1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file is subject to the terms and conditions of the GNU General Public
4 * License.  See the file "COPYING" in the main directory of this archive
5 * for more details.
6 *
7 * Copyright (C) 2008 Cavium Networks
8 *
9 * Some parts of the code were originally released under BSD license:
10 *
11 * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
12 * reserved.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met:
17 *
18 *   * Redistributions of source code must retain the above copyright
19 *     notice, this list of conditions and the following disclaimer.
20 *
21 *   * Redistributions in binary form must reproduce the above
22 *     copyright notice, this list of conditions and the following
23 *     disclaimer in the documentation and/or other materials provided
24 *     with the distribution.
25 *
26 *   * Neither the name of Cavium Networks nor the names of
27 *     its contributors may be used to endorse or promote products
28 *     derived from this software without specific prior written
29 *     permission.
30 *
31 * This Software, including technical data, may be subject to U.S. export
32 * control laws, including the U.S. Export Administration Act and its associated
33 * regulations, and may be subject to export or import regulations in other
34 * countries.
35 *
36 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
37 * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
38 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
39 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
40 * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
41 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
42 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
43 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
44 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
45 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
46 */
47
48#include <linux/usb.h>
49#include <linux/slab.h>
50#include <linux/module.h>
51#include <linux/usb/hcd.h>
52#include <linux/prefetch.h>
53#include <linux/irqdomain.h>
54#include <linux/dma-mapping.h>
55#include <linux/platform_device.h>
56#include <linux/of.h>
57
58#include <asm/octeon/octeon.h>
59
60#include "octeon-hcd.h"
61
62/**
63 * enum cvmx_usb_speed - the possible USB device speeds
64 *
65 * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps
66 * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps
67 * @CVMX_USB_SPEED_LOW:  Device is operation at 1.5Mbps
68 */
69enum cvmx_usb_speed {
70	CVMX_USB_SPEED_HIGH = 0,
71	CVMX_USB_SPEED_FULL = 1,
72	CVMX_USB_SPEED_LOW = 2,
73};
74
75/**
76 * enum cvmx_usb_transfer - the possible USB transfer types
77 *
78 * @CVMX_USB_TRANSFER_CONTROL:	   USB transfer type control for hub and status
79 *				   transfers
80 * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low
81 *				   priority periodic transfers
82 * @CVMX_USB_TRANSFER_BULK:	   USB transfer type bulk for large low priority
83 *				   transfers
84 * @CVMX_USB_TRANSFER_INTERRUPT:   USB transfer type interrupt for high priority
85 *				   periodic transfers
86 */
87enum cvmx_usb_transfer {
88	CVMX_USB_TRANSFER_CONTROL = 0,
89	CVMX_USB_TRANSFER_ISOCHRONOUS = 1,
90	CVMX_USB_TRANSFER_BULK = 2,
91	CVMX_USB_TRANSFER_INTERRUPT = 3,
92};
93
94/**
95 * enum cvmx_usb_direction - the transfer directions
96 *
97 * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host
98 * @CVMX_USB_DIRECTION_IN:  Data is transferring from the device/host to Octeon
99 */
100enum cvmx_usb_direction {
101	CVMX_USB_DIRECTION_OUT,
102	CVMX_USB_DIRECTION_IN,
103};
104
105/**
106 * enum cvmx_usb_status - possible callback function status codes
107 *
108 * @CVMX_USB_STATUS_OK:		  The transaction / operation finished without
109 *				  any errors
110 * @CVMX_USB_STATUS_SHORT:	  FIXME: This is currently not implemented
111 * @CVMX_USB_STATUS_CANCEL:	  The transaction was canceled while in flight
112 *				  by a user call to cvmx_usb_cancel
113 * @CVMX_USB_STATUS_ERROR:	  The transaction aborted with an unexpected
114 *				  error status
115 * @CVMX_USB_STATUS_STALL:	  The transaction received a USB STALL response
116 *				  from the device
117 * @CVMX_USB_STATUS_XACTERR:	  The transaction failed with an error from the
118 *				  device even after a number of retries
119 * @CVMX_USB_STATUS_DATATGLERR:	  The transaction failed with a data toggle
120 *				  error even after a number of retries
121 * @CVMX_USB_STATUS_BABBLEERR:	  The transaction failed with a babble error
122 * @CVMX_USB_STATUS_FRAMEERR:	  The transaction failed with a frame error
123 *				  even after a number of retries
124 */
125enum cvmx_usb_status {
126	CVMX_USB_STATUS_OK,
127	CVMX_USB_STATUS_SHORT,
128	CVMX_USB_STATUS_CANCEL,
129	CVMX_USB_STATUS_ERROR,
130	CVMX_USB_STATUS_STALL,
131	CVMX_USB_STATUS_XACTERR,
132	CVMX_USB_STATUS_DATATGLERR,
133	CVMX_USB_STATUS_BABBLEERR,
134	CVMX_USB_STATUS_FRAMEERR,
135};
136
137/**
138 * struct cvmx_usb_port_status - the USB port status information
139 *
140 * @port_enabled:	1 = Usb port is enabled, 0 = disabled
141 * @port_over_current:	1 = Over current detected, 0 = Over current not
142 *			detected. Octeon doesn't support over current detection.
143 * @port_powered:	1 = Port power is being supplied to the device, 0 =
144 *			power is off. Octeon doesn't support turning port power
145 *			off.
146 * @port_speed:		Current port speed.
147 * @connected:		1 = A device is connected to the port, 0 = No device is
148 *			connected.
149 * @connect_change:	1 = Device connected state changed since the last set
150 *			status call.
151 */
152struct cvmx_usb_port_status {
153	u32 reserved			: 25;
154	u32 port_enabled		: 1;
155	u32 port_over_current		: 1;
156	u32 port_powered		: 1;
157	enum cvmx_usb_speed port_speed	: 2;
158	u32 connected			: 1;
159	u32 connect_change		: 1;
160};
161
162/**
163 * struct cvmx_usb_iso_packet - descriptor for Isochronous packets
164 *
165 * @offset:	This is the offset in bytes into the main buffer where this data
166 *		is stored.
167 * @length:	This is the length in bytes of the data.
168 * @status:	This is the status of this individual packet transfer.
169 */
170struct cvmx_usb_iso_packet {
171	int offset;
172	int length;
173	enum cvmx_usb_status status;
174};
175
176/**
177 * enum cvmx_usb_initialize_flags - flags used by the initialization function
178 *
179 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI:    The USB port uses a 12MHz crystal
180 *					      as clock source at USB_XO and
181 *					      USB_XI.
182 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND:   The USB port uses 12/24/48MHz 2.5V
183 *					      board clock source at USB_XO.
184 *					      USB_XI should be tied to GND.
185 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field
186 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:    Speed of reference clock or
187 *					      crystal
188 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:    Speed of reference clock
189 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:    Speed of reference clock
190 * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA:	      Disable DMA and used polled IO for
191 *					      data transfer use for the USB
192 */
193enum cvmx_usb_initialize_flags {
194	CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI		= 1 << 0,
195	CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND		= 1 << 1,
196	CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK	= 3 << 3,
197	CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ		= 1 << 3,
198	CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ		= 2 << 3,
199	CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ		= 3 << 3,
200	/* Bits 3-4 used to encode the clock frequency */
201	CVMX_USB_INITIALIZE_FLAGS_NO_DMA		= 1 << 5,
202};
203
204/**
205 * enum cvmx_usb_pipe_flags - internal flags for a pipe.
206 *
207 * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is
208 *				   actively using hardware.
209 * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed
210 *				   pipe is in the ping state.
211 */
212enum cvmx_usb_pipe_flags {
213	CVMX_USB_PIPE_FLAGS_SCHEDULED	= 1 << 17,
214	CVMX_USB_PIPE_FLAGS_NEED_PING	= 1 << 18,
215};
216
217/* Maximum number of times to retry failed transactions */
218#define MAX_RETRIES		3
219
220/* Maximum number of hardware channels supported by the USB block */
221#define MAX_CHANNELS		8
222
223/*
224 * The low level hardware can transfer a maximum of this number of bytes in each
225 * transfer. The field is 19 bits wide
226 */
227#define MAX_TRANSFER_BYTES	((1 << 19) - 1)
228
229/*
230 * The low level hardware can transfer a maximum of this number of packets in
231 * each transfer. The field is 10 bits wide
232 */
233#define MAX_TRANSFER_PACKETS	((1 << 10) - 1)
234
235/**
236 * Logical transactions may take numerous low level
237 * transactions, especially when splits are concerned. This
238 * enum represents all of the possible stages a transaction can
239 * be in. Note that split completes are always even. This is so
240 * the NAK handler can backup to the previous low level
241 * transaction with a simple clearing of bit 0.
242 */
243enum cvmx_usb_stage {
244	CVMX_USB_STAGE_NON_CONTROL,
245	CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE,
246	CVMX_USB_STAGE_SETUP,
247	CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE,
248	CVMX_USB_STAGE_DATA,
249	CVMX_USB_STAGE_DATA_SPLIT_COMPLETE,
250	CVMX_USB_STAGE_STATUS,
251	CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE,
252};
253
254/**
255 * struct cvmx_usb_transaction - describes each pending USB transaction
256 *				 regardless of type. These are linked together
257 *				 to form a list of pending requests for a pipe.
258 *
259 * @node:		List node for transactions in the pipe.
260 * @type:		Type of transaction, duplicated of the pipe.
261 * @flags:		State flags for this transaction.
262 * @buffer:		User's physical buffer address to read/write.
263 * @buffer_length:	Size of the user's buffer in bytes.
264 * @control_header:	For control transactions, physical address of the 8
265 *			byte standard header.
266 * @iso_start_frame:	For ISO transactions, the starting frame number.
267 * @iso_number_packets:	For ISO transactions, the number of packets in the
268 *			request.
269 * @iso_packets:	For ISO transactions, the sub packets in the request.
270 * @actual_bytes:	Actual bytes transfer for this transaction.
271 * @stage:		For control transactions, the current stage.
272 * @urb:		URB.
273 */
274struct cvmx_usb_transaction {
275	struct list_head node;
276	enum cvmx_usb_transfer type;
277	u64 buffer;
278	int buffer_length;
279	u64 control_header;
280	int iso_start_frame;
281	int iso_number_packets;
282	struct cvmx_usb_iso_packet *iso_packets;
283	int xfersize;
284	int pktcnt;
285	int retries;
286	int actual_bytes;
287	enum cvmx_usb_stage stage;
288	struct urb *urb;
289};
290
291/**
292 * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon
293 *			  and some USB device. It contains a list of pending
294 *			  request to the device.
295 *
296 * @node:		List node for pipe list
297 * @next:		Pipe after this one in the list
298 * @transactions:	List of pending transactions
299 * @interval:		For periodic pipes, the interval between packets in
300 *			frames
301 * @next_tx_frame:	The next frame this pipe is allowed to transmit on
302 * @flags:		State flags for this pipe
303 * @device_speed:	Speed of device connected to this pipe
304 * @transfer_type:	Type of transaction supported by this pipe
305 * @transfer_dir:	IN or OUT. Ignored for Control
306 * @multi_count:	Max packet in a row for the device
307 * @max_packet:		The device's maximum packet size in bytes
308 * @device_addr:	USB device address at other end of pipe
309 * @endpoint_num:	USB endpoint number at other end of pipe
310 * @hub_device_addr:	Hub address this device is connected to
311 * @hub_port:		Hub port this device is connected to
312 * @pid_toggle:		This toggles between 0/1 on every packet send to track
313 *			the data pid needed
314 * @channel:		Hardware DMA channel for this pipe
315 * @split_sc_frame:	The low order bits of the frame number the split
316 *			complete should be sent on
317 */
318struct cvmx_usb_pipe {
319	struct list_head node;
320	struct list_head transactions;
321	u64 interval;
322	u64 next_tx_frame;
323	enum cvmx_usb_pipe_flags flags;
324	enum cvmx_usb_speed device_speed;
325	enum cvmx_usb_transfer transfer_type;
326	enum cvmx_usb_direction transfer_dir;
327	int multi_count;
328	u16 max_packet;
329	u8 device_addr;
330	u8 endpoint_num;
331	u8 hub_device_addr;
332	u8 hub_port;
333	u8 pid_toggle;
334	u8 channel;
335	s8 split_sc_frame;
336};
337
338struct cvmx_usb_tx_fifo {
339	struct {
340		int channel;
341		int size;
342		u64 address;
343	} entry[MAX_CHANNELS + 1];
344	int head;
345	int tail;
346};
347
348/**
349 * struct octeon_hcd - the state of the USB block
350 *
351 * lock:		   Serialization lock.
352 * init_flags:		   Flags passed to initialize.
353 * index:		   Which USB block this is for.
354 * idle_hardware_channels: Bit set for every idle hardware channel.
355 * usbcx_hprt:		   Stored port status so we don't need to read a CSR to
356 *			   determine splits.
357 * pipe_for_channel:	   Map channels to pipes.
358 * pipe:		   Storage for pipes.
359 * indent:		   Used by debug output to indent functions.
360 * port_status:		   Last port status used for change notification.
361 * idle_pipes:		   List of open pipes that have no transactions.
362 * active_pipes:	   Active pipes indexed by transfer type.
363 * frame_number:	   Increments every SOF interrupt for time keeping.
364 * active_split:	   Points to the current active split, or NULL.
365 */
366struct octeon_hcd {
367	spinlock_t lock; /* serialization lock */
368	int init_flags;
369	int index;
370	int idle_hardware_channels;
371	union cvmx_usbcx_hprt usbcx_hprt;
372	struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS];
373	int indent;
374	struct cvmx_usb_port_status port_status;
375	struct list_head idle_pipes;
376	struct list_head active_pipes[4];
377	u64 frame_number;
378	struct cvmx_usb_transaction *active_split;
379	struct cvmx_usb_tx_fifo periodic;
380	struct cvmx_usb_tx_fifo nonperiodic;
381};
382
383/*
384 * This macro logically sets a single field in a CSR. It does the sequence
385 * read, modify, and write
386 */
387#define USB_SET_FIELD32(address, _union, field, value)		\
388	do {							\
389		union _union c;					\
390								\
391		c.u32 = cvmx_usb_read_csr32(usb, address);	\
392		c.s.field = value;				\
393		cvmx_usb_write_csr32(usb, address, c.u32);	\
394	} while (0)
395
396/* Returns the IO address to push/pop stuff data from the FIFOs */
397#define USB_FIFO_ADDRESS(channel, usb_index) \
398	(CVMX_USBCX_GOTGCTL(usb_index) + ((channel) + 1) * 0x1000)
399
400/**
401 * struct octeon_temp_buffer - a bounce buffer for USB transfers
402 * @orig_buffer: the original buffer passed by the USB stack
403 * @data:	 the newly allocated temporary buffer (excluding meta-data)
404 *
405 * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If
406 * the buffer is too short, we need to allocate a temporary one, and this struct
407 * represents it.
408 */
409struct octeon_temp_buffer {
410	void *orig_buffer;
411	u8 data[];
412};
413
414static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p)
415{
416	return container_of((void *)p, struct usb_hcd, hcd_priv);
417}
418
419/**
420 * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer
421 *                            (if needed)
422 * @urb:	URB.
423 * @mem_flags:	Memory allocation flags.
424 *
425 * This function allocates a temporary bounce buffer whenever it's needed
426 * due to HW limitations.
427 */
428static int octeon_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags)
429{
430	struct octeon_temp_buffer *temp;
431
432	if (urb->num_sgs || urb->sg ||
433	    (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) ||
434	    !(urb->transfer_buffer_length % sizeof(u32)))
435		return 0;
436
437	temp = kmalloc(ALIGN(urb->transfer_buffer_length, sizeof(u32)) +
438		       sizeof(*temp), mem_flags);
439	if (!temp)
440		return -ENOMEM;
441
442	temp->orig_buffer = urb->transfer_buffer;
443	if (usb_urb_dir_out(urb))
444		memcpy(temp->data, urb->transfer_buffer,
445		       urb->transfer_buffer_length);
446	urb->transfer_buffer = temp->data;
447	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
448
449	return 0;
450}
451
452/**
453 * octeon_free_temp_buffer - free a temporary buffer used by USB transfers.
454 * @urb: URB.
455 *
456 * Frees a buffer allocated by octeon_alloc_temp_buffer().
457 */
458static void octeon_free_temp_buffer(struct urb *urb)
459{
460	struct octeon_temp_buffer *temp;
461	size_t length;
462
463	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
464		return;
465
466	temp = container_of(urb->transfer_buffer, struct octeon_temp_buffer,
467			    data);
468	if (usb_urb_dir_in(urb)) {
469		if (usb_pipeisoc(urb->pipe))
470			length = urb->transfer_buffer_length;
471		else
472			length = urb->actual_length;
473
474		memcpy(temp->orig_buffer, urb->transfer_buffer, length);
475	}
476	urb->transfer_buffer = temp->orig_buffer;
477	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
478	kfree(temp);
479}
480
481/**
482 * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma().
483 * @hcd:	USB HCD structure.
484 * @urb:	URB.
485 * @mem_flags:	Memory allocation flags.
486 */
487static int octeon_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
488				  gfp_t mem_flags)
489{
490	int ret;
491
492	ret = octeon_alloc_temp_buffer(urb, mem_flags);
493	if (ret)
494		return ret;
495
496	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
497	if (ret)
498		octeon_free_temp_buffer(urb);
499
500	return ret;
501}
502
503/**
504 * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma()
505 * @hcd:	USB HCD structure.
506 * @urb:	URB.
507 */
508static void octeon_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
509{
510	usb_hcd_unmap_urb_for_dma(hcd, urb);
511	octeon_free_temp_buffer(urb);
512}
513
514/**
515 * Read a USB 32bit CSR. It performs the necessary address swizzle
516 * for 32bit CSRs and logs the value in a readable format if
517 * debugging is on.
518 *
519 * @usb:     USB block this access is for
520 * @address: 64bit address to read
521 *
522 * Returns: Result of the read
523 */
524static inline u32 cvmx_usb_read_csr32(struct octeon_hcd *usb, u64 address)
525{
526	return cvmx_read64_uint32(address ^ 4);
527}
528
529/**
530 * Write a USB 32bit CSR. It performs the necessary address
531 * swizzle for 32bit CSRs and logs the value in a readable format
532 * if debugging is on.
533 *
534 * @usb:     USB block this access is for
535 * @address: 64bit address to write
536 * @value:   Value to write
537 */
538static inline void cvmx_usb_write_csr32(struct octeon_hcd *usb,
539					u64 address, u32 value)
540{
541	cvmx_write64_uint32(address ^ 4, value);
542	cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
543}
544
545/**
546 * Return non zero if this pipe connects to a non HIGH speed
547 * device through a high speed hub.
548 *
549 * @usb:    USB block this access is for
550 * @pipe:   Pipe to check
551 *
552 * Returns: Non zero if we need to do split transactions
553 */
554static inline int cvmx_usb_pipe_needs_split(struct octeon_hcd *usb,
555					    struct cvmx_usb_pipe *pipe)
556{
557	return pipe->device_speed != CVMX_USB_SPEED_HIGH &&
558	       usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH;
559}
560
561/**
562 * Trivial utility function to return the correct PID for a pipe
563 *
564 * @pipe:   pipe to check
565 *
566 * Returns: PID for pipe
567 */
568static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe)
569{
570	if (pipe->pid_toggle)
571		return 2; /* Data1 */
572	return 0; /* Data0 */
573}
574
575/* Loops through register until txfflsh or rxfflsh become zero.*/
576static int cvmx_wait_tx_rx(struct octeon_hcd *usb, int fflsh_type)
577{
578	int result;
579	u64 address = CVMX_USBCX_GRSTCTL(usb->index);
580	u64 done = cvmx_get_cycle() + 100 *
581		   (u64)octeon_get_clock_rate / 1000000;
582	union cvmx_usbcx_grstctl c;
583
584	while (1) {
585		c.u32 = cvmx_usb_read_csr32(usb, address);
586		if (fflsh_type == 0 && c.s.txfflsh == 0) {
587			result = 0;
588			break;
589		} else if (fflsh_type == 1 && c.s.rxfflsh == 0) {
590			result = 0;
591			break;
592		} else if (cvmx_get_cycle() > done) {
593			result = -1;
594			break;
595		}
596
597		__delay(100);
598	}
599	return result;
600}
601
602static void cvmx_fifo_setup(struct octeon_hcd *usb)
603{
604	union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3;
605	union cvmx_usbcx_gnptxfsiz npsiz;
606	union cvmx_usbcx_hptxfsiz psiz;
607
608	usbcx_ghwcfg3.u32 = cvmx_usb_read_csr32(usb,
609						CVMX_USBCX_GHWCFG3(usb->index));
610
611	/*
612	 * Program the USBC_GRXFSIZ register to select the size of the receive
613	 * FIFO (25%).
614	 */
615	USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz,
616			rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4);
617
618	/*
619	 * Program the USBC_GNPTXFSIZ register to select the size and the start
620	 * address of the non-periodic transmit FIFO for nonperiodic
621	 * transactions (50%).
622	 */
623	npsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
624	npsiz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2;
625	npsiz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4;
626	cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), npsiz.u32);
627
628	/*
629	 * Program the USBC_HPTXFSIZ register to select the size and start
630	 * address of the periodic transmit FIFO for periodic transactions
631	 * (25%).
632	 */
633	psiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index));
634	psiz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4;
635	psiz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4;
636	cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), psiz.u32);
637
638	/* Flush all FIFOs */
639	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
640			cvmx_usbcx_grstctl, txfnum, 0x10);
641	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
642			cvmx_usbcx_grstctl, txfflsh, 1);
643	cvmx_wait_tx_rx(usb, 0);
644	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
645			cvmx_usbcx_grstctl, rxfflsh, 1);
646	cvmx_wait_tx_rx(usb, 1);
647}
648
649/**
650 * Shutdown a USB port after a call to cvmx_usb_initialize().
651 * The port should be disabled with all pipes closed when this
652 * function is called.
653 *
654 * @usb: USB device state populated by cvmx_usb_initialize().
655 *
656 * Returns: 0 or a negative error code.
657 */
658static int cvmx_usb_shutdown(struct octeon_hcd *usb)
659{
660	union cvmx_usbnx_clk_ctl usbn_clk_ctl;
661
662	/* Make sure all pipes are closed */
663	if (!list_empty(&usb->idle_pipes) ||
664	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) ||
665	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) ||
666	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) ||
667	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK]))
668		return -EBUSY;
669
670	/* Disable the clocks and put them in power on reset */
671	usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
672	usbn_clk_ctl.s.enable = 1;
673	usbn_clk_ctl.s.por = 1;
674	usbn_clk_ctl.s.hclk_rst = 1;
675	usbn_clk_ctl.s.prst = 0;
676	usbn_clk_ctl.s.hrst = 0;
677	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
678	return 0;
679}
680
681/**
682 * Initialize a USB port for use. This must be called before any
683 * other access to the Octeon USB port is made. The port starts
684 * off in the disabled state.
685 *
686 * @dev:	 Pointer to struct device for logging purposes.
687 * @usb:	 Pointer to struct octeon_hcd.
688 *
689 * Returns: 0 or a negative error code.
690 */
691static int cvmx_usb_initialize(struct device *dev,
692			       struct octeon_hcd *usb)
693{
694	int channel;
695	int divisor;
696	int retries = 0;
697	union cvmx_usbcx_hcfg usbcx_hcfg;
698	union cvmx_usbnx_clk_ctl usbn_clk_ctl;
699	union cvmx_usbcx_gintsts usbc_gintsts;
700	union cvmx_usbcx_gahbcfg usbcx_gahbcfg;
701	union cvmx_usbcx_gintmsk usbcx_gintmsk;
702	union cvmx_usbcx_gusbcfg usbcx_gusbcfg;
703	union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status;
704
705retry:
706	/*
707	 * Power On Reset and PHY Initialization
708	 *
709	 * 1. Wait for DCOK to assert (nothing to do)
710	 *
711	 * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
712	 *     USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0
713	 */
714	usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
715	usbn_clk_ctl.s.por = 1;
716	usbn_clk_ctl.s.hrst = 0;
717	usbn_clk_ctl.s.prst = 0;
718	usbn_clk_ctl.s.hclk_rst = 0;
719	usbn_clk_ctl.s.enable = 0;
720	/*
721	 * 2b. Select the USB reference clock/crystal parameters by writing
722	 *     appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]
723	 */
724	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) {
725		/*
726		 * The USB port uses 12/24/48MHz 2.5V board clock
727		 * source at USB_XO. USB_XI should be tied to GND.
728		 * Most Octeon evaluation boards require this setting
729		 */
730		if (OCTEON_IS_MODEL(OCTEON_CN3XXX) ||
731		    OCTEON_IS_MODEL(OCTEON_CN56XX) ||
732		    OCTEON_IS_MODEL(OCTEON_CN50XX))
733			/* From CN56XX,CN50XX,CN31XX,CN30XX manuals */
734			usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */
735		else
736			/* From CN52XX manual */
737			usbn_clk_ctl.s.p_rtype = 1;
738
739		switch (usb->init_flags &
740			CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) {
741		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:
742			usbn_clk_ctl.s.p_c_sel = 0;
743			break;
744		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:
745			usbn_clk_ctl.s.p_c_sel = 1;
746			break;
747		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:
748			usbn_clk_ctl.s.p_c_sel = 2;
749			break;
750		}
751	} else {
752		/*
753		 * The USB port uses a 12MHz crystal as clock source
754		 * at USB_XO and USB_XI
755		 */
756		if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
757			/* From CN31XX,CN30XX manual */
758			usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */
759		else
760			/* From CN56XX,CN52XX,CN50XX manuals. */
761			usbn_clk_ctl.s.p_rtype = 0;
762
763		usbn_clk_ctl.s.p_c_sel = 0;
764	}
765	/*
766	 * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
767	 *     setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down
768	 *     such that USB is as close as possible to 125Mhz
769	 */
770	divisor = DIV_ROUND_UP(octeon_get_clock_rate(), 125000000);
771	/* Lower than 4 doesn't seem to work properly */
772	if (divisor < 4)
773		divisor = 4;
774	usbn_clk_ctl.s.divide = divisor;
775	usbn_clk_ctl.s.divide2 = 0;
776	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
777
778	/* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
779	usbn_clk_ctl.s.hclk_rst = 1;
780	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
781	/* 2e.  Wait 64 core-clock cycles for HCLK to stabilize */
782	__delay(64);
783	/*
784	 * 3. Program the power-on reset field in the USBN clock-control
785	 *    register:
786	 *    USBN_CLK_CTL[POR] = 0
787	 */
788	usbn_clk_ctl.s.por = 0;
789	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
790	/* 4. Wait 1 ms for PHY clock to start */
791	mdelay(1);
792	/*
793	 * 5. Program the Reset input from automatic test equipment field in the
794	 *    USBP control and status register:
795	 *    USBN_USBP_CTL_STATUS[ATE_RESET] = 1
796	 */
797	usbn_usbp_ctl_status.u64 =
798		cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index));
799	usbn_usbp_ctl_status.s.ate_reset = 1;
800	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
801			    usbn_usbp_ctl_status.u64);
802	/* 6. Wait 10 cycles */
803	__delay(10);
804	/*
805	 * 7. Clear ATE_RESET field in the USBN clock-control register:
806	 *    USBN_USBP_CTL_STATUS[ATE_RESET] = 0
807	 */
808	usbn_usbp_ctl_status.s.ate_reset = 0;
809	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
810			    usbn_usbp_ctl_status.u64);
811	/*
812	 * 8. Program the PHY reset field in the USBN clock-control register:
813	 *    USBN_CLK_CTL[PRST] = 1
814	 */
815	usbn_clk_ctl.s.prst = 1;
816	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
817	/*
818	 * 9. Program the USBP control and status register to select host or
819	 *    device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
820	 *    device
821	 */
822	usbn_usbp_ctl_status.s.hst_mode = 0;
823	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
824			    usbn_usbp_ctl_status.u64);
825	/* 10. Wait 1 us */
826	udelay(1);
827	/*
828	 * 11. Program the hreset_n field in the USBN clock-control register:
829	 *     USBN_CLK_CTL[HRST] = 1
830	 */
831	usbn_clk_ctl.s.hrst = 1;
832	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
833	/* 12. Proceed to USB core initialization */
834	usbn_clk_ctl.s.enable = 1;
835	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
836	udelay(1);
837
838	/*
839	 * USB Core Initialization
840	 *
841	 * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
842	 *    determine USB core configuration parameters.
843	 *
844	 *    Nothing needed
845	 *
846	 * 2. Program the following fields in the global AHB configuration
847	 *    register (USBC_GAHBCFG)
848	 *    DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
849	 *    Burst length, USBC_GAHBCFG[HBSTLEN] = 0
850	 *    Nonperiodic TxFIFO empty level (slave mode only),
851	 *    USBC_GAHBCFG[NPTXFEMPLVL]
852	 *    Periodic TxFIFO empty level (slave mode only),
853	 *    USBC_GAHBCFG[PTXFEMPLVL]
854	 *    Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1
855	 */
856	usbcx_gahbcfg.u32 = 0;
857	usbcx_gahbcfg.s.dmaen = !(usb->init_flags &
858				  CVMX_USB_INITIALIZE_FLAGS_NO_DMA);
859	usbcx_gahbcfg.s.hbstlen = 0;
860	usbcx_gahbcfg.s.nptxfemplvl = 1;
861	usbcx_gahbcfg.s.ptxfemplvl = 1;
862	usbcx_gahbcfg.s.glblintrmsk = 1;
863	cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index),
864			     usbcx_gahbcfg.u32);
865
866	/*
867	 * 3. Program the following fields in USBC_GUSBCFG register.
868	 *    HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
869	 *    ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
870	 *    USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
871	 *    PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0
872	 */
873	usbcx_gusbcfg.u32 = cvmx_usb_read_csr32(usb,
874						CVMX_USBCX_GUSBCFG(usb->index));
875	usbcx_gusbcfg.s.toutcal = 0;
876	usbcx_gusbcfg.s.ddrsel = 0;
877	usbcx_gusbcfg.s.usbtrdtim = 0x5;
878	usbcx_gusbcfg.s.phylpwrclksel = 0;
879	cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index),
880			     usbcx_gusbcfg.u32);
881
882	/*
883	 * 4. The software must unmask the following bits in the USBC_GINTMSK
884	 *    register.
885	 *    OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
886	 *    Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1
887	 */
888	usbcx_gintmsk.u32 = cvmx_usb_read_csr32(usb,
889						CVMX_USBCX_GINTMSK(usb->index));
890	usbcx_gintmsk.s.otgintmsk = 1;
891	usbcx_gintmsk.s.modemismsk = 1;
892	usbcx_gintmsk.s.hchintmsk = 1;
893	usbcx_gintmsk.s.sofmsk = 0;
894	/* We need RX FIFO interrupts if we don't have DMA */
895	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
896		usbcx_gintmsk.s.rxflvlmsk = 1;
897	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index),
898			     usbcx_gintmsk.u32);
899
900	/*
901	 * Disable all channel interrupts. We'll enable them per channel later.
902	 */
903	for (channel = 0; channel < 8; channel++)
904		cvmx_usb_write_csr32(usb,
905				     CVMX_USBCX_HCINTMSKX(channel, usb->index),
906				     0);
907
908	/*
909	 * Host Port Initialization
910	 *
911	 * 1. Program the host-port interrupt-mask field to unmask,
912	 *    USBC_GINTMSK[PRTINT] = 1
913	 */
914	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
915			cvmx_usbcx_gintmsk, prtintmsk, 1);
916	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
917			cvmx_usbcx_gintmsk, disconnintmsk, 1);
918
919	/*
920	 * 2. Program the USBC_HCFG register to select full-speed host
921	 *    or high-speed host.
922	 */
923	usbcx_hcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index));
924	usbcx_hcfg.s.fslssupp = 0;
925	usbcx_hcfg.s.fslspclksel = 0;
926	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32);
927
928	cvmx_fifo_setup(usb);
929
930	/*
931	 * If the controller is getting port events right after the reset, it
932	 * means the initialization failed. Try resetting the controller again
933	 * in such case. This is seen to happen after cold boot on DSR-1000N.
934	 */
935	usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
936					       CVMX_USBCX_GINTSTS(usb->index));
937	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
938			     usbc_gintsts.u32);
939	dev_dbg(dev, "gintsts after reset: 0x%x\n", (int)usbc_gintsts.u32);
940	if (!usbc_gintsts.s.disconnint && !usbc_gintsts.s.prtint)
941		return 0;
942	if (retries++ >= 5)
943		return -EAGAIN;
944	dev_info(dev, "controller reset failed (gintsts=0x%x) - retrying\n",
945		 (int)usbc_gintsts.u32);
946	msleep(50);
947	cvmx_usb_shutdown(usb);
948	msleep(50);
949	goto retry;
950}
951
952/**
953 * Reset a USB port. After this call succeeds, the USB port is
954 * online and servicing requests.
955 *
956 * @usb: USB device state populated by cvmx_usb_initialize().
957 */
958static void cvmx_usb_reset_port(struct octeon_hcd *usb)
959{
960	usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
961						  CVMX_USBCX_HPRT(usb->index));
962
963	/* Program the port reset bit to start the reset process */
964	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
965			prtrst, 1);
966
967	/*
968	 * Wait at least 50ms (high speed), or 10ms (full speed) for the reset
969	 * process to complete.
970	 */
971	mdelay(50);
972
973	/* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
974	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
975			prtrst, 0);
976
977	/*
978	 * Read the port speed field to get the enumerated speed,
979	 * USBC_HPRT[PRTSPD].
980	 */
981	usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
982						  CVMX_USBCX_HPRT(usb->index));
983}
984
985/**
986 * Disable a USB port. After this call the USB port will not
987 * generate data transfers and will not generate events.
988 * Transactions in process will fail and call their
989 * associated callbacks.
990 *
991 * @usb: USB device state populated by cvmx_usb_initialize().
992 *
993 * Returns: 0 or a negative error code.
994 */
995static int cvmx_usb_disable(struct octeon_hcd *usb)
996{
997	/* Disable the port */
998	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
999			prtena, 1);
1000	return 0;
1001}
1002
1003/**
1004 * Get the current state of the USB port. Use this call to
1005 * determine if the usb port has anything connected, is enabled,
1006 * or has some sort of error condition. The return value of this
1007 * call has "changed" bits to signal of the value of some fields
1008 * have changed between calls.
1009 *
1010 * @usb: USB device state populated by cvmx_usb_initialize().
1011 *
1012 * Returns: Port status information
1013 */
1014static struct cvmx_usb_port_status cvmx_usb_get_status(struct octeon_hcd *usb)
1015{
1016	union cvmx_usbcx_hprt usbc_hprt;
1017	struct cvmx_usb_port_status result;
1018
1019	memset(&result, 0, sizeof(result));
1020
1021	usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
1022	result.port_enabled = usbc_hprt.s.prtena;
1023	result.port_over_current = usbc_hprt.s.prtovrcurract;
1024	result.port_powered = usbc_hprt.s.prtpwr;
1025	result.port_speed = usbc_hprt.s.prtspd;
1026	result.connected = usbc_hprt.s.prtconnsts;
1027	result.connect_change =
1028		result.connected != usb->port_status.connected;
1029
1030	return result;
1031}
1032
1033/**
1034 * Open a virtual pipe between the host and a USB device. A pipe
1035 * must be opened before data can be transferred between a device
1036 * and Octeon.
1037 *
1038 * @usb:	     USB device state populated by cvmx_usb_initialize().
1039 * @device_addr:
1040 *		     USB device address to open the pipe to
1041 *		     (0-127).
1042 * @endpoint_num:
1043 *		     USB endpoint number to open the pipe to
1044 *		     (0-15).
1045 * @device_speed:
1046 *		     The speed of the device the pipe is going
1047 *		     to. This must match the device's speed,
1048 *		     which may be different than the port speed.
1049 * @max_packet:	     The maximum packet length the device can
1050 *		     transmit/receive (low speed=0-8, full
1051 *		     speed=0-1023, high speed=0-1024). This value
1052 *		     comes from the standard endpoint descriptor
1053 *		     field wMaxPacketSize bits <10:0>.
1054 * @transfer_type:
1055 *		     The type of transfer this pipe is for.
1056 * @transfer_dir:
1057 *		     The direction the pipe is in. This is not
1058 *		     used for control pipes.
1059 * @interval:	     For ISOCHRONOUS and INTERRUPT transfers,
1060 *		     this is how often the transfer is scheduled
1061 *		     for. All other transfers should specify
1062 *		     zero. The units are in frames (8000/sec at
1063 *		     high speed, 1000/sec for full speed).
1064 * @multi_count:
1065 *		     For high speed devices, this is the maximum
1066 *		     allowed number of packet per microframe.
1067 *		     Specify zero for non high speed devices. This
1068 *		     value comes from the standard endpoint descriptor
1069 *		     field wMaxPacketSize bits <12:11>.
1070 * @hub_device_addr:
1071 *		     Hub device address this device is connected
1072 *		     to. Devices connected directly to Octeon
1073 *		     use zero. This is only used when the device
1074 *		     is full/low speed behind a high speed hub.
1075 *		     The address will be of the high speed hub,
1076 *		     not and full speed hubs after it.
1077 * @hub_port:	     Which port on the hub the device is
1078 *		     connected. Use zero for devices connected
1079 *		     directly to Octeon. Like hub_device_addr,
1080 *		     this is only used for full/low speed
1081 *		     devices behind a high speed hub.
1082 *
1083 * Returns: A non-NULL value is a pipe. NULL means an error.
1084 */
1085static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct octeon_hcd *usb,
1086						int device_addr,
1087						int endpoint_num,
1088						enum cvmx_usb_speed
1089							device_speed,
1090						int max_packet,
1091						enum cvmx_usb_transfer
1092							transfer_type,
1093						enum cvmx_usb_direction
1094							transfer_dir,
1095						int interval, int multi_count,
1096						int hub_device_addr,
1097						int hub_port)
1098{
1099	struct cvmx_usb_pipe *pipe;
1100
1101	pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC);
1102	if (!pipe)
1103		return NULL;
1104	if ((device_speed == CVMX_USB_SPEED_HIGH) &&
1105	    (transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1106	    (transfer_type == CVMX_USB_TRANSFER_BULK))
1107		pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
1108	pipe->device_addr = device_addr;
1109	pipe->endpoint_num = endpoint_num;
1110	pipe->device_speed = device_speed;
1111	pipe->max_packet = max_packet;
1112	pipe->transfer_type = transfer_type;
1113	pipe->transfer_dir = transfer_dir;
1114	INIT_LIST_HEAD(&pipe->transactions);
1115
1116	/*
1117	 * All pipes use interval to rate limit NAK processing. Force an
1118	 * interval if one wasn't supplied
1119	 */
1120	if (!interval)
1121		interval = 1;
1122	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1123		pipe->interval = interval * 8;
1124		/* Force start splits to be schedule on uFrame 0 */
1125		pipe->next_tx_frame = ((usb->frame_number + 7) & ~7) +
1126					pipe->interval;
1127	} else {
1128		pipe->interval = interval;
1129		pipe->next_tx_frame = usb->frame_number + pipe->interval;
1130	}
1131	pipe->multi_count = multi_count;
1132	pipe->hub_device_addr = hub_device_addr;
1133	pipe->hub_port = hub_port;
1134	pipe->pid_toggle = 0;
1135	pipe->split_sc_frame = -1;
1136	list_add_tail(&pipe->node, &usb->idle_pipes);
1137
1138	/*
1139	 * We don't need to tell the hardware about this pipe yet since
1140	 * it doesn't have any submitted requests
1141	 */
1142
1143	return pipe;
1144}
1145
1146/**
1147 * Poll the RX FIFOs and remove data as needed. This function is only used
1148 * in non DMA mode. It is very important that this function be called quickly
1149 * enough to prevent FIFO overflow.
1150 *
1151 * @usb:	USB device state populated by cvmx_usb_initialize().
1152 */
1153static void cvmx_usb_poll_rx_fifo(struct octeon_hcd *usb)
1154{
1155	union cvmx_usbcx_grxstsph rx_status;
1156	int channel;
1157	int bytes;
1158	u64 address;
1159	u32 *ptr;
1160
1161	rx_status.u32 = cvmx_usb_read_csr32(usb,
1162					    CVMX_USBCX_GRXSTSPH(usb->index));
1163	/* Only read data if IN data is there */
1164	if (rx_status.s.pktsts != 2)
1165		return;
1166	/* Check if no data is available */
1167	if (!rx_status.s.bcnt)
1168		return;
1169
1170	channel = rx_status.s.chnum;
1171	bytes = rx_status.s.bcnt;
1172	if (!bytes)
1173		return;
1174
1175	/* Get where the DMA engine would have written this data */
1176	address = cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) +
1177				     channel * 8);
1178
1179	ptr = cvmx_phys_to_ptr(address);
1180	cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8,
1181			    address + bytes);
1182
1183	/* Loop writing the FIFO data for this packet into memory */
1184	while (bytes > 0) {
1185		*ptr++ = cvmx_usb_read_csr32(usb,
1186					USB_FIFO_ADDRESS(channel, usb->index));
1187		bytes -= 4;
1188	}
1189	CVMX_SYNCW;
1190}
1191
1192/**
1193 * Fill the TX hardware fifo with data out of the software
1194 * fifos
1195 *
1196 * @usb:	    USB device state populated by cvmx_usb_initialize().
1197 * @fifo:	    Software fifo to use
1198 * @available:	    Amount of space in the hardware fifo
1199 *
1200 * Returns: Non zero if the hardware fifo was too small and needs
1201 *	    to be serviced again.
1202 */
1203static int cvmx_usb_fill_tx_hw(struct octeon_hcd *usb,
1204			       struct cvmx_usb_tx_fifo *fifo, int available)
1205{
1206	/*
1207	 * We're done either when there isn't anymore space or the software FIFO
1208	 * is empty
1209	 */
1210	while (available && (fifo->head != fifo->tail)) {
1211		int i = fifo->tail;
1212		const u32 *ptr = cvmx_phys_to_ptr(fifo->entry[i].address);
1213		u64 csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel,
1214						   usb->index) ^ 4;
1215		int words = available;
1216
1217		/* Limit the amount of data to what the SW fifo has */
1218		if (fifo->entry[i].size <= available) {
1219			words = fifo->entry[i].size;
1220			fifo->tail++;
1221			if (fifo->tail > MAX_CHANNELS)
1222				fifo->tail = 0;
1223		}
1224
1225		/* Update the next locations and counts */
1226		available -= words;
1227		fifo->entry[i].address += words * 4;
1228		fifo->entry[i].size -= words;
1229
1230		/*
1231		 * Write the HW fifo data. The read every three writes is due
1232		 * to an errata on CN3XXX chips
1233		 */
1234		while (words > 3) {
1235			cvmx_write64_uint32(csr_address, *ptr++);
1236			cvmx_write64_uint32(csr_address, *ptr++);
1237			cvmx_write64_uint32(csr_address, *ptr++);
1238			cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1239			words -= 3;
1240		}
1241		cvmx_write64_uint32(csr_address, *ptr++);
1242		if (--words) {
1243			cvmx_write64_uint32(csr_address, *ptr++);
1244			if (--words)
1245				cvmx_write64_uint32(csr_address, *ptr++);
1246		}
1247		cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1248	}
1249	return fifo->head != fifo->tail;
1250}
1251
1252/**
1253 * Check the hardware FIFOs and fill them as needed
1254 *
1255 * @usb:	USB device state populated by cvmx_usb_initialize().
1256 */
1257static void cvmx_usb_poll_tx_fifo(struct octeon_hcd *usb)
1258{
1259	if (usb->periodic.head != usb->periodic.tail) {
1260		union cvmx_usbcx_hptxsts tx_status;
1261
1262		tx_status.u32 = cvmx_usb_read_csr32(usb,
1263						    CVMX_USBCX_HPTXSTS(usb->index));
1264		if (cvmx_usb_fill_tx_hw(usb, &usb->periodic,
1265					tx_status.s.ptxfspcavail))
1266			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1267					cvmx_usbcx_gintmsk, ptxfempmsk, 1);
1268		else
1269			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1270					cvmx_usbcx_gintmsk, ptxfempmsk, 0);
1271	}
1272
1273	if (usb->nonperiodic.head != usb->nonperiodic.tail) {
1274		union cvmx_usbcx_gnptxsts tx_status;
1275
1276		tx_status.u32 = cvmx_usb_read_csr32(usb,
1277						    CVMX_USBCX_GNPTXSTS(usb->index));
1278		if (cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic,
1279					tx_status.s.nptxfspcavail))
1280			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1281					cvmx_usbcx_gintmsk, nptxfempmsk, 1);
1282		else
1283			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1284					cvmx_usbcx_gintmsk, nptxfempmsk, 0);
1285	}
1286}
1287
1288/**
1289 * Fill the TX FIFO with an outgoing packet
1290 *
1291 * @usb:	  USB device state populated by cvmx_usb_initialize().
1292 * @channel:	  Channel number to get packet from
1293 */
1294static void cvmx_usb_fill_tx_fifo(struct octeon_hcd *usb, int channel)
1295{
1296	union cvmx_usbcx_hccharx hcchar;
1297	union cvmx_usbcx_hcspltx usbc_hcsplt;
1298	union cvmx_usbcx_hctsizx usbc_hctsiz;
1299	struct cvmx_usb_tx_fifo *fifo;
1300
1301	/* We only need to fill data on outbound channels */
1302	hcchar.u32 = cvmx_usb_read_csr32(usb,
1303					 CVMX_USBCX_HCCHARX(channel, usb->index));
1304	if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT)
1305		return;
1306
1307	/* OUT Splits only have data on the start and not the complete */
1308	usbc_hcsplt.u32 = cvmx_usb_read_csr32(usb,
1309					      CVMX_USBCX_HCSPLTX(channel, usb->index));
1310	if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt)
1311		return;
1312
1313	/*
1314	 * Find out how many bytes we need to fill and convert it into 32bit
1315	 * words.
1316	 */
1317	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1318					      CVMX_USBCX_HCTSIZX(channel, usb->index));
1319	if (!usbc_hctsiz.s.xfersize)
1320		return;
1321
1322	if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) ||
1323	    (hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS))
1324		fifo = &usb->periodic;
1325	else
1326		fifo = &usb->nonperiodic;
1327
1328	fifo->entry[fifo->head].channel = channel;
1329	fifo->entry[fifo->head].address =
1330		cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1331				   channel * 8);
1332	fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize + 3) >> 2;
1333	fifo->head++;
1334	if (fifo->head > MAX_CHANNELS)
1335		fifo->head = 0;
1336
1337	cvmx_usb_poll_tx_fifo(usb);
1338}
1339
1340/**
1341 * Perform channel specific setup for Control transactions. All
1342 * the generic stuff will already have been done in cvmx_usb_start_channel().
1343 *
1344 * @usb:	  USB device state populated by cvmx_usb_initialize().
1345 * @channel:	  Channel to setup
1346 * @pipe:	  Pipe for control transaction
1347 */
1348static void cvmx_usb_start_channel_control(struct octeon_hcd *usb,
1349					   int channel,
1350					   struct cvmx_usb_pipe *pipe)
1351{
1352	struct usb_hcd *hcd = octeon_to_hcd(usb);
1353	struct device *dev = hcd->self.controller;
1354	struct cvmx_usb_transaction *transaction =
1355		list_first_entry(&pipe->transactions, typeof(*transaction),
1356				 node);
1357	struct usb_ctrlrequest *header =
1358		cvmx_phys_to_ptr(transaction->control_header);
1359	int bytes_to_transfer = transaction->buffer_length -
1360		transaction->actual_bytes;
1361	int packets_to_transfer;
1362	union cvmx_usbcx_hctsizx usbc_hctsiz;
1363
1364	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1365					      CVMX_USBCX_HCTSIZX(channel, usb->index));
1366
1367	switch (transaction->stage) {
1368	case CVMX_USB_STAGE_NON_CONTROL:
1369	case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
1370		dev_err(dev, "%s: ERROR - Non control stage\n", __func__);
1371		break;
1372	case CVMX_USB_STAGE_SETUP:
1373		usbc_hctsiz.s.pid = 3; /* Setup */
1374		bytes_to_transfer = sizeof(*header);
1375		/* All Control operations start with a setup going OUT */
1376		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1377				cvmx_usbcx_hccharx, epdir,
1378				CVMX_USB_DIRECTION_OUT);
1379		/*
1380		 * Setup send the control header instead of the buffer data. The
1381		 * buffer data will be used in the next stage
1382		 */
1383		cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1384					channel * 8,
1385				    transaction->control_header);
1386		break;
1387	case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
1388		usbc_hctsiz.s.pid = 3; /* Setup */
1389		bytes_to_transfer = 0;
1390		/* All Control operations start with a setup going OUT */
1391		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1392				cvmx_usbcx_hccharx, epdir,
1393				CVMX_USB_DIRECTION_OUT);
1394
1395		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1396				cvmx_usbcx_hcspltx, compsplt, 1);
1397		break;
1398	case CVMX_USB_STAGE_DATA:
1399		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1400		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1401			if (header->bRequestType & USB_DIR_IN)
1402				bytes_to_transfer = 0;
1403			else if (bytes_to_transfer > pipe->max_packet)
1404				bytes_to_transfer = pipe->max_packet;
1405		}
1406		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1407				cvmx_usbcx_hccharx, epdir,
1408				((header->bRequestType & USB_DIR_IN) ?
1409					CVMX_USB_DIRECTION_IN :
1410					CVMX_USB_DIRECTION_OUT));
1411		break;
1412	case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
1413		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1414		if (!(header->bRequestType & USB_DIR_IN))
1415			bytes_to_transfer = 0;
1416		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1417				cvmx_usbcx_hccharx, epdir,
1418				((header->bRequestType & USB_DIR_IN) ?
1419					CVMX_USB_DIRECTION_IN :
1420					CVMX_USB_DIRECTION_OUT));
1421		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1422				cvmx_usbcx_hcspltx, compsplt, 1);
1423		break;
1424	case CVMX_USB_STAGE_STATUS:
1425		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1426		bytes_to_transfer = 0;
1427		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1428				cvmx_usbcx_hccharx, epdir,
1429				((header->bRequestType & USB_DIR_IN) ?
1430					CVMX_USB_DIRECTION_OUT :
1431					CVMX_USB_DIRECTION_IN));
1432		break;
1433	case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
1434		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1435		bytes_to_transfer = 0;
1436		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1437				cvmx_usbcx_hccharx, epdir,
1438				((header->bRequestType & USB_DIR_IN) ?
1439					CVMX_USB_DIRECTION_OUT :
1440					CVMX_USB_DIRECTION_IN));
1441		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1442				cvmx_usbcx_hcspltx, compsplt, 1);
1443		break;
1444	}
1445
1446	/*
1447	 * Make sure the transfer never exceeds the byte limit of the hardware.
1448	 * Further bytes will be sent as continued transactions
1449	 */
1450	if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1451		/* Round MAX_TRANSFER_BYTES to a multiple of out packet size */
1452		bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet;
1453		bytes_to_transfer *= pipe->max_packet;
1454	}
1455
1456	/*
1457	 * Calculate the number of packets to transfer. If the length is zero
1458	 * we still need to transfer one packet
1459	 */
1460	packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer,
1461					   pipe->max_packet);
1462	if (packets_to_transfer == 0) {
1463		packets_to_transfer = 1;
1464	} else if ((packets_to_transfer > 1) &&
1465			(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1466		/*
1467		 * Limit to one packet when not using DMA. Channels must be
1468		 * restarted between every packet for IN transactions, so there
1469		 * is no reason to do multiple packets in a row
1470		 */
1471		packets_to_transfer = 1;
1472		bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1473	} else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1474		/*
1475		 * Limit the number of packet and data transferred to what the
1476		 * hardware can handle
1477		 */
1478		packets_to_transfer = MAX_TRANSFER_PACKETS;
1479		bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1480	}
1481
1482	usbc_hctsiz.s.xfersize = bytes_to_transfer;
1483	usbc_hctsiz.s.pktcnt = packets_to_transfer;
1484
1485	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index),
1486			     usbc_hctsiz.u32);
1487}
1488
1489/**
1490 * Start a channel to perform the pipe's head transaction
1491 *
1492 * @usb:	  USB device state populated by cvmx_usb_initialize().
1493 * @channel:	  Channel to setup
1494 * @pipe:	  Pipe to start
1495 */
1496static void cvmx_usb_start_channel(struct octeon_hcd *usb, int channel,
1497				   struct cvmx_usb_pipe *pipe)
1498{
1499	struct cvmx_usb_transaction *transaction =
1500		list_first_entry(&pipe->transactions, typeof(*transaction),
1501				 node);
1502
1503	/* Make sure all writes to the DMA region get flushed */
1504	CVMX_SYNCW;
1505
1506	/* Attach the channel to the pipe */
1507	usb->pipe_for_channel[channel] = pipe;
1508	pipe->channel = channel;
1509	pipe->flags |= CVMX_USB_PIPE_FLAGS_SCHEDULED;
1510
1511	/* Mark this channel as in use */
1512	usb->idle_hardware_channels &= ~(1 << channel);
1513
1514	/* Enable the channel interrupt bits */
1515	{
1516		union cvmx_usbcx_hcintx usbc_hcint;
1517		union cvmx_usbcx_hcintmskx usbc_hcintmsk;
1518		union cvmx_usbcx_haintmsk usbc_haintmsk;
1519
1520		/* Clear all channel status bits */
1521		usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
1522						     CVMX_USBCX_HCINTX(channel, usb->index));
1523
1524		cvmx_usb_write_csr32(usb,
1525				     CVMX_USBCX_HCINTX(channel, usb->index),
1526				     usbc_hcint.u32);
1527
1528		usbc_hcintmsk.u32 = 0;
1529		usbc_hcintmsk.s.chhltdmsk = 1;
1530		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1531			/*
1532			 * Channels need these extra interrupts when we aren't
1533			 * in DMA mode.
1534			 */
1535			usbc_hcintmsk.s.datatglerrmsk = 1;
1536			usbc_hcintmsk.s.frmovrunmsk = 1;
1537			usbc_hcintmsk.s.bblerrmsk = 1;
1538			usbc_hcintmsk.s.xacterrmsk = 1;
1539			if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1540				/*
1541				 * Splits don't generate xfercompl, so we need
1542				 * ACK and NYET.
1543				 */
1544				usbc_hcintmsk.s.nyetmsk = 1;
1545				usbc_hcintmsk.s.ackmsk = 1;
1546			}
1547			usbc_hcintmsk.s.nakmsk = 1;
1548			usbc_hcintmsk.s.stallmsk = 1;
1549			usbc_hcintmsk.s.xfercomplmsk = 1;
1550		}
1551		cvmx_usb_write_csr32(usb,
1552				     CVMX_USBCX_HCINTMSKX(channel, usb->index),
1553				     usbc_hcintmsk.u32);
1554
1555		/* Enable the channel interrupt to propagate */
1556		usbc_haintmsk.u32 = cvmx_usb_read_csr32(usb,
1557							CVMX_USBCX_HAINTMSK(usb->index));
1558		usbc_haintmsk.s.haintmsk |= 1 << channel;
1559		cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index),
1560				     usbc_haintmsk.u32);
1561	}
1562
1563	/* Setup the location the DMA engine uses. */
1564	{
1565		u64 reg;
1566		u64 dma_address = transaction->buffer +
1567				  transaction->actual_bytes;
1568
1569		if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1570			dma_address = transaction->buffer +
1571					transaction->iso_packets[0].offset +
1572					transaction->actual_bytes;
1573
1574		if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)
1575			reg = CVMX_USBNX_DMA0_OUTB_CHN0(usb->index);
1576		else
1577			reg = CVMX_USBNX_DMA0_INB_CHN0(usb->index);
1578		cvmx_write64_uint64(reg + channel * 8, dma_address);
1579	}
1580
1581	/* Setup both the size of the transfer and the SPLIT characteristics */
1582	{
1583		union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0};
1584		union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0};
1585		int packets_to_transfer;
1586		int bytes_to_transfer = transaction->buffer_length -
1587			transaction->actual_bytes;
1588
1589		/*
1590		 * ISOCHRONOUS transactions store each individual transfer size
1591		 * in the packet structure, not the global buffer_length
1592		 */
1593		if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1594			bytes_to_transfer =
1595				transaction->iso_packets[0].length -
1596				transaction->actual_bytes;
1597
1598		/*
1599		 * We need to do split transactions when we are talking to non
1600		 * high speed devices that are behind a high speed hub
1601		 */
1602		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1603			/*
1604			 * On the start split phase (stage is even) record the
1605			 * frame number we will need to send the split complete.
1606			 * We only store the lower two bits since the time ahead
1607			 * can only be two frames
1608			 */
1609			if ((transaction->stage & 1) == 0) {
1610				if (transaction->type == CVMX_USB_TRANSFER_BULK)
1611					pipe->split_sc_frame =
1612						(usb->frame_number + 1) & 0x7f;
1613				else
1614					pipe->split_sc_frame =
1615						(usb->frame_number + 2) & 0x7f;
1616			} else {
1617				pipe->split_sc_frame = -1;
1618			}
1619
1620			usbc_hcsplt.s.spltena = 1;
1621			usbc_hcsplt.s.hubaddr = pipe->hub_device_addr;
1622			usbc_hcsplt.s.prtaddr = pipe->hub_port;
1623			usbc_hcsplt.s.compsplt = (transaction->stage ==
1624				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE);
1625
1626			/*
1627			 * SPLIT transactions can only ever transmit one data
1628			 * packet so limit the transfer size to the max packet
1629			 * size
1630			 */
1631			if (bytes_to_transfer > pipe->max_packet)
1632				bytes_to_transfer = pipe->max_packet;
1633
1634			/*
1635			 * ISOCHRONOUS OUT splits are unique in that they limit
1636			 * data transfers to 188 byte chunks representing the
1637			 * begin/middle/end of the data or all
1638			 */
1639			if (!usbc_hcsplt.s.compsplt &&
1640			    (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1641			    (pipe->transfer_type ==
1642			     CVMX_USB_TRANSFER_ISOCHRONOUS)) {
1643				/*
1644				 * Clear the split complete frame number as
1645				 * there isn't going to be a split complete
1646				 */
1647				pipe->split_sc_frame = -1;
1648				/*
1649				 * See if we've started this transfer and sent
1650				 * data
1651				 */
1652				if (transaction->actual_bytes == 0) {
1653					/*
1654					 * Nothing sent yet, this is either a
1655					 * begin or the entire payload
1656					 */
1657					if (bytes_to_transfer <= 188)
1658						/* Entire payload in one go */
1659						usbc_hcsplt.s.xactpos = 3;
1660					else
1661						/* First part of payload */
1662						usbc_hcsplt.s.xactpos = 2;
1663				} else {
1664					/*
1665					 * Continuing the previous data, we must
1666					 * either be in the middle or at the end
1667					 */
1668					if (bytes_to_transfer <= 188)
1669						/* End of payload */
1670						usbc_hcsplt.s.xactpos = 1;
1671					else
1672						/* Middle of payload */
1673						usbc_hcsplt.s.xactpos = 0;
1674				}
1675				/*
1676				 * Again, the transfer size is limited to 188
1677				 * bytes
1678				 */
1679				if (bytes_to_transfer > 188)
1680					bytes_to_transfer = 188;
1681			}
1682		}
1683
1684		/*
1685		 * Make sure the transfer never exceeds the byte limit of the
1686		 * hardware. Further bytes will be sent as continued
1687		 * transactions
1688		 */
1689		if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1690			/*
1691			 * Round MAX_TRANSFER_BYTES to a multiple of out packet
1692			 * size
1693			 */
1694			bytes_to_transfer = MAX_TRANSFER_BYTES /
1695				pipe->max_packet;
1696			bytes_to_transfer *= pipe->max_packet;
1697		}
1698
1699		/*
1700		 * Calculate the number of packets to transfer. If the length is
1701		 * zero we still need to transfer one packet
1702		 */
1703		packets_to_transfer =
1704			DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet);
1705		if (packets_to_transfer == 0) {
1706			packets_to_transfer = 1;
1707		} else if ((packets_to_transfer > 1) &&
1708			   (usb->init_flags &
1709			    CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1710			/*
1711			 * Limit to one packet when not using DMA. Channels must
1712			 * be restarted between every packet for IN
1713			 * transactions, so there is no reason to do multiple
1714			 * packets in a row
1715			 */
1716			packets_to_transfer = 1;
1717			bytes_to_transfer = packets_to_transfer *
1718				pipe->max_packet;
1719		} else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1720			/*
1721			 * Limit the number of packet and data transferred to
1722			 * what the hardware can handle
1723			 */
1724			packets_to_transfer = MAX_TRANSFER_PACKETS;
1725			bytes_to_transfer = packets_to_transfer *
1726				pipe->max_packet;
1727		}
1728
1729		usbc_hctsiz.s.xfersize = bytes_to_transfer;
1730		usbc_hctsiz.s.pktcnt = packets_to_transfer;
1731
1732		/* Update the DATA0/DATA1 toggle */
1733		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1734		/*
1735		 * High speed pipes may need a hardware ping before they start
1736		 */
1737		if (pipe->flags & CVMX_USB_PIPE_FLAGS_NEED_PING)
1738			usbc_hctsiz.s.dopng = 1;
1739
1740		cvmx_usb_write_csr32(usb,
1741				     CVMX_USBCX_HCSPLTX(channel, usb->index),
1742				     usbc_hcsplt.u32);
1743		cvmx_usb_write_csr32(usb,
1744				     CVMX_USBCX_HCTSIZX(channel, usb->index),
1745				     usbc_hctsiz.u32);
1746	}
1747
1748	/* Setup the Host Channel Characteristics Register */
1749	{
1750		union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0};
1751
1752		/*
1753		 * Set the startframe odd/even properly. This is only used for
1754		 * periodic
1755		 */
1756		usbc_hcchar.s.oddfrm = usb->frame_number & 1;
1757
1758		/*
1759		 * Set the number of back to back packets allowed by this
1760		 * endpoint. Split transactions interpret "ec" as the number of
1761		 * immediate retries of failure. These retries happen too
1762		 * quickly, so we disable these entirely for splits
1763		 */
1764		if (cvmx_usb_pipe_needs_split(usb, pipe))
1765			usbc_hcchar.s.ec = 1;
1766		else if (pipe->multi_count < 1)
1767			usbc_hcchar.s.ec = 1;
1768		else if (pipe->multi_count > 3)
1769			usbc_hcchar.s.ec = 3;
1770		else
1771			usbc_hcchar.s.ec = pipe->multi_count;
1772
1773		/* Set the rest of the endpoint specific settings */
1774		usbc_hcchar.s.devaddr = pipe->device_addr;
1775		usbc_hcchar.s.eptype = transaction->type;
1776		usbc_hcchar.s.lspddev =
1777			(pipe->device_speed == CVMX_USB_SPEED_LOW);
1778		usbc_hcchar.s.epdir = pipe->transfer_dir;
1779		usbc_hcchar.s.epnum = pipe->endpoint_num;
1780		usbc_hcchar.s.mps = pipe->max_packet;
1781		cvmx_usb_write_csr32(usb,
1782				     CVMX_USBCX_HCCHARX(channel, usb->index),
1783				     usbc_hcchar.u32);
1784	}
1785
1786	/* Do transaction type specific fixups as needed */
1787	switch (transaction->type) {
1788	case CVMX_USB_TRANSFER_CONTROL:
1789		cvmx_usb_start_channel_control(usb, channel, pipe);
1790		break;
1791	case CVMX_USB_TRANSFER_BULK:
1792	case CVMX_USB_TRANSFER_INTERRUPT:
1793		break;
1794	case CVMX_USB_TRANSFER_ISOCHRONOUS:
1795		if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
1796			/*
1797			 * ISO transactions require different PIDs depending on
1798			 * direction and how many packets are needed
1799			 */
1800			if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
1801				if (pipe->multi_count < 2) /* Need DATA0 */
1802					USB_SET_FIELD32(
1803						CVMX_USBCX_HCTSIZX(channel,
1804								   usb->index),
1805						cvmx_usbcx_hctsizx, pid, 0);
1806				else /* Need MDATA */
1807					USB_SET_FIELD32(
1808						CVMX_USBCX_HCTSIZX(channel,
1809								   usb->index),
1810						cvmx_usbcx_hctsizx, pid, 3);
1811			}
1812		}
1813		break;
1814	}
1815	{
1816		union cvmx_usbcx_hctsizx usbc_hctsiz = { .u32 =
1817			cvmx_usb_read_csr32(usb,
1818					    CVMX_USBCX_HCTSIZX(channel,
1819							       usb->index))
1820		};
1821		transaction->xfersize = usbc_hctsiz.s.xfersize;
1822		transaction->pktcnt = usbc_hctsiz.s.pktcnt;
1823	}
1824	/* Remember when we start a split transaction */
1825	if (cvmx_usb_pipe_needs_split(usb, pipe))
1826		usb->active_split = transaction;
1827	USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1828			cvmx_usbcx_hccharx, chena, 1);
1829	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
1830		cvmx_usb_fill_tx_fifo(usb, channel);
1831}
1832
1833/**
1834 * Find a pipe that is ready to be scheduled to hardware.
1835 * @usb:	 USB device state populated by cvmx_usb_initialize().
1836 * @xfer_type:	 Transfer type
1837 *
1838 * Returns: Pipe or NULL if none are ready
1839 */
1840static struct cvmx_usb_pipe *cvmx_usb_find_ready_pipe(struct octeon_hcd *usb,
1841						      enum cvmx_usb_transfer xfer_type)
1842{
1843	struct list_head *list = usb->active_pipes + xfer_type;
1844	u64 current_frame = usb->frame_number;
1845	struct cvmx_usb_pipe *pipe;
1846
1847	list_for_each_entry(pipe, list, node) {
1848		struct cvmx_usb_transaction *t =
1849			list_first_entry(&pipe->transactions, typeof(*t),
1850					 node);
1851		if (!(pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED) && t &&
1852		    (pipe->next_tx_frame <= current_frame) &&
1853		    ((pipe->split_sc_frame == -1) ||
1854		     ((((int)current_frame - pipe->split_sc_frame) & 0x7f) <
1855		      0x40)) &&
1856		    (!usb->active_split || (usb->active_split == t))) {
1857			prefetch(t);
1858			return pipe;
1859		}
1860	}
1861	return NULL;
1862}
1863
1864static struct cvmx_usb_pipe *cvmx_usb_next_pipe(struct octeon_hcd *usb,
1865						int is_sof)
1866{
1867	struct cvmx_usb_pipe *pipe;
1868
1869	/* Find a pipe needing service. */
1870	if (is_sof) {
1871		/*
1872		 * Only process periodic pipes on SOF interrupts. This way we
1873		 * are sure that the periodic data is sent in the beginning of
1874		 * the frame.
1875		 */
1876		pipe = cvmx_usb_find_ready_pipe(usb,
1877						CVMX_USB_TRANSFER_ISOCHRONOUS);
1878		if (pipe)
1879			return pipe;
1880		pipe = cvmx_usb_find_ready_pipe(usb,
1881						CVMX_USB_TRANSFER_INTERRUPT);
1882		if (pipe)
1883			return pipe;
1884	}
1885	pipe = cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_CONTROL);
1886	if (pipe)
1887		return pipe;
1888	return cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_BULK);
1889}
1890
1891/**
1892 * Called whenever a pipe might need to be scheduled to the
1893 * hardware.
1894 *
1895 * @usb:	 USB device state populated by cvmx_usb_initialize().
1896 * @is_sof:	 True if this schedule was called on a SOF interrupt.
1897 */
1898static void cvmx_usb_schedule(struct octeon_hcd *usb, int is_sof)
1899{
1900	int channel;
1901	struct cvmx_usb_pipe *pipe;
1902	int need_sof;
1903	enum cvmx_usb_transfer ttype;
1904
1905	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1906		/*
1907		 * Without DMA we need to be careful to not schedule something
1908		 * at the end of a frame and cause an overrun.
1909		 */
1910		union cvmx_usbcx_hfnum hfnum = {
1911			.u32 = cvmx_usb_read_csr32(usb,
1912						CVMX_USBCX_HFNUM(usb->index))
1913		};
1914
1915		union cvmx_usbcx_hfir hfir = {
1916			.u32 = cvmx_usb_read_csr32(usb,
1917						CVMX_USBCX_HFIR(usb->index))
1918		};
1919
1920		if (hfnum.s.frrem < hfir.s.frint / 4)
1921			goto done;
1922	}
1923
1924	while (usb->idle_hardware_channels) {
1925		/* Find an idle channel */
1926		channel = __fls(usb->idle_hardware_channels);
1927		if (unlikely(channel > 7))
1928			break;
1929
1930		pipe = cvmx_usb_next_pipe(usb, is_sof);
1931		if (!pipe)
1932			break;
1933
1934		cvmx_usb_start_channel(usb, channel, pipe);
1935	}
1936
1937done:
1938	/*
1939	 * Only enable SOF interrupts when we have transactions pending in the
1940	 * future that might need to be scheduled
1941	 */
1942	need_sof = 0;
1943	for (ttype = CVMX_USB_TRANSFER_CONTROL;
1944	     ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) {
1945		list_for_each_entry(pipe, &usb->active_pipes[ttype], node) {
1946			if (pipe->next_tx_frame > usb->frame_number) {
1947				need_sof = 1;
1948				break;
1949			}
1950		}
1951	}
1952	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1953			cvmx_usbcx_gintmsk, sofmsk, need_sof);
1954}
1955
1956static void octeon_usb_urb_complete_callback(struct octeon_hcd *usb,
1957					     enum cvmx_usb_status status,
1958					     struct cvmx_usb_pipe *pipe,
1959					     struct cvmx_usb_transaction
1960						*transaction,
1961					     int bytes_transferred,
1962					     struct urb *urb)
1963{
1964	struct usb_hcd *hcd = octeon_to_hcd(usb);
1965	struct device *dev = hcd->self.controller;
1966
1967	if (likely(status == CVMX_USB_STATUS_OK))
1968		urb->actual_length = bytes_transferred;
1969	else
1970		urb->actual_length = 0;
1971
1972	urb->hcpriv = NULL;
1973
1974	/* For Isochronous transactions we need to update the URB packet status
1975	 * list from data in our private copy
1976	 */
1977	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1978		int i;
1979		/*
1980		 * The pointer to the private list is stored in the setup_packet
1981		 * field.
1982		 */
1983		struct cvmx_usb_iso_packet *iso_packet =
1984			(struct cvmx_usb_iso_packet *)urb->setup_packet;
1985		/* Recalculate the transfer size by adding up each packet */
1986		urb->actual_length = 0;
1987		for (i = 0; i < urb->number_of_packets; i++) {
1988			if (iso_packet[i].status == CVMX_USB_STATUS_OK) {
1989				urb->iso_frame_desc[i].status = 0;
1990				urb->iso_frame_desc[i].actual_length =
1991					iso_packet[i].length;
1992				urb->actual_length +=
1993					urb->iso_frame_desc[i].actual_length;
1994			} else {
1995				dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n",
1996					i, urb->number_of_packets,
1997					iso_packet[i].status, pipe,
1998					transaction, iso_packet[i].length);
1999				urb->iso_frame_desc[i].status = -EREMOTEIO;
2000			}
2001		}
2002		/* Free the private list now that we don't need it anymore */
2003		kfree(iso_packet);
2004		urb->setup_packet = NULL;
2005	}
2006
2007	switch (status) {
2008	case CVMX_USB_STATUS_OK:
2009		urb->status = 0;
2010		break;
2011	case CVMX_USB_STATUS_CANCEL:
2012		if (urb->status == 0)
2013			urb->status = -ENOENT;
2014		break;
2015	case CVMX_USB_STATUS_STALL:
2016		dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n",
2017			pipe, transaction, bytes_transferred);
2018		urb->status = -EPIPE;
2019		break;
2020	case CVMX_USB_STATUS_BABBLEERR:
2021		dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n",
2022			pipe, transaction, bytes_transferred);
2023		urb->status = -EPIPE;
2024		break;
2025	case CVMX_USB_STATUS_SHORT:
2026		dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n",
2027			pipe, transaction, bytes_transferred);
2028		urb->status = -EREMOTEIO;
2029		break;
2030	case CVMX_USB_STATUS_ERROR:
2031	case CVMX_USB_STATUS_XACTERR:
2032	case CVMX_USB_STATUS_DATATGLERR:
2033	case CVMX_USB_STATUS_FRAMEERR:
2034		dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n",
2035			status, pipe, transaction, bytes_transferred);
2036		urb->status = -EPROTO;
2037		break;
2038	}
2039	usb_hcd_unlink_urb_from_ep(octeon_to_hcd(usb), urb);
2040	spin_unlock(&usb->lock);
2041	usb_hcd_giveback_urb(octeon_to_hcd(usb), urb, urb->status);
2042	spin_lock(&usb->lock);
2043}
2044
2045/**
2046 * Signal the completion of a transaction and free it. The
2047 * transaction will be removed from the pipe transaction list.
2048 *
2049 * @usb:	 USB device state populated by cvmx_usb_initialize().
2050 * @pipe:	 Pipe the transaction is on
2051 * @transaction:
2052 *		 Transaction that completed
2053 * @complete_code:
2054 *		 Completion code
2055 */
2056static void cvmx_usb_complete(struct octeon_hcd *usb,
2057			      struct cvmx_usb_pipe *pipe,
2058			      struct cvmx_usb_transaction *transaction,
2059			      enum cvmx_usb_status complete_code)
2060{
2061	/* If this was a split then clear our split in progress marker */
2062	if (usb->active_split == transaction)
2063		usb->active_split = NULL;
2064
2065	/*
2066	 * Isochronous transactions need extra processing as they might not be
2067	 * done after a single data transfer
2068	 */
2069	if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) {
2070		/* Update the number of bytes transferred in this ISO packet */
2071		transaction->iso_packets[0].length = transaction->actual_bytes;
2072		transaction->iso_packets[0].status = complete_code;
2073
2074		/*
2075		 * If there are more ISOs pending and we succeeded, schedule the
2076		 * next one
2077		 */
2078		if ((transaction->iso_number_packets > 1) &&
2079		    (complete_code == CVMX_USB_STATUS_OK)) {
2080			/* No bytes transferred for this packet as of yet */
2081			transaction->actual_bytes = 0;
2082			/* One less ISO waiting to transfer */
2083			transaction->iso_number_packets--;
2084			/* Increment to the next location in our packet array */
2085			transaction->iso_packets++;
2086			transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2087			return;
2088		}
2089	}
2090
2091	/* Remove the transaction from the pipe list */
2092	list_del(&transaction->node);
2093	if (list_empty(&pipe->transactions))
2094		list_move_tail(&pipe->node, &usb->idle_pipes);
2095	octeon_usb_urb_complete_callback(usb, complete_code, pipe,
2096					 transaction,
2097					 transaction->actual_bytes,
2098					 transaction->urb);
2099	kfree(transaction);
2100}
2101
2102/**
2103 * Submit a usb transaction to a pipe. Called for all types
2104 * of transactions.
2105 *
2106 * @usb:
2107 * @pipe:	    Which pipe to submit to.
2108 * @type:	    Transaction type
2109 * @buffer:	    User buffer for the transaction
2110 * @buffer_length:
2111 *		    User buffer's length in bytes
2112 * @control_header:
2113 *		    For control transactions, the 8 byte standard header
2114 * @iso_start_frame:
2115 *		    For ISO transactions, the start frame
2116 * @iso_number_packets:
2117 *		    For ISO, the number of packet in the transaction.
2118 * @iso_packets:
2119 *		    A description of each ISO packet
2120 * @urb:	    URB for the callback
2121 *
2122 * Returns: Transaction or NULL on failure.
2123 */
2124static struct cvmx_usb_transaction *cvmx_usb_submit_transaction(
2125				struct octeon_hcd *usb,
2126				struct cvmx_usb_pipe *pipe,
2127				enum cvmx_usb_transfer type,
2128				u64 buffer,
2129				int buffer_length,
2130				u64 control_header,
2131				int iso_start_frame,
2132				int iso_number_packets,
2133				struct cvmx_usb_iso_packet *iso_packets,
2134				struct urb *urb)
2135{
2136	struct cvmx_usb_transaction *transaction;
2137
2138	if (unlikely(pipe->transfer_type != type))
2139		return NULL;
2140
2141	transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC);
2142	if (unlikely(!transaction))
2143		return NULL;
2144
2145	transaction->type = type;
2146	transaction->buffer = buffer;
2147	transaction->buffer_length = buffer_length;
2148	transaction->control_header = control_header;
2149	/* FIXME: This is not used, implement it. */
2150	transaction->iso_start_frame = iso_start_frame;
2151	transaction->iso_number_packets = iso_number_packets;
2152	transaction->iso_packets = iso_packets;
2153	transaction->urb = urb;
2154	if (transaction->type == CVMX_USB_TRANSFER_CONTROL)
2155		transaction->stage = CVMX_USB_STAGE_SETUP;
2156	else
2157		transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2158
2159	if (!list_empty(&pipe->transactions)) {
2160		list_add_tail(&transaction->node, &pipe->transactions);
2161	} else {
2162		list_add_tail(&transaction->node, &pipe->transactions);
2163		list_move_tail(&pipe->node,
2164			       &usb->active_pipes[pipe->transfer_type]);
2165
2166		/*
2167		 * We may need to schedule the pipe if this was the head of the
2168		 * pipe.
2169		 */
2170		cvmx_usb_schedule(usb, 0);
2171	}
2172
2173	return transaction;
2174}
2175
2176/**
2177 * Call to submit a USB Bulk transfer to a pipe.
2178 *
2179 * @usb:	    USB device state populated by cvmx_usb_initialize().
2180 * @pipe:	    Handle to the pipe for the transfer.
2181 * @urb:	    URB.
2182 *
2183 * Returns: A submitted transaction or NULL on failure.
2184 */
2185static struct cvmx_usb_transaction *cvmx_usb_submit_bulk(
2186						struct octeon_hcd *usb,
2187						struct cvmx_usb_pipe *pipe,
2188						struct urb *urb)
2189{
2190	return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK,
2191					   urb->transfer_dma,
2192					   urb->transfer_buffer_length,
2193					   0, /* control_header */
2194					   0, /* iso_start_frame */
2195					   0, /* iso_number_packets */
2196					   NULL, /* iso_packets */
2197					   urb);
2198}
2199
2200/**
2201 * Call to submit a USB Interrupt transfer to a pipe.
2202 *
2203 * @usb:	    USB device state populated by cvmx_usb_initialize().
2204 * @pipe:	    Handle to the pipe for the transfer.
2205 * @urb:	    URB returned when the callback is called.
2206 *
2207 * Returns: A submitted transaction or NULL on failure.
2208 */
2209static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt(
2210						struct octeon_hcd *usb,
2211						struct cvmx_usb_pipe *pipe,
2212						struct urb *urb)
2213{
2214	return cvmx_usb_submit_transaction(usb, pipe,
2215					   CVMX_USB_TRANSFER_INTERRUPT,
2216					   urb->transfer_dma,
2217					   urb->transfer_buffer_length,
2218					   0, /* control_header */
2219					   0, /* iso_start_frame */
2220					   0, /* iso_number_packets */
2221					   NULL, /* iso_packets */
2222					   urb);
2223}
2224
2225/**
2226 * Call to submit a USB Control transfer to a pipe.
2227 *
2228 * @usb:	    USB device state populated by cvmx_usb_initialize().
2229 * @pipe:	    Handle to the pipe for the transfer.
2230 * @urb:	    URB.
2231 *
2232 * Returns: A submitted transaction or NULL on failure.
2233 */
2234static struct cvmx_usb_transaction *cvmx_usb_submit_control(
2235						struct octeon_hcd *usb,
2236						struct cvmx_usb_pipe *pipe,
2237						struct urb *urb)
2238{
2239	int buffer_length = urb->transfer_buffer_length;
2240	u64 control_header = urb->setup_dma;
2241	struct usb_ctrlrequest *header = cvmx_phys_to_ptr(control_header);
2242
2243	if ((header->bRequestType & USB_DIR_IN) == 0)
2244		buffer_length = le16_to_cpu(header->wLength);
2245
2246	return cvmx_usb_submit_transaction(usb, pipe,
2247					   CVMX_USB_TRANSFER_CONTROL,
2248					   urb->transfer_dma, buffer_length,
2249					   control_header,
2250					   0, /* iso_start_frame */
2251					   0, /* iso_number_packets */
2252					   NULL, /* iso_packets */
2253					   urb);
2254}
2255
2256/**
2257 * Call to submit a USB Isochronous transfer to a pipe.
2258 *
2259 * @usb:	    USB device state populated by cvmx_usb_initialize().
2260 * @pipe:	    Handle to the pipe for the transfer.
2261 * @urb:	    URB returned when the callback is called.
2262 *
2263 * Returns: A submitted transaction or NULL on failure.
2264 */
2265static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous(
2266						struct octeon_hcd *usb,
2267						struct cvmx_usb_pipe *pipe,
2268						struct urb *urb)
2269{
2270	struct cvmx_usb_iso_packet *packets;
2271
2272	packets = (struct cvmx_usb_iso_packet *)urb->setup_packet;
2273	return cvmx_usb_submit_transaction(usb, pipe,
2274					   CVMX_USB_TRANSFER_ISOCHRONOUS,
2275					   urb->transfer_dma,
2276					   urb->transfer_buffer_length,
2277					   0, /* control_header */
2278					   urb->start_frame,
2279					   urb->number_of_packets,
2280					   packets, urb);
2281}
2282
2283/**
2284 * Cancel one outstanding request in a pipe. Canceling a request
2285 * can fail if the transaction has already completed before cancel
2286 * is called. Even after a successful cancel call, it may take
2287 * a frame or two for the cvmx_usb_poll() function to call the
2288 * associated callback.
2289 *
2290 * @usb:	 USB device state populated by cvmx_usb_initialize().
2291 * @pipe:	 Pipe to cancel requests in.
2292 * @transaction: Transaction to cancel, returned by the submit function.
2293 *
2294 * Returns: 0 or a negative error code.
2295 */
2296static int cvmx_usb_cancel(struct octeon_hcd *usb,
2297			   struct cvmx_usb_pipe *pipe,
2298			   struct cvmx_usb_transaction *transaction)
2299{
2300	/*
2301	 * If the transaction is the HEAD of the queue and scheduled. We need to
2302	 * treat it special
2303	 */
2304	if (list_first_entry(&pipe->transactions, typeof(*transaction), node) ==
2305	    transaction && (pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED)) {
2306		union cvmx_usbcx_hccharx usbc_hcchar;
2307
2308		usb->pipe_for_channel[pipe->channel] = NULL;
2309		pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2310
2311		CVMX_SYNCW;
2312
2313		usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2314						      CVMX_USBCX_HCCHARX(pipe->channel,
2315									 usb->index));
2316		/*
2317		 * If the channel isn't enabled then the transaction already
2318		 * completed.
2319		 */
2320		if (usbc_hcchar.s.chena) {
2321			usbc_hcchar.s.chdis = 1;
2322			cvmx_usb_write_csr32(usb,
2323					     CVMX_USBCX_HCCHARX(pipe->channel,
2324								usb->index),
2325					     usbc_hcchar.u32);
2326		}
2327	}
2328	cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_CANCEL);
2329	return 0;
2330}
2331
2332/**
2333 * Cancel all outstanding requests in a pipe. Logically all this
2334 * does is call cvmx_usb_cancel() in a loop.
2335 *
2336 * @usb:	 USB device state populated by cvmx_usb_initialize().
2337 * @pipe:	 Pipe to cancel requests in.
2338 *
2339 * Returns: 0 or a negative error code.
2340 */
2341static int cvmx_usb_cancel_all(struct octeon_hcd *usb,
2342			       struct cvmx_usb_pipe *pipe)
2343{
2344	struct cvmx_usb_transaction *transaction, *next;
2345
2346	/* Simply loop through and attempt to cancel each transaction */
2347	list_for_each_entry_safe(transaction, next, &pipe->transactions, node) {
2348		int result = cvmx_usb_cancel(usb, pipe, transaction);
2349
2350		if (unlikely(result != 0))
2351			return result;
2352	}
2353	return 0;
2354}
2355
2356/**
2357 * Close a pipe created with cvmx_usb_open_pipe().
2358 *
2359 * @usb:	 USB device state populated by cvmx_usb_initialize().
2360 * @pipe:	 Pipe to close.
2361 *
2362 * Returns: 0 or a negative error code. EBUSY is returned if the pipe has
2363 *	    outstanding transfers.
2364 */
2365static int cvmx_usb_close_pipe(struct octeon_hcd *usb,
2366			       struct cvmx_usb_pipe *pipe)
2367{
2368	/* Fail if the pipe has pending transactions */
2369	if (!list_empty(&pipe->transactions))
2370		return -EBUSY;
2371
2372	list_del(&pipe->node);
2373	kfree(pipe);
2374
2375	return 0;
2376}
2377
2378/**
2379 * Get the current USB protocol level frame number. The frame
2380 * number is always in the range of 0-0x7ff.
2381 *
2382 * @usb: USB device state populated by cvmx_usb_initialize().
2383 *
2384 * Returns: USB frame number
2385 */
2386static int cvmx_usb_get_frame_number(struct octeon_hcd *usb)
2387{
2388	union cvmx_usbcx_hfnum usbc_hfnum;
2389
2390	usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2391
2392	return usbc_hfnum.s.frnum;
2393}
2394
2395static void cvmx_usb_transfer_control(struct octeon_hcd *usb,
2396				      struct cvmx_usb_pipe *pipe,
2397				      struct cvmx_usb_transaction *transaction,
2398				      union cvmx_usbcx_hccharx usbc_hcchar,
2399				      int buffer_space_left,
2400				      int bytes_in_last_packet)
2401{
2402	switch (transaction->stage) {
2403	case CVMX_USB_STAGE_NON_CONTROL:
2404	case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
2405		/* This should be impossible */
2406		cvmx_usb_complete(usb, pipe, transaction,
2407				  CVMX_USB_STATUS_ERROR);
2408		break;
2409	case CVMX_USB_STAGE_SETUP:
2410		pipe->pid_toggle = 1;
2411		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2412			transaction->stage =
2413				CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE;
2414		} else {
2415			struct usb_ctrlrequest *header =
2416				cvmx_phys_to_ptr(transaction->control_header);
2417			if (header->wLength)
2418				transaction->stage = CVMX_USB_STAGE_DATA;
2419			else
2420				transaction->stage = CVMX_USB_STAGE_STATUS;
2421		}
2422		break;
2423	case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
2424		{
2425			struct usb_ctrlrequest *header =
2426				cvmx_phys_to_ptr(transaction->control_header);
2427			if (header->wLength)
2428				transaction->stage = CVMX_USB_STAGE_DATA;
2429			else
2430				transaction->stage = CVMX_USB_STAGE_STATUS;
2431		}
2432		break;
2433	case CVMX_USB_STAGE_DATA:
2434		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2435			transaction->stage = CVMX_USB_STAGE_DATA_SPLIT_COMPLETE;
2436			/*
2437			 * For setup OUT data that are splits,
2438			 * the hardware doesn't appear to count
2439			 * transferred data. Here we manually
2440			 * update the data transferred
2441			 */
2442			if (!usbc_hcchar.s.epdir) {
2443				if (buffer_space_left < pipe->max_packet)
2444					transaction->actual_bytes +=
2445						buffer_space_left;
2446				else
2447					transaction->actual_bytes +=
2448						pipe->max_packet;
2449			}
2450		} else if ((buffer_space_left == 0) ||
2451			   (bytes_in_last_packet < pipe->max_packet)) {
2452			pipe->pid_toggle = 1;
2453			transaction->stage = CVMX_USB_STAGE_STATUS;
2454		}
2455		break;
2456	case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
2457		if ((buffer_space_left == 0) ||
2458		    (bytes_in_last_packet < pipe->max_packet)) {
2459			pipe->pid_toggle = 1;
2460			transaction->stage = CVMX_USB_STAGE_STATUS;
2461		} else {
2462			transaction->stage = CVMX_USB_STAGE_DATA;
2463		}
2464		break;
2465	case CVMX_USB_STAGE_STATUS:
2466		if (cvmx_usb_pipe_needs_split(usb, pipe))
2467			transaction->stage =
2468				CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE;
2469		else
2470			cvmx_usb_complete(usb, pipe, transaction,
2471					  CVMX_USB_STATUS_OK);
2472		break;
2473	case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
2474		cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2475		break;
2476	}
2477}
2478
2479static void cvmx_usb_transfer_bulk(struct octeon_hcd *usb,
2480				   struct cvmx_usb_pipe *pipe,
2481				   struct cvmx_usb_transaction *transaction,
2482				   union cvmx_usbcx_hcintx usbc_hcint,
2483				   int buffer_space_left,
2484				   int bytes_in_last_packet)
2485{
2486	/*
2487	 * The only time a bulk transfer isn't complete when it finishes with
2488	 * an ACK is during a split transaction. For splits we need to continue
2489	 * the transfer if more data is needed.
2490	 */
2491	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2492		if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL)
2493			transaction->stage =
2494				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2495		else if (buffer_space_left &&
2496			 (bytes_in_last_packet == pipe->max_packet))
2497			transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2498		else
2499			cvmx_usb_complete(usb, pipe, transaction,
2500					  CVMX_USB_STATUS_OK);
2501	} else {
2502		if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2503		    (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
2504		    (usbc_hcint.s.nak))
2505			pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2506		if (!buffer_space_left ||
2507		    (bytes_in_last_packet < pipe->max_packet))
2508			cvmx_usb_complete(usb, pipe, transaction,
2509					  CVMX_USB_STATUS_OK);
2510	}
2511}
2512
2513static void cvmx_usb_transfer_intr(struct octeon_hcd *usb,
2514				   struct cvmx_usb_pipe *pipe,
2515				   struct cvmx_usb_transaction *transaction,
2516				   int buffer_space_left,
2517				   int bytes_in_last_packet)
2518{
2519	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2520		if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL) {
2521			transaction->stage =
2522				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2523		} else if (buffer_space_left &&
2524			   (bytes_in_last_packet == pipe->max_packet)) {
2525			transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2526		} else {
2527			pipe->next_tx_frame += pipe->interval;
2528			cvmx_usb_complete(usb, pipe, transaction,
2529					  CVMX_USB_STATUS_OK);
2530		}
2531	} else if (!buffer_space_left ||
2532		   (bytes_in_last_packet < pipe->max_packet)) {
2533		pipe->next_tx_frame += pipe->interval;
2534		cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2535	}
2536}
2537
2538static void cvmx_usb_transfer_isoc(struct octeon_hcd *usb,
2539				   struct cvmx_usb_pipe *pipe,
2540				   struct cvmx_usb_transaction *transaction,
2541				   int buffer_space_left,
2542				   int bytes_in_last_packet,
2543				   int bytes_this_transfer)
2544{
2545	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2546		/*
2547		 * ISOCHRONOUS OUT splits don't require a complete split stage.
2548		 * Instead they use a sequence of begin OUT splits to transfer
2549		 * the data 188 bytes at a time. Once the transfer is complete,
2550		 * the pipe sleeps until the next schedule interval.
2551		 */
2552		if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
2553			/*
2554			 * If no space left or this wasn't a max size packet
2555			 * then this transfer is complete. Otherwise start it
2556			 * again to send the next 188 bytes
2557			 */
2558			if (!buffer_space_left || (bytes_this_transfer < 188)) {
2559				pipe->next_tx_frame += pipe->interval;
2560				cvmx_usb_complete(usb, pipe, transaction,
2561						  CVMX_USB_STATUS_OK);
2562			}
2563			return;
2564		}
2565		if (transaction->stage ==
2566		    CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) {
2567			/*
2568			 * We are in the incoming data phase. Keep getting data
2569			 * until we run out of space or get a small packet
2570			 */
2571			if ((buffer_space_left == 0) ||
2572			    (bytes_in_last_packet < pipe->max_packet)) {
2573				pipe->next_tx_frame += pipe->interval;
2574				cvmx_usb_complete(usb, pipe, transaction,
2575						  CVMX_USB_STATUS_OK);
2576			}
2577		} else {
2578			transaction->stage =
2579				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2580		}
2581	} else {
2582		pipe->next_tx_frame += pipe->interval;
2583		cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2584	}
2585}
2586
2587/**
2588 * Poll a channel for status
2589 *
2590 * @usb:     USB device
2591 * @channel: Channel to poll
2592 *
2593 * Returns: Zero on success
2594 */
2595static int cvmx_usb_poll_channel(struct octeon_hcd *usb, int channel)
2596{
2597	struct usb_hcd *hcd = octeon_to_hcd(usb);
2598	struct device *dev = hcd->self.controller;
2599	union cvmx_usbcx_hcintx usbc_hcint;
2600	union cvmx_usbcx_hctsizx usbc_hctsiz;
2601	union cvmx_usbcx_hccharx usbc_hcchar;
2602	struct cvmx_usb_pipe *pipe;
2603	struct cvmx_usb_transaction *transaction;
2604	int bytes_this_transfer;
2605	int bytes_in_last_packet;
2606	int packets_processed;
2607	int buffer_space_left;
2608
2609	/* Read the interrupt status bits for the channel */
2610	usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
2611					     CVMX_USBCX_HCINTX(channel, usb->index));
2612
2613	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
2614		usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2615						      CVMX_USBCX_HCCHARX(channel,
2616									 usb->index));
2617
2618		if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) {
2619			/*
2620			 * There seems to be a bug in CN31XX which can cause
2621			 * interrupt IN transfers to get stuck until we do a
2622			 * write of HCCHARX without changing things
2623			 */
2624			cvmx_usb_write_csr32(usb,
2625					     CVMX_USBCX_HCCHARX(channel,
2626								usb->index),
2627					     usbc_hcchar.u32);
2628			return 0;
2629		}
2630
2631		/*
2632		 * In non DMA mode the channels don't halt themselves. We need
2633		 * to manually disable channels that are left running
2634		 */
2635		if (!usbc_hcint.s.chhltd) {
2636			if (usbc_hcchar.s.chena) {
2637				union cvmx_usbcx_hcintmskx hcintmsk;
2638				/* Disable all interrupts except CHHLTD */
2639				hcintmsk.u32 = 0;
2640				hcintmsk.s.chhltdmsk = 1;
2641				cvmx_usb_write_csr32(usb,
2642						     CVMX_USBCX_HCINTMSKX(channel, usb->index),
2643						     hcintmsk.u32);
2644				usbc_hcchar.s.chdis = 1;
2645				cvmx_usb_write_csr32(usb,
2646						     CVMX_USBCX_HCCHARX(channel, usb->index),
2647						     usbc_hcchar.u32);
2648				return 0;
2649			} else if (usbc_hcint.s.xfercompl) {
2650				/*
2651				 * Successful IN/OUT with transfer complete.
2652				 * Channel halt isn't needed.
2653				 */
2654			} else {
2655				dev_err(dev, "USB%d: Channel %d interrupt without halt\n",
2656					usb->index, channel);
2657				return 0;
2658			}
2659		}
2660	} else {
2661		/*
2662		 * There is are no interrupts that we need to process when the
2663		 * channel is still running
2664		 */
2665		if (!usbc_hcint.s.chhltd)
2666			return 0;
2667	}
2668
2669	/* Disable the channel interrupts now that it is done */
2670	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0);
2671	usb->idle_hardware_channels |= (1 << channel);
2672
2673	/* Make sure this channel is tied to a valid pipe */
2674	pipe = usb->pipe_for_channel[channel];
2675	prefetch(pipe);
2676	if (!pipe)
2677		return 0;
2678	transaction = list_first_entry(&pipe->transactions,
2679				       typeof(*transaction),
2680				       node);
2681	prefetch(transaction);
2682
2683	/*
2684	 * Disconnect this pipe from the HW channel. Later the schedule
2685	 * function will figure out which pipe needs to go
2686	 */
2687	usb->pipe_for_channel[channel] = NULL;
2688	pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2689
2690	/*
2691	 * Read the channel config info so we can figure out how much data
2692	 * transferred
2693	 */
2694	usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2695					      CVMX_USBCX_HCCHARX(channel, usb->index));
2696	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
2697					      CVMX_USBCX_HCTSIZX(channel, usb->index));
2698
2699	/*
2700	 * Calculating the number of bytes successfully transferred is dependent
2701	 * on the transfer direction
2702	 */
2703	packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt;
2704	if (usbc_hcchar.s.epdir) {
2705		/*
2706		 * IN transactions are easy. For every byte received the
2707		 * hardware decrements xfersize. All we need to do is subtract
2708		 * the current value of xfersize from its starting value and we
2709		 * know how many bytes were written to the buffer
2710		 */
2711		bytes_this_transfer = transaction->xfersize -
2712			usbc_hctsiz.s.xfersize;
2713	} else {
2714		/*
2715		 * OUT transaction don't decrement xfersize. Instead pktcnt is
2716		 * decremented on every successful packet send. The hardware
2717		 * does this when it receives an ACK, or NYET. If it doesn't
2718		 * receive one of these responses pktcnt doesn't change
2719		 */
2720		bytes_this_transfer = packets_processed * usbc_hcchar.s.mps;
2721		/*
2722		 * The last packet may not be a full transfer if we didn't have
2723		 * enough data
2724		 */
2725		if (bytes_this_transfer > transaction->xfersize)
2726			bytes_this_transfer = transaction->xfersize;
2727	}
2728	/* Figure out how many bytes were in the last packet of the transfer */
2729	if (packets_processed)
2730		bytes_in_last_packet = bytes_this_transfer -
2731			(packets_processed - 1) * usbc_hcchar.s.mps;
2732	else
2733		bytes_in_last_packet = bytes_this_transfer;
2734
2735	/*
2736	 * As a special case, setup transactions output the setup header, not
2737	 * the user's data. For this reason we don't count setup data as bytes
2738	 * transferred
2739	 */
2740	if ((transaction->stage == CVMX_USB_STAGE_SETUP) ||
2741	    (transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE))
2742		bytes_this_transfer = 0;
2743
2744	/*
2745	 * Add the bytes transferred to the running total. It is important that
2746	 * bytes_this_transfer doesn't count any data that needs to be
2747	 * retransmitted
2748	 */
2749	transaction->actual_bytes += bytes_this_transfer;
2750	if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
2751		buffer_space_left = transaction->iso_packets[0].length -
2752			transaction->actual_bytes;
2753	else
2754		buffer_space_left = transaction->buffer_length -
2755			transaction->actual_bytes;
2756
2757	/*
2758	 * We need to remember the PID toggle state for the next transaction.
2759	 * The hardware already updated it for the next transaction
2760	 */
2761	pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0);
2762
2763	/*
2764	 * For high speed bulk out, assume the next transaction will need to do
2765	 * a ping before proceeding. If this isn't true the ACK processing below
2766	 * will clear this flag
2767	 */
2768	if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2769	    (pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
2770	    (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT))
2771		pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2772
2773	if (WARN_ON_ONCE(bytes_this_transfer < 0)) {
2774		/*
2775		 * In some rare cases the DMA engine seems to get stuck and
2776		 * keeps substracting same byte count over and over again. In
2777		 * such case we just need to fail every transaction.
2778		 */
2779		cvmx_usb_complete(usb, pipe, transaction,
2780				  CVMX_USB_STATUS_ERROR);
2781		return 0;
2782	}
2783
2784	if (usbc_hcint.s.stall) {
2785		/*
2786		 * STALL as a response means this transaction cannot be
2787		 * completed because the device can't process transactions. Tell
2788		 * the user. Any data that was transferred will be counted on
2789		 * the actual bytes transferred
2790		 */
2791		pipe->pid_toggle = 0;
2792		cvmx_usb_complete(usb, pipe, transaction,
2793				  CVMX_USB_STATUS_STALL);
2794	} else if (usbc_hcint.s.xacterr) {
2795		/*
2796		 * XactErr as a response means the device signaled
2797		 * something wrong with the transfer. For example, PID
2798		 * toggle errors cause these.
2799		 */
2800		cvmx_usb_complete(usb, pipe, transaction,
2801				  CVMX_USB_STATUS_XACTERR);
2802	} else if (usbc_hcint.s.bblerr) {
2803		/* Babble Error (BblErr) */
2804		cvmx_usb_complete(usb, pipe, transaction,
2805				  CVMX_USB_STATUS_BABBLEERR);
2806	} else if (usbc_hcint.s.datatglerr) {
2807		/* Data toggle error */
2808		cvmx_usb_complete(usb, pipe, transaction,
2809				  CVMX_USB_STATUS_DATATGLERR);
2810	} else if (usbc_hcint.s.nyet) {
2811		/*
2812		 * NYET as a response is only allowed in three cases: as a
2813		 * response to a ping, as a response to a split transaction, and
2814		 * as a response to a bulk out. The ping case is handled by
2815		 * hardware, so we only have splits and bulk out
2816		 */
2817		if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
2818			transaction->retries = 0;
2819			/*
2820			 * If there is more data to go then we need to try
2821			 * again. Otherwise this transaction is complete
2822			 */
2823			if ((buffer_space_left == 0) ||
2824			    (bytes_in_last_packet < pipe->max_packet))
2825				cvmx_usb_complete(usb, pipe,
2826						  transaction,
2827						  CVMX_USB_STATUS_OK);
2828		} else {
2829			/*
2830			 * Split transactions retry the split complete 4 times
2831			 * then rewind to the start split and do the entire
2832			 * transactions again
2833			 */
2834			transaction->retries++;
2835			if ((transaction->retries & 0x3) == 0) {
2836				/*
2837				 * Rewind to the beginning of the transaction by
2838				 * anding off the split complete bit
2839				 */
2840				transaction->stage &= ~1;
2841				pipe->split_sc_frame = -1;
2842			}
2843		}
2844	} else if (usbc_hcint.s.ack) {
2845		transaction->retries = 0;
2846		/*
2847		 * The ACK bit can only be checked after the other error bits.
2848		 * This is because a multi packet transfer may succeed in a
2849		 * number of packets and then get a different response on the
2850		 * last packet. In this case both ACK and the last response bit
2851		 * will be set. If none of the other response bits is set, then
2852		 * the last packet must have been an ACK
2853		 *
2854		 * Since we got an ACK, we know we don't need to do a ping on
2855		 * this pipe
2856		 */
2857		pipe->flags &= ~CVMX_USB_PIPE_FLAGS_NEED_PING;
2858
2859		switch (transaction->type) {
2860		case CVMX_USB_TRANSFER_CONTROL:
2861			cvmx_usb_transfer_control(usb, pipe, transaction,
2862						  usbc_hcchar,
2863						  buffer_space_left,
2864						  bytes_in_last_packet);
2865			break;
2866		case CVMX_USB_TRANSFER_BULK:
2867			cvmx_usb_transfer_bulk(usb, pipe, transaction,
2868					       usbc_hcint, buffer_space_left,
2869					       bytes_in_last_packet);
2870			break;
2871		case CVMX_USB_TRANSFER_INTERRUPT:
2872			cvmx_usb_transfer_intr(usb, pipe, transaction,
2873					       buffer_space_left,
2874					       bytes_in_last_packet);
2875			break;
2876		case CVMX_USB_TRANSFER_ISOCHRONOUS:
2877			cvmx_usb_transfer_isoc(usb, pipe, transaction,
2878					       buffer_space_left,
2879					       bytes_in_last_packet,
2880					       bytes_this_transfer);
2881			break;
2882		}
2883	} else if (usbc_hcint.s.nak) {
2884		/*
2885		 * If this was a split then clear our split in progress marker.
2886		 */
2887		if (usb->active_split == transaction)
2888			usb->active_split = NULL;
2889		/*
2890		 * NAK as a response means the device couldn't accept the
2891		 * transaction, but it should be retried in the future. Rewind
2892		 * to the beginning of the transaction by anding off the split
2893		 * complete bit. Retry in the next interval
2894		 */
2895		transaction->retries = 0;
2896		transaction->stage &= ~1;
2897		pipe->next_tx_frame += pipe->interval;
2898		if (pipe->next_tx_frame < usb->frame_number)
2899			pipe->next_tx_frame = usb->frame_number +
2900				pipe->interval -
2901				(usb->frame_number - pipe->next_tx_frame) %
2902				pipe->interval;
2903	} else {
2904		struct cvmx_usb_port_status port;
2905
2906		port = cvmx_usb_get_status(usb);
2907		if (port.port_enabled) {
2908			/* We'll retry the exact same transaction again */
2909			transaction->retries++;
2910		} else {
2911			/*
2912			 * We get channel halted interrupts with no result bits
2913			 * sets when the cable is unplugged
2914			 */
2915			cvmx_usb_complete(usb, pipe, transaction,
2916					  CVMX_USB_STATUS_ERROR);
2917		}
2918	}
2919	return 0;
2920}
2921
2922static void octeon_usb_port_callback(struct octeon_hcd *usb)
2923{
2924	spin_unlock(&usb->lock);
2925	usb_hcd_poll_rh_status(octeon_to_hcd(usb));
2926	spin_lock(&usb->lock);
2927}
2928
2929/**
2930 * Poll the USB block for status and call all needed callback
2931 * handlers. This function is meant to be called in the interrupt
2932 * handler for the USB controller. It can also be called
2933 * periodically in a loop for non-interrupt based operation.
2934 *
2935 * @usb: USB device state populated by cvmx_usb_initialize().
2936 *
2937 * Returns: 0 or a negative error code.
2938 */
2939static int cvmx_usb_poll(struct octeon_hcd *usb)
2940{
2941	union cvmx_usbcx_hfnum usbc_hfnum;
2942	union cvmx_usbcx_gintsts usbc_gintsts;
2943
2944	prefetch_range(usb, sizeof(*usb));
2945
2946	/* Update the frame counter */
2947	usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2948	if ((usb->frame_number & 0x3fff) > usbc_hfnum.s.frnum)
2949		usb->frame_number += 0x4000;
2950	usb->frame_number &= ~0x3fffull;
2951	usb->frame_number |= usbc_hfnum.s.frnum;
2952
2953	/* Read the pending interrupts */
2954	usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
2955					       CVMX_USBCX_GINTSTS(usb->index));
2956
2957	/* Clear the interrupts now that we know about them */
2958	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
2959			     usbc_gintsts.u32);
2960
2961	if (usbc_gintsts.s.rxflvl) {
2962		/*
2963		 * RxFIFO Non-Empty (RxFLvl)
2964		 * Indicates that there is at least one packet pending to be
2965		 * read from the RxFIFO.
2966		 *
2967		 * In DMA mode this is handled by hardware
2968		 */
2969		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
2970			cvmx_usb_poll_rx_fifo(usb);
2971	}
2972	if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) {
2973		/* Fill the Tx FIFOs when not in DMA mode */
2974		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
2975			cvmx_usb_poll_tx_fifo(usb);
2976	}
2977	if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) {
2978		union cvmx_usbcx_hprt usbc_hprt;
2979		/*
2980		 * Disconnect Detected Interrupt (DisconnInt)
2981		 * Asserted when a device disconnect is detected.
2982		 *
2983		 * Host Port Interrupt (PrtInt)
2984		 * The core sets this bit to indicate a change in port status of
2985		 * one of the O2P USB core ports in Host mode. The application
2986		 * must read the Host Port Control and Status (HPRT) register to
2987		 * determine the exact event that caused this interrupt. The
2988		 * application must clear the appropriate status bit in the Host
2989		 * Port Control and Status register to clear this bit.
2990		 *
2991		 * Call the user's port callback
2992		 */
2993		octeon_usb_port_callback(usb);
2994		/* Clear the port change bits */
2995		usbc_hprt.u32 =
2996			cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
2997		usbc_hprt.s.prtena = 0;
2998		cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index),
2999				     usbc_hprt.u32);
3000	}
3001	if (usbc_gintsts.s.hchint) {
3002		/*
3003		 * Host Channels Interrupt (HChInt)
3004		 * The core sets this bit to indicate that an interrupt is
3005		 * pending on one of the channels of the core (in Host mode).
3006		 * The application must read the Host All Channels Interrupt
3007		 * (HAINT) register to determine the exact number of the channel
3008		 * on which the interrupt occurred, and then read the
3009		 * corresponding Host Channel-n Interrupt (HCINTn) register to
3010		 * determine the exact cause of the interrupt. The application
3011		 * must clear the appropriate status bit in the HCINTn register
3012		 * to clear this bit.
3013		 */
3014		union cvmx_usbcx_haint usbc_haint;
3015
3016		usbc_haint.u32 = cvmx_usb_read_csr32(usb,
3017						     CVMX_USBCX_HAINT(usb->index));
3018		while (usbc_haint.u32) {
3019			int channel;
3020
3021			channel = __fls(usbc_haint.u32);
3022			cvmx_usb_poll_channel(usb, channel);
3023			usbc_haint.u32 ^= 1 << channel;
3024		}
3025	}
3026
3027	cvmx_usb_schedule(usb, usbc_gintsts.s.sof);
3028
3029	return 0;
3030}
3031
3032/* convert between an HCD pointer and the corresponding struct octeon_hcd */
3033static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd)
3034{
3035	return (struct octeon_hcd *)(hcd->hcd_priv);
3036}
3037
3038static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd)
3039{
3040	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3041	unsigned long flags;
3042
3043	spin_lock_irqsave(&usb->lock, flags);
3044	cvmx_usb_poll(usb);
3045	spin_unlock_irqrestore(&usb->lock, flags);
3046	return IRQ_HANDLED;
3047}
3048
3049static int octeon_usb_start(struct usb_hcd *hcd)
3050{
3051	hcd->state = HC_STATE_RUNNING;
3052	return 0;
3053}
3054
3055static void octeon_usb_stop(struct usb_hcd *hcd)
3056{
3057	hcd->state = HC_STATE_HALT;
3058}
3059
3060static int octeon_usb_get_frame_number(struct usb_hcd *hcd)
3061{
3062	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3063
3064	return cvmx_usb_get_frame_number(usb);
3065}
3066
3067static int octeon_usb_urb_enqueue(struct usb_hcd *hcd,
3068				  struct urb *urb,
3069				  gfp_t mem_flags)
3070{
3071	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3072	struct device *dev = hcd->self.controller;
3073	struct cvmx_usb_transaction *transaction = NULL;
3074	struct cvmx_usb_pipe *pipe;
3075	unsigned long flags;
3076	struct cvmx_usb_iso_packet *iso_packet;
3077	struct usb_host_endpoint *ep = urb->ep;
3078	int rc;
3079
3080	urb->status = 0;
3081	spin_lock_irqsave(&usb->lock, flags);
3082
3083	rc = usb_hcd_link_urb_to_ep(hcd, urb);
3084	if (rc) {
3085		spin_unlock_irqrestore(&usb->lock, flags);
3086		return rc;
3087	}
3088
3089	if (!ep->hcpriv) {
3090		enum cvmx_usb_transfer transfer_type;
3091		enum cvmx_usb_speed speed;
3092		int split_device = 0;
3093		int split_port = 0;
3094
3095		switch (usb_pipetype(urb->pipe)) {
3096		case PIPE_ISOCHRONOUS:
3097			transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS;
3098			break;
3099		case PIPE_INTERRUPT:
3100			transfer_type = CVMX_USB_TRANSFER_INTERRUPT;
3101			break;
3102		case PIPE_CONTROL:
3103			transfer_type = CVMX_USB_TRANSFER_CONTROL;
3104			break;
3105		default:
3106			transfer_type = CVMX_USB_TRANSFER_BULK;
3107			break;
3108		}
3109		switch (urb->dev->speed) {
3110		case USB_SPEED_LOW:
3111			speed = CVMX_USB_SPEED_LOW;
3112			break;
3113		case USB_SPEED_FULL:
3114			speed = CVMX_USB_SPEED_FULL;
3115			break;
3116		default:
3117			speed = CVMX_USB_SPEED_HIGH;
3118			break;
3119		}
3120		/*
3121		 * For slow devices on high speed ports we need to find the hub
3122		 * that does the speed translation so we know where to send the
3123		 * split transactions.
3124		 */
3125		if (speed != CVMX_USB_SPEED_HIGH) {
3126			/*
3127			 * Start at this device and work our way up the usb
3128			 * tree.
3129			 */
3130			struct usb_device *dev = urb->dev;
3131
3132			while (dev->parent) {
3133				/*
3134				 * If our parent is high speed then he'll
3135				 * receive the splits.
3136				 */
3137				if (dev->parent->speed == USB_SPEED_HIGH) {
3138					split_device = dev->parent->devnum;
3139					split_port = dev->portnum;
3140					break;
3141				}
3142				/*
3143				 * Move up the tree one level. If we make it all
3144				 * the way up the tree, then the port must not
3145				 * be in high speed mode and we don't need a
3146				 * split.
3147				 */
3148				dev = dev->parent;
3149			}
3150		}
3151		pipe = cvmx_usb_open_pipe(usb, usb_pipedevice(urb->pipe),
3152					  usb_pipeendpoint(urb->pipe), speed,
3153					  le16_to_cpu(ep->desc.wMaxPacketSize)
3154					  & 0x7ff,
3155					  transfer_type,
3156					  usb_pipein(urb->pipe) ?
3157						CVMX_USB_DIRECTION_IN :
3158						CVMX_USB_DIRECTION_OUT,
3159					  urb->interval,
3160					  (le16_to_cpu(ep->desc.wMaxPacketSize)
3161					   >> 11) & 0x3,
3162					  split_device, split_port);
3163		if (!pipe) {
3164			usb_hcd_unlink_urb_from_ep(hcd, urb);
3165			spin_unlock_irqrestore(&usb->lock, flags);
3166			dev_dbg(dev, "Failed to create pipe\n");
3167			return -ENOMEM;
3168		}
3169		ep->hcpriv = pipe;
3170	} else {
3171		pipe = ep->hcpriv;
3172	}
3173
3174	switch (usb_pipetype(urb->pipe)) {
3175	case PIPE_ISOCHRONOUS:
3176		dev_dbg(dev, "Submit isochronous to %d.%d\n",
3177			usb_pipedevice(urb->pipe),
3178			usb_pipeendpoint(urb->pipe));
3179		/*
3180		 * Allocate a structure to use for our private list of
3181		 * isochronous packets.
3182		 */
3183		iso_packet = kmalloc_array(urb->number_of_packets,
3184					   sizeof(struct cvmx_usb_iso_packet),
3185					   GFP_ATOMIC);
3186		if (iso_packet) {
3187			int i;
3188			/* Fill the list with the data from the URB */
3189			for (i = 0; i < urb->number_of_packets; i++) {
3190				iso_packet[i].offset =
3191					urb->iso_frame_desc[i].offset;
3192				iso_packet[i].length =
3193					urb->iso_frame_desc[i].length;
3194				iso_packet[i].status = CVMX_USB_STATUS_ERROR;
3195			}
3196			/*
3197			 * Store a pointer to the list in the URB setup_packet
3198			 * field. We know this currently isn't being used and
3199			 * this saves us a bunch of logic.
3200			 */
3201			urb->setup_packet = (char *)iso_packet;
3202			transaction = cvmx_usb_submit_isochronous(usb,
3203								  pipe, urb);
3204			/*
3205			 * If submit failed we need to free our private packet
3206			 * list.
3207			 */
3208			if (!transaction) {
3209				urb->setup_packet = NULL;
3210				kfree(iso_packet);
3211			}
3212		}
3213		break;
3214	case PIPE_INTERRUPT:
3215		dev_dbg(dev, "Submit interrupt to %d.%d\n",
3216			usb_pipedevice(urb->pipe),
3217			usb_pipeendpoint(urb->pipe));
3218		transaction = cvmx_usb_submit_interrupt(usb, pipe, urb);
3219		break;
3220	case PIPE_CONTROL:
3221		dev_dbg(dev, "Submit control to %d.%d\n",
3222			usb_pipedevice(urb->pipe),
3223			usb_pipeendpoint(urb->pipe));
3224		transaction = cvmx_usb_submit_control(usb, pipe, urb);
3225		break;
3226	case PIPE_BULK:
3227		dev_dbg(dev, "Submit bulk to %d.%d\n",
3228			usb_pipedevice(urb->pipe),
3229			usb_pipeendpoint(urb->pipe));
3230		transaction = cvmx_usb_submit_bulk(usb, pipe, urb);
3231		break;
3232	}
3233	if (!transaction) {
3234		usb_hcd_unlink_urb_from_ep(hcd, urb);
3235		spin_unlock_irqrestore(&usb->lock, flags);
3236		dev_dbg(dev, "Failed to submit\n");
3237		return -ENOMEM;
3238	}
3239	urb->hcpriv = transaction;
3240	spin_unlock_irqrestore(&usb->lock, flags);
3241	return 0;
3242}
3243
3244static int octeon_usb_urb_dequeue(struct usb_hcd *hcd,
3245				  struct urb *urb,
3246				  int status)
3247{
3248	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3249	unsigned long flags;
3250	int rc;
3251
3252	if (!urb->dev)
3253		return -EINVAL;
3254
3255	spin_lock_irqsave(&usb->lock, flags);
3256
3257	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
3258	if (rc)
3259		goto out;
3260
3261	urb->status = status;
3262	cvmx_usb_cancel(usb, urb->ep->hcpriv, urb->hcpriv);
3263
3264out:
3265	spin_unlock_irqrestore(&usb->lock, flags);
3266
3267	return rc;
3268}
3269
3270static void octeon_usb_endpoint_disable(struct usb_hcd *hcd,
3271					struct usb_host_endpoint *ep)
3272{
3273	struct device *dev = hcd->self.controller;
3274
3275	if (ep->hcpriv) {
3276		struct octeon_hcd *usb = hcd_to_octeon(hcd);
3277		struct cvmx_usb_pipe *pipe = ep->hcpriv;
3278		unsigned long flags;
3279
3280		spin_lock_irqsave(&usb->lock, flags);
3281		cvmx_usb_cancel_all(usb, pipe);
3282		if (cvmx_usb_close_pipe(usb, pipe))
3283			dev_dbg(dev, "Closing pipe %p failed\n", pipe);
3284		spin_unlock_irqrestore(&usb->lock, flags);
3285		ep->hcpriv = NULL;
3286	}
3287}
3288
3289static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf)
3290{
3291	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3292	struct cvmx_usb_port_status port_status;
3293	unsigned long flags;
3294
3295	spin_lock_irqsave(&usb->lock, flags);
3296	port_status = cvmx_usb_get_status(usb);
3297	spin_unlock_irqrestore(&usb->lock, flags);
3298	buf[0] = port_status.connect_change << 1;
3299
3300	return buf[0] != 0;
3301}
3302
3303static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
3304				  u16 wIndex, char *buf, u16 wLength)
3305{
3306	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3307	struct device *dev = hcd->self.controller;
3308	struct cvmx_usb_port_status usb_port_status;
3309	int port_status;
3310	struct usb_hub_descriptor *desc;
3311	unsigned long flags;
3312
3313	switch (typeReq) {
3314	case ClearHubFeature:
3315		dev_dbg(dev, "ClearHubFeature\n");
3316		switch (wValue) {
3317		case C_HUB_LOCAL_POWER:
3318		case C_HUB_OVER_CURRENT:
3319			/* Nothing required here */
3320			break;
3321		default:
3322			return -EINVAL;
3323		}
3324		break;
3325	case ClearPortFeature:
3326		dev_dbg(dev, "ClearPortFeature\n");
3327		if (wIndex != 1) {
3328			dev_dbg(dev, " INVALID\n");
3329			return -EINVAL;
3330		}
3331
3332		switch (wValue) {
3333		case USB_PORT_FEAT_ENABLE:
3334			dev_dbg(dev, " ENABLE\n");
3335			spin_lock_irqsave(&usb->lock, flags);
3336			cvmx_usb_disable(usb);
3337			spin_unlock_irqrestore(&usb->lock, flags);
3338			break;
3339		case USB_PORT_FEAT_SUSPEND:
3340			dev_dbg(dev, " SUSPEND\n");
3341			/* Not supported on Octeon */
3342			break;
3343		case USB_PORT_FEAT_POWER:
3344			dev_dbg(dev, " POWER\n");
3345			/* Not supported on Octeon */
3346			break;
3347		case USB_PORT_FEAT_INDICATOR:
3348			dev_dbg(dev, " INDICATOR\n");
3349			/* Port inidicator not supported */
3350			break;
3351		case USB_PORT_FEAT_C_CONNECTION:
3352			dev_dbg(dev, " C_CONNECTION\n");
3353			/* Clears drivers internal connect status change flag */
3354			spin_lock_irqsave(&usb->lock, flags);
3355			usb->port_status = cvmx_usb_get_status(usb);
3356			spin_unlock_irqrestore(&usb->lock, flags);
3357			break;
3358		case USB_PORT_FEAT_C_RESET:
3359			dev_dbg(dev, " C_RESET\n");
3360			/*
3361			 * Clears the driver's internal Port Reset Change flag.
3362			 */
3363			spin_lock_irqsave(&usb->lock, flags);
3364			usb->port_status = cvmx_usb_get_status(usb);
3365			spin_unlock_irqrestore(&usb->lock, flags);
3366			break;
3367		case USB_PORT_FEAT_C_ENABLE:
3368			dev_dbg(dev, " C_ENABLE\n");
3369			/*
3370			 * Clears the driver's internal Port Enable/Disable
3371			 * Change flag.
3372			 */
3373			spin_lock_irqsave(&usb->lock, flags);
3374			usb->port_status = cvmx_usb_get_status(usb);
3375			spin_unlock_irqrestore(&usb->lock, flags);
3376			break;
3377		case USB_PORT_FEAT_C_SUSPEND:
3378			dev_dbg(dev, " C_SUSPEND\n");
3379			/*
3380			 * Clears the driver's internal Port Suspend Change
3381			 * flag, which is set when resume signaling on the host
3382			 * port is complete.
3383			 */
3384			break;
3385		case USB_PORT_FEAT_C_OVER_CURRENT:
3386			dev_dbg(dev, " C_OVER_CURRENT\n");
3387			/* Clears the driver's overcurrent Change flag */
3388			spin_lock_irqsave(&usb->lock, flags);
3389			usb->port_status = cvmx_usb_get_status(usb);
3390			spin_unlock_irqrestore(&usb->lock, flags);
3391			break;
3392		default:
3393			dev_dbg(dev, " UNKNOWN\n");
3394			return -EINVAL;
3395		}
3396		break;
3397	case GetHubDescriptor:
3398		dev_dbg(dev, "GetHubDescriptor\n");
3399		desc = (struct usb_hub_descriptor *)buf;
3400		desc->bDescLength = 9;
3401		desc->bDescriptorType = 0x29;
3402		desc->bNbrPorts = 1;
3403		desc->wHubCharacteristics = cpu_to_le16(0x08);
3404		desc->bPwrOn2PwrGood = 1;
3405		desc->bHubContrCurrent = 0;
3406		desc->u.hs.DeviceRemovable[0] = 0;
3407		desc->u.hs.DeviceRemovable[1] = 0xff;
3408		break;
3409	case GetHubStatus:
3410		dev_dbg(dev, "GetHubStatus\n");
3411		*(__le32 *)buf = 0;
3412		break;
3413	case GetPortStatus:
3414		dev_dbg(dev, "GetPortStatus\n");
3415		if (wIndex != 1) {
3416			dev_dbg(dev, " INVALID\n");
3417			return -EINVAL;
3418		}
3419
3420		spin_lock_irqsave(&usb->lock, flags);
3421		usb_port_status = cvmx_usb_get_status(usb);
3422		spin_unlock_irqrestore(&usb->lock, flags);
3423		port_status = 0;
3424
3425		if (usb_port_status.connect_change) {
3426			port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
3427			dev_dbg(dev, " C_CONNECTION\n");
3428		}
3429
3430		if (usb_port_status.port_enabled) {
3431			port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
3432			dev_dbg(dev, " C_ENABLE\n");
3433		}
3434
3435		if (usb_port_status.connected) {
3436			port_status |= (1 << USB_PORT_FEAT_CONNECTION);
3437			dev_dbg(dev, " CONNECTION\n");
3438		}
3439
3440		if (usb_port_status.port_enabled) {
3441			port_status |= (1 << USB_PORT_FEAT_ENABLE);
3442			dev_dbg(dev, " ENABLE\n");
3443		}
3444
3445		if (usb_port_status.port_over_current) {
3446			port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
3447			dev_dbg(dev, " OVER_CURRENT\n");
3448		}
3449
3450		if (usb_port_status.port_powered) {
3451			port_status |= (1 << USB_PORT_FEAT_POWER);
3452			dev_dbg(dev, " POWER\n");
3453		}
3454
3455		if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) {
3456			port_status |= USB_PORT_STAT_HIGH_SPEED;
3457			dev_dbg(dev, " HIGHSPEED\n");
3458		} else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) {
3459			port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
3460			dev_dbg(dev, " LOWSPEED\n");
3461		}
3462
3463		*((__le32 *)buf) = cpu_to_le32(port_status);
3464		break;
3465	case SetHubFeature:
3466		dev_dbg(dev, "SetHubFeature\n");
3467		/* No HUB features supported */
3468		break;
3469	case SetPortFeature:
3470		dev_dbg(dev, "SetPortFeature\n");
3471		if (wIndex != 1) {
3472			dev_dbg(dev, " INVALID\n");
3473			return -EINVAL;
3474		}
3475
3476		switch (wValue) {
3477		case USB_PORT_FEAT_SUSPEND:
3478			dev_dbg(dev, " SUSPEND\n");
3479			return -EINVAL;
3480		case USB_PORT_FEAT_POWER:
3481			dev_dbg(dev, " POWER\n");
3482			/*
3483			 * Program the port power bit to drive VBUS on the USB.
3484			 */
3485			spin_lock_irqsave(&usb->lock, flags);
3486			USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index),
3487					cvmx_usbcx_hprt, prtpwr, 1);
3488			spin_unlock_irqrestore(&usb->lock, flags);
3489			return 0;
3490		case USB_PORT_FEAT_RESET:
3491			dev_dbg(dev, " RESET\n");
3492			spin_lock_irqsave(&usb->lock, flags);
3493			cvmx_usb_reset_port(usb);
3494			spin_unlock_irqrestore(&usb->lock, flags);
3495			return 0;
3496		case USB_PORT_FEAT_INDICATOR:
3497			dev_dbg(dev, " INDICATOR\n");
3498			/* Not supported */
3499			break;
3500		default:
3501			dev_dbg(dev, " UNKNOWN\n");
3502			return -EINVAL;
3503		}
3504		break;
3505	default:
3506		dev_dbg(dev, "Unknown root hub request\n");
3507		return -EINVAL;
3508	}
3509	return 0;
3510}
3511
3512static const struct hc_driver octeon_hc_driver = {
3513	.description		= "Octeon USB",
3514	.product_desc		= "Octeon Host Controller",
3515	.hcd_priv_size		= sizeof(struct octeon_hcd),
3516	.irq			= octeon_usb_irq,
3517	.flags			= HCD_MEMORY | HCD_DMA | HCD_USB2,
3518	.start			= octeon_usb_start,
3519	.stop			= octeon_usb_stop,
3520	.urb_enqueue		= octeon_usb_urb_enqueue,
3521	.urb_dequeue		= octeon_usb_urb_dequeue,
3522	.endpoint_disable	= octeon_usb_endpoint_disable,
3523	.get_frame_number	= octeon_usb_get_frame_number,
3524	.hub_status_data	= octeon_usb_hub_status_data,
3525	.hub_control		= octeon_usb_hub_control,
3526	.map_urb_for_dma	= octeon_map_urb_for_dma,
3527	.unmap_urb_for_dma	= octeon_unmap_urb_for_dma,
3528};
3529
3530static int octeon_usb_probe(struct platform_device *pdev)
3531{
3532	int status;
3533	int initialize_flags;
3534	int usb_num;
3535	struct resource *res_mem;
3536	struct device_node *usbn_node;
3537	int irq = platform_get_irq(pdev, 0);
3538	struct device *dev = &pdev->dev;
3539	struct octeon_hcd *usb;
3540	struct usb_hcd *hcd;
3541	u32 clock_rate = 48000000;
3542	bool is_crystal_clock = false;
3543	const char *clock_type;
3544	int i;
3545
3546	if (!dev->of_node) {
3547		dev_err(dev, "Error: empty of_node\n");
3548		return -ENXIO;
3549	}
3550	usbn_node = dev->of_node->parent;
3551
3552	i = of_property_read_u32(usbn_node,
3553				 "clock-frequency", &clock_rate);
3554	if (i)
3555		i = of_property_read_u32(usbn_node,
3556					 "refclk-frequency", &clock_rate);
3557	if (i) {
3558		dev_err(dev, "No USBN \"clock-frequency\"\n");
3559		return -ENXIO;
3560	}
3561	switch (clock_rate) {
3562	case 12000000:
3563		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ;
3564		break;
3565	case 24000000:
3566		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ;
3567		break;
3568	case 48000000:
3569		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ;
3570		break;
3571	default:
3572		dev_err(dev, "Illegal USBN \"clock-frequency\" %u\n",
3573			clock_rate);
3574		return -ENXIO;
3575	}
3576
3577	i = of_property_read_string(usbn_node,
3578				    "cavium,refclk-type", &clock_type);
3579	if (i)
3580		i = of_property_read_string(usbn_node,
3581					    "refclk-type", &clock_type);
3582
3583	if (!i && strcmp("crystal", clock_type) == 0)
3584		is_crystal_clock = true;
3585
3586	if (is_crystal_clock)
3587		initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI;
3588	else
3589		initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND;
3590
3591	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3592	if (!res_mem) {
3593		dev_err(dev, "found no memory resource\n");
3594		return -ENXIO;
3595	}
3596	usb_num = (res_mem->start >> 44) & 1;
3597
3598	if (irq < 0) {
3599		/* Defective device tree, but we know how to fix it. */
3600		irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56;
3601
3602		irq = irq_create_mapping(NULL, hwirq);
3603	}
3604
3605	/*
3606	 * Set the DMA mask to 64bits so we get buffers already translated for
3607	 * DMA.
3608	 */
3609	i = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(64));
3610	if (i)
3611		return i;
3612
3613	/*
3614	 * Only cn52XX and cn56XX have DWC_OTG USB hardware and the
3615	 * IOB priority registers.  Under heavy network load USB
3616	 * hardware can be starved by the IOB causing a crash.  Give
3617	 * it a priority boost if it has been waiting more than 400
3618	 * cycles to avoid this situation.
3619	 *
3620	 * Testing indicates that a cnt_val of 8192 is not sufficient,
3621	 * but no failures are seen with 4096.  We choose a value of
3622	 * 400 to give a safety factor of 10.
3623	 */
3624	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) {
3625		union cvmx_iob_n2c_l2c_pri_cnt pri_cnt;
3626
3627		pri_cnt.u64 = 0;
3628		pri_cnt.s.cnt_enb = 1;
3629		pri_cnt.s.cnt_val = 400;
3630		cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64);
3631	}
3632
3633	hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev));
3634	if (!hcd) {
3635		dev_dbg(dev, "Failed to allocate memory for HCD\n");
3636		return -1;
3637	}
3638	hcd->uses_new_polling = 1;
3639	usb = (struct octeon_hcd *)hcd->hcd_priv;
3640
3641	spin_lock_init(&usb->lock);
3642
3643	usb->init_flags = initialize_flags;
3644
3645	/* Initialize the USB state structure */
3646	usb->index = usb_num;
3647	INIT_LIST_HEAD(&usb->idle_pipes);
3648	for (i = 0; i < ARRAY_SIZE(usb->active_pipes); i++)
3649		INIT_LIST_HEAD(&usb->active_pipes[i]);
3650
3651	/* Due to an errata, CN31XX doesn't support DMA */
3652	if (OCTEON_IS_MODEL(OCTEON_CN31XX)) {
3653		usb->init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA;
3654		/* Only use one channel with non DMA */
3655		usb->idle_hardware_channels = 0x1;
3656	} else if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
3657		/* CN5XXX have an errata with channel 3 */
3658		usb->idle_hardware_channels = 0xf7;
3659	} else {
3660		usb->idle_hardware_channels = 0xff;
3661	}
3662
3663	status = cvmx_usb_initialize(dev, usb);
3664	if (status) {
3665		dev_dbg(dev, "USB initialization failed with %d\n", status);
3666		usb_put_hcd(hcd);
3667		return -1;
3668	}
3669
3670	status = usb_add_hcd(hcd, irq, 0);
3671	if (status) {
3672		dev_dbg(dev, "USB add HCD failed with %d\n", status);
3673		usb_put_hcd(hcd);
3674		return -1;
3675	}
3676	device_wakeup_enable(hcd->self.controller);
3677
3678	dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq);
3679
3680	return 0;
3681}
3682
3683static void octeon_usb_remove(struct platform_device *pdev)
3684{
3685	int status;
3686	struct device *dev = &pdev->dev;
3687	struct usb_hcd *hcd = dev_get_drvdata(dev);
3688	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3689	unsigned long flags;
3690
3691	usb_remove_hcd(hcd);
3692	spin_lock_irqsave(&usb->lock, flags);
3693	status = cvmx_usb_shutdown(usb);
3694	spin_unlock_irqrestore(&usb->lock, flags);
3695	if (status)
3696		dev_dbg(dev, "USB shutdown failed with %d\n", status);
3697
3698	usb_put_hcd(hcd);
3699}
3700
3701static const struct of_device_id octeon_usb_match[] = {
3702	{
3703		.compatible = "cavium,octeon-5750-usbc",
3704	},
3705	{},
3706};
3707MODULE_DEVICE_TABLE(of, octeon_usb_match);
3708
3709static struct platform_driver octeon_usb_driver = {
3710	.driver = {
3711		.name		= "octeon-hcd",
3712		.of_match_table = octeon_usb_match,
3713	},
3714	.probe      = octeon_usb_probe,
3715	.remove_new = octeon_usb_remove,
3716};
3717
3718static int __init octeon_usb_driver_init(void)
3719{
3720	if (usb_disabled())
3721		return 0;
3722
3723	return platform_driver_register(&octeon_usb_driver);
3724}
3725module_init(octeon_usb_driver_init);
3726
3727static void __exit octeon_usb_driver_exit(void)
3728{
3729	if (usb_disabled())
3730		return;
3731
3732	platform_driver_unregister(&octeon_usb_driver);
3733}
3734module_exit(octeon_usb_driver_exit);
3735
3736MODULE_LICENSE("GPL");
3737MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>");
3738MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");
3739