1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * USB Gadget driver for LPC32xx
4 *
5 * Authors:
6 *    Kevin Wells <kevin.wells@nxp.com>
7 *    Mike James
8 *    Roland Stigge <stigge@antcom.de>
9 *
10 * Copyright (C) 2006 Philips Semiconductors
11 * Copyright (C) 2009 NXP Semiconductors
12 * Copyright (C) 2012 Roland Stigge
13 *
14 * Note: This driver is based on original work done by Mike James for
15 *       the LPC3180.
16 */
17
18#include <linux/clk.h>
19#include <linux/delay.h>
20#include <linux/dma-mapping.h>
21#include <linux/dmapool.h>
22#include <linux/i2c.h>
23#include <linux/interrupt.h>
24#include <linux/module.h>
25#include <linux/of.h>
26#include <linux/platform_device.h>
27#include <linux/prefetch.h>
28#include <linux/proc_fs.h>
29#include <linux/slab.h>
30#include <linux/usb/ch9.h>
31#include <linux/usb/gadget.h>
32#include <linux/usb/isp1301.h>
33
34#ifdef CONFIG_USB_GADGET_DEBUG_FILES
35#include <linux/debugfs.h>
36#include <linux/seq_file.h>
37#endif
38
39/*
40 * USB device configuration structure
41 */
42typedef void (*usc_chg_event)(int);
43struct lpc32xx_usbd_cfg {
44	int vbus_drv_pol;   /* 0=active low drive for VBUS via ISP1301 */
45	usc_chg_event conn_chgb; /* Connection change event (optional) */
46	usc_chg_event susp_chgb; /* Suspend/resume event (optional) */
47	usc_chg_event rmwk_chgb; /* Enable/disable remote wakeup */
48};
49
50/*
51 * controller driver data structures
52 */
53
54/* 16 endpoints (not to be confused with 32 hardware endpoints) */
55#define	NUM_ENDPOINTS	16
56
57/*
58 * IRQ indices make reading the code a little easier
59 */
60#define IRQ_USB_LP	0
61#define IRQ_USB_HP	1
62#define IRQ_USB_DEVDMA	2
63#define IRQ_USB_ATX	3
64
65#define EP_OUT 0 /* RX (from host) */
66#define EP_IN 1 /* TX (to host) */
67
68/* Returns the interrupt mask for the selected hardware endpoint */
69#define EP_MASK_SEL(ep, dir) (1 << (((ep) * 2) + dir))
70
71#define EP_INT_TYPE 0
72#define EP_ISO_TYPE 1
73#define EP_BLK_TYPE 2
74#define EP_CTL_TYPE 3
75
76/* EP0 states */
77#define WAIT_FOR_SETUP 0 /* Wait for setup packet */
78#define DATA_IN        1 /* Expect dev->host transfer */
79#define DATA_OUT       2 /* Expect host->dev transfer */
80
81/* DD (DMA Descriptor) structure, requires word alignment, this is already
82 * defined in the LPC32XX USB device header file, but this version is slightly
83 * modified to tag some work data with each DMA descriptor. */
84struct lpc32xx_usbd_dd_gad {
85	u32 dd_next_phy;
86	u32 dd_setup;
87	u32 dd_buffer_addr;
88	u32 dd_status;
89	u32 dd_iso_ps_mem_addr;
90	u32 this_dma;
91	u32 iso_status[6]; /* 5 spare */
92	u32 dd_next_v;
93};
94
95/*
96 * Logical endpoint structure
97 */
98struct lpc32xx_ep {
99	struct usb_ep		ep;
100	struct list_head	queue;
101	struct lpc32xx_udc	*udc;
102
103	u32			hwep_num_base; /* Physical hardware EP */
104	u32			hwep_num; /* Maps to hardware endpoint */
105	u32			maxpacket;
106	u32			lep;
107
108	bool			is_in;
109	bool			req_pending;
110	u32			eptype;
111
112	u32                     totalints;
113
114	bool			wedge;
115};
116
117enum atx_type {
118	ISP1301,
119	STOTG04,
120};
121
122/*
123 * Common UDC structure
124 */
125struct lpc32xx_udc {
126	struct usb_gadget	gadget;
127	struct usb_gadget_driver *driver;
128	struct platform_device	*pdev;
129	struct device		*dev;
130	spinlock_t		lock;
131	struct i2c_client	*isp1301_i2c_client;
132
133	/* Board and device specific */
134	struct lpc32xx_usbd_cfg	*board;
135	void __iomem		*udp_baseaddr;
136	int			udp_irq[4];
137	struct clk		*usb_slv_clk;
138
139	/* DMA support */
140	u32			*udca_v_base;
141	u32			udca_p_base;
142	struct dma_pool		*dd_cache;
143
144	/* Common EP and control data */
145	u32			enabled_devints;
146	u32			enabled_hwepints;
147	u32			dev_status;
148	u32			realized_eps;
149
150	/* VBUS detection, pullup, and power flags */
151	u8			vbus;
152	u8			last_vbus;
153	int			pullup;
154	int			poweron;
155	enum atx_type		atx;
156
157	/* Work queues related to I2C support */
158	struct work_struct	pullup_job;
159	struct work_struct	power_job;
160
161	/* USB device peripheral - various */
162	struct lpc32xx_ep	ep[NUM_ENDPOINTS];
163	bool			enabled;
164	bool			clocked;
165	bool			suspended;
166	int                     ep0state;
167	atomic_t                enabled_ep_cnt;
168	wait_queue_head_t       ep_disable_wait_queue;
169};
170
171/*
172 * Endpoint request
173 */
174struct lpc32xx_request {
175	struct usb_request	req;
176	struct list_head	queue;
177	struct lpc32xx_usbd_dd_gad *dd_desc_ptr;
178	bool			mapped;
179	bool			send_zlp;
180};
181
182static inline struct lpc32xx_udc *to_udc(struct usb_gadget *g)
183{
184	return container_of(g, struct lpc32xx_udc, gadget);
185}
186
187#define ep_dbg(epp, fmt, arg...) \
188	dev_dbg(epp->udc->dev, "%s: " fmt, __func__, ## arg)
189#define ep_err(epp, fmt, arg...) \
190	dev_err(epp->udc->dev, "%s: " fmt, __func__, ## arg)
191#define ep_info(epp, fmt, arg...) \
192	dev_info(epp->udc->dev, "%s: " fmt, __func__, ## arg)
193#define ep_warn(epp, fmt, arg...) \
194	dev_warn(epp->udc->dev, "%s:" fmt, __func__, ## arg)
195
196#define UDCA_BUFF_SIZE (128)
197
198/**********************************************************************
199 * USB device controller register offsets
200 **********************************************************************/
201
202#define USBD_DEVINTST(x)	((x) + 0x200)
203#define USBD_DEVINTEN(x)	((x) + 0x204)
204#define USBD_DEVINTCLR(x)	((x) + 0x208)
205#define USBD_DEVINTSET(x)	((x) + 0x20C)
206#define USBD_CMDCODE(x)		((x) + 0x210)
207#define USBD_CMDDATA(x)		((x) + 0x214)
208#define USBD_RXDATA(x)		((x) + 0x218)
209#define USBD_TXDATA(x)		((x) + 0x21C)
210#define USBD_RXPLEN(x)		((x) + 0x220)
211#define USBD_TXPLEN(x)		((x) + 0x224)
212#define USBD_CTRL(x)		((x) + 0x228)
213#define USBD_DEVINTPRI(x)	((x) + 0x22C)
214#define USBD_EPINTST(x)		((x) + 0x230)
215#define USBD_EPINTEN(x)		((x) + 0x234)
216#define USBD_EPINTCLR(x)	((x) + 0x238)
217#define USBD_EPINTSET(x)	((x) + 0x23C)
218#define USBD_EPINTPRI(x)	((x) + 0x240)
219#define USBD_REEP(x)		((x) + 0x244)
220#define USBD_EPIND(x)		((x) + 0x248)
221#define USBD_EPMAXPSIZE(x)	((x) + 0x24C)
222/* DMA support registers only below */
223/* Set, clear, or get enabled state of the DMA request status. If
224 * enabled, an IN or OUT token will start a DMA transfer for the EP */
225#define USBD_DMARST(x)		((x) + 0x250)
226#define USBD_DMARCLR(x)		((x) + 0x254)
227#define USBD_DMARSET(x)		((x) + 0x258)
228/* DMA UDCA head pointer */
229#define USBD_UDCAH(x)		((x) + 0x280)
230/* EP DMA status, enable, and disable. This is used to specifically
231 * enabled or disable DMA for a specific EP */
232#define USBD_EPDMAST(x)		((x) + 0x284)
233#define USBD_EPDMAEN(x)		((x) + 0x288)
234#define USBD_EPDMADIS(x)	((x) + 0x28C)
235/* DMA master interrupts enable and pending interrupts */
236#define USBD_DMAINTST(x)	((x) + 0x290)
237#define USBD_DMAINTEN(x)	((x) + 0x294)
238/* DMA end of transfer interrupt enable, disable, status */
239#define USBD_EOTINTST(x)	((x) + 0x2A0)
240#define USBD_EOTINTCLR(x)	((x) + 0x2A4)
241#define USBD_EOTINTSET(x)	((x) + 0x2A8)
242/* New DD request interrupt enable, disable, status */
243#define USBD_NDDRTINTST(x)	((x) + 0x2AC)
244#define USBD_NDDRTINTCLR(x)	((x) + 0x2B0)
245#define USBD_NDDRTINTSET(x)	((x) + 0x2B4)
246/* DMA error interrupt enable, disable, status */
247#define USBD_SYSERRTINTST(x)	((x) + 0x2B8)
248#define USBD_SYSERRTINTCLR(x)	((x) + 0x2BC)
249#define USBD_SYSERRTINTSET(x)	((x) + 0x2C0)
250
251/**********************************************************************
252 * USBD_DEVINTST/USBD_DEVINTEN/USBD_DEVINTCLR/USBD_DEVINTSET/
253 * USBD_DEVINTPRI register definitions
254 **********************************************************************/
255#define USBD_ERR_INT		(1 << 9)
256#define USBD_EP_RLZED		(1 << 8)
257#define USBD_TXENDPKT		(1 << 7)
258#define USBD_RXENDPKT		(1 << 6)
259#define USBD_CDFULL		(1 << 5)
260#define USBD_CCEMPTY		(1 << 4)
261#define USBD_DEV_STAT		(1 << 3)
262#define USBD_EP_SLOW		(1 << 2)
263#define USBD_EP_FAST		(1 << 1)
264#define USBD_FRAME		(1 << 0)
265
266/**********************************************************************
267 * USBD_EPINTST/USBD_EPINTEN/USBD_EPINTCLR/USBD_EPINTSET/
268 * USBD_EPINTPRI register definitions
269 **********************************************************************/
270/* End point selection macro (RX) */
271#define USBD_RX_EP_SEL(e)	(1 << ((e) << 1))
272
273/* End point selection macro (TX) */
274#define USBD_TX_EP_SEL(e)	(1 << (((e) << 1) + 1))
275
276/**********************************************************************
277 * USBD_REEP/USBD_DMARST/USBD_DMARCLR/USBD_DMARSET/USBD_EPDMAST/
278 * USBD_EPDMAEN/USBD_EPDMADIS/
279 * USBD_NDDRTINTST/USBD_NDDRTINTCLR/USBD_NDDRTINTSET/
280 * USBD_EOTINTST/USBD_EOTINTCLR/USBD_EOTINTSET/
281 * USBD_SYSERRTINTST/USBD_SYSERRTINTCLR/USBD_SYSERRTINTSET
282 * register definitions
283 **********************************************************************/
284/* Endpoint selection macro */
285#define USBD_EP_SEL(e)		(1 << (e))
286
287/**********************************************************************
288 * SBD_DMAINTST/USBD_DMAINTEN
289 **********************************************************************/
290#define USBD_SYS_ERR_INT	(1 << 2)
291#define USBD_NEW_DD_INT		(1 << 1)
292#define USBD_EOT_INT		(1 << 0)
293
294/**********************************************************************
295 * USBD_RXPLEN register definitions
296 **********************************************************************/
297#define USBD_PKT_RDY		(1 << 11)
298#define USBD_DV			(1 << 10)
299#define USBD_PK_LEN_MASK	0x3FF
300
301/**********************************************************************
302 * USBD_CTRL register definitions
303 **********************************************************************/
304#define USBD_LOG_ENDPOINT(e)	((e) << 2)
305#define USBD_WR_EN		(1 << 1)
306#define USBD_RD_EN		(1 << 0)
307
308/**********************************************************************
309 * USBD_CMDCODE register definitions
310 **********************************************************************/
311#define USBD_CMD_CODE(c)	((c) << 16)
312#define USBD_CMD_PHASE(p)	((p) << 8)
313
314/**********************************************************************
315 * USBD_DMARST/USBD_DMARCLR/USBD_DMARSET register definitions
316 **********************************************************************/
317#define USBD_DMAEP(e)		(1 << (e))
318
319/* DD (DMA Descriptor) structure, requires word alignment */
320struct lpc32xx_usbd_dd {
321	u32 *dd_next;
322	u32 dd_setup;
323	u32 dd_buffer_addr;
324	u32 dd_status;
325	u32 dd_iso_ps_mem_addr;
326};
327
328/* dd_setup bit defines */
329#define DD_SETUP_ATLE_DMA_MODE	0x01
330#define DD_SETUP_NEXT_DD_VALID	0x04
331#define DD_SETUP_ISO_EP		0x10
332#define DD_SETUP_PACKETLEN(n)	(((n) & 0x7FF) << 5)
333#define DD_SETUP_DMALENBYTES(n)	(((n) & 0xFFFF) << 16)
334
335/* dd_status bit defines */
336#define DD_STATUS_DD_RETIRED	0x01
337#define DD_STATUS_STS_MASK	0x1E
338#define DD_STATUS_STS_NS	0x00 /* Not serviced */
339#define DD_STATUS_STS_BS	0x02 /* Being serviced */
340#define DD_STATUS_STS_NC	0x04 /* Normal completion */
341#define DD_STATUS_STS_DUR	0x06 /* Data underrun (short packet) */
342#define DD_STATUS_STS_DOR	0x08 /* Data overrun */
343#define DD_STATUS_STS_SE	0x12 /* System error */
344#define DD_STATUS_PKT_VAL	0x20 /* Packet valid */
345#define DD_STATUS_LSB_EX	0x40 /* LS byte extracted (ATLE) */
346#define DD_STATUS_MSB_EX	0x80 /* MS byte extracted (ATLE) */
347#define DD_STATUS_MLEN(n)	(((n) >> 8) & 0x3F)
348#define DD_STATUS_CURDMACNT(n)	(((n) >> 16) & 0xFFFF)
349
350/*
351 *
352 * Protocol engine bits below
353 *
354 */
355/* Device Interrupt Bit Definitions */
356#define FRAME_INT		0x00000001
357#define EP_FAST_INT		0x00000002
358#define EP_SLOW_INT		0x00000004
359#define DEV_STAT_INT		0x00000008
360#define CCEMTY_INT		0x00000010
361#define CDFULL_INT		0x00000020
362#define RxENDPKT_INT		0x00000040
363#define TxENDPKT_INT		0x00000080
364#define EP_RLZED_INT		0x00000100
365#define ERR_INT			0x00000200
366
367/* Rx & Tx Packet Length Definitions */
368#define PKT_LNGTH_MASK		0x000003FF
369#define PKT_DV			0x00000400
370#define PKT_RDY			0x00000800
371
372/* USB Control Definitions */
373#define CTRL_RD_EN		0x00000001
374#define CTRL_WR_EN		0x00000002
375
376/* Command Codes */
377#define CMD_SET_ADDR		0x00D00500
378#define CMD_CFG_DEV		0x00D80500
379#define CMD_SET_MODE		0x00F30500
380#define CMD_RD_FRAME		0x00F50500
381#define DAT_RD_FRAME		0x00F50200
382#define CMD_RD_TEST		0x00FD0500
383#define DAT_RD_TEST		0x00FD0200
384#define CMD_SET_DEV_STAT	0x00FE0500
385#define CMD_GET_DEV_STAT	0x00FE0500
386#define DAT_GET_DEV_STAT	0x00FE0200
387#define CMD_GET_ERR_CODE	0x00FF0500
388#define DAT_GET_ERR_CODE	0x00FF0200
389#define CMD_RD_ERR_STAT		0x00FB0500
390#define DAT_RD_ERR_STAT		0x00FB0200
391#define DAT_WR_BYTE(x)		(0x00000100 | ((x) << 16))
392#define CMD_SEL_EP(x)		(0x00000500 | ((x) << 16))
393#define DAT_SEL_EP(x)		(0x00000200 | ((x) << 16))
394#define CMD_SEL_EP_CLRI(x)	(0x00400500 | ((x) << 16))
395#define DAT_SEL_EP_CLRI(x)	(0x00400200 | ((x) << 16))
396#define CMD_SET_EP_STAT(x)	(0x00400500 | ((x) << 16))
397#define CMD_CLR_BUF		0x00F20500
398#define DAT_CLR_BUF		0x00F20200
399#define CMD_VALID_BUF		0x00FA0500
400
401/* Device Address Register Definitions */
402#define DEV_ADDR_MASK		0x7F
403#define DEV_EN			0x80
404
405/* Device Configure Register Definitions */
406#define CONF_DVICE		0x01
407
408/* Device Mode Register Definitions */
409#define AP_CLK			0x01
410#define INAK_CI			0x02
411#define INAK_CO			0x04
412#define INAK_II			0x08
413#define INAK_IO			0x10
414#define INAK_BI			0x20
415#define INAK_BO			0x40
416
417/* Device Status Register Definitions */
418#define DEV_CON			0x01
419#define DEV_CON_CH		0x02
420#define DEV_SUS			0x04
421#define DEV_SUS_CH		0x08
422#define DEV_RST			0x10
423
424/* Error Code Register Definitions */
425#define ERR_EC_MASK		0x0F
426#define ERR_EA			0x10
427
428/* Error Status Register Definitions */
429#define ERR_PID			0x01
430#define ERR_UEPKT		0x02
431#define ERR_DCRC		0x04
432#define ERR_TIMOUT		0x08
433#define ERR_EOP			0x10
434#define ERR_B_OVRN		0x20
435#define ERR_BTSTF		0x40
436#define ERR_TGL			0x80
437
438/* Endpoint Select Register Definitions */
439#define EP_SEL_F		0x01
440#define EP_SEL_ST		0x02
441#define EP_SEL_STP		0x04
442#define EP_SEL_PO		0x08
443#define EP_SEL_EPN		0x10
444#define EP_SEL_B_1_FULL		0x20
445#define EP_SEL_B_2_FULL		0x40
446
447/* Endpoint Status Register Definitions */
448#define EP_STAT_ST		0x01
449#define EP_STAT_DA		0x20
450#define EP_STAT_RF_MO		0x40
451#define EP_STAT_CND_ST		0x80
452
453/* Clear Buffer Register Definitions */
454#define CLR_BUF_PO		0x01
455
456/* DMA Interrupt Bit Definitions */
457#define EOT_INT			0x01
458#define NDD_REQ_INT		0x02
459#define SYS_ERR_INT		0x04
460
461#define	DRIVER_VERSION	"1.03"
462static const char driver_name[] = "lpc32xx_udc";
463
464/*
465 *
466 * proc interface support
467 *
468 */
469#ifdef CONFIG_USB_GADGET_DEBUG_FILES
470static char *epnames[] = {"INT", "ISO", "BULK", "CTRL"};
471static const char debug_filename[] = "driver/udc";
472
473static void proc_ep_show(struct seq_file *s, struct lpc32xx_ep *ep)
474{
475	struct lpc32xx_request *req;
476
477	seq_printf(s, "\n");
478	seq_printf(s, "%12s, maxpacket %4d %3s",
479			ep->ep.name, ep->ep.maxpacket,
480			ep->is_in ? "in" : "out");
481	seq_printf(s, " type %4s", epnames[ep->eptype]);
482	seq_printf(s, " ints: %12d", ep->totalints);
483
484	if (list_empty(&ep->queue))
485		seq_printf(s, "\t(queue empty)\n");
486	else {
487		list_for_each_entry(req, &ep->queue, queue) {
488			u32 length = req->req.actual;
489
490			seq_printf(s, "\treq %p len %d/%d buf %p\n",
491				   &req->req, length,
492				   req->req.length, req->req.buf);
493		}
494	}
495}
496
497static int udc_show(struct seq_file *s, void *unused)
498{
499	struct lpc32xx_udc *udc = s->private;
500	struct lpc32xx_ep *ep;
501	unsigned long flags;
502
503	seq_printf(s, "%s: version %s\n", driver_name, DRIVER_VERSION);
504
505	spin_lock_irqsave(&udc->lock, flags);
506
507	seq_printf(s, "vbus %s, pullup %s, %s powered%s, gadget %s\n\n",
508		   udc->vbus ? "present" : "off",
509		   udc->enabled ? (udc->vbus ? "active" : "enabled") :
510		   "disabled",
511		   udc->gadget.is_selfpowered ? "self" : "VBUS",
512		   udc->suspended ? ", suspended" : "",
513		   udc->driver ? udc->driver->driver.name : "(none)");
514
515	if (udc->enabled && udc->vbus) {
516		proc_ep_show(s, &udc->ep[0]);
517		list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list)
518			proc_ep_show(s, ep);
519	}
520
521	spin_unlock_irqrestore(&udc->lock, flags);
522
523	return 0;
524}
525
526DEFINE_SHOW_ATTRIBUTE(udc);
527
528static void create_debug_file(struct lpc32xx_udc *udc)
529{
530	debugfs_create_file(debug_filename, 0, NULL, udc, &udc_fops);
531}
532
533static void remove_debug_file(struct lpc32xx_udc *udc)
534{
535	debugfs_lookup_and_remove(debug_filename, NULL);
536}
537
538#else
539static inline void create_debug_file(struct lpc32xx_udc *udc) {}
540static inline void remove_debug_file(struct lpc32xx_udc *udc) {}
541#endif
542
543/* Primary initialization sequence for the ISP1301 transceiver */
544static void isp1301_udc_configure(struct lpc32xx_udc *udc)
545{
546	u8 value;
547	s32 vendor, product;
548
549	vendor = i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x00);
550	product = i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x02);
551
552	if (vendor == 0x0483 && product == 0xa0c4)
553		udc->atx = STOTG04;
554
555	/* LPC32XX only supports DAT_SE0 USB mode */
556	/* This sequence is important */
557
558	/* Disable transparent UART mode first */
559	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
560		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
561		MC1_UART_EN);
562
563	/* Set full speed and SE0 mode */
564	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
565		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
566	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
567		ISP1301_I2C_MODE_CONTROL_1, (MC1_SPEED_REG | MC1_DAT_SE0));
568
569	/*
570	 * The PSW_OE enable bit state is reversed in the ISP1301 User's Guide
571	 */
572	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
573		(ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
574
575	value = MC2_BI_DI;
576	if (udc->atx != STOTG04)
577		value |= MC2_SPD_SUSP_CTRL;
578	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
579		ISP1301_I2C_MODE_CONTROL_2, value);
580
581	/* Driver VBUS_DRV high or low depending on board setup */
582	if (udc->board->vbus_drv_pol != 0)
583		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
584			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV);
585	else
586		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
587			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
588			OTG1_VBUS_DRV);
589
590	/* Bi-directional mode with suspend control
591	 * Enable both pulldowns for now - the pullup will be enable when VBUS
592	 * is detected */
593	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
594		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
595	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
596		ISP1301_I2C_OTG_CONTROL_1,
597		(0 | OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN));
598
599	/* Discharge VBUS (just in case) */
600	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
601		ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
602	msleep(1);
603	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
604		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
605		OTG1_VBUS_DISCHRG);
606
607	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
608		ISP1301_I2C_INTERRUPT_LATCH | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
609
610	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
611		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
612	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
613		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
614
615	dev_info(udc->dev, "ISP1301 Vendor ID  : 0x%04x\n", vendor);
616	dev_info(udc->dev, "ISP1301 Product ID : 0x%04x\n", product);
617	dev_info(udc->dev, "ISP1301 Version ID : 0x%04x\n",
618		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x14));
619
620}
621
622/* Enables or disables the USB device pullup via the ISP1301 transceiver */
623static void isp1301_pullup_set(struct lpc32xx_udc *udc)
624{
625	if (udc->pullup)
626		/* Enable pullup for bus signalling */
627		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
628			ISP1301_I2C_OTG_CONTROL_1, OTG1_DP_PULLUP);
629	else
630		/* Enable pullup for bus signalling */
631		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
632			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
633			OTG1_DP_PULLUP);
634}
635
636static void pullup_work(struct work_struct *work)
637{
638	struct lpc32xx_udc *udc =
639		container_of(work, struct lpc32xx_udc, pullup_job);
640
641	isp1301_pullup_set(udc);
642}
643
644static void isp1301_pullup_enable(struct lpc32xx_udc *udc, int en_pullup,
645				  int block)
646{
647	if (en_pullup == udc->pullup)
648		return;
649
650	udc->pullup = en_pullup;
651	if (block)
652		isp1301_pullup_set(udc);
653	else
654		/* defer slow i2c pull up setting */
655		schedule_work(&udc->pullup_job);
656}
657
658#ifdef CONFIG_PM
659/* Powers up or down the ISP1301 transceiver */
660static void isp1301_set_powerstate(struct lpc32xx_udc *udc, int enable)
661{
662	/* There is no "global power down" register for stotg04 */
663	if (udc->atx == STOTG04)
664		return;
665
666	if (enable != 0)
667		/* Power up ISP1301 - this ISP1301 will automatically wakeup
668		   when VBUS is detected */
669		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
670			ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR,
671			MC2_GLOBAL_PWR_DN);
672	else
673		/* Power down ISP1301 */
674		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
675			ISP1301_I2C_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN);
676}
677
678static void power_work(struct work_struct *work)
679{
680	struct lpc32xx_udc *udc =
681		container_of(work, struct lpc32xx_udc, power_job);
682
683	isp1301_set_powerstate(udc, udc->poweron);
684}
685#endif
686
687/*
688 *
689 * USB protocol engine command/data read/write helper functions
690 *
691 */
692/* Issues a single command to the USB device state machine */
693static void udc_protocol_cmd_w(struct lpc32xx_udc *udc, u32 cmd)
694{
695	u32 pass = 0;
696	int to;
697
698	/* EP may lock on CLRI if this read isn't done */
699	u32 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
700	(void) tmp;
701
702	while (pass == 0) {
703		writel(USBD_CCEMPTY, USBD_DEVINTCLR(udc->udp_baseaddr));
704
705		/* Write command code */
706		writel(cmd, USBD_CMDCODE(udc->udp_baseaddr));
707		to = 10000;
708		while (((readl(USBD_DEVINTST(udc->udp_baseaddr)) &
709			 USBD_CCEMPTY) == 0) && (to > 0)) {
710			to--;
711		}
712
713		if (to > 0)
714			pass = 1;
715
716		cpu_relax();
717	}
718}
719
720/* Issues 2 commands (or command and data) to the USB device state machine */
721static inline void udc_protocol_cmd_data_w(struct lpc32xx_udc *udc, u32 cmd,
722					   u32 data)
723{
724	udc_protocol_cmd_w(udc, cmd);
725	udc_protocol_cmd_w(udc, data);
726}
727
728/* Issues a single command to the USB device state machine and reads
729 * response data */
730static u32 udc_protocol_cmd_r(struct lpc32xx_udc *udc, u32 cmd)
731{
732	int to = 1000;
733
734	/* Write a command and read data from the protocol engine */
735	writel((USBD_CDFULL | USBD_CCEMPTY),
736		     USBD_DEVINTCLR(udc->udp_baseaddr));
737
738	/* Write command code */
739	udc_protocol_cmd_w(udc, cmd);
740
741	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & USBD_CDFULL))
742	       && (to > 0))
743		to--;
744	if (!to)
745		dev_dbg(udc->dev,
746			"Protocol engine didn't receive response (CDFULL)\n");
747
748	return readl(USBD_CMDDATA(udc->udp_baseaddr));
749}
750
751/*
752 *
753 * USB device interrupt mask support functions
754 *
755 */
756/* Enable one or more USB device interrupts */
757static inline void uda_enable_devint(struct lpc32xx_udc *udc, u32 devmask)
758{
759	udc->enabled_devints |= devmask;
760	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
761}
762
763/* Disable one or more USB device interrupts */
764static inline void uda_disable_devint(struct lpc32xx_udc *udc, u32 mask)
765{
766	udc->enabled_devints &= ~mask;
767	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
768}
769
770/* Clear one or more USB device interrupts */
771static inline void uda_clear_devint(struct lpc32xx_udc *udc, u32 mask)
772{
773	writel(mask, USBD_DEVINTCLR(udc->udp_baseaddr));
774}
775
776/*
777 *
778 * Endpoint interrupt disable/enable functions
779 *
780 */
781/* Enable one or more USB endpoint interrupts */
782static void uda_enable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
783{
784	udc->enabled_hwepints |= (1 << hwep);
785	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
786}
787
788/* Disable one or more USB endpoint interrupts */
789static void uda_disable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
790{
791	udc->enabled_hwepints &= ~(1 << hwep);
792	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
793}
794
795/* Clear one or more USB endpoint interrupts */
796static inline void uda_clear_hwepint(struct lpc32xx_udc *udc, u32 hwep)
797{
798	writel((1 << hwep), USBD_EPINTCLR(udc->udp_baseaddr));
799}
800
801/* Enable DMA for the HW channel */
802static inline void udc_ep_dma_enable(struct lpc32xx_udc *udc, u32 hwep)
803{
804	writel((1 << hwep), USBD_EPDMAEN(udc->udp_baseaddr));
805}
806
807/* Disable DMA for the HW channel */
808static inline void udc_ep_dma_disable(struct lpc32xx_udc *udc, u32 hwep)
809{
810	writel((1 << hwep), USBD_EPDMADIS(udc->udp_baseaddr));
811}
812
813/*
814 *
815 * Endpoint realize/unrealize functions
816 *
817 */
818/* Before an endpoint can be used, it needs to be realized
819 * in the USB protocol engine - this realizes the endpoint.
820 * The interrupt (FIFO or DMA) is not enabled with this function */
821static void udc_realize_hwep(struct lpc32xx_udc *udc, u32 hwep,
822			     u32 maxpacket)
823{
824	int to = 1000;
825
826	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
827	writel(hwep, USBD_EPIND(udc->udp_baseaddr));
828	udc->realized_eps |= (1 << hwep);
829	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
830	writel(maxpacket, USBD_EPMAXPSIZE(udc->udp_baseaddr));
831
832	/* Wait until endpoint is realized in hardware */
833	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) &
834		  USBD_EP_RLZED)) && (to > 0))
835		to--;
836	if (!to)
837		dev_dbg(udc->dev, "EP not correctly realized in hardware\n");
838
839	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
840}
841
842/* Unrealize an EP */
843static void udc_unrealize_hwep(struct lpc32xx_udc *udc, u32 hwep)
844{
845	udc->realized_eps &= ~(1 << hwep);
846	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
847}
848
849/*
850 *
851 * Endpoint support functions
852 *
853 */
854/* Select and clear endpoint interrupt */
855static u32 udc_selep_clrint(struct lpc32xx_udc *udc, u32 hwep)
856{
857	udc_protocol_cmd_w(udc, CMD_SEL_EP_CLRI(hwep));
858	return udc_protocol_cmd_r(udc, DAT_SEL_EP_CLRI(hwep));
859}
860
861/* Disables the endpoint in the USB protocol engine */
862static void udc_disable_hwep(struct lpc32xx_udc *udc, u32 hwep)
863{
864	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
865				DAT_WR_BYTE(EP_STAT_DA));
866}
867
868/* Stalls the endpoint - endpoint will return STALL */
869static void udc_stall_hwep(struct lpc32xx_udc *udc, u32 hwep)
870{
871	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
872				DAT_WR_BYTE(EP_STAT_ST));
873}
874
875/* Clear stall or reset endpoint */
876static void udc_clrstall_hwep(struct lpc32xx_udc *udc, u32 hwep)
877{
878	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
879				DAT_WR_BYTE(0));
880}
881
882/* Select an endpoint for endpoint status, clear, validate */
883static void udc_select_hwep(struct lpc32xx_udc *udc, u32 hwep)
884{
885	udc_protocol_cmd_w(udc, CMD_SEL_EP(hwep));
886}
887
888/*
889 *
890 * Endpoint buffer management functions
891 *
892 */
893/* Clear the current endpoint's buffer */
894static void udc_clr_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
895{
896	udc_select_hwep(udc, hwep);
897	udc_protocol_cmd_w(udc, CMD_CLR_BUF);
898}
899
900/* Validate the current endpoint's buffer */
901static void udc_val_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
902{
903	udc_select_hwep(udc, hwep);
904	udc_protocol_cmd_w(udc, CMD_VALID_BUF);
905}
906
907static inline u32 udc_clearep_getsts(struct lpc32xx_udc *udc, u32 hwep)
908{
909	/* Clear EP interrupt */
910	uda_clear_hwepint(udc, hwep);
911	return udc_selep_clrint(udc, hwep);
912}
913
914/*
915 *
916 * USB EP DMA support
917 *
918 */
919/* Allocate a DMA Descriptor */
920static struct lpc32xx_usbd_dd_gad *udc_dd_alloc(struct lpc32xx_udc *udc)
921{
922	dma_addr_t			dma;
923	struct lpc32xx_usbd_dd_gad	*dd;
924
925	dd = dma_pool_alloc(udc->dd_cache, GFP_ATOMIC | GFP_DMA, &dma);
926	if (dd)
927		dd->this_dma = dma;
928
929	return dd;
930}
931
932/* Free a DMA Descriptor */
933static void udc_dd_free(struct lpc32xx_udc *udc, struct lpc32xx_usbd_dd_gad *dd)
934{
935	dma_pool_free(udc->dd_cache, dd, dd->this_dma);
936}
937
938/*
939 *
940 * USB setup and shutdown functions
941 *
942 */
943/* Enables or disables most of the USB system clocks when low power mode is
944 * needed. Clocks are typically started on a connection event, and disabled
945 * when a cable is disconnected */
946static void udc_clk_set(struct lpc32xx_udc *udc, int enable)
947{
948	if (enable != 0) {
949		if (udc->clocked)
950			return;
951
952		udc->clocked = 1;
953		clk_prepare_enable(udc->usb_slv_clk);
954	} else {
955		if (!udc->clocked)
956			return;
957
958		udc->clocked = 0;
959		clk_disable_unprepare(udc->usb_slv_clk);
960	}
961}
962
963/* Set/reset USB device address */
964static void udc_set_address(struct lpc32xx_udc *udc, u32 addr)
965{
966	/* Address will be latched at the end of the status phase, or
967	   latched immediately if function is called twice */
968	udc_protocol_cmd_data_w(udc, CMD_SET_ADDR,
969				DAT_WR_BYTE(DEV_EN | addr));
970}
971
972/* Setup up a IN request for DMA transfer - this consists of determining the
973 * list of DMA addresses for the transfer, allocating DMA Descriptors,
974 * installing the DD into the UDCA, and then enabling the DMA for that EP */
975static int udc_ep_in_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
976{
977	struct lpc32xx_request *req;
978	u32 hwep = ep->hwep_num;
979
980	ep->req_pending = 1;
981
982	/* There will always be a request waiting here */
983	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
984
985	/* Place the DD Descriptor into the UDCA */
986	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
987
988	/* Enable DMA and interrupt for the HW EP */
989	udc_ep_dma_enable(udc, hwep);
990
991	/* Clear ZLP if last packet is not of MAXP size */
992	if (req->req.length % ep->ep.maxpacket)
993		req->send_zlp = 0;
994
995	return 0;
996}
997
998/* Setup up a OUT request for DMA transfer - this consists of determining the
999 * list of DMA addresses for the transfer, allocating DMA Descriptors,
1000 * installing the DD into the UDCA, and then enabling the DMA for that EP */
1001static int udc_ep_out_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1002{
1003	struct lpc32xx_request *req;
1004	u32 hwep = ep->hwep_num;
1005
1006	ep->req_pending = 1;
1007
1008	/* There will always be a request waiting here */
1009	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1010
1011	/* Place the DD Descriptor into the UDCA */
1012	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1013
1014	/* Enable DMA and interrupt for the HW EP */
1015	udc_ep_dma_enable(udc, hwep);
1016	return 0;
1017}
1018
1019static void udc_disable(struct lpc32xx_udc *udc)
1020{
1021	u32 i;
1022
1023	/* Disable device */
1024	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1025	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(0));
1026
1027	/* Disable all device interrupts (including EP0) */
1028	uda_disable_devint(udc, 0x3FF);
1029
1030	/* Disable and reset all endpoint interrupts */
1031	for (i = 0; i < 32; i++) {
1032		uda_disable_hwepint(udc, i);
1033		uda_clear_hwepint(udc, i);
1034		udc_disable_hwep(udc, i);
1035		udc_unrealize_hwep(udc, i);
1036		udc->udca_v_base[i] = 0;
1037
1038		/* Disable and clear all interrupts and DMA */
1039		udc_ep_dma_disable(udc, i);
1040		writel((1 << i), USBD_EOTINTCLR(udc->udp_baseaddr));
1041		writel((1 << i), USBD_NDDRTINTCLR(udc->udp_baseaddr));
1042		writel((1 << i), USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1043		writel((1 << i), USBD_DMARCLR(udc->udp_baseaddr));
1044	}
1045
1046	/* Disable DMA interrupts */
1047	writel(0, USBD_DMAINTEN(udc->udp_baseaddr));
1048
1049	writel(0, USBD_UDCAH(udc->udp_baseaddr));
1050}
1051
1052static void udc_enable(struct lpc32xx_udc *udc)
1053{
1054	u32 i;
1055	struct lpc32xx_ep *ep = &udc->ep[0];
1056
1057	/* Start with known state */
1058	udc_disable(udc);
1059
1060	/* Enable device */
1061	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(DEV_CON));
1062
1063	/* EP interrupts on high priority, FRAME interrupt on low priority */
1064	writel(USBD_EP_FAST, USBD_DEVINTPRI(udc->udp_baseaddr));
1065	writel(0xFFFF, USBD_EPINTPRI(udc->udp_baseaddr));
1066
1067	/* Clear any pending device interrupts */
1068	writel(0x3FF, USBD_DEVINTCLR(udc->udp_baseaddr));
1069
1070	/* Setup UDCA - not yet used (DMA) */
1071	writel(udc->udca_p_base, USBD_UDCAH(udc->udp_baseaddr));
1072
1073	/* Only enable EP0 in and out for now, EP0 only works in FIFO mode */
1074	for (i = 0; i <= 1; i++) {
1075		udc_realize_hwep(udc, i, ep->ep.maxpacket);
1076		uda_enable_hwepint(udc, i);
1077		udc_select_hwep(udc, i);
1078		udc_clrstall_hwep(udc, i);
1079		udc_clr_buffer_hwep(udc, i);
1080	}
1081
1082	/* Device interrupt setup */
1083	uda_clear_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1084			       USBD_EP_FAST));
1085	uda_enable_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1086				USBD_EP_FAST));
1087
1088	/* Set device address to 0 - called twice to force a latch in the USB
1089	   engine without the need of a setup packet status closure */
1090	udc_set_address(udc, 0);
1091	udc_set_address(udc, 0);
1092
1093	/* Enable master DMA interrupts */
1094	writel((USBD_SYS_ERR_INT | USBD_EOT_INT),
1095		     USBD_DMAINTEN(udc->udp_baseaddr));
1096
1097	udc->dev_status = 0;
1098}
1099
1100/*
1101 *
1102 * USB device board specific events handled via callbacks
1103 *
1104 */
1105/* Connection change event - notify board function of change */
1106static void uda_power_event(struct lpc32xx_udc *udc, u32 conn)
1107{
1108	/* Just notify of a connection change event (optional) */
1109	if (udc->board->conn_chgb != NULL)
1110		udc->board->conn_chgb(conn);
1111}
1112
1113/* Suspend/resume event - notify board function of change */
1114static void uda_resm_susp_event(struct lpc32xx_udc *udc, u32 conn)
1115{
1116	/* Just notify of a Suspend/resume change event (optional) */
1117	if (udc->board->susp_chgb != NULL)
1118		udc->board->susp_chgb(conn);
1119
1120	if (conn)
1121		udc->suspended = 0;
1122	else
1123		udc->suspended = 1;
1124}
1125
1126/* Remote wakeup enable/disable - notify board function of change */
1127static void uda_remwkp_cgh(struct lpc32xx_udc *udc)
1128{
1129	if (udc->board->rmwk_chgb != NULL)
1130		udc->board->rmwk_chgb(udc->dev_status &
1131				      (1 << USB_DEVICE_REMOTE_WAKEUP));
1132}
1133
1134/* Reads data from FIFO, adjusts for alignment and data size */
1135static void udc_pop_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1136{
1137	int n, i, bl;
1138	u16 *p16;
1139	u32 *p32, tmp, cbytes;
1140
1141	/* Use optimal data transfer method based on source address and size */
1142	switch (((uintptr_t) data) & 0x3) {
1143	case 0: /* 32-bit aligned */
1144		p32 = (u32 *) data;
1145		cbytes = (bytes & ~0x3);
1146
1147		/* Copy 32-bit aligned data first */
1148		for (n = 0; n < cbytes; n += 4)
1149			*p32++ = readl(USBD_RXDATA(udc->udp_baseaddr));
1150
1151		/* Handle any remaining bytes */
1152		bl = bytes - cbytes;
1153		if (bl) {
1154			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1155			for (n = 0; n < bl; n++)
1156				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1157
1158		}
1159		break;
1160
1161	case 1: /* 8-bit aligned */
1162	case 3:
1163		/* Each byte has to be handled independently */
1164		for (n = 0; n < bytes; n += 4) {
1165			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1166
1167			bl = bytes - n;
1168			if (bl > 4)
1169				bl = 4;
1170
1171			for (i = 0; i < bl; i++)
1172				data[n + i] = (u8) ((tmp >> (i * 8)) & 0xFF);
1173		}
1174		break;
1175
1176	case 2: /* 16-bit aligned */
1177		p16 = (u16 *) data;
1178		cbytes = (bytes & ~0x3);
1179
1180		/* Copy 32-bit sized objects first with 16-bit alignment */
1181		for (n = 0; n < cbytes; n += 4) {
1182			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1183			*p16++ = (u16)(tmp & 0xFFFF);
1184			*p16++ = (u16)((tmp >> 16) & 0xFFFF);
1185		}
1186
1187		/* Handle any remaining bytes */
1188		bl = bytes - cbytes;
1189		if (bl) {
1190			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1191			for (n = 0; n < bl; n++)
1192				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1193		}
1194		break;
1195	}
1196}
1197
1198/* Read data from the FIFO for an endpoint. This function is for endpoints (such
1199 * as EP0) that don't use DMA. This function should only be called if a packet
1200 * is known to be ready to read for the endpoint. Note that the endpoint must
1201 * be selected in the protocol engine prior to this call. */
1202static u32 udc_read_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1203			 u32 bytes)
1204{
1205	u32 tmpv;
1206	int to = 1000;
1207	u32 tmp, hwrep = ((hwep & 0x1E) << 1) | CTRL_RD_EN;
1208
1209	/* Setup read of endpoint */
1210	writel(hwrep, USBD_CTRL(udc->udp_baseaddr));
1211
1212	/* Wait until packet is ready */
1213	while ((((tmpv = readl(USBD_RXPLEN(udc->udp_baseaddr))) &
1214		 PKT_RDY) == 0)	&& (to > 0))
1215		to--;
1216	if (!to)
1217		dev_dbg(udc->dev, "No packet ready on FIFO EP read\n");
1218
1219	/* Mask out count */
1220	tmp = tmpv & PKT_LNGTH_MASK;
1221	if (bytes < tmp)
1222		tmp = bytes;
1223
1224	if ((tmp > 0) && (data != NULL))
1225		udc_pop_fifo(udc, (u8 *) data, tmp);
1226
1227	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1228
1229	/* Clear the buffer */
1230	udc_clr_buffer_hwep(udc, hwep);
1231
1232	return tmp;
1233}
1234
1235/* Stuffs data into the FIFO, adjusts for alignment and data size */
1236static void udc_stuff_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1237{
1238	int n, i, bl;
1239	u16 *p16;
1240	u32 *p32, tmp, cbytes;
1241
1242	/* Use optimal data transfer method based on source address and size */
1243	switch (((uintptr_t) data) & 0x3) {
1244	case 0: /* 32-bit aligned */
1245		p32 = (u32 *) data;
1246		cbytes = (bytes & ~0x3);
1247
1248		/* Copy 32-bit aligned data first */
1249		for (n = 0; n < cbytes; n += 4)
1250			writel(*p32++, USBD_TXDATA(udc->udp_baseaddr));
1251
1252		/* Handle any remaining bytes */
1253		bl = bytes - cbytes;
1254		if (bl) {
1255			tmp = 0;
1256			for (n = 0; n < bl; n++)
1257				tmp |= data[cbytes + n] << (n * 8);
1258
1259			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1260		}
1261		break;
1262
1263	case 1: /* 8-bit aligned */
1264	case 3:
1265		/* Each byte has to be handled independently */
1266		for (n = 0; n < bytes; n += 4) {
1267			bl = bytes - n;
1268			if (bl > 4)
1269				bl = 4;
1270
1271			tmp = 0;
1272			for (i = 0; i < bl; i++)
1273				tmp |= data[n + i] << (i * 8);
1274
1275			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1276		}
1277		break;
1278
1279	case 2: /* 16-bit aligned */
1280		p16 = (u16 *) data;
1281		cbytes = (bytes & ~0x3);
1282
1283		/* Copy 32-bit aligned data first */
1284		for (n = 0; n < cbytes; n += 4) {
1285			tmp = *p16++ & 0xFFFF;
1286			tmp |= (*p16++ & 0xFFFF) << 16;
1287			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1288		}
1289
1290		/* Handle any remaining bytes */
1291		bl = bytes - cbytes;
1292		if (bl) {
1293			tmp = 0;
1294			for (n = 0; n < bl; n++)
1295				tmp |= data[cbytes + n] << (n * 8);
1296
1297			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1298		}
1299		break;
1300	}
1301}
1302
1303/* Write data to the FIFO for an endpoint. This function is for endpoints (such
1304 * as EP0) that don't use DMA. Note that the endpoint must be selected in the
1305 * protocol engine prior to this call. */
1306static void udc_write_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1307			   u32 bytes)
1308{
1309	u32 hwwep = ((hwep & 0x1E) << 1) | CTRL_WR_EN;
1310
1311	if ((bytes > 0) && (data == NULL))
1312		return;
1313
1314	/* Setup write of endpoint */
1315	writel(hwwep, USBD_CTRL(udc->udp_baseaddr));
1316
1317	writel(bytes, USBD_TXPLEN(udc->udp_baseaddr));
1318
1319	/* Need at least 1 byte to trigger TX */
1320	if (bytes == 0)
1321		writel(0, USBD_TXDATA(udc->udp_baseaddr));
1322	else
1323		udc_stuff_fifo(udc, (u8 *) data, bytes);
1324
1325	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1326
1327	udc_val_buffer_hwep(udc, hwep);
1328}
1329
1330/* USB device reset - resets USB to a default state with just EP0
1331   enabled */
1332static void uda_usb_reset(struct lpc32xx_udc *udc)
1333{
1334	u32 i = 0;
1335	/* Re-init device controller and EP0 */
1336	udc_enable(udc);
1337	udc->gadget.speed = USB_SPEED_FULL;
1338
1339	for (i = 1; i < NUM_ENDPOINTS; i++) {
1340		struct lpc32xx_ep *ep = &udc->ep[i];
1341		ep->req_pending = 0;
1342	}
1343}
1344
1345/* Send a ZLP on EP0 */
1346static void udc_ep0_send_zlp(struct lpc32xx_udc *udc)
1347{
1348	udc_write_hwep(udc, EP_IN, NULL, 0);
1349}
1350
1351/* Get current frame number */
1352static u16 udc_get_current_frame(struct lpc32xx_udc *udc)
1353{
1354	u16 flo, fhi;
1355
1356	udc_protocol_cmd_w(udc, CMD_RD_FRAME);
1357	flo = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1358	fhi = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1359
1360	return (fhi << 8) | flo;
1361}
1362
1363/* Set the device as configured - enables all endpoints */
1364static inline void udc_set_device_configured(struct lpc32xx_udc *udc)
1365{
1366	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(CONF_DVICE));
1367}
1368
1369/* Set the device as unconfigured - disables all endpoints */
1370static inline void udc_set_device_unconfigured(struct lpc32xx_udc *udc)
1371{
1372	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1373}
1374
1375/* reinit == restore initial software state */
1376static void udc_reinit(struct lpc32xx_udc *udc)
1377{
1378	u32 i;
1379
1380	INIT_LIST_HEAD(&udc->gadget.ep_list);
1381	INIT_LIST_HEAD(&udc->gadget.ep0->ep_list);
1382
1383	for (i = 0; i < NUM_ENDPOINTS; i++) {
1384		struct lpc32xx_ep *ep = &udc->ep[i];
1385
1386		if (i != 0)
1387			list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1388		usb_ep_set_maxpacket_limit(&ep->ep, ep->maxpacket);
1389		INIT_LIST_HEAD(&ep->queue);
1390		ep->req_pending = 0;
1391	}
1392
1393	udc->ep0state = WAIT_FOR_SETUP;
1394}
1395
1396/* Must be called with lock */
1397static void done(struct lpc32xx_ep *ep, struct lpc32xx_request *req, int status)
1398{
1399	struct lpc32xx_udc *udc = ep->udc;
1400
1401	list_del_init(&req->queue);
1402	if (req->req.status == -EINPROGRESS)
1403		req->req.status = status;
1404	else
1405		status = req->req.status;
1406
1407	if (ep->lep) {
1408		usb_gadget_unmap_request(&udc->gadget, &req->req, ep->is_in);
1409
1410		/* Free DDs */
1411		udc_dd_free(udc, req->dd_desc_ptr);
1412	}
1413
1414	if (status && status != -ESHUTDOWN)
1415		ep_dbg(ep, "%s done %p, status %d\n", ep->ep.name, req, status);
1416
1417	ep->req_pending = 0;
1418	spin_unlock(&udc->lock);
1419	usb_gadget_giveback_request(&ep->ep, &req->req);
1420	spin_lock(&udc->lock);
1421}
1422
1423/* Must be called with lock */
1424static void nuke(struct lpc32xx_ep *ep, int status)
1425{
1426	struct lpc32xx_request *req;
1427
1428	while (!list_empty(&ep->queue)) {
1429		req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1430		done(ep, req, status);
1431	}
1432
1433	if (status == -ESHUTDOWN) {
1434		uda_disable_hwepint(ep->udc, ep->hwep_num);
1435		udc_disable_hwep(ep->udc, ep->hwep_num);
1436	}
1437}
1438
1439/* IN endpoint 0 transfer */
1440static int udc_ep0_in_req(struct lpc32xx_udc *udc)
1441{
1442	struct lpc32xx_request *req;
1443	struct lpc32xx_ep *ep0 = &udc->ep[0];
1444	u32 tsend, ts = 0;
1445
1446	if (list_empty(&ep0->queue))
1447		/* Nothing to send */
1448		return 0;
1449	else
1450		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1451				 queue);
1452
1453	tsend = ts = req->req.length - req->req.actual;
1454	if (ts == 0) {
1455		/* Send a ZLP */
1456		udc_ep0_send_zlp(udc);
1457		done(ep0, req, 0);
1458		return 1;
1459	} else if (ts > ep0->ep.maxpacket)
1460		ts = ep0->ep.maxpacket; /* Just send what we can */
1461
1462	/* Write data to the EP0 FIFO and start transfer */
1463	udc_write_hwep(udc, EP_IN, (req->req.buf + req->req.actual), ts);
1464
1465	/* Increment data pointer */
1466	req->req.actual += ts;
1467
1468	if (tsend >= ep0->ep.maxpacket)
1469		return 0; /* Stay in data transfer state */
1470
1471	/* Transfer request is complete */
1472	udc->ep0state = WAIT_FOR_SETUP;
1473	done(ep0, req, 0);
1474	return 1;
1475}
1476
1477/* OUT endpoint 0 transfer */
1478static int udc_ep0_out_req(struct lpc32xx_udc *udc)
1479{
1480	struct lpc32xx_request *req;
1481	struct lpc32xx_ep *ep0 = &udc->ep[0];
1482	u32 tr, bufferspace;
1483
1484	if (list_empty(&ep0->queue))
1485		return 0;
1486	else
1487		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1488				 queue);
1489
1490	if (req) {
1491		if (req->req.length == 0) {
1492			/* Just dequeue request */
1493			done(ep0, req, 0);
1494			udc->ep0state = WAIT_FOR_SETUP;
1495			return 1;
1496		}
1497
1498		/* Get data from FIFO */
1499		bufferspace = req->req.length - req->req.actual;
1500		if (bufferspace > ep0->ep.maxpacket)
1501			bufferspace = ep0->ep.maxpacket;
1502
1503		/* Copy data to buffer */
1504		prefetchw(req->req.buf + req->req.actual);
1505		tr = udc_read_hwep(udc, EP_OUT, req->req.buf + req->req.actual,
1506				   bufferspace);
1507		req->req.actual += bufferspace;
1508
1509		if (tr < ep0->ep.maxpacket) {
1510			/* This is the last packet */
1511			done(ep0, req, 0);
1512			udc->ep0state = WAIT_FOR_SETUP;
1513			return 1;
1514		}
1515	}
1516
1517	return 0;
1518}
1519
1520/* Must be called with lock */
1521static void stop_activity(struct lpc32xx_udc *udc)
1522{
1523	struct usb_gadget_driver *driver = udc->driver;
1524	int i;
1525
1526	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1527		driver = NULL;
1528
1529	udc->gadget.speed = USB_SPEED_UNKNOWN;
1530	udc->suspended = 0;
1531
1532	for (i = 0; i < NUM_ENDPOINTS; i++) {
1533		struct lpc32xx_ep *ep = &udc->ep[i];
1534		nuke(ep, -ESHUTDOWN);
1535	}
1536	if (driver) {
1537		spin_unlock(&udc->lock);
1538		driver->disconnect(&udc->gadget);
1539		spin_lock(&udc->lock);
1540	}
1541
1542	isp1301_pullup_enable(udc, 0, 0);
1543	udc_disable(udc);
1544	udc_reinit(udc);
1545}
1546
1547/*
1548 * Activate or kill host pullup
1549 * Can be called with or without lock
1550 */
1551static void pullup(struct lpc32xx_udc *udc, int is_on)
1552{
1553	if (!udc->clocked)
1554		return;
1555
1556	if (!udc->enabled || !udc->vbus)
1557		is_on = 0;
1558
1559	if (is_on != udc->pullup)
1560		isp1301_pullup_enable(udc, is_on, 0);
1561}
1562
1563/* Must be called without lock */
1564static int lpc32xx_ep_disable(struct usb_ep *_ep)
1565{
1566	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1567	struct lpc32xx_udc *udc = ep->udc;
1568	unsigned long	flags;
1569
1570	if ((ep->hwep_num_base == 0) || (ep->hwep_num == 0))
1571		return -EINVAL;
1572	spin_lock_irqsave(&udc->lock, flags);
1573
1574	nuke(ep, -ESHUTDOWN);
1575
1576	/* Clear all DMA statuses for this EP */
1577	udc_ep_dma_disable(udc, ep->hwep_num);
1578	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1579	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1580	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1581	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1582
1583	/* Remove the DD pointer in the UDCA */
1584	udc->udca_v_base[ep->hwep_num] = 0;
1585
1586	/* Disable and reset endpoint and interrupt */
1587	uda_clear_hwepint(udc, ep->hwep_num);
1588	udc_unrealize_hwep(udc, ep->hwep_num);
1589
1590	ep->hwep_num = 0;
1591
1592	spin_unlock_irqrestore(&udc->lock, flags);
1593
1594	atomic_dec(&udc->enabled_ep_cnt);
1595	wake_up(&udc->ep_disable_wait_queue);
1596
1597	return 0;
1598}
1599
1600/* Must be called without lock */
1601static int lpc32xx_ep_enable(struct usb_ep *_ep,
1602			     const struct usb_endpoint_descriptor *desc)
1603{
1604	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1605	struct lpc32xx_udc *udc;
1606	u16 maxpacket;
1607	u32 tmp;
1608	unsigned long flags;
1609
1610	/* Verify EP data */
1611	if ((!_ep) || (!ep) || (!desc) ||
1612	    (desc->bDescriptorType != USB_DT_ENDPOINT))
1613		return -EINVAL;
1614
1615	udc = ep->udc;
1616	maxpacket = usb_endpoint_maxp(desc);
1617	if ((maxpacket == 0) || (maxpacket > ep->maxpacket)) {
1618		dev_dbg(udc->dev, "bad ep descriptor's packet size\n");
1619		return -EINVAL;
1620	}
1621
1622	/* Don't touch EP0 */
1623	if (ep->hwep_num_base == 0) {
1624		dev_dbg(udc->dev, "Can't re-enable EP0!!!\n");
1625		return -EINVAL;
1626	}
1627
1628	/* Is driver ready? */
1629	if ((!udc->driver) || (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
1630		dev_dbg(udc->dev, "bogus device state\n");
1631		return -ESHUTDOWN;
1632	}
1633
1634	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
1635	switch (tmp) {
1636	case USB_ENDPOINT_XFER_CONTROL:
1637		return -EINVAL;
1638
1639	case USB_ENDPOINT_XFER_INT:
1640		if (maxpacket > ep->maxpacket) {
1641			dev_dbg(udc->dev,
1642				"Bad INT endpoint maxpacket %d\n", maxpacket);
1643			return -EINVAL;
1644		}
1645		break;
1646
1647	case USB_ENDPOINT_XFER_BULK:
1648		switch (maxpacket) {
1649		case 8:
1650		case 16:
1651		case 32:
1652		case 64:
1653			break;
1654
1655		default:
1656			dev_dbg(udc->dev,
1657				"Bad BULK endpoint maxpacket %d\n", maxpacket);
1658			return -EINVAL;
1659		}
1660		break;
1661
1662	case USB_ENDPOINT_XFER_ISOC:
1663		break;
1664	}
1665	spin_lock_irqsave(&udc->lock, flags);
1666
1667	/* Initialize endpoint to match the selected descriptor */
1668	ep->is_in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
1669	ep->ep.maxpacket = maxpacket;
1670
1671	/* Map hardware endpoint from base and direction */
1672	if (ep->is_in)
1673		/* IN endpoints are offset 1 from the OUT endpoint */
1674		ep->hwep_num = ep->hwep_num_base + EP_IN;
1675	else
1676		ep->hwep_num = ep->hwep_num_base;
1677
1678	ep_dbg(ep, "EP enabled: %s, HW:%d, MP:%d IN:%d\n", ep->ep.name,
1679	       ep->hwep_num, maxpacket, (ep->is_in == 1));
1680
1681	/* Realize the endpoint, interrupt is enabled later when
1682	 * buffers are queued, IN EPs will NAK until buffers are ready */
1683	udc_realize_hwep(udc, ep->hwep_num, ep->ep.maxpacket);
1684	udc_clr_buffer_hwep(udc, ep->hwep_num);
1685	uda_disable_hwepint(udc, ep->hwep_num);
1686	udc_clrstall_hwep(udc, ep->hwep_num);
1687
1688	/* Clear all DMA statuses for this EP */
1689	udc_ep_dma_disable(udc, ep->hwep_num);
1690	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1691	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1692	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1693	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1694
1695	spin_unlock_irqrestore(&udc->lock, flags);
1696
1697	atomic_inc(&udc->enabled_ep_cnt);
1698	return 0;
1699}
1700
1701/*
1702 * Allocate a USB request list
1703 * Can be called with or without lock
1704 */
1705static struct usb_request *lpc32xx_ep_alloc_request(struct usb_ep *_ep,
1706						    gfp_t gfp_flags)
1707{
1708	struct lpc32xx_request *req;
1709
1710	req = kzalloc(sizeof(struct lpc32xx_request), gfp_flags);
1711	if (!req)
1712		return NULL;
1713
1714	INIT_LIST_HEAD(&req->queue);
1715	return &req->req;
1716}
1717
1718/*
1719 * De-allocate a USB request list
1720 * Can be called with or without lock
1721 */
1722static void lpc32xx_ep_free_request(struct usb_ep *_ep,
1723				    struct usb_request *_req)
1724{
1725	struct lpc32xx_request *req;
1726
1727	req = container_of(_req, struct lpc32xx_request, req);
1728	BUG_ON(!list_empty(&req->queue));
1729	kfree(req);
1730}
1731
1732/* Must be called without lock */
1733static int lpc32xx_ep_queue(struct usb_ep *_ep,
1734			    struct usb_request *_req, gfp_t gfp_flags)
1735{
1736	struct lpc32xx_request *req;
1737	struct lpc32xx_ep *ep;
1738	struct lpc32xx_udc *udc;
1739	unsigned long flags;
1740	int status = 0;
1741
1742	req = container_of(_req, struct lpc32xx_request, req);
1743	ep = container_of(_ep, struct lpc32xx_ep, ep);
1744
1745	if (!_ep || !_req || !_req->complete || !_req->buf ||
1746	    !list_empty(&req->queue))
1747		return -EINVAL;
1748
1749	udc = ep->udc;
1750
1751	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1752		return -EPIPE;
1753
1754	if (ep->lep) {
1755		struct lpc32xx_usbd_dd_gad *dd;
1756
1757		status = usb_gadget_map_request(&udc->gadget, _req, ep->is_in);
1758		if (status)
1759			return status;
1760
1761		/* For the request, build a list of DDs */
1762		dd = udc_dd_alloc(udc);
1763		if (!dd) {
1764			/* Error allocating DD */
1765			return -ENOMEM;
1766		}
1767		req->dd_desc_ptr = dd;
1768
1769		/* Setup the DMA descriptor */
1770		dd->dd_next_phy = dd->dd_next_v = 0;
1771		dd->dd_buffer_addr = req->req.dma;
1772		dd->dd_status = 0;
1773
1774		/* Special handling for ISO EPs */
1775		if (ep->eptype == EP_ISO_TYPE) {
1776			dd->dd_setup = DD_SETUP_ISO_EP |
1777				DD_SETUP_PACKETLEN(0) |
1778				DD_SETUP_DMALENBYTES(1);
1779			dd->dd_iso_ps_mem_addr = dd->this_dma + 24;
1780			if (ep->is_in)
1781				dd->iso_status[0] = req->req.length;
1782			else
1783				dd->iso_status[0] = 0;
1784		} else
1785			dd->dd_setup = DD_SETUP_PACKETLEN(ep->ep.maxpacket) |
1786				DD_SETUP_DMALENBYTES(req->req.length);
1787	}
1788
1789	ep_dbg(ep, "%s queue req %p len %d buf %p (in=%d) z=%d\n", _ep->name,
1790	       _req, _req->length, _req->buf, ep->is_in, _req->zero);
1791
1792	spin_lock_irqsave(&udc->lock, flags);
1793
1794	_req->status = -EINPROGRESS;
1795	_req->actual = 0;
1796	req->send_zlp = _req->zero;
1797
1798	/* Kickstart empty queues */
1799	if (list_empty(&ep->queue)) {
1800		list_add_tail(&req->queue, &ep->queue);
1801
1802		if (ep->hwep_num_base == 0) {
1803			/* Handle expected data direction */
1804			if (ep->is_in) {
1805				/* IN packet to host */
1806				udc->ep0state = DATA_IN;
1807				status = udc_ep0_in_req(udc);
1808			} else {
1809				/* OUT packet from host */
1810				udc->ep0state = DATA_OUT;
1811				status = udc_ep0_out_req(udc);
1812			}
1813		} else if (ep->is_in) {
1814			/* IN packet to host and kick off transfer */
1815			if (!ep->req_pending)
1816				udc_ep_in_req_dma(udc, ep);
1817		} else
1818			/* OUT packet from host and kick off list */
1819			if (!ep->req_pending)
1820				udc_ep_out_req_dma(udc, ep);
1821	} else
1822		list_add_tail(&req->queue, &ep->queue);
1823
1824	spin_unlock_irqrestore(&udc->lock, flags);
1825
1826	return (status < 0) ? status : 0;
1827}
1828
1829/* Must be called without lock */
1830static int lpc32xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1831{
1832	struct lpc32xx_ep *ep;
1833	struct lpc32xx_request *req = NULL, *iter;
1834	unsigned long flags;
1835
1836	ep = container_of(_ep, struct lpc32xx_ep, ep);
1837	if (!_ep || ep->hwep_num_base == 0)
1838		return -EINVAL;
1839
1840	spin_lock_irqsave(&ep->udc->lock, flags);
1841
1842	/* make sure it's actually queued on this endpoint */
1843	list_for_each_entry(iter, &ep->queue, queue) {
1844		if (&iter->req != _req)
1845			continue;
1846		req = iter;
1847		break;
1848	}
1849	if (!req) {
1850		spin_unlock_irqrestore(&ep->udc->lock, flags);
1851		return -EINVAL;
1852	}
1853
1854	done(ep, req, -ECONNRESET);
1855
1856	spin_unlock_irqrestore(&ep->udc->lock, flags);
1857
1858	return 0;
1859}
1860
1861/* Must be called without lock */
1862static int lpc32xx_ep_set_halt(struct usb_ep *_ep, int value)
1863{
1864	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1865	struct lpc32xx_udc *udc;
1866	unsigned long flags;
1867
1868	if ((!ep) || (ep->hwep_num <= 1))
1869		return -EINVAL;
1870
1871	/* Don't halt an IN EP */
1872	if (ep->is_in)
1873		return -EAGAIN;
1874
1875	udc = ep->udc;
1876	spin_lock_irqsave(&udc->lock, flags);
1877
1878	if (value == 1) {
1879		/* stall */
1880		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1881					DAT_WR_BYTE(EP_STAT_ST));
1882	} else {
1883		/* End stall */
1884		ep->wedge = 0;
1885		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1886					DAT_WR_BYTE(0));
1887	}
1888
1889	spin_unlock_irqrestore(&udc->lock, flags);
1890
1891	return 0;
1892}
1893
1894/* set the halt feature and ignores clear requests */
1895static int lpc32xx_ep_set_wedge(struct usb_ep *_ep)
1896{
1897	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1898
1899	if (!_ep || !ep->udc)
1900		return -EINVAL;
1901
1902	ep->wedge = 1;
1903
1904	return usb_ep_set_halt(_ep);
1905}
1906
1907static const struct usb_ep_ops lpc32xx_ep_ops = {
1908	.enable		= lpc32xx_ep_enable,
1909	.disable	= lpc32xx_ep_disable,
1910	.alloc_request	= lpc32xx_ep_alloc_request,
1911	.free_request	= lpc32xx_ep_free_request,
1912	.queue		= lpc32xx_ep_queue,
1913	.dequeue	= lpc32xx_ep_dequeue,
1914	.set_halt	= lpc32xx_ep_set_halt,
1915	.set_wedge	= lpc32xx_ep_set_wedge,
1916};
1917
1918/* Send a ZLP on a non-0 IN EP */
1919static void udc_send_in_zlp(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1920{
1921	/* Clear EP status */
1922	udc_clearep_getsts(udc, ep->hwep_num);
1923
1924	/* Send ZLP via FIFO mechanism */
1925	udc_write_hwep(udc, ep->hwep_num, NULL, 0);
1926}
1927
1928/*
1929 * Handle EP completion for ZLP
1930 * This function will only be called when a delayed ZLP needs to be sent out
1931 * after a DMA transfer has filled both buffers.
1932 */
1933static void udc_handle_eps(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1934{
1935	u32 epstatus;
1936	struct lpc32xx_request *req;
1937
1938	if (ep->hwep_num <= 0)
1939		return;
1940
1941	uda_clear_hwepint(udc, ep->hwep_num);
1942
1943	/* If this interrupt isn't enabled, return now */
1944	if (!(udc->enabled_hwepints & (1 << ep->hwep_num)))
1945		return;
1946
1947	/* Get endpoint status */
1948	epstatus = udc_clearep_getsts(udc, ep->hwep_num);
1949
1950	/*
1951	 * This should never happen, but protect against writing to the
1952	 * buffer when full.
1953	 */
1954	if (epstatus & EP_SEL_F)
1955		return;
1956
1957	if (ep->is_in) {
1958		udc_send_in_zlp(udc, ep);
1959		uda_disable_hwepint(udc, ep->hwep_num);
1960	} else
1961		return;
1962
1963	/* If there isn't a request waiting, something went wrong */
1964	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1965	if (req) {
1966		done(ep, req, 0);
1967
1968		/* Start another request if ready */
1969		if (!list_empty(&ep->queue)) {
1970			if (ep->is_in)
1971				udc_ep_in_req_dma(udc, ep);
1972			else
1973				udc_ep_out_req_dma(udc, ep);
1974		} else
1975			ep->req_pending = 0;
1976	}
1977}
1978
1979
1980/* DMA end of transfer completion */
1981static void udc_handle_dma_ep(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1982{
1983	u32 status;
1984	struct lpc32xx_request *req;
1985	struct lpc32xx_usbd_dd_gad *dd;
1986
1987#ifdef CONFIG_USB_GADGET_DEBUG_FILES
1988	ep->totalints++;
1989#endif
1990
1991	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1992	if (!req) {
1993		ep_err(ep, "DMA interrupt on no req!\n");
1994		return;
1995	}
1996	dd = req->dd_desc_ptr;
1997
1998	/* DMA descriptor should always be retired for this call */
1999	if (!(dd->dd_status & DD_STATUS_DD_RETIRED))
2000		ep_warn(ep, "DMA descriptor did not retire\n");
2001
2002	/* Disable DMA */
2003	udc_ep_dma_disable(udc, ep->hwep_num);
2004	writel((1 << ep->hwep_num), USBD_EOTINTCLR(udc->udp_baseaddr));
2005	writel((1 << ep->hwep_num), USBD_NDDRTINTCLR(udc->udp_baseaddr));
2006
2007	/* System error? */
2008	if (readl(USBD_SYSERRTINTST(udc->udp_baseaddr)) &
2009	    (1 << ep->hwep_num)) {
2010		writel((1 << ep->hwep_num),
2011			     USBD_SYSERRTINTCLR(udc->udp_baseaddr));
2012		ep_err(ep, "AHB critical error!\n");
2013		ep->req_pending = 0;
2014
2015		/* The error could have occurred on a packet of a multipacket
2016		 * transfer, so recovering the transfer is not possible. Close
2017		 * the request with an error */
2018		done(ep, req, -ECONNABORTED);
2019		return;
2020	}
2021
2022	/* Handle the current DD's status */
2023	status = dd->dd_status;
2024	switch (status & DD_STATUS_STS_MASK) {
2025	case DD_STATUS_STS_NS:
2026		/* DD not serviced? This shouldn't happen! */
2027		ep->req_pending = 0;
2028		ep_err(ep, "DMA critical EP error: DD not serviced (0x%x)!\n",
2029		       status);
2030
2031		done(ep, req, -ECONNABORTED);
2032		return;
2033
2034	case DD_STATUS_STS_BS:
2035		/* Interrupt only fires on EOT - This shouldn't happen! */
2036		ep->req_pending = 0;
2037		ep_err(ep, "DMA critical EP error: EOT prior to service completion (0x%x)!\n",
2038		       status);
2039		done(ep, req, -ECONNABORTED);
2040		return;
2041
2042	case DD_STATUS_STS_NC:
2043	case DD_STATUS_STS_DUR:
2044		/* Really just a short packet, not an underrun */
2045		/* This is a good status and what we expect */
2046		break;
2047
2048	default:
2049		/* Data overrun, system error, or unknown */
2050		ep->req_pending = 0;
2051		ep_err(ep, "DMA critical EP error: System error (0x%x)!\n",
2052		       status);
2053		done(ep, req, -ECONNABORTED);
2054		return;
2055	}
2056
2057	/* ISO endpoints are handled differently */
2058	if (ep->eptype == EP_ISO_TYPE) {
2059		if (ep->is_in)
2060			req->req.actual = req->req.length;
2061		else
2062			req->req.actual = dd->iso_status[0] & 0xFFFF;
2063	} else
2064		req->req.actual += DD_STATUS_CURDMACNT(status);
2065
2066	/* Send a ZLP if necessary. This will be done for non-int
2067	 * packets which have a size that is a divisor of MAXP */
2068	if (req->send_zlp) {
2069		/*
2070		 * If at least 1 buffer is available, send the ZLP now.
2071		 * Otherwise, the ZLP send needs to be deferred until a
2072		 * buffer is available.
2073		 */
2074		if (udc_clearep_getsts(udc, ep->hwep_num) & EP_SEL_F) {
2075			udc_clearep_getsts(udc, ep->hwep_num);
2076			uda_enable_hwepint(udc, ep->hwep_num);
2077			udc_clearep_getsts(udc, ep->hwep_num);
2078
2079			/* Let the EP interrupt handle the ZLP */
2080			return;
2081		} else
2082			udc_send_in_zlp(udc, ep);
2083	}
2084
2085	/* Transfer request is complete */
2086	done(ep, req, 0);
2087
2088	/* Start another request if ready */
2089	udc_clearep_getsts(udc, ep->hwep_num);
2090	if (!list_empty((&ep->queue))) {
2091		if (ep->is_in)
2092			udc_ep_in_req_dma(udc, ep);
2093		else
2094			udc_ep_out_req_dma(udc, ep);
2095	} else
2096		ep->req_pending = 0;
2097
2098}
2099
2100/*
2101 *
2102 * Endpoint 0 functions
2103 *
2104 */
2105static void udc_handle_dev(struct lpc32xx_udc *udc)
2106{
2107	u32 tmp;
2108
2109	udc_protocol_cmd_w(udc, CMD_GET_DEV_STAT);
2110	tmp = udc_protocol_cmd_r(udc, DAT_GET_DEV_STAT);
2111
2112	if (tmp & DEV_RST)
2113		uda_usb_reset(udc);
2114	else if (tmp & DEV_CON_CH)
2115		uda_power_event(udc, (tmp & DEV_CON));
2116	else if (tmp & DEV_SUS_CH) {
2117		if (tmp & DEV_SUS) {
2118			if (udc->vbus == 0)
2119				stop_activity(udc);
2120			else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2121				 udc->driver) {
2122				/* Power down transceiver */
2123				udc->poweron = 0;
2124				schedule_work(&udc->pullup_job);
2125				uda_resm_susp_event(udc, 1);
2126			}
2127		} else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2128			   udc->driver && udc->vbus) {
2129			uda_resm_susp_event(udc, 0);
2130			/* Power up transceiver */
2131			udc->poweron = 1;
2132			schedule_work(&udc->pullup_job);
2133		}
2134	}
2135}
2136
2137static int udc_get_status(struct lpc32xx_udc *udc, u16 reqtype, u16 wIndex)
2138{
2139	struct lpc32xx_ep *ep;
2140	u32 ep0buff = 0, tmp;
2141
2142	switch (reqtype & USB_RECIP_MASK) {
2143	case USB_RECIP_INTERFACE:
2144		break; /* Not supported */
2145
2146	case USB_RECIP_DEVICE:
2147		ep0buff = udc->gadget.is_selfpowered;
2148		if (udc->dev_status & (1 << USB_DEVICE_REMOTE_WAKEUP))
2149			ep0buff |= (1 << USB_DEVICE_REMOTE_WAKEUP);
2150		break;
2151
2152	case USB_RECIP_ENDPOINT:
2153		tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2154		ep = &udc->ep[tmp];
2155		if ((tmp == 0) || (tmp >= NUM_ENDPOINTS))
2156			return -EOPNOTSUPP;
2157
2158		if (wIndex & USB_DIR_IN) {
2159			if (!ep->is_in)
2160				return -EOPNOTSUPP; /* Something's wrong */
2161		} else if (ep->is_in)
2162			return -EOPNOTSUPP; /* Not an IN endpoint */
2163
2164		/* Get status of the endpoint */
2165		udc_protocol_cmd_w(udc, CMD_SEL_EP(ep->hwep_num));
2166		tmp = udc_protocol_cmd_r(udc, DAT_SEL_EP(ep->hwep_num));
2167
2168		if (tmp & EP_SEL_ST)
2169			ep0buff = (1 << USB_ENDPOINT_HALT);
2170		else
2171			ep0buff = 0;
2172		break;
2173
2174	default:
2175		break;
2176	}
2177
2178	/* Return data */
2179	udc_write_hwep(udc, EP_IN, &ep0buff, 2);
2180
2181	return 0;
2182}
2183
2184static void udc_handle_ep0_setup(struct lpc32xx_udc *udc)
2185{
2186	struct lpc32xx_ep *ep, *ep0 = &udc->ep[0];
2187	struct usb_ctrlrequest ctrlpkt;
2188	int i, bytes;
2189	u16 wIndex, wValue, reqtype, req, tmp;
2190
2191	/* Nuke previous transfers */
2192	nuke(ep0, -EPROTO);
2193
2194	/* Get setup packet */
2195	bytes = udc_read_hwep(udc, EP_OUT, (u32 *) &ctrlpkt, 8);
2196	if (bytes != 8) {
2197		ep_warn(ep0, "Incorrectly sized setup packet (s/b 8, is %d)!\n",
2198			bytes);
2199		return;
2200	}
2201
2202	/* Native endianness */
2203	wIndex = le16_to_cpu(ctrlpkt.wIndex);
2204	wValue = le16_to_cpu(ctrlpkt.wValue);
2205	reqtype = le16_to_cpu(ctrlpkt.bRequestType);
2206
2207	/* Set direction of EP0 */
2208	if (likely(reqtype & USB_DIR_IN))
2209		ep0->is_in = 1;
2210	else
2211		ep0->is_in = 0;
2212
2213	/* Handle SETUP packet */
2214	req = le16_to_cpu(ctrlpkt.bRequest);
2215	switch (req) {
2216	case USB_REQ_CLEAR_FEATURE:
2217	case USB_REQ_SET_FEATURE:
2218		switch (reqtype) {
2219		case (USB_TYPE_STANDARD | USB_RECIP_DEVICE):
2220			if (wValue != USB_DEVICE_REMOTE_WAKEUP)
2221				goto stall; /* Nothing else handled */
2222
2223			/* Tell board about event */
2224			if (req == USB_REQ_CLEAR_FEATURE)
2225				udc->dev_status &=
2226					~(1 << USB_DEVICE_REMOTE_WAKEUP);
2227			else
2228				udc->dev_status |=
2229					(1 << USB_DEVICE_REMOTE_WAKEUP);
2230			uda_remwkp_cgh(udc);
2231			goto zlp_send;
2232
2233		case (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT):
2234			tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2235			if ((wValue != USB_ENDPOINT_HALT) ||
2236			    (tmp >= NUM_ENDPOINTS))
2237				break;
2238
2239			/* Find hardware endpoint from logical endpoint */
2240			ep = &udc->ep[tmp];
2241			tmp = ep->hwep_num;
2242			if (tmp == 0)
2243				break;
2244
2245			if (req == USB_REQ_SET_FEATURE)
2246				udc_stall_hwep(udc, tmp);
2247			else if (!ep->wedge)
2248				udc_clrstall_hwep(udc, tmp);
2249
2250			goto zlp_send;
2251
2252		default:
2253			break;
2254		}
2255		break;
2256
2257	case USB_REQ_SET_ADDRESS:
2258		if (reqtype == (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) {
2259			udc_set_address(udc, wValue);
2260			goto zlp_send;
2261		}
2262		break;
2263
2264	case USB_REQ_GET_STATUS:
2265		udc_get_status(udc, reqtype, wIndex);
2266		return;
2267
2268	default:
2269		break; /* Let GadgetFS handle the descriptor instead */
2270	}
2271
2272	if (likely(udc->driver)) {
2273		/* device-2-host (IN) or no data setup command, process
2274		 * immediately */
2275		spin_unlock(&udc->lock);
2276		i = udc->driver->setup(&udc->gadget, &ctrlpkt);
2277
2278		spin_lock(&udc->lock);
2279		if (req == USB_REQ_SET_CONFIGURATION) {
2280			/* Configuration is set after endpoints are realized */
2281			if (wValue) {
2282				/* Set configuration */
2283				udc_set_device_configured(udc);
2284
2285				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2286							DAT_WR_BYTE(AP_CLK |
2287							INAK_BI | INAK_II));
2288			} else {
2289				/* Clear configuration */
2290				udc_set_device_unconfigured(udc);
2291
2292				/* Disable NAK interrupts */
2293				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2294							DAT_WR_BYTE(AP_CLK));
2295			}
2296		}
2297
2298		if (i < 0) {
2299			/* setup processing failed, force stall */
2300			dev_dbg(udc->dev,
2301				"req %02x.%02x protocol STALL; stat %d\n",
2302				reqtype, req, i);
2303			udc->ep0state = WAIT_FOR_SETUP;
2304			goto stall;
2305		}
2306	}
2307
2308	if (!ep0->is_in)
2309		udc_ep0_send_zlp(udc); /* ZLP IN packet on data phase */
2310
2311	return;
2312
2313stall:
2314	udc_stall_hwep(udc, EP_IN);
2315	return;
2316
2317zlp_send:
2318	udc_ep0_send_zlp(udc);
2319	return;
2320}
2321
2322/* IN endpoint 0 transfer */
2323static void udc_handle_ep0_in(struct lpc32xx_udc *udc)
2324{
2325	struct lpc32xx_ep *ep0 = &udc->ep[0];
2326	u32 epstatus;
2327
2328	/* Clear EP interrupt */
2329	epstatus = udc_clearep_getsts(udc, EP_IN);
2330
2331#ifdef CONFIG_USB_GADGET_DEBUG_FILES
2332	ep0->totalints++;
2333#endif
2334
2335	/* Stalled? Clear stall and reset buffers */
2336	if (epstatus & EP_SEL_ST) {
2337		udc_clrstall_hwep(udc, EP_IN);
2338		nuke(ep0, -ECONNABORTED);
2339		udc->ep0state = WAIT_FOR_SETUP;
2340		return;
2341	}
2342
2343	/* Is a buffer available? */
2344	if (!(epstatus & EP_SEL_F)) {
2345		/* Handle based on current state */
2346		if (udc->ep0state == DATA_IN)
2347			udc_ep0_in_req(udc);
2348		else {
2349			/* Unknown state for EP0 oe end of DATA IN phase */
2350			nuke(ep0, -ECONNABORTED);
2351			udc->ep0state = WAIT_FOR_SETUP;
2352		}
2353	}
2354}
2355
2356/* OUT endpoint 0 transfer */
2357static void udc_handle_ep0_out(struct lpc32xx_udc *udc)
2358{
2359	struct lpc32xx_ep *ep0 = &udc->ep[0];
2360	u32 epstatus;
2361
2362	/* Clear EP interrupt */
2363	epstatus = udc_clearep_getsts(udc, EP_OUT);
2364
2365
2366#ifdef CONFIG_USB_GADGET_DEBUG_FILES
2367	ep0->totalints++;
2368#endif
2369
2370	/* Stalled? */
2371	if (epstatus & EP_SEL_ST) {
2372		udc_clrstall_hwep(udc, EP_OUT);
2373		nuke(ep0, -ECONNABORTED);
2374		udc->ep0state = WAIT_FOR_SETUP;
2375		return;
2376	}
2377
2378	/* A NAK may occur if a packet couldn't be received yet */
2379	if (epstatus & EP_SEL_EPN)
2380		return;
2381	/* Setup packet incoming? */
2382	if (epstatus & EP_SEL_STP) {
2383		nuke(ep0, 0);
2384		udc->ep0state = WAIT_FOR_SETUP;
2385	}
2386
2387	/* Data available? */
2388	if (epstatus & EP_SEL_F)
2389		/* Handle based on current state */
2390		switch (udc->ep0state) {
2391		case WAIT_FOR_SETUP:
2392			udc_handle_ep0_setup(udc);
2393			break;
2394
2395		case DATA_OUT:
2396			udc_ep0_out_req(udc);
2397			break;
2398
2399		default:
2400			/* Unknown state for EP0 */
2401			nuke(ep0, -ECONNABORTED);
2402			udc->ep0state = WAIT_FOR_SETUP;
2403		}
2404}
2405
2406/* Must be called without lock */
2407static int lpc32xx_get_frame(struct usb_gadget *gadget)
2408{
2409	int frame;
2410	unsigned long flags;
2411	struct lpc32xx_udc *udc = to_udc(gadget);
2412
2413	if (!udc->clocked)
2414		return -EINVAL;
2415
2416	spin_lock_irqsave(&udc->lock, flags);
2417
2418	frame = (int) udc_get_current_frame(udc);
2419
2420	spin_unlock_irqrestore(&udc->lock, flags);
2421
2422	return frame;
2423}
2424
2425static int lpc32xx_wakeup(struct usb_gadget *gadget)
2426{
2427	return -ENOTSUPP;
2428}
2429
2430static int lpc32xx_set_selfpowered(struct usb_gadget *gadget, int is_on)
2431{
2432	gadget->is_selfpowered = (is_on != 0);
2433
2434	return 0;
2435}
2436
2437/*
2438 * vbus is here!  turn everything on that's ready
2439 * Must be called without lock
2440 */
2441static int lpc32xx_vbus_session(struct usb_gadget *gadget, int is_active)
2442{
2443	unsigned long flags;
2444	struct lpc32xx_udc *udc = to_udc(gadget);
2445
2446	spin_lock_irqsave(&udc->lock, flags);
2447
2448	/* Doesn't need lock */
2449	if (udc->driver) {
2450		udc_clk_set(udc, 1);
2451		udc_enable(udc);
2452		pullup(udc, is_active);
2453	} else {
2454		stop_activity(udc);
2455		pullup(udc, 0);
2456
2457		spin_unlock_irqrestore(&udc->lock, flags);
2458		/*
2459		 *  Wait for all the endpoints to disable,
2460		 *  before disabling clocks. Don't wait if
2461		 *  endpoints are not enabled.
2462		 */
2463		if (atomic_read(&udc->enabled_ep_cnt))
2464			wait_event_interruptible(udc->ep_disable_wait_queue,
2465				 (atomic_read(&udc->enabled_ep_cnt) == 0));
2466
2467		spin_lock_irqsave(&udc->lock, flags);
2468
2469		udc_clk_set(udc, 0);
2470	}
2471
2472	spin_unlock_irqrestore(&udc->lock, flags);
2473
2474	return 0;
2475}
2476
2477/* Can be called with or without lock */
2478static int lpc32xx_pullup(struct usb_gadget *gadget, int is_on)
2479{
2480	struct lpc32xx_udc *udc = to_udc(gadget);
2481
2482	/* Doesn't need lock */
2483	pullup(udc, is_on);
2484
2485	return 0;
2486}
2487
2488static int lpc32xx_start(struct usb_gadget *, struct usb_gadget_driver *);
2489static int lpc32xx_stop(struct usb_gadget *);
2490
2491static const struct usb_gadget_ops lpc32xx_udc_ops = {
2492	.get_frame		= lpc32xx_get_frame,
2493	.wakeup			= lpc32xx_wakeup,
2494	.set_selfpowered	= lpc32xx_set_selfpowered,
2495	.vbus_session		= lpc32xx_vbus_session,
2496	.pullup			= lpc32xx_pullup,
2497	.udc_start		= lpc32xx_start,
2498	.udc_stop		= lpc32xx_stop,
2499};
2500
2501static void nop_release(struct device *dev)
2502{
2503	/* nothing to free */
2504}
2505
2506static const struct lpc32xx_udc controller_template = {
2507	.gadget = {
2508		.ops	= &lpc32xx_udc_ops,
2509		.name	= driver_name,
2510		.dev	= {
2511			.init_name = "gadget",
2512			.release = nop_release,
2513		}
2514	},
2515	.ep[0] = {
2516		.ep = {
2517			.name	= "ep0",
2518			.ops	= &lpc32xx_ep_ops,
2519			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL,
2520					USB_EP_CAPS_DIR_ALL),
2521		},
2522		.maxpacket	= 64,
2523		.hwep_num_base	= 0,
2524		.hwep_num	= 0, /* Can be 0 or 1, has special handling */
2525		.lep		= 0,
2526		.eptype		= EP_CTL_TYPE,
2527	},
2528	.ep[1] = {
2529		.ep = {
2530			.name	= "ep1-int",
2531			.ops	= &lpc32xx_ep_ops,
2532			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2533					USB_EP_CAPS_DIR_ALL),
2534		},
2535		.maxpacket	= 64,
2536		.hwep_num_base	= 2,
2537		.hwep_num	= 0, /* 2 or 3, will be set later */
2538		.lep		= 1,
2539		.eptype		= EP_INT_TYPE,
2540	},
2541	.ep[2] = {
2542		.ep = {
2543			.name	= "ep2-bulk",
2544			.ops	= &lpc32xx_ep_ops,
2545			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2546					USB_EP_CAPS_DIR_ALL),
2547		},
2548		.maxpacket	= 64,
2549		.hwep_num_base	= 4,
2550		.hwep_num	= 0, /* 4 or 5, will be set later */
2551		.lep		= 2,
2552		.eptype		= EP_BLK_TYPE,
2553	},
2554	.ep[3] = {
2555		.ep = {
2556			.name	= "ep3-iso",
2557			.ops	= &lpc32xx_ep_ops,
2558			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2559					USB_EP_CAPS_DIR_ALL),
2560		},
2561		.maxpacket	= 1023,
2562		.hwep_num_base	= 6,
2563		.hwep_num	= 0, /* 6 or 7, will be set later */
2564		.lep		= 3,
2565		.eptype		= EP_ISO_TYPE,
2566	},
2567	.ep[4] = {
2568		.ep = {
2569			.name	= "ep4-int",
2570			.ops	= &lpc32xx_ep_ops,
2571			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2572					USB_EP_CAPS_DIR_ALL),
2573		},
2574		.maxpacket	= 64,
2575		.hwep_num_base	= 8,
2576		.hwep_num	= 0, /* 8 or 9, will be set later */
2577		.lep		= 4,
2578		.eptype		= EP_INT_TYPE,
2579	},
2580	.ep[5] = {
2581		.ep = {
2582			.name	= "ep5-bulk",
2583			.ops	= &lpc32xx_ep_ops,
2584			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2585					USB_EP_CAPS_DIR_ALL),
2586		},
2587		.maxpacket	= 64,
2588		.hwep_num_base	= 10,
2589		.hwep_num	= 0, /* 10 or 11, will be set later */
2590		.lep		= 5,
2591		.eptype		= EP_BLK_TYPE,
2592	},
2593	.ep[6] = {
2594		.ep = {
2595			.name	= "ep6-iso",
2596			.ops	= &lpc32xx_ep_ops,
2597			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2598					USB_EP_CAPS_DIR_ALL),
2599		},
2600		.maxpacket	= 1023,
2601		.hwep_num_base	= 12,
2602		.hwep_num	= 0, /* 12 or 13, will be set later */
2603		.lep		= 6,
2604		.eptype		= EP_ISO_TYPE,
2605	},
2606	.ep[7] = {
2607		.ep = {
2608			.name	= "ep7-int",
2609			.ops	= &lpc32xx_ep_ops,
2610			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2611					USB_EP_CAPS_DIR_ALL),
2612		},
2613		.maxpacket	= 64,
2614		.hwep_num_base	= 14,
2615		.hwep_num	= 0,
2616		.lep		= 7,
2617		.eptype		= EP_INT_TYPE,
2618	},
2619	.ep[8] = {
2620		.ep = {
2621			.name	= "ep8-bulk",
2622			.ops	= &lpc32xx_ep_ops,
2623			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2624					USB_EP_CAPS_DIR_ALL),
2625		},
2626		.maxpacket	= 64,
2627		.hwep_num_base	= 16,
2628		.hwep_num	= 0,
2629		.lep		= 8,
2630		.eptype		= EP_BLK_TYPE,
2631	},
2632	.ep[9] = {
2633		.ep = {
2634			.name	= "ep9-iso",
2635			.ops	= &lpc32xx_ep_ops,
2636			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2637					USB_EP_CAPS_DIR_ALL),
2638		},
2639		.maxpacket	= 1023,
2640		.hwep_num_base	= 18,
2641		.hwep_num	= 0,
2642		.lep		= 9,
2643		.eptype		= EP_ISO_TYPE,
2644	},
2645	.ep[10] = {
2646		.ep = {
2647			.name	= "ep10-int",
2648			.ops	= &lpc32xx_ep_ops,
2649			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2650					USB_EP_CAPS_DIR_ALL),
2651		},
2652		.maxpacket	= 64,
2653		.hwep_num_base	= 20,
2654		.hwep_num	= 0,
2655		.lep		= 10,
2656		.eptype		= EP_INT_TYPE,
2657	},
2658	.ep[11] = {
2659		.ep = {
2660			.name	= "ep11-bulk",
2661			.ops	= &lpc32xx_ep_ops,
2662			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2663					USB_EP_CAPS_DIR_ALL),
2664		},
2665		.maxpacket	= 64,
2666		.hwep_num_base	= 22,
2667		.hwep_num	= 0,
2668		.lep		= 11,
2669		.eptype		= EP_BLK_TYPE,
2670	},
2671	.ep[12] = {
2672		.ep = {
2673			.name	= "ep12-iso",
2674			.ops	= &lpc32xx_ep_ops,
2675			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2676					USB_EP_CAPS_DIR_ALL),
2677		},
2678		.maxpacket	= 1023,
2679		.hwep_num_base	= 24,
2680		.hwep_num	= 0,
2681		.lep		= 12,
2682		.eptype		= EP_ISO_TYPE,
2683	},
2684	.ep[13] = {
2685		.ep = {
2686			.name	= "ep13-int",
2687			.ops	= &lpc32xx_ep_ops,
2688			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2689					USB_EP_CAPS_DIR_ALL),
2690		},
2691		.maxpacket	= 64,
2692		.hwep_num_base	= 26,
2693		.hwep_num	= 0,
2694		.lep		= 13,
2695		.eptype		= EP_INT_TYPE,
2696	},
2697	.ep[14] = {
2698		.ep = {
2699			.name	= "ep14-bulk",
2700			.ops	= &lpc32xx_ep_ops,
2701			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2702					USB_EP_CAPS_DIR_ALL),
2703		},
2704		.maxpacket	= 64,
2705		.hwep_num_base	= 28,
2706		.hwep_num	= 0,
2707		.lep		= 14,
2708		.eptype		= EP_BLK_TYPE,
2709	},
2710	.ep[15] = {
2711		.ep = {
2712			.name	= "ep15-bulk",
2713			.ops	= &lpc32xx_ep_ops,
2714			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2715					USB_EP_CAPS_DIR_ALL),
2716		},
2717		.maxpacket	= 1023,
2718		.hwep_num_base	= 30,
2719		.hwep_num	= 0,
2720		.lep		= 15,
2721		.eptype		= EP_BLK_TYPE,
2722	},
2723};
2724
2725/* ISO and status interrupts */
2726static irqreturn_t lpc32xx_usb_lp_irq(int irq, void *_udc)
2727{
2728	u32 tmp, devstat;
2729	struct lpc32xx_udc *udc = _udc;
2730
2731	spin_lock(&udc->lock);
2732
2733	/* Read the device status register */
2734	devstat = readl(USBD_DEVINTST(udc->udp_baseaddr));
2735
2736	devstat &= ~USBD_EP_FAST;
2737	writel(devstat, USBD_DEVINTCLR(udc->udp_baseaddr));
2738	devstat = devstat & udc->enabled_devints;
2739
2740	/* Device specific handling needed? */
2741	if (devstat & USBD_DEV_STAT)
2742		udc_handle_dev(udc);
2743
2744	/* Start of frame? (devstat & FRAME_INT):
2745	 * The frame interrupt isn't really needed for ISO support,
2746	 * as the driver will queue the necessary packets */
2747
2748	/* Error? */
2749	if (devstat & ERR_INT) {
2750		/* All types of errors, from cable removal during transfer to
2751		 * misc protocol and bit errors. These are mostly for just info,
2752		 * as the USB hardware will work around these. If these errors
2753		 * happen alot, something is wrong. */
2754		udc_protocol_cmd_w(udc, CMD_RD_ERR_STAT);
2755		tmp = udc_protocol_cmd_r(udc, DAT_RD_ERR_STAT);
2756		dev_dbg(udc->dev, "Device error (0x%x)!\n", tmp);
2757	}
2758
2759	spin_unlock(&udc->lock);
2760
2761	return IRQ_HANDLED;
2762}
2763
2764/* EP interrupts */
2765static irqreturn_t lpc32xx_usb_hp_irq(int irq, void *_udc)
2766{
2767	u32 tmp;
2768	struct lpc32xx_udc *udc = _udc;
2769
2770	spin_lock(&udc->lock);
2771
2772	/* Read the device status register */
2773	writel(USBD_EP_FAST, USBD_DEVINTCLR(udc->udp_baseaddr));
2774
2775	/* Endpoints */
2776	tmp = readl(USBD_EPINTST(udc->udp_baseaddr));
2777
2778	/* Special handling for EP0 */
2779	if (tmp & (EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2780		/* Handle EP0 IN */
2781		if (tmp & (EP_MASK_SEL(0, EP_IN)))
2782			udc_handle_ep0_in(udc);
2783
2784		/* Handle EP0 OUT */
2785		if (tmp & (EP_MASK_SEL(0, EP_OUT)))
2786			udc_handle_ep0_out(udc);
2787	}
2788
2789	/* All other EPs */
2790	if (tmp & ~(EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2791		int i;
2792
2793		/* Handle other EP interrupts */
2794		for (i = 1; i < NUM_ENDPOINTS; i++) {
2795			if (tmp & (1 << udc->ep[i].hwep_num))
2796				udc_handle_eps(udc, &udc->ep[i]);
2797		}
2798	}
2799
2800	spin_unlock(&udc->lock);
2801
2802	return IRQ_HANDLED;
2803}
2804
2805static irqreturn_t lpc32xx_usb_devdma_irq(int irq, void *_udc)
2806{
2807	struct lpc32xx_udc *udc = _udc;
2808
2809	int i;
2810	u32 tmp;
2811
2812	spin_lock(&udc->lock);
2813
2814	/* Handle EP DMA EOT interrupts */
2815	tmp = readl(USBD_EOTINTST(udc->udp_baseaddr)) |
2816		(readl(USBD_EPDMAST(udc->udp_baseaddr)) &
2817		 readl(USBD_NDDRTINTST(udc->udp_baseaddr))) |
2818		readl(USBD_SYSERRTINTST(udc->udp_baseaddr));
2819	for (i = 1; i < NUM_ENDPOINTS; i++) {
2820		if (tmp & (1 << udc->ep[i].hwep_num))
2821			udc_handle_dma_ep(udc, &udc->ep[i]);
2822	}
2823
2824	spin_unlock(&udc->lock);
2825
2826	return IRQ_HANDLED;
2827}
2828
2829/*
2830 *
2831 * VBUS detection, pullup handler, and Gadget cable state notification
2832 *
2833 */
2834static void vbus_work(struct lpc32xx_udc *udc)
2835{
2836	u8 value;
2837
2838	if (udc->enabled != 0) {
2839		/* Discharge VBUS real quick */
2840		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2841			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
2842
2843		/* Give VBUS some time (100mS) to discharge */
2844		msleep(100);
2845
2846		/* Disable VBUS discharge resistor */
2847		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2848			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
2849			OTG1_VBUS_DISCHRG);
2850
2851		/* Clear interrupt */
2852		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2853			ISP1301_I2C_INTERRUPT_LATCH |
2854			ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2855
2856		/* Get the VBUS status from the transceiver */
2857		value = i2c_smbus_read_byte_data(udc->isp1301_i2c_client,
2858						 ISP1301_I2C_INTERRUPT_SOURCE);
2859
2860		/* VBUS on or off? */
2861		if (value & INT_SESS_VLD)
2862			udc->vbus = 1;
2863		else
2864			udc->vbus = 0;
2865
2866		/* VBUS changed? */
2867		if (udc->last_vbus != udc->vbus) {
2868			udc->last_vbus = udc->vbus;
2869			lpc32xx_vbus_session(&udc->gadget, udc->vbus);
2870		}
2871	}
2872}
2873
2874static irqreturn_t lpc32xx_usb_vbus_irq(int irq, void *_udc)
2875{
2876	struct lpc32xx_udc *udc = _udc;
2877
2878	vbus_work(udc);
2879
2880	return IRQ_HANDLED;
2881}
2882
2883static int lpc32xx_start(struct usb_gadget *gadget,
2884			 struct usb_gadget_driver *driver)
2885{
2886	struct lpc32xx_udc *udc = to_udc(gadget);
2887
2888	if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) {
2889		dev_err(udc->dev, "bad parameter.\n");
2890		return -EINVAL;
2891	}
2892
2893	if (udc->driver) {
2894		dev_err(udc->dev, "UDC already has a gadget driver\n");
2895		return -EBUSY;
2896	}
2897
2898	udc->driver = driver;
2899	udc->gadget.dev.of_node = udc->dev->of_node;
2900	udc->enabled = 1;
2901	udc->gadget.is_selfpowered = 1;
2902	udc->vbus = 0;
2903
2904	/* Force VBUS process once to check for cable insertion */
2905	udc->last_vbus = udc->vbus = 0;
2906	vbus_work(udc);
2907
2908	/* enable interrupts */
2909	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2910		ISP1301_I2C_INTERRUPT_FALLING, INT_SESS_VLD | INT_VBUS_VLD);
2911	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2912		ISP1301_I2C_INTERRUPT_RISING, INT_SESS_VLD | INT_VBUS_VLD);
2913
2914	return 0;
2915}
2916
2917static int lpc32xx_stop(struct usb_gadget *gadget)
2918{
2919	struct lpc32xx_udc *udc = to_udc(gadget);
2920
2921	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2922		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2923	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2924		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2925
2926	if (udc->clocked) {
2927		spin_lock(&udc->lock);
2928		stop_activity(udc);
2929		spin_unlock(&udc->lock);
2930
2931		/*
2932		 *  Wait for all the endpoints to disable,
2933		 *  before disabling clocks. Don't wait if
2934		 *  endpoints are not enabled.
2935		 */
2936		if (atomic_read(&udc->enabled_ep_cnt))
2937			wait_event_interruptible(udc->ep_disable_wait_queue,
2938				(atomic_read(&udc->enabled_ep_cnt) == 0));
2939
2940		spin_lock(&udc->lock);
2941		udc_clk_set(udc, 0);
2942		spin_unlock(&udc->lock);
2943	}
2944
2945	udc->enabled = 0;
2946	udc->driver = NULL;
2947
2948	return 0;
2949}
2950
2951static void lpc32xx_udc_shutdown(struct platform_device *dev)
2952{
2953	/* Force disconnect on reboot */
2954	struct lpc32xx_udc *udc = platform_get_drvdata(dev);
2955
2956	pullup(udc, 0);
2957}
2958
2959/*
2960 * Callbacks to be overridden by options passed via OF (TODO)
2961 */
2962
2963static void lpc32xx_usbd_conn_chg(int conn)
2964{
2965	/* Do nothing, it might be nice to enable an LED
2966	 * based on conn state being !0 */
2967}
2968
2969static void lpc32xx_usbd_susp_chg(int susp)
2970{
2971	/* Device suspend if susp != 0 */
2972}
2973
2974static void lpc32xx_rmwkup_chg(int remote_wakup_enable)
2975{
2976	/* Enable or disable USB remote wakeup */
2977}
2978
2979static struct lpc32xx_usbd_cfg lpc32xx_usbddata = {
2980	.vbus_drv_pol = 0,
2981	.conn_chgb = &lpc32xx_usbd_conn_chg,
2982	.susp_chgb = &lpc32xx_usbd_susp_chg,
2983	.rmwk_chgb = &lpc32xx_rmwkup_chg,
2984};
2985
2986
2987static u64 lpc32xx_usbd_dmamask = ~(u32) 0x7F;
2988
2989static int lpc32xx_udc_probe(struct platform_device *pdev)
2990{
2991	struct device *dev = &pdev->dev;
2992	struct lpc32xx_udc *udc;
2993	int retval, i;
2994	dma_addr_t dma_handle;
2995	struct device_node *isp1301_node;
2996
2997	udc = devm_kmemdup(dev, &controller_template, sizeof(*udc), GFP_KERNEL);
2998	if (!udc)
2999		return -ENOMEM;
3000
3001	for (i = 0; i <= 15; i++)
3002		udc->ep[i].udc = udc;
3003	udc->gadget.ep0 = &udc->ep[0].ep;
3004
3005	/* init software state */
3006	udc->gadget.dev.parent = dev;
3007	udc->pdev = pdev;
3008	udc->dev = &pdev->dev;
3009	udc->enabled = 0;
3010
3011	if (pdev->dev.of_node) {
3012		isp1301_node = of_parse_phandle(pdev->dev.of_node,
3013						"transceiver", 0);
3014	} else {
3015		isp1301_node = NULL;
3016	}
3017
3018	udc->isp1301_i2c_client = isp1301_get_client(isp1301_node);
3019	of_node_put(isp1301_node);
3020	if (!udc->isp1301_i2c_client) {
3021		return -EPROBE_DEFER;
3022	}
3023
3024	dev_info(udc->dev, "ISP1301 I2C device at address 0x%x\n",
3025		 udc->isp1301_i2c_client->addr);
3026
3027	pdev->dev.dma_mask = &lpc32xx_usbd_dmamask;
3028	retval = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3029	if (retval)
3030		return retval;
3031
3032	udc->board = &lpc32xx_usbddata;
3033
3034	/*
3035	 * Resources are mapped as follows:
3036	 *  IORESOURCE_MEM, base address and size of USB space
3037	 *  IORESOURCE_IRQ, USB device low priority interrupt number
3038	 *  IORESOURCE_IRQ, USB device high priority interrupt number
3039	 *  IORESOURCE_IRQ, USB device interrupt number
3040	 *  IORESOURCE_IRQ, USB transceiver interrupt number
3041	 */
3042
3043	spin_lock_init(&udc->lock);
3044
3045	/* Get IRQs */
3046	for (i = 0; i < 4; i++) {
3047		udc->udp_irq[i] = platform_get_irq(pdev, i);
3048		if (udc->udp_irq[i] < 0)
3049			return udc->udp_irq[i];
3050	}
3051
3052	udc->udp_baseaddr = devm_platform_ioremap_resource(pdev, 0);
3053	if (IS_ERR(udc->udp_baseaddr)) {
3054		dev_err(udc->dev, "IO map failure\n");
3055		return PTR_ERR(udc->udp_baseaddr);
3056	}
3057
3058	/* Get USB device clock */
3059	udc->usb_slv_clk = devm_clk_get(&pdev->dev, NULL);
3060	if (IS_ERR(udc->usb_slv_clk)) {
3061		dev_err(udc->dev, "failed to acquire USB device clock\n");
3062		return PTR_ERR(udc->usb_slv_clk);
3063	}
3064
3065	/* Enable USB device clock */
3066	retval = clk_prepare_enable(udc->usb_slv_clk);
3067	if (retval < 0) {
3068		dev_err(udc->dev, "failed to start USB device clock\n");
3069		return retval;
3070	}
3071
3072	/* Setup deferred workqueue data */
3073	udc->poweron = udc->pullup = 0;
3074	INIT_WORK(&udc->pullup_job, pullup_work);
3075#ifdef CONFIG_PM
3076	INIT_WORK(&udc->power_job, power_work);
3077#endif
3078
3079	/* All clocks are now on */
3080	udc->clocked = 1;
3081
3082	isp1301_udc_configure(udc);
3083	/* Allocate memory for the UDCA */
3084	udc->udca_v_base = dma_alloc_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3085					      &dma_handle,
3086					      (GFP_KERNEL | GFP_DMA));
3087	if (!udc->udca_v_base) {
3088		dev_err(udc->dev, "error getting UDCA region\n");
3089		retval = -ENOMEM;
3090		goto i2c_fail;
3091	}
3092	udc->udca_p_base = dma_handle;
3093	dev_dbg(udc->dev, "DMA buffer(0x%x bytes), P:0x%08x, V:0x%p\n",
3094		UDCA_BUFF_SIZE, udc->udca_p_base, udc->udca_v_base);
3095
3096	/* Setup the DD DMA memory pool */
3097	udc->dd_cache = dma_pool_create("udc_dd", udc->dev,
3098					sizeof(struct lpc32xx_usbd_dd_gad),
3099					sizeof(u32), 0);
3100	if (!udc->dd_cache) {
3101		dev_err(udc->dev, "error getting DD DMA region\n");
3102		retval = -ENOMEM;
3103		goto dma_alloc_fail;
3104	}
3105
3106	/* Clear USB peripheral and initialize gadget endpoints */
3107	udc_disable(udc);
3108	udc_reinit(udc);
3109
3110	/* Request IRQs - low and high priority USB device IRQs are routed to
3111	 * the same handler, while the DMA interrupt is routed elsewhere */
3112	retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_LP],
3113				  lpc32xx_usb_lp_irq, 0, "udc_lp", udc);
3114	if (retval < 0) {
3115		dev_err(udc->dev, "LP request irq %d failed\n",
3116			udc->udp_irq[IRQ_USB_LP]);
3117		goto irq_req_fail;
3118	}
3119	retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_HP],
3120				  lpc32xx_usb_hp_irq, 0, "udc_hp", udc);
3121	if (retval < 0) {
3122		dev_err(udc->dev, "HP request irq %d failed\n",
3123			udc->udp_irq[IRQ_USB_HP]);
3124		goto irq_req_fail;
3125	}
3126
3127	retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_DEVDMA],
3128				  lpc32xx_usb_devdma_irq, 0, "udc_dma", udc);
3129	if (retval < 0) {
3130		dev_err(udc->dev, "DEV request irq %d failed\n",
3131			udc->udp_irq[IRQ_USB_DEVDMA]);
3132		goto irq_req_fail;
3133	}
3134
3135	/* The transceiver interrupt is used for VBUS detection and will
3136	   kick off the VBUS handler function */
3137	retval = devm_request_threaded_irq(dev, udc->udp_irq[IRQ_USB_ATX], NULL,
3138					   lpc32xx_usb_vbus_irq, IRQF_ONESHOT,
3139					   "udc_otg", udc);
3140	if (retval < 0) {
3141		dev_err(udc->dev, "VBUS request irq %d failed\n",
3142			udc->udp_irq[IRQ_USB_ATX]);
3143		goto irq_req_fail;
3144	}
3145
3146	/* Initialize wait queue */
3147	init_waitqueue_head(&udc->ep_disable_wait_queue);
3148	atomic_set(&udc->enabled_ep_cnt, 0);
3149
3150	retval = usb_add_gadget_udc(dev, &udc->gadget);
3151	if (retval < 0)
3152		goto add_gadget_fail;
3153
3154	dev_set_drvdata(dev, udc);
3155	device_init_wakeup(dev, 1);
3156	create_debug_file(udc);
3157
3158	/* Disable clocks for now */
3159	udc_clk_set(udc, 0);
3160
3161	dev_info(udc->dev, "%s version %s\n", driver_name, DRIVER_VERSION);
3162	return 0;
3163
3164add_gadget_fail:
3165irq_req_fail:
3166	dma_pool_destroy(udc->dd_cache);
3167dma_alloc_fail:
3168	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3169			  udc->udca_v_base, udc->udca_p_base);
3170i2c_fail:
3171	clk_disable_unprepare(udc->usb_slv_clk);
3172	dev_err(udc->dev, "%s probe failed, %d\n", driver_name, retval);
3173
3174	return retval;
3175}
3176
3177static void lpc32xx_udc_remove(struct platform_device *pdev)
3178{
3179	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3180
3181	usb_del_gadget_udc(&udc->gadget);
3182	if (udc->driver) {
3183		dev_err(&pdev->dev,
3184			"Driver still in use but removing anyhow\n");
3185		return;
3186	}
3187
3188	udc_clk_set(udc, 1);
3189	udc_disable(udc);
3190	pullup(udc, 0);
3191
3192	device_init_wakeup(&pdev->dev, 0);
3193	remove_debug_file(udc);
3194
3195	dma_pool_destroy(udc->dd_cache);
3196	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3197			  udc->udca_v_base, udc->udca_p_base);
3198
3199	clk_disable_unprepare(udc->usb_slv_clk);
3200}
3201
3202#ifdef CONFIG_PM
3203static int lpc32xx_udc_suspend(struct platform_device *pdev, pm_message_t mesg)
3204{
3205	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3206
3207	if (udc->clocked) {
3208		/* Power down ISP */
3209		udc->poweron = 0;
3210		isp1301_set_powerstate(udc, 0);
3211
3212		/* Disable clocking */
3213		udc_clk_set(udc, 0);
3214
3215		/* Keep clock flag on, so we know to re-enable clocks
3216		   on resume */
3217		udc->clocked = 1;
3218
3219		/* Kill global USB clock */
3220		clk_disable_unprepare(udc->usb_slv_clk);
3221	}
3222
3223	return 0;
3224}
3225
3226static int lpc32xx_udc_resume(struct platform_device *pdev)
3227{
3228	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3229
3230	if (udc->clocked) {
3231		/* Enable global USB clock */
3232		clk_prepare_enable(udc->usb_slv_clk);
3233
3234		/* Enable clocking */
3235		udc_clk_set(udc, 1);
3236
3237		/* ISP back to normal power mode */
3238		udc->poweron = 1;
3239		isp1301_set_powerstate(udc, 1);
3240	}
3241
3242	return 0;
3243}
3244#else
3245#define	lpc32xx_udc_suspend	NULL
3246#define	lpc32xx_udc_resume	NULL
3247#endif
3248
3249#ifdef CONFIG_OF
3250static const struct of_device_id lpc32xx_udc_of_match[] = {
3251	{ .compatible = "nxp,lpc3220-udc", },
3252	{ },
3253};
3254MODULE_DEVICE_TABLE(of, lpc32xx_udc_of_match);
3255#endif
3256
3257static struct platform_driver lpc32xx_udc_driver = {
3258	.probe		= lpc32xx_udc_probe,
3259	.remove_new	= lpc32xx_udc_remove,
3260	.shutdown	= lpc32xx_udc_shutdown,
3261	.suspend	= lpc32xx_udc_suspend,
3262	.resume		= lpc32xx_udc_resume,
3263	.driver		= {
3264		.name	= driver_name,
3265		.of_match_table = of_match_ptr(lpc32xx_udc_of_match),
3266	},
3267};
3268
3269module_platform_driver(lpc32xx_udc_driver);
3270
3271MODULE_DESCRIPTION("LPC32XX udc driver");
3272MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
3273MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
3274MODULE_LICENSE("GPL");
3275MODULE_ALIAS("platform:lpc32xx_udc");
3276