd is available.
1069 */
1070static int
1071sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1072	unsigned char *command = us->iobuf;
1073	unsigned char *content = us->iobuf;
1074	int result, i;
1075
1076	memset(command, 0, 12);
1077	command[0] = 0xED;
1078	command[1] = LUNBITS;
1079
1080	result = sddr09_send_scsi_command(us, command, 12);
1081	if (result)
1082		return result;
1083
1084	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1085			content, 64, NULL);
1086
1087	for (i = 0; i < 4; i++)
1088		deviceID[i] = content[i];
1089
1090	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1091}
1092
1093static int
1094sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1095	int result;
1096	unsigned char status;
1097	const char *wp_fmt;
1098
1099	result = sddr09_read_status(us, &status);
1100	if (result) {
1101		usb_stor_dbg(us, "read_status fails\n");
1102		return result;
1103	}
1104	if ((status & 0x80) == 0) {
1105		info->flags |= SDDR09_WP;	/* write protected */
1106		wp_fmt = " WP";
1107	} else {
1108		wp_fmt = "";
1109	}
1110	usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1111		     status & 0x40 ? " Ready" : "",
1112		     status & LUNBITS ? " Suspended" : "",
1113		     status & 0x01 ? " Error" : "");
1114
1115	return 0;
1116}
1117
1118#if 0
1119/*
1120 * Reset Command: 12 bytes.
1121 * byte 0: opcode: EB
1122 */
1123static int
1124sddr09_reset(struct us_data *us) {
1125
1126	unsigned char *command = us->iobuf;
1127
1128	memset(command, 0, 12);
1129	command[0] = 0xEB;
1130	command[1] = LUNBITS;
1131
1132	return sddr09_send_scsi_command(us, command, 12);
1133}
1134#endif
1135
1136static struct nand_flash_dev *
1137sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1138	struct nand_flash_dev *cardinfo;
1139	unsigned char deviceID[4];
1140	char blurbtxt[256];
1141	int result;
1142
1143	usb_stor_dbg(us, "Reading capacity...\n");
1144
1145	result = sddr09_read_deviceID(us, deviceID);
1146
1147	if (result) {
1148		usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1149		printk(KERN_WARNING "sddr09: could not read card info\n");
1150		return NULL;
1151	}
1152
1153	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1154
1155	/* Byte 0 is the manufacturer */
1156	sprintf(blurbtxt + strlen(blurbtxt),
1157		": Manuf. %s",
1158		nand_flash_manufacturer(deviceID[0]));
1159
1160	/* Byte 1 is the device type */
1161	cardinfo = nand_find_id(deviceID[1]);
1162	if (cardinfo) {
1163		/*
1164		 * MB or MiB? It is neither. A 16 MB card has
1165		 * 17301504 raw bytes, of which 16384000 are
1166		 * usable for user data.
1167		 */
1168		sprintf(blurbtxt + strlen(blurbtxt),
1169			", %d MB", 1<<(cardinfo->chipshift - 20));
1170	} else {
1171		sprintf(blurbtxt + strlen(blurbtxt),
1172			", type unrecognized");
1173	}
1174
1175	/* Byte 2 is code to signal availability of 128-bit ID */
1176	if (deviceID[2] == 0xa5) {
1177		sprintf(blurbtxt + strlen(blurbtxt),
1178			", 128-bit ID");
1179	}
1180
1181	/* Byte 3 announces the availability of another read ID command */
1182	if (deviceID[3] == 0xc0) {
1183		sprintf(blurbtxt + strlen(blurbtxt),
1184			", extra cmd");
1185	}
1186
1187	if (flags & SDDR09_WP)
1188		sprintf(blurbtxt + strlen(blurbtxt),
1189			", WP");
1190
1191	printk(KERN_WARNING "%s\n", blurbtxt);
1192
1193	return cardinfo;
1194}
1195
1196static int
1197sddr09_read_map(struct us_data *us) {
1198
1199	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1200	int numblocks, alloc_len, alloc_blocks;
1201	int i, j, result;
1202	unsigned char *buffer, *buffer_end, *ptr;
1203	unsigned int lba, lbact;
1204
1205	if (!info->capacity)
1206		return -1;
1207
1208	/*
1209	 * size of a block is 1 << (blockshift + pageshift) bytes
1210	 * divide into the total capacity to get the number of blocks
1211	 */
1212
1213	numblocks = info->capacity >> (info->blockshift + info->pageshift);
1214
1215	/*
1216	 * read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1217	 * but only use a 64 KB buffer
1218	 * buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1219	 */
1220#define SDDR09_READ_MAP_BUFSZ 65536
1221
1222	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1223	alloc_len = (alloc_blocks << CONTROL_SHIFT);
1224	buffer = kmalloc(alloc_len, GFP_NOIO);
1225	if (!buffer) {
1226		result = -1;
1227		goto done;
1228	}
1229	buffer_end = buffer + alloc_len;
1230
1231#undef SDDR09_READ_MAP_BUFSZ
1232
1233	kfree(info->lba_to_pba);
1234	kfree(info->pba_to_lba);
1235	info->lba_to_pba = kmalloc_array(numblocks, sizeof(int), GFP_NOIO);
1236	info->pba_to_lba = kmalloc_array(numblocks, sizeof(int), GFP_NOIO);
1237
1238	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1239		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1240		result = -1;
1241		goto done;
1242	}
1243
1244	for (i = 0; i < numblocks; i++)
1245		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1246
1247	/*
1248	 * Define lba-pba translation table
1249	 */
1250
1251	ptr = buffer_end;
1252	for (i = 0; i < numblocks; i++) {
1253		ptr += (1 << CONTROL_SHIFT);
1254		if (ptr >= buffer_end) {
1255			unsigned long address;
1256
1257			address = i << (info->pageshift + info->blockshift);
1258			result = sddr09_read_control(
1259				us, address>>1,
1260				min(alloc_blocks, numblocks - i),
1261				buffer, 0);
1262			if (result) {
1263				result = -1;
1264				goto done;
1265			}
1266			ptr = buffer;
1267		}
1268
1269		if (i == 0 || i == 1) {
1270			info->pba_to_lba[i] = UNUSABLE;
1271			continue;
1272		}
1273
1274		/* special PBAs have control field 0^16 */
1275		for (j = 0; j < 16; j++)
1276			if (ptr[j] != 0)
1277				goto nonz;
1278		info->pba_to_lba[i] = UNUSABLE;
1279		printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1280		       i);
1281		continue;
1282
1283	nonz:
1284		/* unwritten PBAs have control field FF^16 */
1285		for (j = 0; j < 16; j++)
1286			if (ptr[j] != 0xff)
1287				goto nonff;
1288		continue;
1289
1290	nonff:
1291		/* normal PBAs start with six FFs */
1292		if (j < 6) {
1293			printk(KERN_WARNING
1294			       "sddr09: PBA %d has no logical mapping: "
1295			       "reserved area = %02X%02X%02X%02X "
1296			       "data status %02X block status %02X\n",
1297			       i, ptr[0], ptr[1], ptr[2], ptr[3],
1298			       ptr[4], ptr[5]);
1299			info->pba_to_lba[i] = UNUSABLE;
1300			continue;
1301		}
1302
1303		if ((ptr[6] >> 4) != 0x01) {
1304			printk(KERN_WARNING
1305			       "sddr09: PBA %d has invalid address field "
1306			       "%02X%02X/%02X%02X\n",
1307			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
1308			info->pba_to_lba[i] = UNUSABLE;
1309			continue;
1310		}
1311
1312		/* check even parity */
1313		if (parity[ptr[6] ^ ptr[7]]) {
1314			printk(KERN_WARNING
1315			       "sddr09: Bad parity in LBA for block %d"
1316			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
1317			info->pba_to_lba[i] = UNUSABLE;
1318			continue;
1319		}
1320
1321		lba = short_pack(ptr[7], ptr[6]);
1322		lba = (lba & 0x07FF) >> 1;
1323
1324		/*
1325		 * Every 1024 physical blocks ("zone"), the LBA numbers
1326		 * go back to zero, but are within a higher block of LBA's.
1327		 * Also, there is a maximum of 1000 LBA's per zone.
1328		 * In other words, in PBA 1024-2047 you will find LBA 0-999
1329		 * which are really LBA 1000-1999. This allows for 24 bad
1330		 * or special physical blocks per zone.
1331		 */
1332
1333		if (lba >= 1000) {
1334			printk(KERN_WARNING
1335			       "sddr09: Bad low LBA %d for block %d\n",
1336			       lba, i);
1337			goto possibly_erase;
1338		}
1339
1340		lba += 1000*(i/0x400);
1341
1342		if (info->lba_to_pba[lba] != UNDEF) {
1343			printk(KERN_WARNING
1344			       "sddr09: LBA %d seen for PBA %d and %d\n",
1345			       lba, info->lba_to_pba[lba], i);
1346			goto possibly_erase;
1347		}
1348
1349		info->pba_to_lba[i] = lba;
1350		info->lba_to_pba[lba] = i;
1351		continue;
1352
1353	possibly_erase:
1354		if (erase_bad_lba_entries) {
1355			unsigned long address;
1356
1357			address = (i << (info->pageshift + info->blockshift));
1358			sddr09_erase(us, address>>1);
1359			info->pba_to_lba[i] = UNDEF;
1360		} else
1361			info->pba_to_lba[i] = UNUSABLE;
1362	}
1363
1364	/*
1365	 * Approximate capacity. This is not entirely correct yet,
1366	 * since a zone with less than 1000 usable pages leads to
1367	 * missing LBAs. Especially if it is the last zone, some
1368	 * LBAs can be past capacity.
1369	 */
1370	lbact = 0;
1371	for (i = 0; i < numblocks; i += 1024) {
1372		int ct = 0;
1373
1374		for (j = 0; j < 1024 && i+j < numblocks; j++) {
1375			if (info->pba_to_lba[i+j] != UNUSABLE) {
1376				if (ct >= 1000)
1377					info->pba_to_lba[i+j] = SPARE;
1378				else
1379					ct++;
1380			}
1381		}
1382		lbact += ct;
1383	}
1384	info->lbact = lbact;
1385	usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1386	result = 0;
1387
1388 done:
1389	if (result != 0) {
1390		kfree(info->lba_to_pba);
1391		kfree(info->pba_to_lba);
1392		info->lba_to_pba = NULL;
1393		info->pba_to_lba = NULL;
1394	}
1395	kfree(buffer);
1396	return result;
1397}
1398
1399static void
1400sddr09_card_info_destructor(void *extra) {
1401	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1402
1403	if (!info)
1404		return;
1405
1406	kfree(info->lba_to_pba);
1407	kfree(info->pba_to_lba);
1408}
1409
1410static int
1411sddr09_common_init(struct us_data *us) {
1412	int result;
1413
1414	/* set the configuration -- STALL is an acceptable response here */
1415	if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1416		usb_stor_dbg(us, "active config #%d != 1 ??\n",
1417			     us->pusb_dev->actconfig->desc.bConfigurationValue);
1418		return -EINVAL;
1419	}
1420
1421	result = usb_reset_configuration(us->pusb_dev);
1422	usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1423	if (result == -EPIPE) {
1424		usb_stor_dbg(us, "-- stall on control interface\n");
1425	} else if (result != 0) {
1426		/* it's not a stall, but another error -- time to bail */
1427		usb_stor_dbg(us, "-- Unknown error.  Rejecting device\n");
1428		return -EINVAL;
1429	}
1430
1431	us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1432	if (!us->extra)
1433		return -ENOMEM;
1434	us->extra_destructor = sddr09_card_info_destructor;
1435
1436	nand_init_ecc();
1437	return 0;
1438}
1439
1440
1441/*
1442 * This is needed at a very early stage. If this is not listed in the
1443 * unusual devices list but called from here then LUN 0 of the combo reader
1444 * is not recognized. But I do not know what precisely these calls do.
1445 */
1446static int
1447usb_stor_sddr09_dpcm_init(struct us_data *us) {
1448	int result;
1449	unsigned char *data = us->iobuf;
1450
1451	result = sddr09_common_init(us);
1452	if (result)
1453		return result;
1454
1455	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1456	if (result) {
1457		usb_stor_dbg(us, "send_command fails\n");
1458		return result;
1459	}
1460
1461	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1462	// get 07 02
1463
1464	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1465	if (result) {
1466		usb_stor_dbg(us, "2nd send_command fails\n");
1467		return result;
1468	}
1469
1470	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1471	// get 07 00
1472
1473	result = sddr09_request_sense(us, data, 18);
1474	if (result == 0 && data[2] != 0) {
1475		int j;
1476		for (j=0; j<18; j++)
1477			printk(" %02X", data[j]);
1478		printk("\n");
1479		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1480		// 70: current command
1481		// sense key 0, sense code 0, extd sense code 0
1482		// additional transfer length * = sizeof(data) - 7
1483		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1484		// sense key 06, sense code 28: unit attention,
1485		// not ready to ready transition
1486	}
1487
1488	// test unit ready
1489
1490	return 0;		/* not result */
1491}
1492
1493/*
1494 * Transport for the Microtech DPCM-USB
1495 */
1496static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1497{
1498	int ret;
1499
1500	usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1501
1502	switch (srb->device->lun) {
1503	case 0:
1504
1505		/*
1506		 * LUN 0 corresponds to the CompactFlash card reader.
1507		 */
1508		ret = usb_stor_CB_transport(srb, us);
1509		break;
1510
1511	case 1:
1512
1513		/*
1514		 * LUN 1 corresponds to the SmartMedia card reader.
1515		 */
1516
1517		/*
1518		 * Set the LUN to 0 (just in case).
1519		 */
1520		srb->device->lun = 0;
1521		ret = sddr09_transport(srb, us);
1522		srb->device->lun = 1;
1523		break;
1524
1525	default:
1526	    usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1527		ret = USB_STOR_TRANSPORT_ERROR;
1528		break;
1529	}
1530	return ret;
1531}
1532
1533
1534/*
1535 * Transport for the Sandisk SDDR-09
1536 */
1537static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1538{
1539	static unsigned char sensekey = 0, sensecode = 0;
1540	static unsigned char havefakesense = 0;
1541	int result, i;
1542	unsigned char *ptr = us->iobuf;
1543	unsigned long capacity;
1544	unsigned int page, pages;
1545
1546	struct sddr09_card_info *info;
1547
1548	static unsigned char inquiry_response[8] = {
1549		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1550	};
1551
1552	/* note: no block descriptor support */
1553	static unsigned char mode_page_01[19] = {
1554		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1555		0x01, 0x0A,
1556		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1557	};
1558
1559	info = (struct sddr09_card_info *)us->extra;
1560
1561	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1562		/* for a faked command, we have to follow with a faked sense */
1563		memset(ptr, 0, 18);
1564		ptr[0] = 0x70;
1565		ptr[2] = sensekey;
1566		ptr[7] = 11;
1567		ptr[12] = sensecode;
1568		usb_stor_set_xfer_buf(ptr, 18, srb);
1569		sensekey = sensecode = havefakesense = 0;
1570		return USB_STOR_TRANSPORT_GOOD;
1571	}
1572
1573	havefakesense = 1;
1574
1575	/*
1576	 * Dummy up a response for INQUIRY since SDDR09 doesn't
1577	 * respond to INQUIRY commands
1578	 */
1579
1580	if (srb->cmnd[0] == INQUIRY) {
1581		memcpy(ptr, inquiry_response, 8);
1582		fill_inquiry_response(us, ptr, 36);
1583		return USB_STOR_TRANSPORT_GOOD;
1584	}
1585
1586	if (srb->cmnd[0] == READ_CAPACITY) {
1587		struct nand_flash_dev *cardinfo;
1588
1589		sddr09_get_wp(us, info);	/* read WP bit */
1590
1591		cardinfo = sddr09_get_cardinfo(us, info->flags);
1592		if (!cardinfo) {
1593			/* probably no media */
1594		init_error:
1595			sensekey = 0x02;	/* not ready */
1596			sensecode = 0x3a;	/* medium not present */
1597			return USB_STOR_TRANSPORT_FAILED;
1598		}
1599
1600		info->capacity = (1 << cardinfo->chipshift);
1601		info->pageshift = cardinfo->pageshift;
1602		info->pagesize = (1 << info->pageshift);
1603		info->blockshift = cardinfo->blockshift;
1604		info->blocksize = (1 << info->blockshift);
1605		info->blockmask = info->blocksize - 1;
1606
1607		// map initialization, must follow get_cardinfo()
1608		if (sddr09_read_map(us)) {
1609			/* probably out of memory */
1610			goto init_error;
1611		}
1612
1613		// Report capacity
1614
1615		capacity = (info->lbact << info->blockshift) - 1;
1616
1617		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1618
1619		// Report page size
1620
1621		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1622		usb_stor_set_xfer_buf(ptr, 8, srb);
1623
1624		return USB_STOR_TRANSPORT_GOOD;
1625	}
1626
1627	if (srb->cmnd[0] == MODE_SENSE_10) {
1628		int modepage = (srb->cmnd[2] & 0x3F);
1629
1630		/*
1631		 * They ask for the Read/Write error recovery page,
1632		 * or for all pages.
1633		 */
1634		/* %% We should check DBD %% */
1635		if (modepage == 0x01 || modepage == 0x3F) {
1636			usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1637				     modepage);
1638
1639			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1640			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1641			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1642			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1643			return USB_STOR_TRANSPORT_GOOD;
1644		}
1645
1646		sensekey = 0x05;	/* illegal request */
1647		sensecode = 0x24;	/* invalid field in CDB */
1648		return USB_STOR_TRANSPORT_FAILED;
1649	}
1650
1651	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1652		return USB_STOR_TRANSPORT_GOOD;
1653
1654	havefakesense = 0;
1655
1656	if (srb->cmnd[0] == READ_10) {
1657
1658		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1659		page <<= 16;
1660		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1661		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1662
1663		usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1664			     page, pages);
1665
1666		result = sddr09_read_data(us, page, pages);
1667		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1668				USB_STOR_TRANSPORT_ERROR);
1669	}
1670
1671	if (srb->cmnd[0] == WRITE_10) {
1672
1673		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1674		page <<= 16;
1675		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1676		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1677
1678		usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1679			     page, pages);
1680
1681		result = sddr09_write_data(us, page, pages);
1682		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1683				USB_STOR_TRANSPORT_ERROR);
1684	}
1685
1686	/*
1687	 * catch-all for all other commands, except
1688	 * pass TEST_UNIT_READY and REQUEST_SENSE through
1689	 */
1690	if (srb->cmnd[0] != TEST_UNIT_READY &&
1691	    srb->cmnd[0] != REQUEST_SENSE) {
1692		sensekey = 0x05;	/* illegal request */
1693		sensecode = 0x20;	/* invalid command */
1694		havefakesense = 1;
1695		return USB_STOR_TRANSPORT_FAILED;
1696	}
1697
1698	for (; srb->cmd_len<12; srb->cmd_len++)
1699		srb->cmnd[srb->cmd_len] = 0;
1700
1701	srb->cmnd[1] = LUNBITS;
1702
1703	ptr[0] = 0;
1704	for (i=0; i<12; i++)
1705		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1706
1707	usb_stor_dbg(us, "Send control for command %s\n", ptr);
1708
1709	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1710	if (result) {
1711		usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1712			     result);
1713		return USB_STOR_TRANSPORT_ERROR;
1714	}
1715
1716	if (scsi_bufflen(srb) == 0)
1717		return USB_STOR_TRANSPORT_GOOD;
1718
1719	if (srb->sc_data_direction == DMA_TO_DEVICE ||
1720	    srb->sc_data_direction == DMA_FROM_DEVICE) {
1721		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1722				? us->send_bulk_pipe : us->recv_bulk_pipe;
1723
1724		usb_stor_dbg(us, "%s %d bytes\n",
1725			     (srb->sc_data_direction == DMA_TO_DEVICE) ?
1726			     "sending" : "receiving",
1727			     scsi_bufflen(srb));
1728
1729		result = usb_stor_bulk_srb(us, pipe, srb);
1730
1731		return (result == USB_STOR_XFER_GOOD ?
1732			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1733	}
1734
1735	return USB_STOR_TRANSPORT_GOOD;
1736}
1737
1738/*
1739 * Initialization routine for the sddr09 subdriver
1740 */
1741static int
1742usb_stor_sddr09_init(struct us_data *us) {
1743	return sddr09_common_init(us);
1744}
1745
1746static struct scsi_host_template sddr09_host_template;
1747
1748static int sddr09_probe(struct usb_interface *intf,
1749			 const struct usb_device_id *id)
1750{
1751	struct us_data *us;
1752	int result;
1753
1754	result = usb_stor_probe1(&us, intf, id,
1755			(id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1756			&sddr09_host_template);
1757	if (result)
1758		return result;
1759
1760	if (us->protocol == USB_PR_DPCM_USB) {
1761		us->transport_name = "Control/Bulk-EUSB/SDDR09";
1762		us->transport = dpcm_transport;
1763		us->transport_reset = usb_stor_CB_reset;
1764		us->max_lun = 1;
1765	} else {
1766		us->transport_name = "EUSB/SDDR09";
1767		us->transport = sddr09_transport;
1768		us->transport_reset = usb_stor_CB_reset;
1769		us->max_lun = 0;
1770	}
1771
1772	result = usb_stor_probe2(us);
1773	return result;
1774}
1775
1776static struct usb_driver sddr09_driver = {
1777	.name =		DRV_NAME,
1778	.probe =	sddr09_probe,
1779	.disconnect =	usb_stor_disconnect,
1780	.suspend =	usb_stor_suspend,
1781	.resume =	usb_stor_resume,
1782	.reset_resume =	usb_stor_reset_resume,
1783	.pre_reset =	usb_stor_pre_reset,
1784	.post_reset =	usb_stor_post_reset,
1785	.id_table =	sddr09_usb_ids,
1786	.soft_unbind =	1,
1787	.no_dynamic_id = 1,
1788};
1789
1790module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);
1791