1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_UHCI_HCD_H
3#define __LINUX_UHCI_HCD_H
4
5#include <linux/list.h>
6#include <linux/usb.h>
7#include <linux/clk.h>
8
9#define usb_packetid(pipe)	(usb_pipein(pipe) ? USB_PID_IN : USB_PID_OUT)
10#define PIPE_DEVEP_MASK		0x0007ff00
11
12
13/*
14 * Universal Host Controller Interface data structures and defines
15 */
16
17/* Command register */
18#define USBCMD		0
19#define   USBCMD_RS		0x0001	/* Run/Stop */
20#define   USBCMD_HCRESET	0x0002	/* Host reset */
21#define   USBCMD_GRESET		0x0004	/* Global reset */
22#define   USBCMD_EGSM		0x0008	/* Global Suspend Mode */
23#define   USBCMD_FGR		0x0010	/* Force Global Resume */
24#define   USBCMD_SWDBG		0x0020	/* SW Debug mode */
25#define   USBCMD_CF		0x0040	/* Config Flag (sw only) */
26#define   USBCMD_MAXP		0x0080	/* Max Packet (0 = 32, 1 = 64) */
27
28/* Status register */
29#define USBSTS		2
30#define   USBSTS_USBINT		0x0001	/* Interrupt due to IOC */
31#define   USBSTS_ERROR		0x0002	/* Interrupt due to error */
32#define   USBSTS_RD		0x0004	/* Resume Detect */
33#define   USBSTS_HSE		0x0008	/* Host System Error: PCI problems */
34#define   USBSTS_HCPE		0x0010	/* Host Controller Process Error:
35					 * the schedule is buggy */
36#define   USBSTS_HCH		0x0020	/* HC Halted */
37
38/* Interrupt enable register */
39#define USBINTR		4
40#define   USBINTR_TIMEOUT	0x0001	/* Timeout/CRC error enable */
41#define   USBINTR_RESUME	0x0002	/* Resume interrupt enable */
42#define   USBINTR_IOC		0x0004	/* Interrupt On Complete enable */
43#define   USBINTR_SP		0x0008	/* Short packet interrupt enable */
44
45#define USBFRNUM	6
46#define USBFLBASEADD	8
47#define USBSOF		12
48#define   USBSOF_DEFAULT	64	/* Frame length is exactly 1 ms */
49
50/* USB port status and control registers */
51#define USBPORTSC1	16
52#define USBPORTSC2	18
53#define USBPORTSC3	20
54#define USBPORTSC4	22
55#define   USBPORTSC_CCS		0x0001	/* Current Connect Status
56					 * ("device present") */
57#define   USBPORTSC_CSC		0x0002	/* Connect Status Change */
58#define   USBPORTSC_PE		0x0004	/* Port Enable */
59#define   USBPORTSC_PEC		0x0008	/* Port Enable Change */
60#define   USBPORTSC_DPLUS	0x0010	/* D+ high (line status) */
61#define   USBPORTSC_DMINUS	0x0020	/* D- high (line status) */
62#define   USBPORTSC_RD		0x0040	/* Resume Detect */
63#define   USBPORTSC_RES1	0x0080	/* reserved, always 1 */
64#define   USBPORTSC_LSDA	0x0100	/* Low Speed Device Attached */
65#define   USBPORTSC_PR		0x0200	/* Port Reset */
66/* OC and OCC from Intel 430TX and later (not UHCI 1.1d spec) */
67#define   USBPORTSC_OC		0x0400	/* Over Current condition */
68#define   USBPORTSC_OCC		0x0800	/* Over Current Change R/WC */
69#define   USBPORTSC_SUSP	0x1000	/* Suspend */
70#define   USBPORTSC_RES2	0x2000	/* reserved, write zeroes */
71#define   USBPORTSC_RES3	0x4000	/* reserved, write zeroes */
72#define   USBPORTSC_RES4	0x8000	/* reserved, write zeroes */
73
74/* PCI legacy support register */
75#define USBLEGSUP		0xc0
76#define   USBLEGSUP_DEFAULT	0x2000	/* only PIRQ enable set */
77#define   USBLEGSUP_RWC		0x8f00	/* the R/WC bits */
78#define   USBLEGSUP_RO		0x5040	/* R/O and reserved bits */
79
80/* PCI Intel-specific resume-enable register */
81#define USBRES_INTEL		0xc4
82#define   USBPORT1EN		0x01
83#define   USBPORT2EN		0x02
84
85#define UHCI_PTR_BITS(uhci)	cpu_to_hc32((uhci), 0x000F)
86#define UHCI_PTR_TERM(uhci)	cpu_to_hc32((uhci), 0x0001)
87#define UHCI_PTR_QH(uhci)	cpu_to_hc32((uhci), 0x0002)
88#define UHCI_PTR_DEPTH(uhci)	cpu_to_hc32((uhci), 0x0004)
89#define UHCI_PTR_BREADTH(uhci)	cpu_to_hc32((uhci), 0x0000)
90
91#define UHCI_NUMFRAMES		1024	/* in the frame list [array] */
92#define UHCI_MAX_SOF_NUMBER	2047	/* in an SOF packet */
93#define CAN_SCHEDULE_FRAMES	1000	/* how far in the future frames
94					 * can be scheduled */
95#define MAX_PHASE		32	/* Periodic scheduling length */
96
97/* When no queues need Full-Speed Bandwidth Reclamation,
98 * delay this long before turning FSBR off */
99#define FSBR_OFF_DELAY		msecs_to_jiffies(10)
100
101/* If a queue hasn't advanced after this much time, assume it is stuck */
102#define QH_WAIT_TIMEOUT		msecs_to_jiffies(200)
103
104
105/*
106 * __hc32 and __hc16 are "Host Controller" types, they may be equivalent to
107 * __leXX (normally) or __beXX (given UHCI_BIG_ENDIAN_DESC), depending on
108 * the host controller implementation.
109 *
110 * To facilitate the strongest possible byte-order checking from "sparse"
111 * and so on, we use __leXX unless that's not practical.
112 */
113#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_DESC
114typedef __u32 __bitwise __hc32;
115typedef __u16 __bitwise __hc16;
116#else
117#define __hc32	__le32
118#define __hc16	__le16
119#endif
120
121/*
122 *	Queue Headers
123 */
124
125/*
126 * One role of a QH is to hold a queue of TDs for some endpoint.  One QH goes
127 * with each endpoint, and qh->element (updated by the HC) is either:
128 *   - the next unprocessed TD in the endpoint's queue, or
129 *   - UHCI_PTR_TERM (when there's no more traffic for this endpoint).
130 *
131 * The other role of a QH is to serve as a "skeleton" framelist entry, so we
132 * can easily splice a QH for some endpoint into the schedule at the right
133 * place.  Then qh->element is UHCI_PTR_TERM.
134 *
135 * In the schedule, qh->link maintains a list of QHs seen by the HC:
136 *     skel1 --> ep1-qh --> ep2-qh --> ... --> skel2 --> ...
137 *
138 * qh->node is the software equivalent of qh->link.  The differences
139 * are that the software list is doubly-linked and QHs in the UNLINKING
140 * state are on the software list but not the hardware schedule.
141 *
142 * For bookkeeping purposes we maintain QHs even for Isochronous endpoints,
143 * but they never get added to the hardware schedule.
144 */
145#define QH_STATE_IDLE		1	/* QH is not being used */
146#define QH_STATE_UNLINKING	2	/* QH has been removed from the
147					 * schedule but the hardware may
148					 * still be using it */
149#define QH_STATE_ACTIVE		3	/* QH is on the schedule */
150
151struct uhci_qh {
152	/* Hardware fields */
153	__hc32 link;			/* Next QH in the schedule */
154	__hc32 element;			/* Queue element (TD) pointer */
155
156	/* Software fields */
157	dma_addr_t dma_handle;
158
159	struct list_head node;		/* Node in the list of QHs */
160	struct usb_host_endpoint *hep;	/* Endpoint information */
161	struct usb_device *udev;
162	struct list_head queue;		/* Queue of urbps for this QH */
163	struct uhci_td *dummy_td;	/* Dummy TD to end the queue */
164	struct uhci_td *post_td;	/* Last TD completed */
165
166	struct usb_iso_packet_descriptor *iso_packet_desc;
167					/* Next urb->iso_frame_desc entry */
168	unsigned long advance_jiffies;	/* Time of last queue advance */
169	unsigned int unlink_frame;	/* When the QH was unlinked */
170	unsigned int period;		/* For Interrupt and Isochronous QHs */
171	short phase;			/* Between 0 and period-1 */
172	short load;			/* Periodic time requirement, in us */
173	unsigned int iso_frame;		/* Frame # for iso_packet_desc */
174
175	int state;			/* QH_STATE_xxx; see above */
176	int type;			/* Queue type (control, bulk, etc) */
177	int skel;			/* Skeleton queue number */
178
179	unsigned int initial_toggle:1;	/* Endpoint's current toggle value */
180	unsigned int needs_fixup:1;	/* Must fix the TD toggle values */
181	unsigned int is_stopped:1;	/* Queue was stopped by error/unlink */
182	unsigned int wait_expired:1;	/* QH_WAIT_TIMEOUT has expired */
183	unsigned int bandwidth_reserved:1;	/* Periodic bandwidth has
184						 * been allocated */
185} __attribute__((aligned(16)));
186
187/*
188 * We need a special accessor for the element pointer because it is
189 * subject to asynchronous updates by the controller.
190 */
191#define qh_element(qh)		READ_ONCE((qh)->element)
192
193#define LINK_TO_QH(uhci, qh)	(UHCI_PTR_QH((uhci)) | \
194				cpu_to_hc32((uhci), (qh)->dma_handle))
195
196
197/*
198 *	Transfer Descriptors
199 */
200
201/*
202 * for TD <status>:
203 */
204#define TD_CTRL_SPD		(1 << 29)	/* Short Packet Detect */
205#define TD_CTRL_C_ERR_MASK	(3 << 27)	/* Error Counter bits */
206#define TD_CTRL_C_ERR_SHIFT	27
207#define TD_CTRL_LS		(1 << 26)	/* Low Speed Device */
208#define TD_CTRL_IOS		(1 << 25)	/* Isochronous Select */
209#define TD_CTRL_IOC		(1 << 24)	/* Interrupt on Complete */
210#define TD_CTRL_ACTIVE		(1 << 23)	/* TD Active */
211#define TD_CTRL_STALLED		(1 << 22)	/* TD Stalled */
212#define TD_CTRL_DBUFERR		(1 << 21)	/* Data Buffer Error */
213#define TD_CTRL_BABBLE		(1 << 20)	/* Babble Detected */
214#define TD_CTRL_NAK		(1 << 19)	/* NAK Received */
215#define TD_CTRL_CRCTIMEO	(1 << 18)	/* CRC/Time Out Error */
216#define TD_CTRL_BITSTUFF	(1 << 17)	/* Bit Stuff Error */
217#define TD_CTRL_ACTLEN_MASK	0x7FF	/* actual length, encoded as n - 1 */
218
219#define uhci_maxerr(err)		((err) << TD_CTRL_C_ERR_SHIFT)
220#define uhci_status_bits(ctrl_sts)	((ctrl_sts) & 0xF60000)
221#define uhci_actual_length(ctrl_sts)	(((ctrl_sts) + 1) & \
222			TD_CTRL_ACTLEN_MASK)	/* 1-based */
223
224/*
225 * for TD <info>: (a.k.a. Token)
226 */
227#define td_token(uhci, td)	hc32_to_cpu((uhci), (td)->token)
228#define TD_TOKEN_DEVADDR_SHIFT	8
229#define TD_TOKEN_TOGGLE_SHIFT	19
230#define TD_TOKEN_TOGGLE		(1 << 19)
231#define TD_TOKEN_EXPLEN_SHIFT	21
232#define TD_TOKEN_EXPLEN_MASK	0x7FF	/* expected length, encoded as n-1 */
233#define TD_TOKEN_PID_MASK	0xFF
234
235#define uhci_explen(len)	((((len) - 1) & TD_TOKEN_EXPLEN_MASK) << \
236					TD_TOKEN_EXPLEN_SHIFT)
237
238#define uhci_expected_length(token) ((((token) >> TD_TOKEN_EXPLEN_SHIFT) + \
239					1) & TD_TOKEN_EXPLEN_MASK)
240#define uhci_toggle(token)	(((token) >> TD_TOKEN_TOGGLE_SHIFT) & 1)
241#define uhci_endpoint(token)	(((token) >> 15) & 0xf)
242#define uhci_devaddr(token)	(((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7f)
243#define uhci_devep(token)	(((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7ff)
244#define uhci_packetid(token)	((token) & TD_TOKEN_PID_MASK)
245#define uhci_packetout(token)	(uhci_packetid(token) != USB_PID_IN)
246#define uhci_packetin(token)	(uhci_packetid(token) == USB_PID_IN)
247
248/*
249 * The documentation says "4 words for hardware, 4 words for software".
250 *
251 * That's silly, the hardware doesn't care. The hardware only cares that
252 * the hardware words are 16-byte aligned, and we can have any amount of
253 * sw space after the TD entry.
254 *
255 * td->link points to either another TD (not necessarily for the same urb or
256 * even the same endpoint), or nothing (PTR_TERM), or a QH.
257 */
258struct uhci_td {
259	/* Hardware fields */
260	__hc32 link;
261	__hc32 status;
262	__hc32 token;
263	__hc32 buffer;
264
265	/* Software fields */
266	dma_addr_t dma_handle;
267
268	struct list_head list;
269
270	int frame;			/* for iso: what frame? */
271	struct list_head fl_list;
272} __attribute__((aligned(16)));
273
274/*
275 * We need a special accessor for the control/status word because it is
276 * subject to asynchronous updates by the controller.
277 */
278#define td_status(uhci, td)		hc32_to_cpu((uhci), \
279						READ_ONCE((td)->status))
280
281#define LINK_TO_TD(uhci, td)		(cpu_to_hc32((uhci), (td)->dma_handle))
282
283
284/*
285 *	Skeleton Queue Headers
286 */
287
288/*
289 * The UHCI driver uses QHs with Interrupt, Control and Bulk URBs for
290 * automatic queuing. To make it easy to insert entries into the schedule,
291 * we have a skeleton of QHs for each predefined Interrupt latency.
292 * Asynchronous QHs (low-speed control, full-speed control, and bulk)
293 * go onto the period-1 interrupt list, since they all get accessed on
294 * every frame.
295 *
296 * When we want to add a new QH, we add it to the list starting from the
297 * appropriate skeleton QH.  For instance, the schedule can look like this:
298 *
299 * skel int128 QH
300 * dev 1 interrupt QH
301 * dev 5 interrupt QH
302 * skel int64 QH
303 * skel int32 QH
304 * ...
305 * skel int1 + async QH
306 * dev 5 low-speed control QH
307 * dev 1 bulk QH
308 * dev 2 bulk QH
309 *
310 * There is a special terminating QH used to keep full-speed bandwidth
311 * reclamation active when no full-speed control or bulk QHs are linked
312 * into the schedule.  It has an inactive TD (to work around a PIIX bug,
313 * see the Intel errata) and it points back to itself.
314 *
315 * There's a special skeleton QH for Isochronous QHs which never appears
316 * on the schedule.  Isochronous TDs go on the schedule before the
317 * skeleton QHs.  The hardware accesses them directly rather than
318 * through their QH, which is used only for bookkeeping purposes.
319 * While the UHCI spec doesn't forbid the use of QHs for Isochronous,
320 * it doesn't use them either.  And the spec says that queues never
321 * advance on an error completion status, which makes them totally
322 * unsuitable for Isochronous transfers.
323 *
324 * There's also a special skeleton QH used for QHs which are in the process
325 * of unlinking and so may still be in use by the hardware.  It too never
326 * appears on the schedule.
327 */
328
329#define UHCI_NUM_SKELQH		11
330#define SKEL_UNLINK		0
331#define skel_unlink_qh		skelqh[SKEL_UNLINK]
332#define SKEL_ISO		1
333#define skel_iso_qh		skelqh[SKEL_ISO]
334	/* int128, int64, ..., int1 = 2, 3, ..., 9 */
335#define SKEL_INDEX(exponent)	(9 - exponent)
336#define SKEL_ASYNC		9
337#define skel_async_qh		skelqh[SKEL_ASYNC]
338#define SKEL_TERM		10
339#define skel_term_qh		skelqh[SKEL_TERM]
340
341/* The following entries refer to sublists of skel_async_qh */
342#define SKEL_LS_CONTROL		20
343#define SKEL_FS_CONTROL		21
344#define SKEL_FSBR		SKEL_FS_CONTROL
345#define SKEL_BULK		22
346
347/*
348 *	The UHCI controller and root hub
349 */
350
351/*
352 * States for the root hub:
353 *
354 * To prevent "bouncing" in the presence of electrical noise,
355 * when there are no devices attached we delay for 1 second in the
356 * RUNNING_NODEVS state before switching to the AUTO_STOPPED state.
357 *
358 * (Note that the AUTO_STOPPED state won't be necessary once the hub
359 * driver learns to autosuspend.)
360 */
361enum uhci_rh_state {
362	/* In the following states the HC must be halted.
363	 * These two must come first. */
364	UHCI_RH_RESET,
365	UHCI_RH_SUSPENDED,
366
367	UHCI_RH_AUTO_STOPPED,
368	UHCI_RH_RESUMING,
369
370	/* In this state the HC changes from running to halted,
371	 * so it can legally appear either way. */
372	UHCI_RH_SUSPENDING,
373
374	/* In the following states it's an error if the HC is halted.
375	 * These two must come last. */
376	UHCI_RH_RUNNING,		/* The normal state */
377	UHCI_RH_RUNNING_NODEVS,		/* Running with no devices attached */
378};
379
380/*
381 * The full UHCI controller information:
382 */
383struct uhci_hcd {
384	/* Grabbed from PCI */
385	unsigned long io_addr;
386
387	/* Used when registers are memory mapped */
388	void __iomem *regs;
389
390	struct dma_pool *qh_pool;
391	struct dma_pool *td_pool;
392
393	struct uhci_td *term_td;	/* Terminating TD, see UHCI bug */
394	struct uhci_qh *skelqh[UHCI_NUM_SKELQH];	/* Skeleton QHs */
395	struct uhci_qh *next_qh;	/* Next QH to scan */
396
397	spinlock_t lock;
398
399	dma_addr_t frame_dma_handle;	/* Hardware frame list */
400	__hc32 *frame;
401	void **frame_cpu;		/* CPU's frame list */
402
403	enum uhci_rh_state rh_state;
404	unsigned long auto_stop_time;		/* When to AUTO_STOP */
405
406	unsigned int frame_number;		/* As of last check */
407	unsigned int is_stopped;
408#define UHCI_IS_STOPPED		9999		/* Larger than a frame # */
409	unsigned int last_iso_frame;		/* Frame of last scan */
410	unsigned int cur_iso_frame;		/* Frame for current scan */
411
412	unsigned int scan_in_progress:1;	/* Schedule scan is running */
413	unsigned int need_rescan:1;		/* Redo the schedule scan */
414	unsigned int dead:1;			/* Controller has died */
415	unsigned int RD_enable:1;		/* Suspended root hub with
416						   Resume-Detect interrupts
417						   enabled */
418	unsigned int is_initialized:1;		/* Data structure is usable */
419	unsigned int fsbr_is_on:1;		/* FSBR is turned on */
420	unsigned int fsbr_is_wanted:1;		/* Does any URB want FSBR? */
421	unsigned int fsbr_expiring:1;		/* FSBR is timing out */
422
423	struct timer_list fsbr_timer;		/* For turning off FBSR */
424
425	/* Silicon quirks */
426	unsigned int oc_low:1;			/* OverCurrent bit active low */
427	unsigned int wait_for_hp:1;		/* Wait for HP port reset */
428	unsigned int big_endian_mmio:1;		/* Big endian registers */
429	unsigned int big_endian_desc:1;		/* Big endian descriptors */
430	unsigned int is_aspeed:1;		/* Aspeed impl. workarounds */
431
432	/* Support for port suspend/resume/reset */
433	unsigned long port_c_suspend;		/* Bit-arrays of ports */
434	unsigned long resuming_ports;
435	unsigned long ports_timeout;		/* Time to stop signalling */
436
437	struct list_head idle_qh_list;		/* Where the idle QHs live */
438
439	int rh_numports;			/* Number of root-hub ports */
440
441	wait_queue_head_t waitqh;		/* endpoint_disable waiters */
442	int num_waiting;			/* Number of waiters */
443
444	int total_load;				/* Sum of array values */
445	short load[MAX_PHASE];			/* Periodic allocations */
446
447	struct clk *clk;			/* (optional) clock source */
448
449	/* Reset host controller */
450	void	(*reset_hc) (struct uhci_hcd *uhci);
451	int	(*check_and_reset_hc) (struct uhci_hcd *uhci);
452	/* configure_hc should perform arch specific settings, if needed */
453	void	(*configure_hc) (struct uhci_hcd *uhci);
454	/* Check for broken resume detect interrupts */
455	int	(*resume_detect_interrupts_are_broken) (struct uhci_hcd *uhci);
456	/* Check for broken global suspend */
457	int	(*global_suspend_mode_is_broken) (struct uhci_hcd *uhci);
458};
459
460/* Convert between a usb_hcd pointer and the corresponding uhci_hcd */
461static inline struct uhci_hcd *hcd_to_uhci(struct usb_hcd *hcd)
462{
463	return (struct uhci_hcd *) (hcd->hcd_priv);
464}
465static inline struct usb_hcd *uhci_to_hcd(struct uhci_hcd *uhci)
466{
467	return container_of((void *) uhci, struct usb_hcd, hcd_priv);
468}
469
470#define uhci_dev(u)	(uhci_to_hcd(u)->self.controller)
471
472/* Utility macro for comparing frame numbers */
473#define uhci_frame_before_eq(f1, f2)	(0 <= (int) ((f2) - (f1)))
474
475
476/*
477 *	Private per-URB data
478 */
479struct urb_priv {
480	struct list_head node;		/* Node in the QH's urbp list */
481
482	struct urb *urb;
483
484	struct uhci_qh *qh;		/* QH for this URB */
485	struct list_head td_list;
486
487	unsigned fsbr:1;		/* URB wants FSBR */
488};
489
490
491/* Some special IDs */
492
493#define PCI_VENDOR_ID_GENESYS		0x17a0
494#define PCI_DEVICE_ID_GL880S_UHCI	0x8083
495
496/* Aspeed SoC needs some quirks */
497static inline bool uhci_is_aspeed(const struct uhci_hcd *uhci)
498{
499	return IS_ENABLED(CONFIG_USB_UHCI_ASPEED) && uhci->is_aspeed;
500}
501
502/*
503 * Functions used to access controller registers. The UCHI spec says that host
504 * controller I/O registers are mapped into PCI I/O space. For non-PCI hosts
505 * we use memory mapped registers.
506 */
507
508#ifdef CONFIG_HAS_IOPORT
509#define UHCI_IN(x)	x
510#define UHCI_OUT(x)	x
511#else
512#define UHCI_IN(x)	0
513#define UHCI_OUT(x)	do { } while (0)
514#endif
515
516#ifndef CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC
517/* Support PCI only */
518static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg)
519{
520	return inl(uhci->io_addr + reg);
521}
522
523static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg)
524{
525	outl(val, uhci->io_addr + reg);
526}
527
528static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg)
529{
530	return inw(uhci->io_addr + reg);
531}
532
533static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg)
534{
535	outw(val, uhci->io_addr + reg);
536}
537
538static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg)
539{
540	return inb(uhci->io_addr + reg);
541}
542
543static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg)
544{
545	outb(val, uhci->io_addr + reg);
546}
547
548#else
549/* Support non-PCI host controllers */
550#if defined(CONFIG_USB_PCI) && defined(HAS_IOPORT)
551/* Support PCI and non-PCI host controllers */
552#define uhci_has_pci_registers(u)	((u)->io_addr != 0)
553#else
554/* Support non-PCI host controllers only */
555#define uhci_has_pci_registers(u)	0
556#endif
557
558#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
559/* Support (non-PCI) big endian host controllers */
560#define uhci_big_endian_mmio(u)		((u)->big_endian_mmio)
561#else
562#define uhci_big_endian_mmio(u)		0
563#endif
564
565static inline int uhci_aspeed_reg(unsigned int reg)
566{
567	switch (reg) {
568	case USBCMD:
569		return 00;
570	case USBSTS:
571		return 0x04;
572	case USBINTR:
573		return 0x08;
574	case USBFRNUM:
575		return 0x80;
576	case USBFLBASEADD:
577		return 0x0c;
578	case USBSOF:
579		return 0x84;
580	case USBPORTSC1:
581		return 0x88;
582	case USBPORTSC2:
583		return 0x8c;
584	case USBPORTSC3:
585		return 0x90;
586	case USBPORTSC4:
587		return 0x94;
588	default:
589		pr_warn("UHCI: Unsupported register 0x%02x on Aspeed\n", reg);
590		/* Return an unimplemented register */
591		return 0x10;
592	}
593}
594
595static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg)
596{
597	if (uhci_has_pci_registers(uhci))
598		return UHCI_IN(inl(uhci->io_addr + reg));
599	else if (uhci_is_aspeed(uhci))
600		return readl(uhci->regs + uhci_aspeed_reg(reg));
601#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
602	else if (uhci_big_endian_mmio(uhci))
603		return readl_be(uhci->regs + reg);
604#endif
605	else
606		return readl(uhci->regs + reg);
607}
608
609static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg)
610{
611	if (uhci_has_pci_registers(uhci))
612		UHCI_OUT(outl(val, uhci->io_addr + reg));
613	else if (uhci_is_aspeed(uhci))
614		writel(val, uhci->regs + uhci_aspeed_reg(reg));
615#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
616	else if (uhci_big_endian_mmio(uhci))
617		writel_be(val, uhci->regs + reg);
618#endif
619	else
620		writel(val, uhci->regs + reg);
621}
622
623static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg)
624{
625	if (uhci_has_pci_registers(uhci))
626		return UHCI_IN(inw(uhci->io_addr + reg));
627	else if (uhci_is_aspeed(uhci))
628		return readl(uhci->regs + uhci_aspeed_reg(reg));
629#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
630	else if (uhci_big_endian_mmio(uhci))
631		return readw_be(uhci->regs + reg);
632#endif
633	else
634		return readw(uhci->regs + reg);
635}
636
637static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg)
638{
639	if (uhci_has_pci_registers(uhci))
640		UHCI_OUT(outw(val, uhci->io_addr + reg));
641	else if (uhci_is_aspeed(uhci))
642		writel(val, uhci->regs + uhci_aspeed_reg(reg));
643#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
644	else if (uhci_big_endian_mmio(uhci))
645		writew_be(val, uhci->regs + reg);
646#endif
647	else
648		writew(val, uhci->regs + reg);
649}
650
651static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg)
652{
653	if (uhci_has_pci_registers(uhci))
654		return UHCI_IN(inb(uhci->io_addr + reg));
655	else if (uhci_is_aspeed(uhci))
656		return readl(uhci->regs + uhci_aspeed_reg(reg));
657#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
658	else if (uhci_big_endian_mmio(uhci))
659		return readb_be(uhci->regs + reg);
660#endif
661	else
662		return readb(uhci->regs + reg);
663}
664
665static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg)
666{
667	if (uhci_has_pci_registers(uhci))
668		UHCI_OUT(outb(val, uhci->io_addr + reg));
669	else if (uhci_is_aspeed(uhci))
670		writel(val, uhci->regs + uhci_aspeed_reg(reg));
671#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
672	else if (uhci_big_endian_mmio(uhci))
673		writeb_be(val, uhci->regs + reg);
674#endif
675	else
676		writeb(val, uhci->regs + reg);
677}
678#endif /* CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC */
679#undef UHCI_IN
680#undef UHCI_OUT
681
682/*
683 * The GRLIB GRUSBHC controller can use big endian format for its descriptors.
684 *
685 * UHCI controllers accessed through PCI work normally (little-endian
686 * everywhere), so we don't bother supporting a BE-only mode.
687 */
688#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_DESC
689#define uhci_big_endian_desc(u)		((u)->big_endian_desc)
690
691/* cpu to uhci */
692static inline __hc32 cpu_to_hc32(const struct uhci_hcd *uhci, const u32 x)
693{
694	return uhci_big_endian_desc(uhci)
695		? (__force __hc32)cpu_to_be32(x)
696		: (__force __hc32)cpu_to_le32(x);
697}
698
699/* uhci to cpu */
700static inline u32 hc32_to_cpu(const struct uhci_hcd *uhci, const __hc32 x)
701{
702	return uhci_big_endian_desc(uhci)
703		? be32_to_cpu((__force __be32)x)
704		: le32_to_cpu((__force __le32)x);
705}
706
707#else
708/* cpu to uhci */
709static inline __hc32 cpu_to_hc32(const struct uhci_hcd *uhci, const u32 x)
710{
711	return cpu_to_le32(x);
712}
713
714/* uhci to cpu */
715static inline u32 hc32_to_cpu(const struct uhci_hcd *uhci, const __hc32 x)
716{
717	return le32_to_cpu(x);
718}
719#endif
720
721#endif
722