1// SPDX-License-Identifier: GPL-2.0+
2/* Faraday FOTG210 EHCI-like driver
3 *
4 * Copyright (c) 2013 Faraday Technology Corporation
5 *
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 *	   Feng-Hsin Chiang <john453@faraday-tech.com>
8 *	   Po-Yu Chuang <ratbert.chuang@gmail.com>
9 *
10 * Most of code borrowed from the Linux-3.7 EHCI driver
11 */
12#include <linux/module.h>
13#include <linux/of.h>
14#include <linux/device.h>
15#include <linux/dmapool.h>
16#include <linux/kernel.h>
17#include <linux/delay.h>
18#include <linux/ioport.h>
19#include <linux/sched.h>
20#include <linux/vmalloc.h>
21#include <linux/errno.h>
22#include <linux/init.h>
23#include <linux/hrtimer.h>
24#include <linux/list.h>
25#include <linux/interrupt.h>
26#include <linux/usb.h>
27#include <linux/usb/hcd.h>
28#include <linux/moduleparam.h>
29#include <linux/dma-mapping.h>
30#include <linux/debugfs.h>
31#include <linux/slab.h>
32#include <linux/uaccess.h>
33#include <linux/platform_device.h>
34#include <linux/io.h>
35#include <linux/iopoll.h>
36
37#include <asm/byteorder.h>
38#include <asm/irq.h>
39#include <asm/unaligned.h>
40
41#include "fotg210.h"
42
43static const char hcd_name[] = "fotg210_hcd";
44
45#undef FOTG210_URB_TRACE
46#define FOTG210_STATS
47
48/* magic numbers that can affect system performance */
49#define FOTG210_TUNE_CERR	3 /* 0-3 qtd retries; 0 == don't stop */
50#define FOTG210_TUNE_RL_HS	4 /* nak throttle; see 4.9 */
51#define FOTG210_TUNE_RL_TT	0
52#define FOTG210_TUNE_MULT_HS	1 /* 1-3 transactions/uframe; 4.10.3 */
53#define FOTG210_TUNE_MULT_TT	1
54
55/* Some drivers think it's safe to schedule isochronous transfers more than 256
56 * ms into the future (partly as a result of an old bug in the scheduling
57 * code).  In an attempt to avoid trouble, we will use a minimum scheduling
58 * length of 512 frames instead of 256.
59 */
60#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
61
62/* Initial IRQ latency:  faster than hw default */
63static int log2_irq_thresh; /* 0 to 6 */
64module_param(log2_irq_thresh, int, S_IRUGO);
65MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
66
67/* initial park setting:  slower than hw default */
68static unsigned park;
69module_param(park, uint, S_IRUGO);
70MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
71
72/* for link power management(LPM) feature */
73static unsigned int hird;
74module_param(hird, int, S_IRUGO);
75MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
76
77#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
78
79#include "fotg210-hcd.h"
80
81#define fotg210_dbg(fotg210, fmt, args...) \
82	dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
83#define fotg210_err(fotg210, fmt, args...) \
84	dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
85#define fotg210_info(fotg210, fmt, args...) \
86	dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
87#define fotg210_warn(fotg210, fmt, args...) \
88	dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
89
90/* check the values in the HCSPARAMS register (host controller _Structural_
91 * parameters) see EHCI spec, Table 2-4 for each value
92 */
93static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
94{
95	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
96
97	fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
98			HCS_N_PORTS(params));
99}
100
101/* check the values in the HCCPARAMS register (host controller _Capability_
102 * parameters) see EHCI Spec, Table 2-5 for each value
103 */
104static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
105{
106	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
107
108	fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
109			params,
110			HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
111			HCC_CANPARK(params) ? " park" : "");
112}
113
114static void __maybe_unused
115dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
116{
117	fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
118			hc32_to_cpup(fotg210, &qtd->hw_next),
119			hc32_to_cpup(fotg210, &qtd->hw_alt_next),
120			hc32_to_cpup(fotg210, &qtd->hw_token),
121			hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
122	if (qtd->hw_buf[1])
123		fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
124				hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
125				hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
126				hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
127				hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
128}
129
130static void __maybe_unused
131dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
132{
133	struct fotg210_qh_hw *hw = qh->hw;
134
135	fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
136			hw->hw_next, hw->hw_info1, hw->hw_info2,
137			hw->hw_current);
138
139	dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
140}
141
142static void __maybe_unused
143dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
144{
145	fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
146			itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
147			itd->urb);
148
149	fotg210_dbg(fotg210,
150			"  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
151			hc32_to_cpu(fotg210, itd->hw_transaction[0]),
152			hc32_to_cpu(fotg210, itd->hw_transaction[1]),
153			hc32_to_cpu(fotg210, itd->hw_transaction[2]),
154			hc32_to_cpu(fotg210, itd->hw_transaction[3]),
155			hc32_to_cpu(fotg210, itd->hw_transaction[4]),
156			hc32_to_cpu(fotg210, itd->hw_transaction[5]),
157			hc32_to_cpu(fotg210, itd->hw_transaction[6]),
158			hc32_to_cpu(fotg210, itd->hw_transaction[7]));
159
160	fotg210_dbg(fotg210,
161			"  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
162			hc32_to_cpu(fotg210, itd->hw_bufp[0]),
163			hc32_to_cpu(fotg210, itd->hw_bufp[1]),
164			hc32_to_cpu(fotg210, itd->hw_bufp[2]),
165			hc32_to_cpu(fotg210, itd->hw_bufp[3]),
166			hc32_to_cpu(fotg210, itd->hw_bufp[4]),
167			hc32_to_cpu(fotg210, itd->hw_bufp[5]),
168			hc32_to_cpu(fotg210, itd->hw_bufp[6]));
169
170	fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
171			itd->index[0], itd->index[1], itd->index[2],
172			itd->index[3], itd->index[4], itd->index[5],
173			itd->index[6], itd->index[7]);
174}
175
176static int __maybe_unused
177dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
178{
179	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
180			label, label[0] ? " " : "", status,
181			(status & STS_ASS) ? " Async" : "",
182			(status & STS_PSS) ? " Periodic" : "",
183			(status & STS_RECL) ? " Recl" : "",
184			(status & STS_HALT) ? " Halt" : "",
185			(status & STS_IAA) ? " IAA" : "",
186			(status & STS_FATAL) ? " FATAL" : "",
187			(status & STS_FLR) ? " FLR" : "",
188			(status & STS_PCD) ? " PCD" : "",
189			(status & STS_ERR) ? " ERR" : "",
190			(status & STS_INT) ? " INT" : "");
191}
192
193static int __maybe_unused
194dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
195{
196	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
197			label, label[0] ? " " : "", enable,
198			(enable & STS_IAA) ? " IAA" : "",
199			(enable & STS_FATAL) ? " FATAL" : "",
200			(enable & STS_FLR) ? " FLR" : "",
201			(enable & STS_PCD) ? " PCD" : "",
202			(enable & STS_ERR) ? " ERR" : "",
203			(enable & STS_INT) ? " INT" : "");
204}
205
206static const char *const fls_strings[] = { "1024", "512", "256", "??" };
207
208static int dbg_command_buf(char *buf, unsigned len, const char *label,
209		u32 command)
210{
211	return scnprintf(buf, len,
212			"%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
213			label, label[0] ? " " : "", command,
214			(command & CMD_PARK) ? " park" : "(park)",
215			CMD_PARK_CNT(command),
216			(command >> 16) & 0x3f,
217			(command & CMD_IAAD) ? " IAAD" : "",
218			(command & CMD_ASE) ? " Async" : "",
219			(command & CMD_PSE) ? " Periodic" : "",
220			fls_strings[(command >> 2) & 0x3],
221			(command & CMD_RESET) ? " Reset" : "",
222			(command & CMD_RUN) ? "RUN" : "HALT");
223}
224
225static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
226		u32 status)
227{
228	char *sig;
229
230	/* signaling state */
231	switch (status & (3 << 10)) {
232	case 0 << 10:
233		sig = "se0";
234		break;
235	case 1 << 10:
236		sig = "k";
237		break; /* low speed */
238	case 2 << 10:
239		sig = "j";
240		break;
241	default:
242		sig = "?";
243		break;
244	}
245
246	scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
247			label, label[0] ? " " : "", port, status,
248			status >> 25, /*device address */
249			sig,
250			(status & PORT_RESET) ? " RESET" : "",
251			(status & PORT_SUSPEND) ? " SUSPEND" : "",
252			(status & PORT_RESUME) ? " RESUME" : "",
253			(status & PORT_PEC) ? " PEC" : "",
254			(status & PORT_PE) ? " PE" : "",
255			(status & PORT_CSC) ? " CSC" : "",
256			(status & PORT_CONNECT) ? " CONNECT" : "");
257
258	return buf;
259}
260
261/* functions have the "wrong" filename when they're output... */
262#define dbg_status(fotg210, label, status) {			\
263	char _buf[80];						\
264	dbg_status_buf(_buf, sizeof(_buf), label, status);	\
265	fotg210_dbg(fotg210, "%s\n", _buf);			\
266}
267
268#define dbg_cmd(fotg210, label, command) {			\
269	char _buf[80];						\
270	dbg_command_buf(_buf, sizeof(_buf), label, command);	\
271	fotg210_dbg(fotg210, "%s\n", _buf);			\
272}
273
274#define dbg_port(fotg210, label, port, status) {			       \
275	char _buf[80];							       \
276	fotg210_dbg(fotg210, "%s\n",					       \
277			dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
278}
279
280/* troubleshooting help: expose state in debugfs */
281static int debug_async_open(struct inode *, struct file *);
282static int debug_periodic_open(struct inode *, struct file *);
283static int debug_registers_open(struct inode *, struct file *);
284static int debug_async_open(struct inode *, struct file *);
285
286static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
287static int debug_close(struct inode *, struct file *);
288
289static const struct file_operations debug_async_fops = {
290	.owner		= THIS_MODULE,
291	.open		= debug_async_open,
292	.read		= debug_output,
293	.release	= debug_close,
294	.llseek		= default_llseek,
295};
296static const struct file_operations debug_periodic_fops = {
297	.owner		= THIS_MODULE,
298	.open		= debug_periodic_open,
299	.read		= debug_output,
300	.release	= debug_close,
301	.llseek		= default_llseek,
302};
303static const struct file_operations debug_registers_fops = {
304	.owner		= THIS_MODULE,
305	.open		= debug_registers_open,
306	.read		= debug_output,
307	.release	= debug_close,
308	.llseek		= default_llseek,
309};
310
311static struct dentry *fotg210_debug_root;
312
313struct debug_buffer {
314	ssize_t (*fill_func)(struct debug_buffer *);	/* fill method */
315	struct usb_bus *bus;
316	struct mutex mutex;	/* protect filling of buffer */
317	size_t count;		/* number of characters filled into buffer */
318	char *output_buf;
319	size_t alloc_size;
320};
321
322static inline char speed_char(u32 scratch)
323{
324	switch (scratch & (3 << 12)) {
325	case QH_FULL_SPEED:
326		return 'f';
327
328	case QH_LOW_SPEED:
329		return 'l';
330
331	case QH_HIGH_SPEED:
332		return 'h';
333
334	default:
335		return '?';
336	}
337}
338
339static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
340{
341	__u32 v = hc32_to_cpu(fotg210, token);
342
343	if (v & QTD_STS_ACTIVE)
344		return '*';
345	if (v & QTD_STS_HALT)
346		return '-';
347	if (!IS_SHORT_READ(v))
348		return ' ';
349	/* tries to advance through hw_alt_next */
350	return '/';
351}
352
353static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
354		char **nextp, unsigned *sizep)
355{
356	u32 scratch;
357	u32 hw_curr;
358	struct fotg210_qtd *td;
359	unsigned temp;
360	unsigned size = *sizep;
361	char *next = *nextp;
362	char mark;
363	__le32 list_end = FOTG210_LIST_END(fotg210);
364	struct fotg210_qh_hw *hw = qh->hw;
365
366	if (hw->hw_qtd_next == list_end) /* NEC does this */
367		mark = '@';
368	else
369		mark = token_mark(fotg210, hw->hw_token);
370	if (mark == '/') { /* qh_alt_next controls qh advance? */
371		if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
372		    fotg210->async->hw->hw_alt_next)
373			mark = '#'; /* blocked */
374		else if (hw->hw_alt_next == list_end)
375			mark = '.'; /* use hw_qtd_next */
376		/* else alt_next points to some other qtd */
377	}
378	scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
379	hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
380	temp = scnprintf(next, size,
381			"qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
382			qh, scratch & 0x007f,
383			speed_char(scratch),
384			(scratch >> 8) & 0x000f,
385			scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
386			hc32_to_cpup(fotg210, &hw->hw_token), mark,
387			(cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
388				? "data1" : "data0",
389			(hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
390	size -= temp;
391	next += temp;
392
393	/* hc may be modifying the list as we read it ... */
394	list_for_each_entry(td, &qh->qtd_list, qtd_list) {
395		scratch = hc32_to_cpup(fotg210, &td->hw_token);
396		mark = ' ';
397		if (hw_curr == td->qtd_dma)
398			mark = '*';
399		else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
400			mark = '+';
401		else if (QTD_LENGTH(scratch)) {
402			if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
403				mark = '#';
404			else if (td->hw_alt_next != list_end)
405				mark = '/';
406		}
407		temp = scnprintf(next, size,
408				 "\n\t%p%c%s len=%d %08x urb %p",
409				 td, mark, ({ char *tmp;
410				switch ((scratch>>8)&0x03) {
411				case 0:
412					tmp = "out";
413					break;
414				case 1:
415					tmp = "in";
416					break;
417				case 2:
418					tmp = "setup";
419					break;
420				default:
421					tmp = "?";
422					break;
423				 } tmp; }),
424				(scratch >> 16) & 0x7fff,
425				scratch,
426				td->urb);
427		size -= temp;
428		next += temp;
429	}
430
431	temp = scnprintf(next, size, "\n");
432
433	size -= temp;
434	next += temp;
435
436	*sizep = size;
437	*nextp = next;
438}
439
440static ssize_t fill_async_buffer(struct debug_buffer *buf)
441{
442	struct usb_hcd *hcd;
443	struct fotg210_hcd *fotg210;
444	unsigned long flags;
445	unsigned temp, size;
446	char *next;
447	struct fotg210_qh *qh;
448
449	hcd = bus_to_hcd(buf->bus);
450	fotg210 = hcd_to_fotg210(hcd);
451	next = buf->output_buf;
452	size = buf->alloc_size;
453
454	*next = 0;
455
456	/* dumps a snapshot of the async schedule.
457	 * usually empty except for long-term bulk reads, or head.
458	 * one QH per line, and TDs we know about
459	 */
460	spin_lock_irqsave(&fotg210->lock, flags);
461	for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
462			qh = qh->qh_next.qh)
463		qh_lines(fotg210, qh, &next, &size);
464	if (fotg210->async_unlink && size > 0) {
465		temp = scnprintf(next, size, "\nunlink =\n");
466		size -= temp;
467		next += temp;
468
469		for (qh = fotg210->async_unlink; size > 0 && qh;
470				qh = qh->unlink_next)
471			qh_lines(fotg210, qh, &next, &size);
472	}
473	spin_unlock_irqrestore(&fotg210->lock, flags);
474
475	return strlen(buf->output_buf);
476}
477
478/* count tds, get ep direction */
479static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
480		struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
481{
482	u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
483	struct fotg210_qtd *qtd;
484	char *type = "";
485	unsigned temp = 0;
486
487	/* count tds, get ep direction */
488	list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
489		temp++;
490		switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
491		case 0:
492			type = "out";
493			continue;
494		case 1:
495			type = "in";
496			continue;
497		}
498	}
499
500	return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
501			speed_char(scratch), scratch & 0x007f,
502			(scratch >> 8) & 0x000f, type, qh->usecs,
503			qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
504}
505
506#define DBG_SCHED_LIMIT 64
507static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
508{
509	struct usb_hcd *hcd;
510	struct fotg210_hcd *fotg210;
511	unsigned long flags;
512	union fotg210_shadow p, *seen;
513	unsigned temp, size, seen_count;
514	char *next;
515	unsigned i;
516	__hc32 tag;
517
518	seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
519	if (!seen)
520		return 0;
521
522	seen_count = 0;
523
524	hcd = bus_to_hcd(buf->bus);
525	fotg210 = hcd_to_fotg210(hcd);
526	next = buf->output_buf;
527	size = buf->alloc_size;
528
529	temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
530	size -= temp;
531	next += temp;
532
533	/* dump a snapshot of the periodic schedule.
534	 * iso changes, interrupt usually doesn't.
535	 */
536	spin_lock_irqsave(&fotg210->lock, flags);
537	for (i = 0; i < fotg210->periodic_size; i++) {
538		p = fotg210->pshadow[i];
539		if (likely(!p.ptr))
540			continue;
541
542		tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
543
544		temp = scnprintf(next, size, "%4d: ", i);
545		size -= temp;
546		next += temp;
547
548		do {
549			struct fotg210_qh_hw *hw;
550
551			switch (hc32_to_cpu(fotg210, tag)) {
552			case Q_TYPE_QH:
553				hw = p.qh->hw;
554				temp = scnprintf(next, size, " qh%d-%04x/%p",
555						p.qh->period,
556						hc32_to_cpup(fotg210,
557							&hw->hw_info2)
558							/* uframe masks */
559							& (QH_CMASK | QH_SMASK),
560						p.qh);
561				size -= temp;
562				next += temp;
563				/* don't repeat what follows this qh */
564				for (temp = 0; temp < seen_count; temp++) {
565					if (seen[temp].ptr != p.ptr)
566						continue;
567					if (p.qh->qh_next.ptr) {
568						temp = scnprintf(next, size,
569								" ...");
570						size -= temp;
571						next += temp;
572					}
573					break;
574				}
575				/* show more info the first time around */
576				if (temp == seen_count) {
577					temp = output_buf_tds_dir(next,
578							fotg210, hw,
579							p.qh, size);
580
581					if (seen_count < DBG_SCHED_LIMIT)
582						seen[seen_count++].qh = p.qh;
583				} else
584					temp = 0;
585				tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
586				p = p.qh->qh_next;
587				break;
588			case Q_TYPE_FSTN:
589				temp = scnprintf(next, size,
590						" fstn-%8x/%p",
591						p.fstn->hw_prev, p.fstn);
592				tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
593				p = p.fstn->fstn_next;
594				break;
595			case Q_TYPE_ITD:
596				temp = scnprintf(next, size,
597						" itd/%p", p.itd);
598				tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
599				p = p.itd->itd_next;
600				break;
601			}
602			size -= temp;
603			next += temp;
604		} while (p.ptr);
605
606		temp = scnprintf(next, size, "\n");
607		size -= temp;
608		next += temp;
609	}
610	spin_unlock_irqrestore(&fotg210->lock, flags);
611	kfree(seen);
612
613	return buf->alloc_size - size;
614}
615#undef DBG_SCHED_LIMIT
616
617static const char *rh_state_string(struct fotg210_hcd *fotg210)
618{
619	switch (fotg210->rh_state) {
620	case FOTG210_RH_HALTED:
621		return "halted";
622	case FOTG210_RH_SUSPENDED:
623		return "suspended";
624	case FOTG210_RH_RUNNING:
625		return "running";
626	case FOTG210_RH_STOPPING:
627		return "stopping";
628	}
629	return "?";
630}
631
632static ssize_t fill_registers_buffer(struct debug_buffer *buf)
633{
634	struct usb_hcd *hcd;
635	struct fotg210_hcd *fotg210;
636	unsigned long flags;
637	unsigned temp, size, i;
638	char *next, scratch[80];
639	static const char fmt[] = "%*s\n";
640	static const char label[] = "";
641
642	hcd = bus_to_hcd(buf->bus);
643	fotg210 = hcd_to_fotg210(hcd);
644	next = buf->output_buf;
645	size = buf->alloc_size;
646
647	spin_lock_irqsave(&fotg210->lock, flags);
648
649	if (!HCD_HW_ACCESSIBLE(hcd)) {
650		size = scnprintf(next, size,
651				"bus %s, device %s\n"
652				"%s\n"
653				"SUSPENDED(no register access)\n",
654				hcd->self.controller->bus->name,
655				dev_name(hcd->self.controller),
656				hcd->product_desc);
657		goto done;
658	}
659
660	/* Capability Registers */
661	i = HC_VERSION(fotg210, fotg210_readl(fotg210,
662			&fotg210->caps->hc_capbase));
663	temp = scnprintf(next, size,
664			"bus %s, device %s\n"
665			"%s\n"
666			"EHCI %x.%02x, rh state %s\n",
667			hcd->self.controller->bus->name,
668			dev_name(hcd->self.controller),
669			hcd->product_desc,
670			i >> 8, i & 0x0ff, rh_state_string(fotg210));
671	size -= temp;
672	next += temp;
673
674	/* FIXME interpret both types of params */
675	i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
676	temp = scnprintf(next, size, "structural params 0x%08x\n", i);
677	size -= temp;
678	next += temp;
679
680	i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
681	temp = scnprintf(next, size, "capability params 0x%08x\n", i);
682	size -= temp;
683	next += temp;
684
685	/* Operational Registers */
686	temp = dbg_status_buf(scratch, sizeof(scratch), label,
687			fotg210_readl(fotg210, &fotg210->regs->status));
688	temp = scnprintf(next, size, fmt, temp, scratch);
689	size -= temp;
690	next += temp;
691
692	temp = dbg_command_buf(scratch, sizeof(scratch), label,
693			fotg210_readl(fotg210, &fotg210->regs->command));
694	temp = scnprintf(next, size, fmt, temp, scratch);
695	size -= temp;
696	next += temp;
697
698	temp = dbg_intr_buf(scratch, sizeof(scratch), label,
699			fotg210_readl(fotg210, &fotg210->regs->intr_enable));
700	temp = scnprintf(next, size, fmt, temp, scratch);
701	size -= temp;
702	next += temp;
703
704	temp = scnprintf(next, size, "uframe %04x\n",
705			fotg210_read_frame_index(fotg210));
706	size -= temp;
707	next += temp;
708
709	if (fotg210->async_unlink) {
710		temp = scnprintf(next, size, "async unlink qh %p\n",
711				fotg210->async_unlink);
712		size -= temp;
713		next += temp;
714	}
715
716#ifdef FOTG210_STATS
717	temp = scnprintf(next, size,
718			"irq normal %ld err %ld iaa %ld(lost %ld)\n",
719			fotg210->stats.normal, fotg210->stats.error,
720			fotg210->stats.iaa, fotg210->stats.lost_iaa);
721	size -= temp;
722	next += temp;
723
724	temp = scnprintf(next, size, "complete %ld unlink %ld\n",
725			fotg210->stats.complete, fotg210->stats.unlink);
726	size -= temp;
727	next += temp;
728#endif
729
730done:
731	spin_unlock_irqrestore(&fotg210->lock, flags);
732
733	return buf->alloc_size - size;
734}
735
736static struct debug_buffer
737*alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
738{
739	struct debug_buffer *buf;
740
741	buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
742
743	if (buf) {
744		buf->bus = bus;
745		buf->fill_func = fill_func;
746		mutex_init(&buf->mutex);
747		buf->alloc_size = PAGE_SIZE;
748	}
749
750	return buf;
751}
752
753static int fill_buffer(struct debug_buffer *buf)
754{
755	int ret = 0;
756
757	if (!buf->output_buf)
758		buf->output_buf = vmalloc(buf->alloc_size);
759
760	if (!buf->output_buf) {
761		ret = -ENOMEM;
762		goto out;
763	}
764
765	ret = buf->fill_func(buf);
766
767	if (ret >= 0) {
768		buf->count = ret;
769		ret = 0;
770	}
771
772out:
773	return ret;
774}
775
776static ssize_t debug_output(struct file *file, char __user *user_buf,
777		size_t len, loff_t *offset)
778{
779	struct debug_buffer *buf = file->private_data;
780	int ret = 0;
781
782	mutex_lock(&buf->mutex);
783	if (buf->count == 0) {
784		ret = fill_buffer(buf);
785		if (ret != 0) {
786			mutex_unlock(&buf->mutex);
787			goto out;
788		}
789	}
790	mutex_unlock(&buf->mutex);
791
792	ret = simple_read_from_buffer(user_buf, len, offset,
793			buf->output_buf, buf->count);
794
795out:
796	return ret;
797
798}
799
800static int debug_close(struct inode *inode, struct file *file)
801{
802	struct debug_buffer *buf = file->private_data;
803
804	if (buf) {
805		vfree(buf->output_buf);
806		kfree(buf);
807	}
808
809	return 0;
810}
811static int debug_async_open(struct inode *inode, struct file *file)
812{
813	file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
814
815	return file->private_data ? 0 : -ENOMEM;
816}
817
818static int debug_periodic_open(struct inode *inode, struct file *file)
819{
820	struct debug_buffer *buf;
821
822	buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
823	if (!buf)
824		return -ENOMEM;
825
826	buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
827	file->private_data = buf;
828	return 0;
829}
830
831static int debug_registers_open(struct inode *inode, struct file *file)
832{
833	file->private_data = alloc_buffer(inode->i_private,
834			fill_registers_buffer);
835
836	return file->private_data ? 0 : -ENOMEM;
837}
838
839static inline void create_debug_files(struct fotg210_hcd *fotg210)
840{
841	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
842	struct dentry *root;
843
844	root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
845
846	debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
847	debugfs_create_file("periodic", S_IRUGO, root, bus,
848			    &debug_periodic_fops);
849	debugfs_create_file("registers", S_IRUGO, root, bus,
850			    &debug_registers_fops);
851}
852
853static inline void remove_debug_files(struct fotg210_hcd *fotg210)
854{
855	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
856
857	debugfs_lookup_and_remove(bus->bus_name, fotg210_debug_root);
858}
859
860/* handshake - spin reading hc until handshake completes or fails
861 * @ptr: address of hc register to be read
862 * @mask: bits to look at in result of read
863 * @done: value of those bits when handshake succeeds
864 * @usec: timeout in microseconds
865 *
866 * Returns negative errno, or zero on success
867 *
868 * Success happens when the "mask" bits have the specified value (hardware
869 * handshake done).  There are two failure modes:  "usec" have passed (major
870 * hardware flakeout), or the register reads as all-ones (hardware removed).
871 *
872 * That last failure should_only happen in cases like physical cardbus eject
873 * before driver shutdown. But it also seems to be caused by bugs in cardbus
874 * bridge shutdown:  shutting down the bridge before the devices using it.
875 */
876static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
877		u32 mask, u32 done, int usec)
878{
879	u32 result;
880	int ret;
881
882	ret = readl_poll_timeout_atomic(ptr, result,
883					((result & mask) == done ||
884					 result == U32_MAX), 1, usec);
885	if (result == U32_MAX)		/* card removed */
886		return -ENODEV;
887
888	return ret;
889}
890
891/* Force HC to halt state from unknown (EHCI spec section 2.3).
892 * Must be called with interrupts enabled and the lock not held.
893 */
894static int fotg210_halt(struct fotg210_hcd *fotg210)
895{
896	u32 temp;
897
898	spin_lock_irq(&fotg210->lock);
899
900	/* disable any irqs left enabled by previous code */
901	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
902
903	/*
904	 * This routine gets called during probe before fotg210->command
905	 * has been initialized, so we can't rely on its value.
906	 */
907	fotg210->command &= ~CMD_RUN;
908	temp = fotg210_readl(fotg210, &fotg210->regs->command);
909	temp &= ~(CMD_RUN | CMD_IAAD);
910	fotg210_writel(fotg210, temp, &fotg210->regs->command);
911
912	spin_unlock_irq(&fotg210->lock);
913	synchronize_irq(fotg210_to_hcd(fotg210)->irq);
914
915	return handshake(fotg210, &fotg210->regs->status,
916			STS_HALT, STS_HALT, 16 * 125);
917}
918
919/* Reset a non-running (STS_HALT == 1) controller.
920 * Must be called with interrupts enabled and the lock not held.
921 */
922static int fotg210_reset(struct fotg210_hcd *fotg210)
923{
924	int retval;
925	u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
926
927	/* If the EHCI debug controller is active, special care must be
928	 * taken before and after a host controller reset
929	 */
930	if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
931		fotg210->debug = NULL;
932
933	command |= CMD_RESET;
934	dbg_cmd(fotg210, "reset", command);
935	fotg210_writel(fotg210, command, &fotg210->regs->command);
936	fotg210->rh_state = FOTG210_RH_HALTED;
937	fotg210->next_statechange = jiffies;
938	retval = handshake(fotg210, &fotg210->regs->command,
939			CMD_RESET, 0, 250 * 1000);
940
941	if (retval)
942		return retval;
943
944	if (fotg210->debug)
945		dbgp_external_startup(fotg210_to_hcd(fotg210));
946
947	fotg210->port_c_suspend = fotg210->suspended_ports =
948			fotg210->resuming_ports = 0;
949	return retval;
950}
951
952/* Idle the controller (turn off the schedules).
953 * Must be called with interrupts enabled and the lock not held.
954 */
955static void fotg210_quiesce(struct fotg210_hcd *fotg210)
956{
957	u32 temp;
958
959	if (fotg210->rh_state != FOTG210_RH_RUNNING)
960		return;
961
962	/* wait for any schedule enables/disables to take effect */
963	temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
964	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
965			16 * 125);
966
967	/* then disable anything that's still active */
968	spin_lock_irq(&fotg210->lock);
969	fotg210->command &= ~(CMD_ASE | CMD_PSE);
970	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
971	spin_unlock_irq(&fotg210->lock);
972
973	/* hardware can take 16 microframes to turn off ... */
974	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
975			16 * 125);
976}
977
978static void end_unlink_async(struct fotg210_hcd *fotg210);
979static void unlink_empty_async(struct fotg210_hcd *fotg210);
980static void fotg210_work(struct fotg210_hcd *fotg210);
981static void start_unlink_intr(struct fotg210_hcd *fotg210,
982			      struct fotg210_qh *qh);
983static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
984
985/* Set a bit in the USBCMD register */
986static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
987{
988	fotg210->command |= bit;
989	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
990
991	/* unblock posted write */
992	fotg210_readl(fotg210, &fotg210->regs->command);
993}
994
995/* Clear a bit in the USBCMD register */
996static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
997{
998	fotg210->command &= ~bit;
999	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1000
1001	/* unblock posted write */
1002	fotg210_readl(fotg210, &fotg210->regs->command);
1003}
1004
1005/* EHCI timer support...  Now using hrtimers.
1006 *
1007 * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1008 * the timer routine runs, it checks each possible event; events that are
1009 * currently enabled and whose expiration time has passed get handled.
1010 * The set of enabled events is stored as a collection of bitflags in
1011 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1012 * increasing delay values (ranging between 1 ms and 100 ms).
1013 *
1014 * Rather than implementing a sorted list or tree of all pending events,
1015 * we keep track only of the lowest-numbered pending event, in
1016 * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1017 * expiration time is set to the timeout value for this event.
1018 *
1019 * As a result, events might not get handled right away; the actual delay
1020 * could be anywhere up to twice the requested delay.  This doesn't
1021 * matter, because none of the events are especially time-critical.  The
1022 * ones that matter most all have a delay of 1 ms, so they will be
1023 * handled after 2 ms at most, which is okay.  In addition to this, we
1024 * allow for an expiration range of 1 ms.
1025 */
1026
1027/* Delay lengths for the hrtimer event types.
1028 * Keep this list sorted by delay length, in the same order as
1029 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1030 */
1031static unsigned event_delays_ns[] = {
1032	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_ASS */
1033	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_PSS */
1034	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_DEAD */
1035	1125 * NSEC_PER_USEC,	/* FOTG210_HRTIMER_UNLINK_INTR */
1036	2 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_FREE_ITDS */
1037	6 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1038	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IAA_WATCHDOG */
1039	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1040	15 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_ASYNC */
1041	100 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IO_WATCHDOG */
1042};
1043
1044/* Enable a pending hrtimer event */
1045static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1046		bool resched)
1047{
1048	ktime_t *timeout = &fotg210->hr_timeouts[event];
1049
1050	if (resched)
1051		*timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1052	fotg210->enabled_hrtimer_events |= (1 << event);
1053
1054	/* Track only the lowest-numbered pending event */
1055	if (event < fotg210->next_hrtimer_event) {
1056		fotg210->next_hrtimer_event = event;
1057		hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1058				NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1059	}
1060}
1061
1062
1063/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1064static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1065{
1066	unsigned actual, want;
1067
1068	/* Don't enable anything if the controller isn't running (e.g., died) */
1069	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1070		return;
1071
1072	want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1073	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1074
1075	if (want != actual) {
1076
1077		/* Poll again later, but give up after about 20 ms */
1078		if (fotg210->ASS_poll_count++ < 20) {
1079			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1080					true);
1081			return;
1082		}
1083		fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1084				want, actual);
1085	}
1086	fotg210->ASS_poll_count = 0;
1087
1088	/* The status is up-to-date; restart or stop the schedule as needed */
1089	if (want == 0) {	/* Stopped */
1090		if (fotg210->async_count > 0)
1091			fotg210_set_command_bit(fotg210, CMD_ASE);
1092
1093	} else {		/* Running */
1094		if (fotg210->async_count == 0) {
1095
1096			/* Turn off the schedule after a while */
1097			fotg210_enable_event(fotg210,
1098					FOTG210_HRTIMER_DISABLE_ASYNC,
1099					true);
1100		}
1101	}
1102}
1103
1104/* Turn off the async schedule after a brief delay */
1105static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1106{
1107	fotg210_clear_command_bit(fotg210, CMD_ASE);
1108}
1109
1110
1111/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1112static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1113{
1114	unsigned actual, want;
1115
1116	/* Don't do anything if the controller isn't running (e.g., died) */
1117	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1118		return;
1119
1120	want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1121	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1122
1123	if (want != actual) {
1124
1125		/* Poll again later, but give up after about 20 ms */
1126		if (fotg210->PSS_poll_count++ < 20) {
1127			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1128					true);
1129			return;
1130		}
1131		fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1132				want, actual);
1133	}
1134	fotg210->PSS_poll_count = 0;
1135
1136	/* The status is up-to-date; restart or stop the schedule as needed */
1137	if (want == 0) {	/* Stopped */
1138		if (fotg210->periodic_count > 0)
1139			fotg210_set_command_bit(fotg210, CMD_PSE);
1140
1141	} else {		/* Running */
1142		if (fotg210->periodic_count == 0) {
1143
1144			/* Turn off the schedule after a while */
1145			fotg210_enable_event(fotg210,
1146					FOTG210_HRTIMER_DISABLE_PERIODIC,
1147					true);
1148		}
1149	}
1150}
1151
1152/* Turn off the periodic schedule after a brief delay */
1153static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1154{
1155	fotg210_clear_command_bit(fotg210, CMD_PSE);
1156}
1157
1158
1159/* Poll the STS_HALT status bit; see when a dead controller stops */
1160static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1161{
1162	if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1163
1164		/* Give up after a few milliseconds */
1165		if (fotg210->died_poll_count++ < 5) {
1166			/* Try again later */
1167			fotg210_enable_event(fotg210,
1168					FOTG210_HRTIMER_POLL_DEAD, true);
1169			return;
1170		}
1171		fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1172	}
1173
1174	/* Clean up the mess */
1175	fotg210->rh_state = FOTG210_RH_HALTED;
1176	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1177	fotg210_work(fotg210);
1178	end_unlink_async(fotg210);
1179
1180	/* Not in process context, so don't try to reset the controller */
1181}
1182
1183
1184/* Handle unlinked interrupt QHs once they are gone from the hardware */
1185static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1186{
1187	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1188
1189	/*
1190	 * Process all the QHs on the intr_unlink list that were added
1191	 * before the current unlink cycle began.  The list is in
1192	 * temporal order, so stop when we reach the first entry in the
1193	 * current cycle.  But if the root hub isn't running then
1194	 * process all the QHs on the list.
1195	 */
1196	fotg210->intr_unlinking = true;
1197	while (fotg210->intr_unlink) {
1198		struct fotg210_qh *qh = fotg210->intr_unlink;
1199
1200		if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1201			break;
1202		fotg210->intr_unlink = qh->unlink_next;
1203		qh->unlink_next = NULL;
1204		end_unlink_intr(fotg210, qh);
1205	}
1206
1207	/* Handle remaining entries later */
1208	if (fotg210->intr_unlink) {
1209		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1210				true);
1211		++fotg210->intr_unlink_cycle;
1212	}
1213	fotg210->intr_unlinking = false;
1214}
1215
1216
1217/* Start another free-iTDs/siTDs cycle */
1218static void start_free_itds(struct fotg210_hcd *fotg210)
1219{
1220	if (!(fotg210->enabled_hrtimer_events &
1221			BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1222		fotg210->last_itd_to_free = list_entry(
1223				fotg210->cached_itd_list.prev,
1224				struct fotg210_itd, itd_list);
1225		fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1226	}
1227}
1228
1229/* Wait for controller to stop using old iTDs and siTDs */
1230static void end_free_itds(struct fotg210_hcd *fotg210)
1231{
1232	struct fotg210_itd *itd, *n;
1233
1234	if (fotg210->rh_state < FOTG210_RH_RUNNING)
1235		fotg210->last_itd_to_free = NULL;
1236
1237	list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1238		list_del(&itd->itd_list);
1239		dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1240		if (itd == fotg210->last_itd_to_free)
1241			break;
1242	}
1243
1244	if (!list_empty(&fotg210->cached_itd_list))
1245		start_free_itds(fotg210);
1246}
1247
1248
1249/* Handle lost (or very late) IAA interrupts */
1250static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1251{
1252	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1253		return;
1254
1255	/*
1256	 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1257	 * So we need this watchdog, but must protect it against both
1258	 * (a) SMP races against real IAA firing and retriggering, and
1259	 * (b) clean HC shutdown, when IAA watchdog was pending.
1260	 */
1261	if (fotg210->async_iaa) {
1262		u32 cmd, status;
1263
1264		/* If we get here, IAA is *REALLY* late.  It's barely
1265		 * conceivable that the system is so busy that CMD_IAAD
1266		 * is still legitimately set, so let's be sure it's
1267		 * clear before we read STS_IAA.  (The HC should clear
1268		 * CMD_IAAD when it sets STS_IAA.)
1269		 */
1270		cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1271
1272		/*
1273		 * If IAA is set here it either legitimately triggered
1274		 * after the watchdog timer expired (_way_ late, so we'll
1275		 * still count it as lost) ... or a silicon erratum:
1276		 * - VIA seems to set IAA without triggering the IRQ;
1277		 * - IAAD potentially cleared without setting IAA.
1278		 */
1279		status = fotg210_readl(fotg210, &fotg210->regs->status);
1280		if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1281			INCR(fotg210->stats.lost_iaa);
1282			fotg210_writel(fotg210, STS_IAA,
1283					&fotg210->regs->status);
1284		}
1285
1286		fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1287				status, cmd);
1288		end_unlink_async(fotg210);
1289	}
1290}
1291
1292
1293/* Enable the I/O watchdog, if appropriate */
1294static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1295{
1296	/* Not needed if the controller isn't running or it's already enabled */
1297	if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1298			(fotg210->enabled_hrtimer_events &
1299			BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1300		return;
1301
1302	/*
1303	 * Isochronous transfers always need the watchdog.
1304	 * For other sorts we use it only if the flag is set.
1305	 */
1306	if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1307			fotg210->async_count + fotg210->intr_count > 0))
1308		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1309				true);
1310}
1311
1312
1313/* Handler functions for the hrtimer event types.
1314 * Keep this array in the same order as the event types indexed by
1315 * enum fotg210_hrtimer_event in fotg210.h.
1316 */
1317static void (*event_handlers[])(struct fotg210_hcd *) = {
1318	fotg210_poll_ASS,			/* FOTG210_HRTIMER_POLL_ASS */
1319	fotg210_poll_PSS,			/* FOTG210_HRTIMER_POLL_PSS */
1320	fotg210_handle_controller_death,	/* FOTG210_HRTIMER_POLL_DEAD */
1321	fotg210_handle_intr_unlinks,	/* FOTG210_HRTIMER_UNLINK_INTR */
1322	end_free_itds,			/* FOTG210_HRTIMER_FREE_ITDS */
1323	unlink_empty_async,		/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1324	fotg210_iaa_watchdog,		/* FOTG210_HRTIMER_IAA_WATCHDOG */
1325	fotg210_disable_PSE,		/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1326	fotg210_disable_ASE,		/* FOTG210_HRTIMER_DISABLE_ASYNC */
1327	fotg210_work,			/* FOTG210_HRTIMER_IO_WATCHDOG */
1328};
1329
1330static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1331{
1332	struct fotg210_hcd *fotg210 =
1333			container_of(t, struct fotg210_hcd, hrtimer);
1334	ktime_t now;
1335	unsigned long events;
1336	unsigned long flags;
1337	unsigned e;
1338
1339	spin_lock_irqsave(&fotg210->lock, flags);
1340
1341	events = fotg210->enabled_hrtimer_events;
1342	fotg210->enabled_hrtimer_events = 0;
1343	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1344
1345	/*
1346	 * Check each pending event.  If its time has expired, handle
1347	 * the event; otherwise re-enable it.
1348	 */
1349	now = ktime_get();
1350	for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1351		if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1352			event_handlers[e](fotg210);
1353		else
1354			fotg210_enable_event(fotg210, e, false);
1355	}
1356
1357	spin_unlock_irqrestore(&fotg210->lock, flags);
1358	return HRTIMER_NORESTART;
1359}
1360
1361#define fotg210_bus_suspend NULL
1362#define fotg210_bus_resume NULL
1363
1364static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1365		u32 __iomem *status_reg, int port_status)
1366{
1367	if (!(port_status & PORT_CONNECT))
1368		return port_status;
1369
1370	/* if reset finished and it's still not enabled -- handoff */
1371	if (!(port_status & PORT_PE))
1372		/* with integrated TT, there's nobody to hand it to! */
1373		fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1374				index + 1);
1375	else
1376		fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1377				index + 1);
1378
1379	return port_status;
1380}
1381
1382
1383/* build "status change" packet (one or two bytes) from HC registers */
1384
1385static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1386{
1387	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1388	u32 temp, status;
1389	u32 mask;
1390	int retval = 1;
1391	unsigned long flags;
1392
1393	/* init status to no-changes */
1394	buf[0] = 0;
1395
1396	/* Inform the core about resumes-in-progress by returning
1397	 * a non-zero value even if there are no status changes.
1398	 */
1399	status = fotg210->resuming_ports;
1400
1401	mask = PORT_CSC | PORT_PEC;
1402	/* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1403
1404	/* no hub change reports (bit 0) for now (power, ...) */
1405
1406	/* port N changes (bit N)? */
1407	spin_lock_irqsave(&fotg210->lock, flags);
1408
1409	temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1410
1411	/*
1412	 * Return status information even for ports with OWNER set.
1413	 * Otherwise hub_wq wouldn't see the disconnect event when a
1414	 * high-speed device is switched over to the companion
1415	 * controller by the user.
1416	 */
1417
1418	if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1419			(fotg210->reset_done[0] &&
1420			time_after_eq(jiffies, fotg210->reset_done[0]))) {
1421		buf[0] |= 1 << 1;
1422		status = STS_PCD;
1423	}
1424	/* FIXME autosuspend idle root hubs */
1425	spin_unlock_irqrestore(&fotg210->lock, flags);
1426	return status ? retval : 0;
1427}
1428
1429static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1430		struct usb_hub_descriptor *desc)
1431{
1432	int ports = HCS_N_PORTS(fotg210->hcs_params);
1433	u16 temp;
1434
1435	desc->bDescriptorType = USB_DT_HUB;
1436	desc->bPwrOn2PwrGood = 10;	/* fotg210 1.0, 2.3.9 says 20ms max */
1437	desc->bHubContrCurrent = 0;
1438
1439	desc->bNbrPorts = ports;
1440	temp = 1 + (ports / 8);
1441	desc->bDescLength = 7 + 2 * temp;
1442
1443	/* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1444	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1445	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1446
1447	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
1448	temp |= HUB_CHAR_NO_LPSM;	/* no power switching */
1449	desc->wHubCharacteristics = cpu_to_le16(temp);
1450}
1451
1452static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1453		u16 wIndex, char *buf, u16 wLength)
1454{
1455	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1456	int ports = HCS_N_PORTS(fotg210->hcs_params);
1457	u32 __iomem *status_reg = &fotg210->regs->port_status;
1458	u32 temp, temp1, status;
1459	unsigned long flags;
1460	int retval = 0;
1461	unsigned selector;
1462
1463	/*
1464	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1465	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1466	 * (track current state ourselves) ... blink for diagnostics,
1467	 * power, "this is the one", etc.  EHCI spec supports this.
1468	 */
1469
1470	spin_lock_irqsave(&fotg210->lock, flags);
1471	switch (typeReq) {
1472	case ClearHubFeature:
1473		switch (wValue) {
1474		case C_HUB_LOCAL_POWER:
1475		case C_HUB_OVER_CURRENT:
1476			/* no hub-wide feature/status flags */
1477			break;
1478		default:
1479			goto error;
1480		}
1481		break;
1482	case ClearPortFeature:
1483		if (!wIndex || wIndex > ports)
1484			goto error;
1485		wIndex--;
1486		temp = fotg210_readl(fotg210, status_reg);
1487		temp &= ~PORT_RWC_BITS;
1488
1489		/*
1490		 * Even if OWNER is set, so the port is owned by the
1491		 * companion controller, hub_wq needs to be able to clear
1492		 * the port-change status bits (especially
1493		 * USB_PORT_STAT_C_CONNECTION).
1494		 */
1495
1496		switch (wValue) {
1497		case USB_PORT_FEAT_ENABLE:
1498			fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1499			break;
1500		case USB_PORT_FEAT_C_ENABLE:
1501			fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1502			break;
1503		case USB_PORT_FEAT_SUSPEND:
1504			if (temp & PORT_RESET)
1505				goto error;
1506			if (!(temp & PORT_SUSPEND))
1507				break;
1508			if ((temp & PORT_PE) == 0)
1509				goto error;
1510
1511			/* resume signaling for 20 msec */
1512			fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1513			fotg210->reset_done[wIndex] = jiffies
1514					+ msecs_to_jiffies(USB_RESUME_TIMEOUT);
1515			break;
1516		case USB_PORT_FEAT_C_SUSPEND:
1517			clear_bit(wIndex, &fotg210->port_c_suspend);
1518			break;
1519		case USB_PORT_FEAT_C_CONNECTION:
1520			fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1521			break;
1522		case USB_PORT_FEAT_C_OVER_CURRENT:
1523			fotg210_writel(fotg210, temp | OTGISR_OVC,
1524					&fotg210->regs->otgisr);
1525			break;
1526		case USB_PORT_FEAT_C_RESET:
1527			/* GetPortStatus clears reset */
1528			break;
1529		default:
1530			goto error;
1531		}
1532		fotg210_readl(fotg210, &fotg210->regs->command);
1533		break;
1534	case GetHubDescriptor:
1535		fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1536				buf);
1537		break;
1538	case GetHubStatus:
1539		/* no hub-wide feature/status flags */
1540		memset(buf, 0, 4);
1541		/*cpu_to_le32s ((u32 *) buf); */
1542		break;
1543	case GetPortStatus:
1544		if (!wIndex || wIndex > ports)
1545			goto error;
1546		wIndex--;
1547		status = 0;
1548		temp = fotg210_readl(fotg210, status_reg);
1549
1550		/* wPortChange bits */
1551		if (temp & PORT_CSC)
1552			status |= USB_PORT_STAT_C_CONNECTION << 16;
1553		if (temp & PORT_PEC)
1554			status |= USB_PORT_STAT_C_ENABLE << 16;
1555
1556		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1557		if (temp1 & OTGISR_OVC)
1558			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1559
1560		/* whoever resumes must GetPortStatus to complete it!! */
1561		if (temp & PORT_RESUME) {
1562
1563			/* Remote Wakeup received? */
1564			if (!fotg210->reset_done[wIndex]) {
1565				/* resume signaling for 20 msec */
1566				fotg210->reset_done[wIndex] = jiffies
1567						+ msecs_to_jiffies(20);
1568				/* check the port again */
1569				mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1570						fotg210->reset_done[wIndex]);
1571			}
1572
1573			/* resume completed? */
1574			else if (time_after_eq(jiffies,
1575					fotg210->reset_done[wIndex])) {
1576				clear_bit(wIndex, &fotg210->suspended_ports);
1577				set_bit(wIndex, &fotg210->port_c_suspend);
1578				fotg210->reset_done[wIndex] = 0;
1579
1580				/* stop resume signaling */
1581				temp = fotg210_readl(fotg210, status_reg);
1582				fotg210_writel(fotg210, temp &
1583						~(PORT_RWC_BITS | PORT_RESUME),
1584						status_reg);
1585				clear_bit(wIndex, &fotg210->resuming_ports);
1586				retval = handshake(fotg210, status_reg,
1587						PORT_RESUME, 0, 2000);/* 2ms */
1588				if (retval != 0) {
1589					fotg210_err(fotg210,
1590							"port %d resume error %d\n",
1591							wIndex + 1, retval);
1592					goto error;
1593				}
1594				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1595			}
1596		}
1597
1598		/* whoever resets must GetPortStatus to complete it!! */
1599		if ((temp & PORT_RESET) && time_after_eq(jiffies,
1600				fotg210->reset_done[wIndex])) {
1601			status |= USB_PORT_STAT_C_RESET << 16;
1602			fotg210->reset_done[wIndex] = 0;
1603			clear_bit(wIndex, &fotg210->resuming_ports);
1604
1605			/* force reset to complete */
1606			fotg210_writel(fotg210,
1607					temp & ~(PORT_RWC_BITS | PORT_RESET),
1608					status_reg);
1609			/* REVISIT:  some hardware needs 550+ usec to clear
1610			 * this bit; seems too long to spin routinely...
1611			 */
1612			retval = handshake(fotg210, status_reg,
1613					PORT_RESET, 0, 1000);
1614			if (retval != 0) {
1615				fotg210_err(fotg210, "port %d reset error %d\n",
1616						wIndex + 1, retval);
1617				goto error;
1618			}
1619
1620			/* see what we found out */
1621			temp = check_reset_complete(fotg210, wIndex, status_reg,
1622					fotg210_readl(fotg210, status_reg));
1623
1624			/* restart schedule */
1625			fotg210->command |= CMD_RUN;
1626			fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1627		}
1628
1629		if (!(temp & (PORT_RESUME|PORT_RESET))) {
1630			fotg210->reset_done[wIndex] = 0;
1631			clear_bit(wIndex, &fotg210->resuming_ports);
1632		}
1633
1634		/* transfer dedicated ports to the companion hc */
1635		if ((temp & PORT_CONNECT) &&
1636				test_bit(wIndex, &fotg210->companion_ports)) {
1637			temp &= ~PORT_RWC_BITS;
1638			fotg210_writel(fotg210, temp, status_reg);
1639			fotg210_dbg(fotg210, "port %d --> companion\n",
1640					wIndex + 1);
1641			temp = fotg210_readl(fotg210, status_reg);
1642		}
1643
1644		/*
1645		 * Even if OWNER is set, there's no harm letting hub_wq
1646		 * see the wPortStatus values (they should all be 0 except
1647		 * for PORT_POWER anyway).
1648		 */
1649
1650		if (temp & PORT_CONNECT) {
1651			status |= USB_PORT_STAT_CONNECTION;
1652			status |= fotg210_port_speed(fotg210, temp);
1653		}
1654		if (temp & PORT_PE)
1655			status |= USB_PORT_STAT_ENABLE;
1656
1657		/* maybe the port was unsuspended without our knowledge */
1658		if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1659			status |= USB_PORT_STAT_SUSPEND;
1660		} else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1661			clear_bit(wIndex, &fotg210->suspended_ports);
1662			clear_bit(wIndex, &fotg210->resuming_ports);
1663			fotg210->reset_done[wIndex] = 0;
1664			if (temp & PORT_PE)
1665				set_bit(wIndex, &fotg210->port_c_suspend);
1666		}
1667
1668		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1669		if (temp1 & OTGISR_OVC)
1670			status |= USB_PORT_STAT_OVERCURRENT;
1671		if (temp & PORT_RESET)
1672			status |= USB_PORT_STAT_RESET;
1673		if (test_bit(wIndex, &fotg210->port_c_suspend))
1674			status |= USB_PORT_STAT_C_SUSPEND << 16;
1675
1676		if (status & ~0xffff)	/* only if wPortChange is interesting */
1677			dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1678		put_unaligned_le32(status, buf);
1679		break;
1680	case SetHubFeature:
1681		switch (wValue) {
1682		case C_HUB_LOCAL_POWER:
1683		case C_HUB_OVER_CURRENT:
1684			/* no hub-wide feature/status flags */
1685			break;
1686		default:
1687			goto error;
1688		}
1689		break;
1690	case SetPortFeature:
1691		selector = wIndex >> 8;
1692		wIndex &= 0xff;
1693
1694		if (!wIndex || wIndex > ports)
1695			goto error;
1696		wIndex--;
1697		temp = fotg210_readl(fotg210, status_reg);
1698		temp &= ~PORT_RWC_BITS;
1699		switch (wValue) {
1700		case USB_PORT_FEAT_SUSPEND:
1701			if ((temp & PORT_PE) == 0
1702					|| (temp & PORT_RESET) != 0)
1703				goto error;
1704
1705			/* After above check the port must be connected.
1706			 * Set appropriate bit thus could put phy into low power
1707			 * mode if we have hostpc feature
1708			 */
1709			fotg210_writel(fotg210, temp | PORT_SUSPEND,
1710					status_reg);
1711			set_bit(wIndex, &fotg210->suspended_ports);
1712			break;
1713		case USB_PORT_FEAT_RESET:
1714			if (temp & PORT_RESUME)
1715				goto error;
1716			/* line status bits may report this as low speed,
1717			 * which can be fine if this root hub has a
1718			 * transaction translator built in.
1719			 */
1720			fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1721			temp |= PORT_RESET;
1722			temp &= ~PORT_PE;
1723
1724			/*
1725			 * caller must wait, then call GetPortStatus
1726			 * usb 2.0 spec says 50 ms resets on root
1727			 */
1728			fotg210->reset_done[wIndex] = jiffies
1729					+ msecs_to_jiffies(50);
1730			fotg210_writel(fotg210, temp, status_reg);
1731			break;
1732
1733		/* For downstream facing ports (these):  one hub port is put
1734		 * into test mode according to USB2 11.24.2.13, then the hub
1735		 * must be reset (which for root hub now means rmmod+modprobe,
1736		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1737		 * about the EHCI-specific stuff.
1738		 */
1739		case USB_PORT_FEAT_TEST:
1740			if (!selector || selector > 5)
1741				goto error;
1742			spin_unlock_irqrestore(&fotg210->lock, flags);
1743			fotg210_quiesce(fotg210);
1744			spin_lock_irqsave(&fotg210->lock, flags);
1745
1746			/* Put all enabled ports into suspend */
1747			temp = fotg210_readl(fotg210, status_reg) &
1748				~PORT_RWC_BITS;
1749			if (temp & PORT_PE)
1750				fotg210_writel(fotg210, temp | PORT_SUSPEND,
1751						status_reg);
1752
1753			spin_unlock_irqrestore(&fotg210->lock, flags);
1754			fotg210_halt(fotg210);
1755			spin_lock_irqsave(&fotg210->lock, flags);
1756
1757			temp = fotg210_readl(fotg210, status_reg);
1758			temp |= selector << 16;
1759			fotg210_writel(fotg210, temp, status_reg);
1760			break;
1761
1762		default:
1763			goto error;
1764		}
1765		fotg210_readl(fotg210, &fotg210->regs->command);
1766		break;
1767
1768	default:
1769error:
1770		/* "stall" on error */
1771		retval = -EPIPE;
1772	}
1773	spin_unlock_irqrestore(&fotg210->lock, flags);
1774	return retval;
1775}
1776
1777static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1778		int portnum)
1779{
1780	return;
1781}
1782
1783static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1784		int portnum)
1785{
1786	return 0;
1787}
1788
1789/* There's basically three types of memory:
1790 *	- data used only by the HCD ... kmalloc is fine
1791 *	- async and periodic schedules, shared by HC and HCD ... these
1792 *	  need to use dma_pool or dma_alloc_coherent
1793 *	- driver buffers, read/written by HC ... single shot DMA mapped
1794 *
1795 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1796 * No memory seen by this driver is pageable.
1797 */
1798
1799/* Allocate the key transfer structures from the previously allocated pool */
1800static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1801		struct fotg210_qtd *qtd, dma_addr_t dma)
1802{
1803	memset(qtd, 0, sizeof(*qtd));
1804	qtd->qtd_dma = dma;
1805	qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1806	qtd->hw_next = FOTG210_LIST_END(fotg210);
1807	qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1808	INIT_LIST_HEAD(&qtd->qtd_list);
1809}
1810
1811static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1812		gfp_t flags)
1813{
1814	struct fotg210_qtd *qtd;
1815	dma_addr_t dma;
1816
1817	qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1818	if (qtd != NULL)
1819		fotg210_qtd_init(fotg210, qtd, dma);
1820
1821	return qtd;
1822}
1823
1824static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1825		struct fotg210_qtd *qtd)
1826{
1827	dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1828}
1829
1830
1831static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1832{
1833	/* clean qtds first, and know this is not linked */
1834	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1835		fotg210_dbg(fotg210, "unused qh not empty!\n");
1836		BUG();
1837	}
1838	if (qh->dummy)
1839		fotg210_qtd_free(fotg210, qh->dummy);
1840	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1841	kfree(qh);
1842}
1843
1844static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1845		gfp_t flags)
1846{
1847	struct fotg210_qh *qh;
1848	dma_addr_t dma;
1849
1850	qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1851	if (!qh)
1852		goto done;
1853	qh->hw = (struct fotg210_qh_hw *)
1854		dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1855	if (!qh->hw)
1856		goto fail;
1857	qh->qh_dma = dma;
1858	INIT_LIST_HEAD(&qh->qtd_list);
1859
1860	/* dummy td enables safe urb queuing */
1861	qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1862	if (qh->dummy == NULL) {
1863		fotg210_dbg(fotg210, "no dummy td\n");
1864		goto fail1;
1865	}
1866done:
1867	return qh;
1868fail1:
1869	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1870fail:
1871	kfree(qh);
1872	return NULL;
1873}
1874
1875/* The queue heads and transfer descriptors are managed from pools tied
1876 * to each of the "per device" structures.
1877 * This is the initialisation and cleanup code.
1878 */
1879
1880static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1881{
1882	if (fotg210->async)
1883		qh_destroy(fotg210, fotg210->async);
1884	fotg210->async = NULL;
1885
1886	if (fotg210->dummy)
1887		qh_destroy(fotg210, fotg210->dummy);
1888	fotg210->dummy = NULL;
1889
1890	/* DMA consistent memory and pools */
1891	dma_pool_destroy(fotg210->qtd_pool);
1892	fotg210->qtd_pool = NULL;
1893
1894	dma_pool_destroy(fotg210->qh_pool);
1895	fotg210->qh_pool = NULL;
1896
1897	dma_pool_destroy(fotg210->itd_pool);
1898	fotg210->itd_pool = NULL;
1899
1900	if (fotg210->periodic)
1901		dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1902				fotg210->periodic_size * sizeof(u32),
1903				fotg210->periodic, fotg210->periodic_dma);
1904	fotg210->periodic = NULL;
1905
1906	/* shadow periodic table */
1907	kfree(fotg210->pshadow);
1908	fotg210->pshadow = NULL;
1909}
1910
1911/* remember to add cleanup code (above) if you add anything here */
1912static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1913{
1914	int i;
1915
1916	/* QTDs for control/bulk/intr transfers */
1917	fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1918			fotg210_to_hcd(fotg210)->self.controller,
1919			sizeof(struct fotg210_qtd),
1920			32 /* byte alignment (for hw parts) */,
1921			4096 /* can't cross 4K */);
1922	if (!fotg210->qtd_pool)
1923		goto fail;
1924
1925	/* QHs for control/bulk/intr transfers */
1926	fotg210->qh_pool = dma_pool_create("fotg210_qh",
1927			fotg210_to_hcd(fotg210)->self.controller,
1928			sizeof(struct fotg210_qh_hw),
1929			32 /* byte alignment (for hw parts) */,
1930			4096 /* can't cross 4K */);
1931	if (!fotg210->qh_pool)
1932		goto fail;
1933
1934	fotg210->async = fotg210_qh_alloc(fotg210, flags);
1935	if (!fotg210->async)
1936		goto fail;
1937
1938	/* ITD for high speed ISO transfers */
1939	fotg210->itd_pool = dma_pool_create("fotg210_itd",
1940			fotg210_to_hcd(fotg210)->self.controller,
1941			sizeof(struct fotg210_itd),
1942			64 /* byte alignment (for hw parts) */,
1943			4096 /* can't cross 4K */);
1944	if (!fotg210->itd_pool)
1945		goto fail;
1946
1947	/* Hardware periodic table */
1948	fotg210->periodic =
1949		dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1950				fotg210->periodic_size * sizeof(__le32),
1951				&fotg210->periodic_dma, 0);
1952	if (fotg210->periodic == NULL)
1953		goto fail;
1954
1955	for (i = 0; i < fotg210->periodic_size; i++)
1956		fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1957
1958	/* software shadow of hardware table */
1959	fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1960			flags);
1961	if (fotg210->pshadow != NULL)
1962		return 0;
1963
1964fail:
1965	fotg210_dbg(fotg210, "couldn't init memory\n");
1966	fotg210_mem_cleanup(fotg210);
1967	return -ENOMEM;
1968}
1969/* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1970 *
1971 * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
1972 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1973 * buffers needed for the larger number).  We use one QH per endpoint, queue
1974 * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
1975 *
1976 * ISO traffic uses "ISO TD" (itd) records, and (along with
1977 * interrupts) needs careful scheduling.  Performance improvements can be
1978 * an ongoing challenge.  That's in "ehci-sched.c".
1979 *
1980 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1981 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1982 * (b) special fields in qh entries or (c) split iso entries.  TTs will
1983 * buffer low/full speed data so the host collects it at high speed.
1984 */
1985
1986/* fill a qtd, returning how much of the buffer we were able to queue up */
1987static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1988		dma_addr_t buf, size_t len, int token, int maxpacket)
1989{
1990	int i, count;
1991	u64 addr = buf;
1992
1993	/* one buffer entry per 4K ... first might be short or unaligned */
1994	qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
1995	qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
1996	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
1997	if (likely(len < count))		/* ... iff needed */
1998		count = len;
1999	else {
2000		buf +=  0x1000;
2001		buf &= ~0x0fff;
2002
2003		/* per-qtd limit: from 16K to 20K (best alignment) */
2004		for (i = 1; count < len && i < 5; i++) {
2005			addr = buf;
2006			qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2007			qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2008					(u32)(addr >> 32));
2009			buf += 0x1000;
2010			if ((count + 0x1000) < len)
2011				count += 0x1000;
2012			else
2013				count = len;
2014		}
2015
2016		/* short packets may only terminate transfers */
2017		if (count != len)
2018			count -= (count % maxpacket);
2019	}
2020	qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2021	qtd->length = count;
2022
2023	return count;
2024}
2025
2026static inline void qh_update(struct fotg210_hcd *fotg210,
2027		struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2028{
2029	struct fotg210_qh_hw *hw = qh->hw;
2030
2031	/* writes to an active overlay are unsafe */
2032	BUG_ON(qh->qh_state != QH_STATE_IDLE);
2033
2034	hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2035	hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2036
2037	/* Except for control endpoints, we make hardware maintain data
2038	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2039	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2040	 * ever clear it.
2041	 */
2042	if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2043		unsigned is_out, epnum;
2044
2045		is_out = qh->is_out;
2046		epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2047		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2048			hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2049			usb_settoggle(qh->dev, epnum, is_out, 1);
2050		}
2051	}
2052
2053	hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2054}
2055
2056/* if it weren't for a common silicon quirk (writing the dummy into the qh
2057 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2058 * recovery (including urb dequeue) would need software changes to a QH...
2059 */
2060static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2061{
2062	struct fotg210_qtd *qtd;
2063
2064	if (list_empty(&qh->qtd_list))
2065		qtd = qh->dummy;
2066	else {
2067		qtd = list_entry(qh->qtd_list.next,
2068				struct fotg210_qtd, qtd_list);
2069		/*
2070		 * first qtd may already be partially processed.
2071		 * If we come here during unlink, the QH overlay region
2072		 * might have reference to the just unlinked qtd. The
2073		 * qtd is updated in qh_completions(). Update the QH
2074		 * overlay here.
2075		 */
2076		if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2077			qh->hw->hw_qtd_next = qtd->hw_next;
2078			qtd = NULL;
2079		}
2080	}
2081
2082	if (qtd)
2083		qh_update(fotg210, qh, qtd);
2084}
2085
2086static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2087
2088static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2089		struct usb_host_endpoint *ep)
2090{
2091	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2092	struct fotg210_qh *qh = ep->hcpriv;
2093	unsigned long flags;
2094
2095	spin_lock_irqsave(&fotg210->lock, flags);
2096	qh->clearing_tt = 0;
2097	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2098			&& fotg210->rh_state == FOTG210_RH_RUNNING)
2099		qh_link_async(fotg210, qh);
2100	spin_unlock_irqrestore(&fotg210->lock, flags);
2101}
2102
2103static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2104		struct fotg210_qh *qh, struct urb *urb, u32 token)
2105{
2106
2107	/* If an async split transaction gets an error or is unlinked,
2108	 * the TT buffer may be left in an indeterminate state.  We
2109	 * have to clear the TT buffer.
2110	 *
2111	 * Note: this routine is never called for Isochronous transfers.
2112	 */
2113	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2114		struct usb_device *tt = urb->dev->tt->hub;
2115
2116		dev_dbg(&tt->dev,
2117				"clear tt buffer port %d, a%d ep%d t%08x\n",
2118				urb->dev->ttport, urb->dev->devnum,
2119				usb_pipeendpoint(urb->pipe), token);
2120
2121		if (urb->dev->tt->hub !=
2122				fotg210_to_hcd(fotg210)->self.root_hub) {
2123			if (usb_hub_clear_tt_buffer(urb) == 0)
2124				qh->clearing_tt = 1;
2125		}
2126	}
2127}
2128
2129static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2130		size_t length, u32 token)
2131{
2132	int status = -EINPROGRESS;
2133
2134	/* count IN/OUT bytes, not SETUP (even short packets) */
2135	if (likely(QTD_PID(token) != 2))
2136		urb->actual_length += length - QTD_LENGTH(token);
2137
2138	/* don't modify error codes */
2139	if (unlikely(urb->unlinked))
2140		return status;
2141
2142	/* force cleanup after short read; not always an error */
2143	if (unlikely(IS_SHORT_READ(token)))
2144		status = -EREMOTEIO;
2145
2146	/* serious "can't proceed" faults reported by the hardware */
2147	if (token & QTD_STS_HALT) {
2148		if (token & QTD_STS_BABBLE) {
2149			/* FIXME "must" disable babbling device's port too */
2150			status = -EOVERFLOW;
2151		/* CERR nonzero + halt --> stall */
2152		} else if (QTD_CERR(token)) {
2153			status = -EPIPE;
2154
2155		/* In theory, more than one of the following bits can be set
2156		 * since they are sticky and the transaction is retried.
2157		 * Which to test first is rather arbitrary.
2158		 */
2159		} else if (token & QTD_STS_MMF) {
2160			/* fs/ls interrupt xfer missed the complete-split */
2161			status = -EPROTO;
2162		} else if (token & QTD_STS_DBE) {
2163			status = (QTD_PID(token) == 1) /* IN ? */
2164				? -ENOSR  /* hc couldn't read data */
2165				: -ECOMM; /* hc couldn't write data */
2166		} else if (token & QTD_STS_XACT) {
2167			/* timeout, bad CRC, wrong PID, etc */
2168			fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2169					urb->dev->devpath,
2170					usb_pipeendpoint(urb->pipe),
2171					usb_pipein(urb->pipe) ? "in" : "out");
2172			status = -EPROTO;
2173		} else {	/* unknown */
2174			status = -EPROTO;
2175		}
2176
2177		fotg210_dbg(fotg210,
2178				"dev%d ep%d%s qtd token %08x --> status %d\n",
2179				usb_pipedevice(urb->pipe),
2180				usb_pipeendpoint(urb->pipe),
2181				usb_pipein(urb->pipe) ? "in" : "out",
2182				token, status);
2183	}
2184
2185	return status;
2186}
2187
2188static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2189		int status)
2190__releases(fotg210->lock)
2191__acquires(fotg210->lock)
2192{
2193	if (likely(urb->hcpriv != NULL)) {
2194		struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2195
2196		/* S-mask in a QH means it's an interrupt urb */
2197		if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2198
2199			/* ... update hc-wide periodic stats (for usbfs) */
2200			fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2201		}
2202	}
2203
2204	if (unlikely(urb->unlinked)) {
2205		INCR(fotg210->stats.unlink);
2206	} else {
2207		/* report non-error and short read status as zero */
2208		if (status == -EINPROGRESS || status == -EREMOTEIO)
2209			status = 0;
2210		INCR(fotg210->stats.complete);
2211	}
2212
2213#ifdef FOTG210_URB_TRACE
2214	fotg210_dbg(fotg210,
2215			"%s %s urb %p ep%d%s status %d len %d/%d\n",
2216			__func__, urb->dev->devpath, urb,
2217			usb_pipeendpoint(urb->pipe),
2218			usb_pipein(urb->pipe) ? "in" : "out",
2219			status,
2220			urb->actual_length, urb->transfer_buffer_length);
2221#endif
2222
2223	/* complete() can reenter this HCD */
2224	usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2225	spin_unlock(&fotg210->lock);
2226	usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2227	spin_lock(&fotg210->lock);
2228}
2229
2230static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2231
2232/* Process and free completed qtds for a qh, returning URBs to drivers.
2233 * Chases up to qh->hw_current.  Returns number of completions called,
2234 * indicating how much "real" work we did.
2235 */
2236static unsigned qh_completions(struct fotg210_hcd *fotg210,
2237		struct fotg210_qh *qh)
2238{
2239	struct fotg210_qtd *last, *end = qh->dummy;
2240	struct fotg210_qtd *qtd, *tmp;
2241	int last_status;
2242	int stopped;
2243	unsigned count = 0;
2244	u8 state;
2245	struct fotg210_qh_hw *hw = qh->hw;
2246
2247	if (unlikely(list_empty(&qh->qtd_list)))
2248		return count;
2249
2250	/* completions (or tasks on other cpus) must never clobber HALT
2251	 * till we've gone through and cleaned everything up, even when
2252	 * they add urbs to this qh's queue or mark them for unlinking.
2253	 *
2254	 * NOTE:  unlinking expects to be done in queue order.
2255	 *
2256	 * It's a bug for qh->qh_state to be anything other than
2257	 * QH_STATE_IDLE, unless our caller is scan_async() or
2258	 * scan_intr().
2259	 */
2260	state = qh->qh_state;
2261	qh->qh_state = QH_STATE_COMPLETING;
2262	stopped = (state == QH_STATE_IDLE);
2263
2264rescan:
2265	last = NULL;
2266	last_status = -EINPROGRESS;
2267	qh->needs_rescan = 0;
2268
2269	/* remove de-activated QTDs from front of queue.
2270	 * after faults (including short reads), cleanup this urb
2271	 * then let the queue advance.
2272	 * if queue is stopped, handles unlinks.
2273	 */
2274	list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2275		struct urb *urb;
2276		u32 token = 0;
2277
2278		urb = qtd->urb;
2279
2280		/* clean up any state from previous QTD ...*/
2281		if (last) {
2282			if (likely(last->urb != urb)) {
2283				fotg210_urb_done(fotg210, last->urb,
2284						last_status);
2285				count++;
2286				last_status = -EINPROGRESS;
2287			}
2288			fotg210_qtd_free(fotg210, last);
2289			last = NULL;
2290		}
2291
2292		/* ignore urbs submitted during completions we reported */
2293		if (qtd == end)
2294			break;
2295
2296		/* hardware copies qtd out of qh overlay */
2297		rmb();
2298		token = hc32_to_cpu(fotg210, qtd->hw_token);
2299
2300		/* always clean up qtds the hc de-activated */
2301retry_xacterr:
2302		if ((token & QTD_STS_ACTIVE) == 0) {
2303
2304			/* Report Data Buffer Error: non-fatal but useful */
2305			if (token & QTD_STS_DBE)
2306				fotg210_dbg(fotg210,
2307					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2308					urb, usb_endpoint_num(&urb->ep->desc),
2309					usb_endpoint_dir_in(&urb->ep->desc)
2310						? "in" : "out",
2311					urb->transfer_buffer_length, qtd, qh);
2312
2313			/* on STALL, error, and short reads this urb must
2314			 * complete and all its qtds must be recycled.
2315			 */
2316			if ((token & QTD_STS_HALT) != 0) {
2317
2318				/* retry transaction errors until we
2319				 * reach the software xacterr limit
2320				 */
2321				if ((token & QTD_STS_XACT) &&
2322						QTD_CERR(token) == 0 &&
2323						++qh->xacterrs < QH_XACTERR_MAX &&
2324						!urb->unlinked) {
2325					fotg210_dbg(fotg210,
2326						"detected XactErr len %zu/%zu retry %d\n",
2327						qtd->length - QTD_LENGTH(token),
2328						qtd->length,
2329						qh->xacterrs);
2330
2331					/* reset the token in the qtd and the
2332					 * qh overlay (which still contains
2333					 * the qtd) so that we pick up from
2334					 * where we left off
2335					 */
2336					token &= ~QTD_STS_HALT;
2337					token |= QTD_STS_ACTIVE |
2338						 (FOTG210_TUNE_CERR << 10);
2339					qtd->hw_token = cpu_to_hc32(fotg210,
2340							token);
2341					wmb();
2342					hw->hw_token = cpu_to_hc32(fotg210,
2343							token);
2344					goto retry_xacterr;
2345				}
2346				stopped = 1;
2347
2348			/* magic dummy for some short reads; qh won't advance.
2349			 * that silicon quirk can kick in with this dummy too.
2350			 *
2351			 * other short reads won't stop the queue, including
2352			 * control transfers (status stage handles that) or
2353			 * most other single-qtd reads ... the queue stops if
2354			 * URB_SHORT_NOT_OK was set so the driver submitting
2355			 * the urbs could clean it up.
2356			 */
2357			} else if (IS_SHORT_READ(token) &&
2358					!(qtd->hw_alt_next &
2359					FOTG210_LIST_END(fotg210))) {
2360				stopped = 1;
2361			}
2362
2363		/* stop scanning when we reach qtds the hc is using */
2364		} else if (likely(!stopped
2365				&& fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2366			break;
2367
2368		/* scan the whole queue for unlinks whenever it stops */
2369		} else {
2370			stopped = 1;
2371
2372			/* cancel everything if we halt, suspend, etc */
2373			if (fotg210->rh_state < FOTG210_RH_RUNNING)
2374				last_status = -ESHUTDOWN;
2375
2376			/* this qtd is active; skip it unless a previous qtd
2377			 * for its urb faulted, or its urb was canceled.
2378			 */
2379			else if (last_status == -EINPROGRESS && !urb->unlinked)
2380				continue;
2381
2382			/* qh unlinked; token in overlay may be most current */
2383			if (state == QH_STATE_IDLE &&
2384					cpu_to_hc32(fotg210, qtd->qtd_dma)
2385					== hw->hw_current) {
2386				token = hc32_to_cpu(fotg210, hw->hw_token);
2387
2388				/* An unlink may leave an incomplete
2389				 * async transaction in the TT buffer.
2390				 * We have to clear it.
2391				 */
2392				fotg210_clear_tt_buffer(fotg210, qh, urb,
2393						token);
2394			}
2395		}
2396
2397		/* unless we already know the urb's status, collect qtd status
2398		 * and update count of bytes transferred.  in common short read
2399		 * cases with only one data qtd (including control transfers),
2400		 * queue processing won't halt.  but with two or more qtds (for
2401		 * example, with a 32 KB transfer), when the first qtd gets a
2402		 * short read the second must be removed by hand.
2403		 */
2404		if (last_status == -EINPROGRESS) {
2405			last_status = qtd_copy_status(fotg210, urb,
2406					qtd->length, token);
2407			if (last_status == -EREMOTEIO &&
2408					(qtd->hw_alt_next &
2409					FOTG210_LIST_END(fotg210)))
2410				last_status = -EINPROGRESS;
2411
2412			/* As part of low/full-speed endpoint-halt processing
2413			 * we must clear the TT buffer (11.17.5).
2414			 */
2415			if (unlikely(last_status != -EINPROGRESS &&
2416					last_status != -EREMOTEIO)) {
2417				/* The TT's in some hubs malfunction when they
2418				 * receive this request following a STALL (they
2419				 * stop sending isochronous packets).  Since a
2420				 * STALL can't leave the TT buffer in a busy
2421				 * state (if you believe Figures 11-48 - 11-51
2422				 * in the USB 2.0 spec), we won't clear the TT
2423				 * buffer in this case.  Strictly speaking this
2424				 * is a violation of the spec.
2425				 */
2426				if (last_status != -EPIPE)
2427					fotg210_clear_tt_buffer(fotg210, qh,
2428							urb, token);
2429			}
2430		}
2431
2432		/* if we're removing something not at the queue head,
2433		 * patch the hardware queue pointer.
2434		 */
2435		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2436			last = list_entry(qtd->qtd_list.prev,
2437					struct fotg210_qtd, qtd_list);
2438			last->hw_next = qtd->hw_next;
2439		}
2440
2441		/* remove qtd; it's recycled after possible urb completion */
2442		list_del(&qtd->qtd_list);
2443		last = qtd;
2444
2445		/* reinit the xacterr counter for the next qtd */
2446		qh->xacterrs = 0;
2447	}
2448
2449	/* last urb's completion might still need calling */
2450	if (likely(last != NULL)) {
2451		fotg210_urb_done(fotg210, last->urb, last_status);
2452		count++;
2453		fotg210_qtd_free(fotg210, last);
2454	}
2455
2456	/* Do we need to rescan for URBs dequeued during a giveback? */
2457	if (unlikely(qh->needs_rescan)) {
2458		/* If the QH is already unlinked, do the rescan now. */
2459		if (state == QH_STATE_IDLE)
2460			goto rescan;
2461
2462		/* Otherwise we have to wait until the QH is fully unlinked.
2463		 * Our caller will start an unlink if qh->needs_rescan is
2464		 * set.  But if an unlink has already started, nothing needs
2465		 * to be done.
2466		 */
2467		if (state != QH_STATE_LINKED)
2468			qh->needs_rescan = 0;
2469	}
2470
2471	/* restore original state; caller must unlink or relink */
2472	qh->qh_state = state;
2473
2474	/* be sure the hardware's done with the qh before refreshing
2475	 * it after fault cleanup, or recovering from silicon wrongly
2476	 * overlaying the dummy qtd (which reduces DMA chatter).
2477	 */
2478	if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2479		switch (state) {
2480		case QH_STATE_IDLE:
2481			qh_refresh(fotg210, qh);
2482			break;
2483		case QH_STATE_LINKED:
2484			/* We won't refresh a QH that's linked (after the HC
2485			 * stopped the queue).  That avoids a race:
2486			 *  - HC reads first part of QH;
2487			 *  - CPU updates that first part and the token;
2488			 *  - HC reads rest of that QH, including token
2489			 * Result:  HC gets an inconsistent image, and then
2490			 * DMAs to/from the wrong memory (corrupting it).
2491			 *
2492			 * That should be rare for interrupt transfers,
2493			 * except maybe high bandwidth ...
2494			 */
2495
2496			/* Tell the caller to start an unlink */
2497			qh->needs_rescan = 1;
2498			break;
2499		/* otherwise, unlink already started */
2500		}
2501	}
2502
2503	return count;
2504}
2505
2506/* reverse of qh_urb_transaction:  free a list of TDs.
2507 * used for cleanup after errors, before HC sees an URB's TDs.
2508 */
2509static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2510		struct list_head *head)
2511{
2512	struct fotg210_qtd *qtd, *temp;
2513
2514	list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2515		list_del(&qtd->qtd_list);
2516		fotg210_qtd_free(fotg210, qtd);
2517	}
2518}
2519
2520/* create a list of filled qtds for this URB; won't link into qh.
2521 */
2522static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2523		struct urb *urb, struct list_head *head, gfp_t flags)
2524{
2525	struct fotg210_qtd *qtd, *qtd_prev;
2526	dma_addr_t buf;
2527	int len, this_sg_len, maxpacket;
2528	int is_input;
2529	u32 token;
2530	int i;
2531	struct scatterlist *sg;
2532
2533	/*
2534	 * URBs map to sequences of QTDs:  one logical transaction
2535	 */
2536	qtd = fotg210_qtd_alloc(fotg210, flags);
2537	if (unlikely(!qtd))
2538		return NULL;
2539	list_add_tail(&qtd->qtd_list, head);
2540	qtd->urb = urb;
2541
2542	token = QTD_STS_ACTIVE;
2543	token |= (FOTG210_TUNE_CERR << 10);
2544	/* for split transactions, SplitXState initialized to zero */
2545
2546	len = urb->transfer_buffer_length;
2547	is_input = usb_pipein(urb->pipe);
2548	if (usb_pipecontrol(urb->pipe)) {
2549		/* SETUP pid */
2550		qtd_fill(fotg210, qtd, urb->setup_dma,
2551				sizeof(struct usb_ctrlrequest),
2552				token | (2 /* "setup" */ << 8), 8);
2553
2554		/* ... and always at least one more pid */
2555		token ^= QTD_TOGGLE;
2556		qtd_prev = qtd;
2557		qtd = fotg210_qtd_alloc(fotg210, flags);
2558		if (unlikely(!qtd))
2559			goto cleanup;
2560		qtd->urb = urb;
2561		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2562		list_add_tail(&qtd->qtd_list, head);
2563
2564		/* for zero length DATA stages, STATUS is always IN */
2565		if (len == 0)
2566			token |= (1 /* "in" */ << 8);
2567	}
2568
2569	/*
2570	 * data transfer stage:  buffer setup
2571	 */
2572	i = urb->num_mapped_sgs;
2573	if (len > 0 && i > 0) {
2574		sg = urb->sg;
2575		buf = sg_dma_address(sg);
2576
2577		/* urb->transfer_buffer_length may be smaller than the
2578		 * size of the scatterlist (or vice versa)
2579		 */
2580		this_sg_len = min_t(int, sg_dma_len(sg), len);
2581	} else {
2582		sg = NULL;
2583		buf = urb->transfer_dma;
2584		this_sg_len = len;
2585	}
2586
2587	if (is_input)
2588		token |= (1 /* "in" */ << 8);
2589	/* else it's already initted to "out" pid (0 << 8) */
2590
2591	maxpacket = usb_maxpacket(urb->dev, urb->pipe);
2592
2593	/*
2594	 * buffer gets wrapped in one or more qtds;
2595	 * last one may be "short" (including zero len)
2596	 * and may serve as a control status ack
2597	 */
2598	for (;;) {
2599		int this_qtd_len;
2600
2601		this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2602				maxpacket);
2603		this_sg_len -= this_qtd_len;
2604		len -= this_qtd_len;
2605		buf += this_qtd_len;
2606
2607		/*
2608		 * short reads advance to a "magic" dummy instead of the next
2609		 * qtd ... that forces the queue to stop, for manual cleanup.
2610		 * (this will usually be overridden later.)
2611		 */
2612		if (is_input)
2613			qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2614
2615		/* qh makes control packets use qtd toggle; maybe switch it */
2616		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2617			token ^= QTD_TOGGLE;
2618
2619		if (likely(this_sg_len <= 0)) {
2620			if (--i <= 0 || len <= 0)
2621				break;
2622			sg = sg_next(sg);
2623			buf = sg_dma_address(sg);
2624			this_sg_len = min_t(int, sg_dma_len(sg), len);
2625		}
2626
2627		qtd_prev = qtd;
2628		qtd = fotg210_qtd_alloc(fotg210, flags);
2629		if (unlikely(!qtd))
2630			goto cleanup;
2631		qtd->urb = urb;
2632		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2633		list_add_tail(&qtd->qtd_list, head);
2634	}
2635
2636	/*
2637	 * unless the caller requires manual cleanup after short reads,
2638	 * have the alt_next mechanism keep the queue running after the
2639	 * last data qtd (the only one, for control and most other cases).
2640	 */
2641	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2642			usb_pipecontrol(urb->pipe)))
2643		qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2644
2645	/*
2646	 * control requests may need a terminating data "status" ack;
2647	 * other OUT ones may need a terminating short packet
2648	 * (zero length).
2649	 */
2650	if (likely(urb->transfer_buffer_length != 0)) {
2651		int one_more = 0;
2652
2653		if (usb_pipecontrol(urb->pipe)) {
2654			one_more = 1;
2655			token ^= 0x0100;	/* "in" <--> "out"  */
2656			token |= QTD_TOGGLE;	/* force DATA1 */
2657		} else if (usb_pipeout(urb->pipe)
2658				&& (urb->transfer_flags & URB_ZERO_PACKET)
2659				&& !(urb->transfer_buffer_length % maxpacket)) {
2660			one_more = 1;
2661		}
2662		if (one_more) {
2663			qtd_prev = qtd;
2664			qtd = fotg210_qtd_alloc(fotg210, flags);
2665			if (unlikely(!qtd))
2666				goto cleanup;
2667			qtd->urb = urb;
2668			qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2669			list_add_tail(&qtd->qtd_list, head);
2670
2671			/* never any data in such packets */
2672			qtd_fill(fotg210, qtd, 0, 0, token, 0);
2673		}
2674	}
2675
2676	/* by default, enable interrupt on urb completion */
2677	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2678		qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2679	return head;
2680
2681cleanup:
2682	qtd_list_free(fotg210, urb, head);
2683	return NULL;
2684}
2685
2686/* Would be best to create all qh's from config descriptors,
2687 * when each interface/altsetting is established.  Unlink
2688 * any previous qh and cancel its urbs first; endpoints are
2689 * implicitly reset then (data toggle too).
2690 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2691 */
2692
2693
2694/* Each QH holds a qtd list; a QH is used for everything except iso.
2695 *
2696 * For interrupt urbs, the scheduler must set the microframe scheduling
2697 * mask(s) each time the QH gets scheduled.  For highspeed, that's
2698 * just one microframe in the s-mask.  For split interrupt transactions
2699 * there are additional complications: c-mask, maybe FSTNs.
2700 */
2701static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2702		gfp_t flags)
2703{
2704	struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2705	struct usb_host_endpoint *ep;
2706	u32 info1 = 0, info2 = 0;
2707	int is_input, type;
2708	int maxp = 0;
2709	int mult;
2710	struct usb_tt *tt = urb->dev->tt;
2711	struct fotg210_qh_hw *hw;
2712
2713	if (!qh)
2714		return qh;
2715
2716	/*
2717	 * init endpoint/device data for this QH
2718	 */
2719	info1 |= usb_pipeendpoint(urb->pipe) << 8;
2720	info1 |= usb_pipedevice(urb->pipe) << 0;
2721
2722	is_input = usb_pipein(urb->pipe);
2723	type = usb_pipetype(urb->pipe);
2724	ep = usb_pipe_endpoint(urb->dev, urb->pipe);
2725	maxp = usb_endpoint_maxp(&ep->desc);
2726	mult = usb_endpoint_maxp_mult(&ep->desc);
2727
2728	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2729	 * acts like up to 3KB, but is built from smaller packets.
2730	 */
2731	if (maxp > 1024) {
2732		fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp);
2733		goto done;
2734	}
2735
2736	/* Compute interrupt scheduling parameters just once, and save.
2737	 * - allowing for high bandwidth, how many nsec/uframe are used?
2738	 * - split transactions need a second CSPLIT uframe; same question
2739	 * - splits also need a schedule gap (for full/low speed I/O)
2740	 * - qh has a polling interval
2741	 *
2742	 * For control/bulk requests, the HC or TT handles these.
2743	 */
2744	if (type == PIPE_INTERRUPT) {
2745		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2746				is_input, 0, mult * maxp));
2747		qh->start = NO_FRAME;
2748
2749		if (urb->dev->speed == USB_SPEED_HIGH) {
2750			qh->c_usecs = 0;
2751			qh->gap_uf = 0;
2752
2753			qh->period = urb->interval >> 3;
2754			if (qh->period == 0 && urb->interval != 1) {
2755				/* NOTE interval 2 or 4 uframes could work.
2756				 * But interval 1 scheduling is simpler, and
2757				 * includes high bandwidth.
2758				 */
2759				urb->interval = 1;
2760			} else if (qh->period > fotg210->periodic_size) {
2761				qh->period = fotg210->periodic_size;
2762				urb->interval = qh->period << 3;
2763			}
2764		} else {
2765			int think_time;
2766
2767			/* gap is f(FS/LS transfer times) */
2768			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2769					is_input, 0, maxp) / (125 * 1000);
2770
2771			/* FIXME this just approximates SPLIT/CSPLIT times */
2772			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
2773				qh->c_usecs = qh->usecs + HS_USECS(0);
2774				qh->usecs = HS_USECS(1);
2775			} else {		/* SPLIT+DATA, gap, CSPLIT */
2776				qh->usecs += HS_USECS(1);
2777				qh->c_usecs = HS_USECS(0);
2778			}
2779
2780			think_time = tt ? tt->think_time : 0;
2781			qh->tt_usecs = NS_TO_US(think_time +
2782					usb_calc_bus_time(urb->dev->speed,
2783					is_input, 0, maxp));
2784			qh->period = urb->interval;
2785			if (qh->period > fotg210->periodic_size) {
2786				qh->period = fotg210->periodic_size;
2787				urb->interval = qh->period;
2788			}
2789		}
2790	}
2791
2792	/* support for tt scheduling, and access to toggles */
2793	qh->dev = urb->dev;
2794
2795	/* using TT? */
2796	switch (urb->dev->speed) {
2797	case USB_SPEED_LOW:
2798		info1 |= QH_LOW_SPEED;
2799		fallthrough;
2800
2801	case USB_SPEED_FULL:
2802		/* EPS 0 means "full" */
2803		if (type != PIPE_INTERRUPT)
2804			info1 |= (FOTG210_TUNE_RL_TT << 28);
2805		if (type == PIPE_CONTROL) {
2806			info1 |= QH_CONTROL_EP;		/* for TT */
2807			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
2808		}
2809		info1 |= maxp << 16;
2810
2811		info2 |= (FOTG210_TUNE_MULT_TT << 30);
2812
2813		/* Some Freescale processors have an erratum in which the
2814		 * port number in the queue head was 0..N-1 instead of 1..N.
2815		 */
2816		if (fotg210_has_fsl_portno_bug(fotg210))
2817			info2 |= (urb->dev->ttport-1) << 23;
2818		else
2819			info2 |= urb->dev->ttport << 23;
2820
2821		/* set the address of the TT; for TDI's integrated
2822		 * root hub tt, leave it zeroed.
2823		 */
2824		if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2825			info2 |= tt->hub->devnum << 16;
2826
2827		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2828
2829		break;
2830
2831	case USB_SPEED_HIGH:		/* no TT involved */
2832		info1 |= QH_HIGH_SPEED;
2833		if (type == PIPE_CONTROL) {
2834			info1 |= (FOTG210_TUNE_RL_HS << 28);
2835			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
2836			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
2837			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2838		} else if (type == PIPE_BULK) {
2839			info1 |= (FOTG210_TUNE_RL_HS << 28);
2840			/* The USB spec says that high speed bulk endpoints
2841			 * always use 512 byte maxpacket.  But some device
2842			 * vendors decided to ignore that, and MSFT is happy
2843			 * to help them do so.  So now people expect to use
2844			 * such nonconformant devices with Linux too; sigh.
2845			 */
2846			info1 |= maxp << 16;
2847			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2848		} else {		/* PIPE_INTERRUPT */
2849			info1 |= maxp << 16;
2850			info2 |= mult << 30;
2851		}
2852		break;
2853	default:
2854		fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2855				urb->dev->speed);
2856done:
2857		qh_destroy(fotg210, qh);
2858		return NULL;
2859	}
2860
2861	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2862
2863	/* init as live, toggle clear, advance to dummy */
2864	qh->qh_state = QH_STATE_IDLE;
2865	hw = qh->hw;
2866	hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2867	hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2868	qh->is_out = !is_input;
2869	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2870	qh_refresh(fotg210, qh);
2871	return qh;
2872}
2873
2874static void enable_async(struct fotg210_hcd *fotg210)
2875{
2876	if (fotg210->async_count++)
2877		return;
2878
2879	/* Stop waiting to turn off the async schedule */
2880	fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2881
2882	/* Don't start the schedule until ASS is 0 */
2883	fotg210_poll_ASS(fotg210);
2884	turn_on_io_watchdog(fotg210);
2885}
2886
2887static void disable_async(struct fotg210_hcd *fotg210)
2888{
2889	if (--fotg210->async_count)
2890		return;
2891
2892	/* The async schedule and async_unlink list are supposed to be empty */
2893	WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2894
2895	/* Don't turn off the schedule until ASS is 1 */
2896	fotg210_poll_ASS(fotg210);
2897}
2898
2899/* move qh (and its qtds) onto async queue; maybe enable queue.  */
2900
2901static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2902{
2903	__hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2904	struct fotg210_qh *head;
2905
2906	/* Don't link a QH if there's a Clear-TT-Buffer pending */
2907	if (unlikely(qh->clearing_tt))
2908		return;
2909
2910	WARN_ON(qh->qh_state != QH_STATE_IDLE);
2911
2912	/* clear halt and/or toggle; and maybe recover from silicon quirk */
2913	qh_refresh(fotg210, qh);
2914
2915	/* splice right after start */
2916	head = fotg210->async;
2917	qh->qh_next = head->qh_next;
2918	qh->hw->hw_next = head->hw->hw_next;
2919	wmb();
2920
2921	head->qh_next.qh = qh;
2922	head->hw->hw_next = dma;
2923
2924	qh->xacterrs = 0;
2925	qh->qh_state = QH_STATE_LINKED;
2926	/* qtd completions reported later by interrupt */
2927
2928	enable_async(fotg210);
2929}
2930
2931/* For control/bulk/interrupt, return QH with these TDs appended.
2932 * Allocates and initializes the QH if necessary.
2933 * Returns null if it can't allocate a QH it needs to.
2934 * If the QH has TDs (urbs) already, that's great.
2935 */
2936static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2937		struct urb *urb, struct list_head *qtd_list,
2938		int epnum, void **ptr)
2939{
2940	struct fotg210_qh *qh = NULL;
2941	__hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2942
2943	qh = (struct fotg210_qh *) *ptr;
2944	if (unlikely(qh == NULL)) {
2945		/* can't sleep here, we have fotg210->lock... */
2946		qh = qh_make(fotg210, urb, GFP_ATOMIC);
2947		*ptr = qh;
2948	}
2949	if (likely(qh != NULL)) {
2950		struct fotg210_qtd *qtd;
2951
2952		if (unlikely(list_empty(qtd_list)))
2953			qtd = NULL;
2954		else
2955			qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2956					qtd_list);
2957
2958		/* control qh may need patching ... */
2959		if (unlikely(epnum == 0)) {
2960			/* usb_reset_device() briefly reverts to address 0 */
2961			if (usb_pipedevice(urb->pipe) == 0)
2962				qh->hw->hw_info1 &= ~qh_addr_mask;
2963		}
2964
2965		/* just one way to queue requests: swap with the dummy qtd.
2966		 * only hc or qh_refresh() ever modify the overlay.
2967		 */
2968		if (likely(qtd != NULL)) {
2969			struct fotg210_qtd *dummy;
2970			dma_addr_t dma;
2971			__hc32 token;
2972
2973			/* to avoid racing the HC, use the dummy td instead of
2974			 * the first td of our list (becomes new dummy).  both
2975			 * tds stay deactivated until we're done, when the
2976			 * HC is allowed to fetch the old dummy (4.10.2).
2977			 */
2978			token = qtd->hw_token;
2979			qtd->hw_token = HALT_BIT(fotg210);
2980
2981			dummy = qh->dummy;
2982
2983			dma = dummy->qtd_dma;
2984			*dummy = *qtd;
2985			dummy->qtd_dma = dma;
2986
2987			list_del(&qtd->qtd_list);
2988			list_add(&dummy->qtd_list, qtd_list);
2989			list_splice_tail(qtd_list, &qh->qtd_list);
2990
2991			fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
2992			qh->dummy = qtd;
2993
2994			/* hc must see the new dummy at list end */
2995			dma = qtd->qtd_dma;
2996			qtd = list_entry(qh->qtd_list.prev,
2997					struct fotg210_qtd, qtd_list);
2998			qtd->hw_next = QTD_NEXT(fotg210, dma);
2999
3000			/* let the hc process these next qtds */
3001			wmb();
3002			dummy->hw_token = token;
3003
3004			urb->hcpriv = qh;
3005		}
3006	}
3007	return qh;
3008}
3009
3010static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3011		struct list_head *qtd_list, gfp_t mem_flags)
3012{
3013	int epnum;
3014	unsigned long flags;
3015	struct fotg210_qh *qh = NULL;
3016	int rc;
3017
3018	epnum = urb->ep->desc.bEndpointAddress;
3019
3020#ifdef FOTG210_URB_TRACE
3021	{
3022		struct fotg210_qtd *qtd;
3023
3024		qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3025		fotg210_dbg(fotg210,
3026				"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3027				__func__, urb->dev->devpath, urb,
3028				epnum & 0x0f, (epnum & USB_DIR_IN)
3029					? "in" : "out",
3030				urb->transfer_buffer_length,
3031				qtd, urb->ep->hcpriv);
3032	}
3033#endif
3034
3035	spin_lock_irqsave(&fotg210->lock, flags);
3036	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3037		rc = -ESHUTDOWN;
3038		goto done;
3039	}
3040	rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3041	if (unlikely(rc))
3042		goto done;
3043
3044	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3045	if (unlikely(qh == NULL)) {
3046		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3047		rc = -ENOMEM;
3048		goto done;
3049	}
3050
3051	/* Control/bulk operations through TTs don't need scheduling,
3052	 * the HC and TT handle it when the TT has a buffer ready.
3053	 */
3054	if (likely(qh->qh_state == QH_STATE_IDLE))
3055		qh_link_async(fotg210, qh);
3056done:
3057	spin_unlock_irqrestore(&fotg210->lock, flags);
3058	if (unlikely(qh == NULL))
3059		qtd_list_free(fotg210, urb, qtd_list);
3060	return rc;
3061}
3062
3063static void single_unlink_async(struct fotg210_hcd *fotg210,
3064		struct fotg210_qh *qh)
3065{
3066	struct fotg210_qh *prev;
3067
3068	/* Add to the end of the list of QHs waiting for the next IAAD */
3069	qh->qh_state = QH_STATE_UNLINK;
3070	if (fotg210->async_unlink)
3071		fotg210->async_unlink_last->unlink_next = qh;
3072	else
3073		fotg210->async_unlink = qh;
3074	fotg210->async_unlink_last = qh;
3075
3076	/* Unlink it from the schedule */
3077	prev = fotg210->async;
3078	while (prev->qh_next.qh != qh)
3079		prev = prev->qh_next.qh;
3080
3081	prev->hw->hw_next = qh->hw->hw_next;
3082	prev->qh_next = qh->qh_next;
3083	if (fotg210->qh_scan_next == qh)
3084		fotg210->qh_scan_next = qh->qh_next.qh;
3085}
3086
3087static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3088{
3089	/*
3090	 * Do nothing if an IAA cycle is already running or
3091	 * if one will be started shortly.
3092	 */
3093	if (fotg210->async_iaa || fotg210->async_unlinking)
3094		return;
3095
3096	/* Do all the waiting QHs at once */
3097	fotg210->async_iaa = fotg210->async_unlink;
3098	fotg210->async_unlink = NULL;
3099
3100	/* If the controller isn't running, we don't have to wait for it */
3101	if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3102		if (!nested)		/* Avoid recursion */
3103			end_unlink_async(fotg210);
3104
3105	/* Otherwise start a new IAA cycle */
3106	} else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3107		/* Make sure the unlinks are all visible to the hardware */
3108		wmb();
3109
3110		fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3111				&fotg210->regs->command);
3112		fotg210_readl(fotg210, &fotg210->regs->command);
3113		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3114				true);
3115	}
3116}
3117
3118/* the async qh for the qtds being unlinked are now gone from the HC */
3119
3120static void end_unlink_async(struct fotg210_hcd *fotg210)
3121{
3122	struct fotg210_qh *qh;
3123
3124	/* Process the idle QHs */
3125restart:
3126	fotg210->async_unlinking = true;
3127	while (fotg210->async_iaa) {
3128		qh = fotg210->async_iaa;
3129		fotg210->async_iaa = qh->unlink_next;
3130		qh->unlink_next = NULL;
3131
3132		qh->qh_state = QH_STATE_IDLE;
3133		qh->qh_next.qh = NULL;
3134
3135		qh_completions(fotg210, qh);
3136		if (!list_empty(&qh->qtd_list) &&
3137				fotg210->rh_state == FOTG210_RH_RUNNING)
3138			qh_link_async(fotg210, qh);
3139		disable_async(fotg210);
3140	}
3141	fotg210->async_unlinking = false;
3142
3143	/* Start a new IAA cycle if any QHs are waiting for it */
3144	if (fotg210->async_unlink) {
3145		start_iaa_cycle(fotg210, true);
3146		if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3147			goto restart;
3148	}
3149}
3150
3151static void unlink_empty_async(struct fotg210_hcd *fotg210)
3152{
3153	struct fotg210_qh *qh, *next;
3154	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3155	bool check_unlinks_later = false;
3156
3157	/* Unlink all the async QHs that have been empty for a timer cycle */
3158	next = fotg210->async->qh_next.qh;
3159	while (next) {
3160		qh = next;
3161		next = qh->qh_next.qh;
3162
3163		if (list_empty(&qh->qtd_list) &&
3164				qh->qh_state == QH_STATE_LINKED) {
3165			if (!stopped && qh->unlink_cycle ==
3166					fotg210->async_unlink_cycle)
3167				check_unlinks_later = true;
3168			else
3169				single_unlink_async(fotg210, qh);
3170		}
3171	}
3172
3173	/* Start a new IAA cycle if any QHs are waiting for it */
3174	if (fotg210->async_unlink)
3175		start_iaa_cycle(fotg210, false);
3176
3177	/* QHs that haven't been empty for long enough will be handled later */
3178	if (check_unlinks_later) {
3179		fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3180				true);
3181		++fotg210->async_unlink_cycle;
3182	}
3183}
3184
3185/* makes sure the async qh will become idle */
3186/* caller must own fotg210->lock */
3187
3188static void start_unlink_async(struct fotg210_hcd *fotg210,
3189		struct fotg210_qh *qh)
3190{
3191	/*
3192	 * If the QH isn't linked then there's nothing we can do
3193	 * unless we were called during a giveback, in which case
3194	 * qh_completions() has to deal with it.
3195	 */
3196	if (qh->qh_state != QH_STATE_LINKED) {
3197		if (qh->qh_state == QH_STATE_COMPLETING)
3198			qh->needs_rescan = 1;
3199		return;
3200	}
3201
3202	single_unlink_async(fotg210, qh);
3203	start_iaa_cycle(fotg210, false);
3204}
3205
3206static void scan_async(struct fotg210_hcd *fotg210)
3207{
3208	struct fotg210_qh *qh;
3209	bool check_unlinks_later = false;
3210
3211	fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3212	while (fotg210->qh_scan_next) {
3213		qh = fotg210->qh_scan_next;
3214		fotg210->qh_scan_next = qh->qh_next.qh;
3215rescan:
3216		/* clean any finished work for this qh */
3217		if (!list_empty(&qh->qtd_list)) {
3218			int temp;
3219
3220			/*
3221			 * Unlinks could happen here; completion reporting
3222			 * drops the lock.  That's why fotg210->qh_scan_next
3223			 * always holds the next qh to scan; if the next qh
3224			 * gets unlinked then fotg210->qh_scan_next is adjusted
3225			 * in single_unlink_async().
3226			 */
3227			temp = qh_completions(fotg210, qh);
3228			if (qh->needs_rescan) {
3229				start_unlink_async(fotg210, qh);
3230			} else if (list_empty(&qh->qtd_list)
3231					&& qh->qh_state == QH_STATE_LINKED) {
3232				qh->unlink_cycle = fotg210->async_unlink_cycle;
3233				check_unlinks_later = true;
3234			} else if (temp != 0)
3235				goto rescan;
3236		}
3237	}
3238
3239	/*
3240	 * Unlink empty entries, reducing DMA usage as well
3241	 * as HCD schedule-scanning costs.  Delay for any qh
3242	 * we just scanned, there's a not-unusual case that it
3243	 * doesn't stay idle for long.
3244	 */
3245	if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3246			!(fotg210->enabled_hrtimer_events &
3247			BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3248		fotg210_enable_event(fotg210,
3249				FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3250		++fotg210->async_unlink_cycle;
3251	}
3252}
3253/* EHCI scheduled transaction support:  interrupt, iso, split iso
3254 * These are called "periodic" transactions in the EHCI spec.
3255 *
3256 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3257 * with the "asynchronous" transaction support (control/bulk transfers).
3258 * The only real difference is in how interrupt transfers are scheduled.
3259 *
3260 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3261 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3262 * pre-calculated schedule data to make appending to the queue be quick.
3263 */
3264static int fotg210_get_frame(struct usb_hcd *hcd);
3265
3266/* periodic_next_shadow - return "next" pointer on shadow list
3267 * @periodic: host pointer to qh/itd
3268 * @tag: hardware tag for type of this record
3269 */
3270static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3271		union fotg210_shadow *periodic, __hc32 tag)
3272{
3273	switch (hc32_to_cpu(fotg210, tag)) {
3274	case Q_TYPE_QH:
3275		return &periodic->qh->qh_next;
3276	case Q_TYPE_FSTN:
3277		return &periodic->fstn->fstn_next;
3278	default:
3279		return &periodic->itd->itd_next;
3280	}
3281}
3282
3283static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3284		union fotg210_shadow *periodic, __hc32 tag)
3285{
3286	switch (hc32_to_cpu(fotg210, tag)) {
3287	/* our fotg210_shadow.qh is actually software part */
3288	case Q_TYPE_QH:
3289		return &periodic->qh->hw->hw_next;
3290	/* others are hw parts */
3291	default:
3292		return periodic->hw_next;
3293	}
3294}
3295
3296/* caller must hold fotg210->lock */
3297static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3298		void *ptr)
3299{
3300	union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3301	__hc32 *hw_p = &fotg210->periodic[frame];
3302	union fotg210_shadow here = *prev_p;
3303
3304	/* find predecessor of "ptr"; hw and shadow lists are in sync */
3305	while (here.ptr && here.ptr != ptr) {
3306		prev_p = periodic_next_shadow(fotg210, prev_p,
3307				Q_NEXT_TYPE(fotg210, *hw_p));
3308		hw_p = shadow_next_periodic(fotg210, &here,
3309				Q_NEXT_TYPE(fotg210, *hw_p));
3310		here = *prev_p;
3311	}
3312	/* an interrupt entry (at list end) could have been shared */
3313	if (!here.ptr)
3314		return;
3315
3316	/* update shadow and hardware lists ... the old "next" pointers
3317	 * from ptr may still be in use, the caller updates them.
3318	 */
3319	*prev_p = *periodic_next_shadow(fotg210, &here,
3320			Q_NEXT_TYPE(fotg210, *hw_p));
3321
3322	*hw_p = *shadow_next_periodic(fotg210, &here,
3323			Q_NEXT_TYPE(fotg210, *hw_p));
3324}
3325
3326/* how many of the uframe's 125 usecs are allocated? */
3327static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3328		unsigned frame, unsigned uframe)
3329{
3330	__hc32 *hw_p = &fotg210->periodic[frame];
3331	union fotg210_shadow *q = &fotg210->pshadow[frame];
3332	unsigned usecs = 0;
3333	struct fotg210_qh_hw *hw;
3334
3335	while (q->ptr) {
3336		switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3337		case Q_TYPE_QH:
3338			hw = q->qh->hw;
3339			/* is it in the S-mask? */
3340			if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3341				usecs += q->qh->usecs;
3342			/* ... or C-mask? */
3343			if (hw->hw_info2 & cpu_to_hc32(fotg210,
3344					1 << (8 + uframe)))
3345				usecs += q->qh->c_usecs;
3346			hw_p = &hw->hw_next;
3347			q = &q->qh->qh_next;
3348			break;
3349		/* case Q_TYPE_FSTN: */
3350		default:
3351			/* for "save place" FSTNs, count the relevant INTR
3352			 * bandwidth from the previous frame
3353			 */
3354			if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3355				fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3356
3357			hw_p = &q->fstn->hw_next;
3358			q = &q->fstn->fstn_next;
3359			break;
3360		case Q_TYPE_ITD:
3361			if (q->itd->hw_transaction[uframe])
3362				usecs += q->itd->stream->usecs;
3363			hw_p = &q->itd->hw_next;
3364			q = &q->itd->itd_next;
3365			break;
3366		}
3367	}
3368	if (usecs > fotg210->uframe_periodic_max)
3369		fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3370				frame * 8 + uframe, usecs);
3371	return usecs;
3372}
3373
3374static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3375{
3376	if (!dev1->tt || !dev2->tt)
3377		return 0;
3378	if (dev1->tt != dev2->tt)
3379		return 0;
3380	if (dev1->tt->multi)
3381		return dev1->ttport == dev2->ttport;
3382	else
3383		return 1;
3384}
3385
3386/* return true iff the device's transaction translator is available
3387 * for a periodic transfer starting at the specified frame, using
3388 * all the uframes in the mask.
3389 */
3390static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3391		struct usb_device *dev, unsigned frame, u32 uf_mask)
3392{
3393	if (period == 0)	/* error */
3394		return 0;
3395
3396	/* note bandwidth wastage:  split never follows csplit
3397	 * (different dev or endpoint) until the next uframe.
3398	 * calling convention doesn't make that distinction.
3399	 */
3400	for (; frame < fotg210->periodic_size; frame += period) {
3401		union fotg210_shadow here;
3402		__hc32 type;
3403		struct fotg210_qh_hw *hw;
3404
3405		here = fotg210->pshadow[frame];
3406		type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3407		while (here.ptr) {
3408			switch (hc32_to_cpu(fotg210, type)) {
3409			case Q_TYPE_ITD:
3410				type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3411				here = here.itd->itd_next;
3412				continue;
3413			case Q_TYPE_QH:
3414				hw = here.qh->hw;
3415				if (same_tt(dev, here.qh->dev)) {
3416					u32 mask;
3417
3418					mask = hc32_to_cpu(fotg210,
3419							hw->hw_info2);
3420					/* "knows" no gap is needed */
3421					mask |= mask >> 8;
3422					if (mask & uf_mask)
3423						break;
3424				}
3425				type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3426				here = here.qh->qh_next;
3427				continue;
3428			/* case Q_TYPE_FSTN: */
3429			default:
3430				fotg210_dbg(fotg210,
3431						"periodic frame %d bogus type %d\n",
3432						frame, type);
3433			}
3434
3435			/* collision or error */
3436			return 0;
3437		}
3438	}
3439
3440	/* no collision */
3441	return 1;
3442}
3443
3444static void enable_periodic(struct fotg210_hcd *fotg210)
3445{
3446	if (fotg210->periodic_count++)
3447		return;
3448
3449	/* Stop waiting to turn off the periodic schedule */
3450	fotg210->enabled_hrtimer_events &=
3451		~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3452
3453	/* Don't start the schedule until PSS is 0 */
3454	fotg210_poll_PSS(fotg210);
3455	turn_on_io_watchdog(fotg210);
3456}
3457
3458static void disable_periodic(struct fotg210_hcd *fotg210)
3459{
3460	if (--fotg210->periodic_count)
3461		return;
3462
3463	/* Don't turn off the schedule until PSS is 1 */
3464	fotg210_poll_PSS(fotg210);
3465}
3466
3467/* periodic schedule slots have iso tds (normal or split) first, then a
3468 * sparse tree for active interrupt transfers.
3469 *
3470 * this just links in a qh; caller guarantees uframe masks are set right.
3471 * no FSTN support (yet; fotg210 0.96+)
3472 */
3473static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3474{
3475	unsigned i;
3476	unsigned period = qh->period;
3477
3478	dev_dbg(&qh->dev->dev,
3479			"link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3480			hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3481			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3482			qh->c_usecs);
3483
3484	/* high bandwidth, or otherwise every microframe */
3485	if (period == 0)
3486		period = 1;
3487
3488	for (i = qh->start; i < fotg210->periodic_size; i += period) {
3489		union fotg210_shadow *prev = &fotg210->pshadow[i];
3490		__hc32 *hw_p = &fotg210->periodic[i];
3491		union fotg210_shadow here = *prev;
3492		__hc32 type = 0;
3493
3494		/* skip the iso nodes at list head */
3495		while (here.ptr) {
3496			type = Q_NEXT_TYPE(fotg210, *hw_p);
3497			if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3498				break;
3499			prev = periodic_next_shadow(fotg210, prev, type);
3500			hw_p = shadow_next_periodic(fotg210, &here, type);
3501			here = *prev;
3502		}
3503
3504		/* sorting each branch by period (slow-->fast)
3505		 * enables sharing interior tree nodes
3506		 */
3507		while (here.ptr && qh != here.qh) {
3508			if (qh->period > here.qh->period)
3509				break;
3510			prev = &here.qh->qh_next;
3511			hw_p = &here.qh->hw->hw_next;
3512			here = *prev;
3513		}
3514		/* link in this qh, unless some earlier pass did that */
3515		if (qh != here.qh) {
3516			qh->qh_next = here;
3517			if (here.qh)
3518				qh->hw->hw_next = *hw_p;
3519			wmb();
3520			prev->qh = qh;
3521			*hw_p = QH_NEXT(fotg210, qh->qh_dma);
3522		}
3523	}
3524	qh->qh_state = QH_STATE_LINKED;
3525	qh->xacterrs = 0;
3526
3527	/* update per-qh bandwidth for usbfs */
3528	fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3529		? ((qh->usecs + qh->c_usecs) / qh->period)
3530		: (qh->usecs * 8);
3531
3532	list_add(&qh->intr_node, &fotg210->intr_qh_list);
3533
3534	/* maybe enable periodic schedule processing */
3535	++fotg210->intr_count;
3536	enable_periodic(fotg210);
3537}
3538
3539static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3540		struct fotg210_qh *qh)
3541{
3542	unsigned i;
3543	unsigned period;
3544
3545	/*
3546	 * If qh is for a low/full-speed device, simply unlinking it
3547	 * could interfere with an ongoing split transaction.  To unlink
3548	 * it safely would require setting the QH_INACTIVATE bit and
3549	 * waiting at least one frame, as described in EHCI 4.12.2.5.
3550	 *
3551	 * We won't bother with any of this.  Instead, we assume that the
3552	 * only reason for unlinking an interrupt QH while the current URB
3553	 * is still active is to dequeue all the URBs (flush the whole
3554	 * endpoint queue).
3555	 *
3556	 * If rebalancing the periodic schedule is ever implemented, this
3557	 * approach will no longer be valid.
3558	 */
3559
3560	/* high bandwidth, or otherwise part of every microframe */
3561	period = qh->period;
3562	if (!period)
3563		period = 1;
3564
3565	for (i = qh->start; i < fotg210->periodic_size; i += period)
3566		periodic_unlink(fotg210, i, qh);
3567
3568	/* update per-qh bandwidth for usbfs */
3569	fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3570		? ((qh->usecs + qh->c_usecs) / qh->period)
3571		: (qh->usecs * 8);
3572
3573	dev_dbg(&qh->dev->dev,
3574			"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3575			qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3576			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3577			qh->c_usecs);
3578
3579	/* qh->qh_next still "live" to HC */
3580	qh->qh_state = QH_STATE_UNLINK;
3581	qh->qh_next.ptr = NULL;
3582
3583	if (fotg210->qh_scan_next == qh)
3584		fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3585				struct fotg210_qh, intr_node);
3586	list_del(&qh->intr_node);
3587}
3588
3589static void start_unlink_intr(struct fotg210_hcd *fotg210,
3590		struct fotg210_qh *qh)
3591{
3592	/* If the QH isn't linked then there's nothing we can do
3593	 * unless we were called during a giveback, in which case
3594	 * qh_completions() has to deal with it.
3595	 */
3596	if (qh->qh_state != QH_STATE_LINKED) {
3597		if (qh->qh_state == QH_STATE_COMPLETING)
3598			qh->needs_rescan = 1;
3599		return;
3600	}
3601
3602	qh_unlink_periodic(fotg210, qh);
3603
3604	/* Make sure the unlinks are visible before starting the timer */
3605	wmb();
3606
3607	/*
3608	 * The EHCI spec doesn't say how long it takes the controller to
3609	 * stop accessing an unlinked interrupt QH.  The timer delay is
3610	 * 9 uframes; presumably that will be long enough.
3611	 */
3612	qh->unlink_cycle = fotg210->intr_unlink_cycle;
3613
3614	/* New entries go at the end of the intr_unlink list */
3615	if (fotg210->intr_unlink)
3616		fotg210->intr_unlink_last->unlink_next = qh;
3617	else
3618		fotg210->intr_unlink = qh;
3619	fotg210->intr_unlink_last = qh;
3620
3621	if (fotg210->intr_unlinking)
3622		;	/* Avoid recursive calls */
3623	else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3624		fotg210_handle_intr_unlinks(fotg210);
3625	else if (fotg210->intr_unlink == qh) {
3626		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3627				true);
3628		++fotg210->intr_unlink_cycle;
3629	}
3630}
3631
3632static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3633{
3634	struct fotg210_qh_hw *hw = qh->hw;
3635	int rc;
3636
3637	qh->qh_state = QH_STATE_IDLE;
3638	hw->hw_next = FOTG210_LIST_END(fotg210);
3639
3640	qh_completions(fotg210, qh);
3641
3642	/* reschedule QH iff another request is queued */
3643	if (!list_empty(&qh->qtd_list) &&
3644			fotg210->rh_state == FOTG210_RH_RUNNING) {
3645		rc = qh_schedule(fotg210, qh);
3646
3647		/* An error here likely indicates handshake failure
3648		 * or no space left in the schedule.  Neither fault
3649		 * should happen often ...
3650		 *
3651		 * FIXME kill the now-dysfunctional queued urbs
3652		 */
3653		if (rc != 0)
3654			fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3655					qh, rc);
3656	}
3657
3658	/* maybe turn off periodic schedule */
3659	--fotg210->intr_count;
3660	disable_periodic(fotg210);
3661}
3662
3663static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3664		unsigned uframe, unsigned period, unsigned usecs)
3665{
3666	int claimed;
3667
3668	/* complete split running into next frame?
3669	 * given FSTN support, we could sometimes check...
3670	 */
3671	if (uframe >= 8)
3672		return 0;
3673
3674	/* convert "usecs we need" to "max already claimed" */
3675	usecs = fotg210->uframe_periodic_max - usecs;
3676
3677	/* we "know" 2 and 4 uframe intervals were rejected; so
3678	 * for period 0, check _every_ microframe in the schedule.
3679	 */
3680	if (unlikely(period == 0)) {
3681		do {
3682			for (uframe = 0; uframe < 7; uframe++) {
3683				claimed = periodic_usecs(fotg210, frame,
3684						uframe);
3685				if (claimed > usecs)
3686					return 0;
3687			}
3688		} while ((frame += 1) < fotg210->periodic_size);
3689
3690	/* just check the specified uframe, at that period */
3691	} else {
3692		do {
3693			claimed = periodic_usecs(fotg210, frame, uframe);
3694			if (claimed > usecs)
3695				return 0;
3696		} while ((frame += period) < fotg210->periodic_size);
3697	}
3698
3699	/* success! */
3700	return 1;
3701}
3702
3703static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3704		unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3705{
3706	int retval = -ENOSPC;
3707	u8 mask = 0;
3708
3709	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
3710		goto done;
3711
3712	if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3713		goto done;
3714	if (!qh->c_usecs) {
3715		retval = 0;
3716		*c_maskp = 0;
3717		goto done;
3718	}
3719
3720	/* Make sure this tt's buffer is also available for CSPLITs.
3721	 * We pessimize a bit; probably the typical full speed case
3722	 * doesn't need the second CSPLIT.
3723	 *
3724	 * NOTE:  both SPLIT and CSPLIT could be checked in just
3725	 * one smart pass...
3726	 */
3727	mask = 0x03 << (uframe + qh->gap_uf);
3728	*c_maskp = cpu_to_hc32(fotg210, mask << 8);
3729
3730	mask |= 1 << uframe;
3731	if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3732		if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3733				qh->period, qh->c_usecs))
3734			goto done;
3735		if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3736				qh->period, qh->c_usecs))
3737			goto done;
3738		retval = 0;
3739	}
3740done:
3741	return retval;
3742}
3743
3744/* "first fit" scheduling policy used the first time through,
3745 * or when the previous schedule slot can't be re-used.
3746 */
3747static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3748{
3749	int status;
3750	unsigned uframe;
3751	__hc32 c_mask;
3752	unsigned frame;	/* 0..(qh->period - 1), or NO_FRAME */
3753	struct fotg210_qh_hw *hw = qh->hw;
3754
3755	qh_refresh(fotg210, qh);
3756	hw->hw_next = FOTG210_LIST_END(fotg210);
3757	frame = qh->start;
3758
3759	/* reuse the previous schedule slots, if we can */
3760	if (frame < qh->period) {
3761		uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3762		status = check_intr_schedule(fotg210, frame, --uframe,
3763				qh, &c_mask);
3764	} else {
3765		uframe = 0;
3766		c_mask = 0;
3767		status = -ENOSPC;
3768	}
3769
3770	/* else scan the schedule to find a group of slots such that all
3771	 * uframes have enough periodic bandwidth available.
3772	 */
3773	if (status) {
3774		/* "normal" case, uframing flexible except with splits */
3775		if (qh->period) {
3776			int i;
3777
3778			for (i = qh->period; status && i > 0; --i) {
3779				frame = ++fotg210->random_frame % qh->period;
3780				for (uframe = 0; uframe < 8; uframe++) {
3781					status = check_intr_schedule(fotg210,
3782							frame, uframe, qh,
3783							&c_mask);
3784					if (status == 0)
3785						break;
3786				}
3787			}
3788
3789		/* qh->period == 0 means every uframe */
3790		} else {
3791			frame = 0;
3792			status = check_intr_schedule(fotg210, 0, 0, qh,
3793					&c_mask);
3794		}
3795		if (status)
3796			goto done;
3797		qh->start = frame;
3798
3799		/* reset S-frame and (maybe) C-frame masks */
3800		hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3801		hw->hw_info2 |= qh->period
3802			? cpu_to_hc32(fotg210, 1 << uframe)
3803			: cpu_to_hc32(fotg210, QH_SMASK);
3804		hw->hw_info2 |= c_mask;
3805	} else
3806		fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3807
3808	/* stuff into the periodic schedule */
3809	qh_link_periodic(fotg210, qh);
3810done:
3811	return status;
3812}
3813
3814static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3815		struct list_head *qtd_list, gfp_t mem_flags)
3816{
3817	unsigned epnum;
3818	unsigned long flags;
3819	struct fotg210_qh *qh;
3820	int status;
3821	struct list_head empty;
3822
3823	/* get endpoint and transfer/schedule data */
3824	epnum = urb->ep->desc.bEndpointAddress;
3825
3826	spin_lock_irqsave(&fotg210->lock, flags);
3827
3828	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3829		status = -ESHUTDOWN;
3830		goto done_not_linked;
3831	}
3832	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3833	if (unlikely(status))
3834		goto done_not_linked;
3835
3836	/* get qh and force any scheduling errors */
3837	INIT_LIST_HEAD(&empty);
3838	qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3839	if (qh == NULL) {
3840		status = -ENOMEM;
3841		goto done;
3842	}
3843	if (qh->qh_state == QH_STATE_IDLE) {
3844		status = qh_schedule(fotg210, qh);
3845		if (status)
3846			goto done;
3847	}
3848
3849	/* then queue the urb's tds to the qh */
3850	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3851	BUG_ON(qh == NULL);
3852
3853	/* ... update usbfs periodic stats */
3854	fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3855
3856done:
3857	if (unlikely(status))
3858		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3859done_not_linked:
3860	spin_unlock_irqrestore(&fotg210->lock, flags);
3861	if (status)
3862		qtd_list_free(fotg210, urb, qtd_list);
3863
3864	return status;
3865}
3866
3867static void scan_intr(struct fotg210_hcd *fotg210)
3868{
3869	struct fotg210_qh *qh;
3870
3871	list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3872			&fotg210->intr_qh_list, intr_node) {
3873rescan:
3874		/* clean any finished work for this qh */
3875		if (!list_empty(&qh->qtd_list)) {
3876			int temp;
3877
3878			/*
3879			 * Unlinks could happen here; completion reporting
3880			 * drops the lock.  That's why fotg210->qh_scan_next
3881			 * always holds the next qh to scan; if the next qh
3882			 * gets unlinked then fotg210->qh_scan_next is adjusted
3883			 * in qh_unlink_periodic().
3884			 */
3885			temp = qh_completions(fotg210, qh);
3886			if (unlikely(qh->needs_rescan ||
3887					(list_empty(&qh->qtd_list) &&
3888					qh->qh_state == QH_STATE_LINKED)))
3889				start_unlink_intr(fotg210, qh);
3890			else if (temp != 0)
3891				goto rescan;
3892		}
3893	}
3894}
3895
3896/* fotg210_iso_stream ops work with both ITD and SITD */
3897
3898static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3899{
3900	struct fotg210_iso_stream *stream;
3901
3902	stream = kzalloc(sizeof(*stream), mem_flags);
3903	if (likely(stream != NULL)) {
3904		INIT_LIST_HEAD(&stream->td_list);
3905		INIT_LIST_HEAD(&stream->free_list);
3906		stream->next_uframe = -1;
3907	}
3908	return stream;
3909}
3910
3911static void iso_stream_init(struct fotg210_hcd *fotg210,
3912		struct fotg210_iso_stream *stream, struct usb_device *dev,
3913		int pipe, unsigned interval)
3914{
3915	u32 buf1;
3916	unsigned epnum, maxp;
3917	int is_input;
3918	long bandwidth;
3919	unsigned multi;
3920	struct usb_host_endpoint *ep;
3921
3922	/*
3923	 * this might be a "high bandwidth" highspeed endpoint,
3924	 * as encoded in the ep descriptor's wMaxPacket field
3925	 */
3926	epnum = usb_pipeendpoint(pipe);
3927	is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3928	ep = usb_pipe_endpoint(dev, pipe);
3929	maxp = usb_endpoint_maxp(&ep->desc);
3930	if (is_input)
3931		buf1 = (1 << 11);
3932	else
3933		buf1 = 0;
3934
3935	multi = usb_endpoint_maxp_mult(&ep->desc);
3936	buf1 |= maxp;
3937	maxp *= multi;
3938
3939	stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3940	stream->buf1 = cpu_to_hc32(fotg210, buf1);
3941	stream->buf2 = cpu_to_hc32(fotg210, multi);
3942
3943	/* usbfs wants to report the average usecs per frame tied up
3944	 * when transfers on this endpoint are scheduled ...
3945	 */
3946	if (dev->speed == USB_SPEED_FULL) {
3947		interval <<= 3;
3948		stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3949				is_input, 1, maxp));
3950		stream->usecs /= 8;
3951	} else {
3952		stream->highspeed = 1;
3953		stream->usecs = HS_USECS_ISO(maxp);
3954	}
3955	bandwidth = stream->usecs * 8;
3956	bandwidth /= interval;
3957
3958	stream->bandwidth = bandwidth;
3959	stream->udev = dev;
3960	stream->bEndpointAddress = is_input | epnum;
3961	stream->interval = interval;
3962	stream->maxp = maxp;
3963}
3964
3965static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3966		struct urb *urb)
3967{
3968	unsigned epnum;
3969	struct fotg210_iso_stream *stream;
3970	struct usb_host_endpoint *ep;
3971	unsigned long flags;
3972
3973	epnum = usb_pipeendpoint(urb->pipe);
3974	if (usb_pipein(urb->pipe))
3975		ep = urb->dev->ep_in[epnum];
3976	else
3977		ep = urb->dev->ep_out[epnum];
3978
3979	spin_lock_irqsave(&fotg210->lock, flags);
3980	stream = ep->hcpriv;
3981
3982	if (unlikely(stream == NULL)) {
3983		stream = iso_stream_alloc(GFP_ATOMIC);
3984		if (likely(stream != NULL)) {
3985			ep->hcpriv = stream;
3986			stream->ep = ep;
3987			iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3988					urb->interval);
3989		}
3990
3991	/* if dev->ep[epnum] is a QH, hw is set */
3992	} else if (unlikely(stream->hw != NULL)) {
3993		fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
3994				urb->dev->devpath, epnum,
3995				usb_pipein(urb->pipe) ? "in" : "out");
3996		stream = NULL;
3997	}
3998
3999	spin_unlock_irqrestore(&fotg210->lock, flags);
4000	return stream;
4001}
4002
4003/* fotg210_iso_sched ops can be ITD-only or SITD-only */
4004
4005static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4006		gfp_t mem_flags)
4007{
4008	struct fotg210_iso_sched *iso_sched;
4009
4010	iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags);
4011	if (likely(iso_sched != NULL))
4012		INIT_LIST_HEAD(&iso_sched->td_list);
4013
4014	return iso_sched;
4015}
4016
4017static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4018		struct fotg210_iso_sched *iso_sched,
4019		struct fotg210_iso_stream *stream, struct urb *urb)
4020{
4021	unsigned i;
4022	dma_addr_t dma = urb->transfer_dma;
4023
4024	/* how many uframes are needed for these transfers */
4025	iso_sched->span = urb->number_of_packets * stream->interval;
4026
4027	/* figure out per-uframe itd fields that we'll need later
4028	 * when we fit new itds into the schedule.
4029	 */
4030	for (i = 0; i < urb->number_of_packets; i++) {
4031		struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4032		unsigned length;
4033		dma_addr_t buf;
4034		u32 trans;
4035
4036		length = urb->iso_frame_desc[i].length;
4037		buf = dma + urb->iso_frame_desc[i].offset;
4038
4039		trans = FOTG210_ISOC_ACTIVE;
4040		trans |= buf & 0x0fff;
4041		if (unlikely(((i + 1) == urb->number_of_packets))
4042				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
4043			trans |= FOTG210_ITD_IOC;
4044		trans |= length << 16;
4045		uframe->transaction = cpu_to_hc32(fotg210, trans);
4046
4047		/* might need to cross a buffer page within a uframe */
4048		uframe->bufp = (buf & ~(u64)0x0fff);
4049		buf += length;
4050		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4051			uframe->cross = 1;
4052	}
4053}
4054
4055static void iso_sched_free(struct fotg210_iso_stream *stream,
4056		struct fotg210_iso_sched *iso_sched)
4057{
4058	if (!iso_sched)
4059		return;
4060	/* caller must hold fotg210->lock!*/
4061	list_splice(&iso_sched->td_list, &stream->free_list);
4062	kfree(iso_sched);
4063}
4064
4065static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4066		struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4067{
4068	struct fotg210_itd *itd;
4069	dma_addr_t itd_dma;
4070	int i;
4071	unsigned num_itds;
4072	struct fotg210_iso_sched *sched;
4073	unsigned long flags;
4074
4075	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4076	if (unlikely(sched == NULL))
4077		return -ENOMEM;
4078
4079	itd_sched_init(fotg210, sched, stream, urb);
4080
4081	if (urb->interval < 8)
4082		num_itds = 1 + (sched->span + 7) / 8;
4083	else
4084		num_itds = urb->number_of_packets;
4085
4086	/* allocate/init ITDs */
4087	spin_lock_irqsave(&fotg210->lock, flags);
4088	for (i = 0; i < num_itds; i++) {
4089
4090		/*
4091		 * Use iTDs from the free list, but not iTDs that may
4092		 * still be in use by the hardware.
4093		 */
4094		if (likely(!list_empty(&stream->free_list))) {
4095			itd = list_first_entry(&stream->free_list,
4096					struct fotg210_itd, itd_list);
4097			if (itd->frame == fotg210->now_frame)
4098				goto alloc_itd;
4099			list_del(&itd->itd_list);
4100			itd_dma = itd->itd_dma;
4101		} else {
4102alloc_itd:
4103			spin_unlock_irqrestore(&fotg210->lock, flags);
4104			itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4105					&itd_dma);
4106			spin_lock_irqsave(&fotg210->lock, flags);
4107			if (!itd) {
4108				iso_sched_free(stream, sched);
4109				spin_unlock_irqrestore(&fotg210->lock, flags);
4110				return -ENOMEM;
4111			}
4112		}
4113
4114		memset(itd, 0, sizeof(*itd));
4115		itd->itd_dma = itd_dma;
4116		list_add(&itd->itd_list, &sched->td_list);
4117	}
4118	spin_unlock_irqrestore(&fotg210->lock, flags);
4119
4120	/* temporarily store schedule info in hcpriv */
4121	urb->hcpriv = sched;
4122	urb->error_count = 0;
4123	return 0;
4124}
4125
4126static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4127		u8 usecs, u32 period)
4128{
4129	uframe %= period;
4130	do {
4131		/* can't commit more than uframe_periodic_max usec */
4132		if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4133				> (fotg210->uframe_periodic_max - usecs))
4134			return 0;
4135
4136		/* we know urb->interval is 2^N uframes */
4137		uframe += period;
4138	} while (uframe < mod);
4139	return 1;
4140}
4141
4142/* This scheduler plans almost as far into the future as it has actual
4143 * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4144 * "as small as possible" to be cache-friendlier.)  That limits the size
4145 * transfers you can stream reliably; avoid more than 64 msec per urb.
4146 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4147 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4148 * and other factors); or more than about 230 msec total (for portability,
4149 * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4150 */
4151
4152#define SCHEDULE_SLOP 80 /* microframes */
4153
4154static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4155		struct fotg210_iso_stream *stream)
4156{
4157	u32 now, next, start, period, span;
4158	int status;
4159	unsigned mod = fotg210->periodic_size << 3;
4160	struct fotg210_iso_sched *sched = urb->hcpriv;
4161
4162	period = urb->interval;
4163	span = sched->span;
4164
4165	if (span > mod - SCHEDULE_SLOP) {
4166		fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4167		status = -EFBIG;
4168		goto fail;
4169	}
4170
4171	now = fotg210_read_frame_index(fotg210) & (mod - 1);
4172
4173	/* Typical case: reuse current schedule, stream is still active.
4174	 * Hopefully there are no gaps from the host falling behind
4175	 * (irq delays etc), but if there are we'll take the next
4176	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4177	 */
4178	if (likely(!list_empty(&stream->td_list))) {
4179		u32 excess;
4180
4181		/* For high speed devices, allow scheduling within the
4182		 * isochronous scheduling threshold.  For full speed devices
4183		 * and Intel PCI-based controllers, don't (work around for
4184		 * Intel ICH9 bug).
4185		 */
4186		if (!stream->highspeed && fotg210->fs_i_thresh)
4187			next = now + fotg210->i_thresh;
4188		else
4189			next = now;
4190
4191		/* Fell behind (by up to twice the slop amount)?
4192		 * We decide based on the time of the last currently-scheduled
4193		 * slot, not the time of the next available slot.
4194		 */
4195		excess = (stream->next_uframe - period - next) & (mod - 1);
4196		if (excess >= mod - 2 * SCHEDULE_SLOP)
4197			start = next + excess - mod + period *
4198					DIV_ROUND_UP(mod - excess, period);
4199		else
4200			start = next + excess + period;
4201		if (start - now >= mod) {
4202			fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4203					urb, start - now - period, period,
4204					mod);
4205			status = -EFBIG;
4206			goto fail;
4207		}
4208	}
4209
4210	/* need to schedule; when's the next (u)frame we could start?
4211	 * this is bigger than fotg210->i_thresh allows; scheduling itself
4212	 * isn't free, the slop should handle reasonably slow cpus.  it
4213	 * can also help high bandwidth if the dma and irq loads don't
4214	 * jump until after the queue is primed.
4215	 */
4216	else {
4217		int done = 0;
4218
4219		start = SCHEDULE_SLOP + (now & ~0x07);
4220
4221		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4222
4223		/* find a uframe slot with enough bandwidth.
4224		 * Early uframes are more precious because full-speed
4225		 * iso IN transfers can't use late uframes,
4226		 * and therefore they should be allocated last.
4227		 */
4228		next = start;
4229		start += period;
4230		do {
4231			start--;
4232			/* check schedule: enough space? */
4233			if (itd_slot_ok(fotg210, mod, start,
4234					stream->usecs, period))
4235				done = 1;
4236		} while (start > next && !done);
4237
4238		/* no room in the schedule */
4239		if (!done) {
4240			fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4241					urb, now, now + mod);
4242			status = -ENOSPC;
4243			goto fail;
4244		}
4245	}
4246
4247	/* Tried to schedule too far into the future? */
4248	if (unlikely(start - now + span - period >=
4249			mod - 2 * SCHEDULE_SLOP)) {
4250		fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4251				urb, start - now, span - period,
4252				mod - 2 * SCHEDULE_SLOP);
4253		status = -EFBIG;
4254		goto fail;
4255	}
4256
4257	stream->next_uframe = start & (mod - 1);
4258
4259	/* report high speed start in uframes; full speed, in frames */
4260	urb->start_frame = stream->next_uframe;
4261	if (!stream->highspeed)
4262		urb->start_frame >>= 3;
4263
4264	/* Make sure scan_isoc() sees these */
4265	if (fotg210->isoc_count == 0)
4266		fotg210->next_frame = now >> 3;
4267	return 0;
4268
4269fail:
4270	iso_sched_free(stream, sched);
4271	urb->hcpriv = NULL;
4272	return status;
4273}
4274
4275static inline void itd_init(struct fotg210_hcd *fotg210,
4276		struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4277{
4278	int i;
4279
4280	/* it's been recently zeroed */
4281	itd->hw_next = FOTG210_LIST_END(fotg210);
4282	itd->hw_bufp[0] = stream->buf0;
4283	itd->hw_bufp[1] = stream->buf1;
4284	itd->hw_bufp[2] = stream->buf2;
4285
4286	for (i = 0; i < 8; i++)
4287		itd->index[i] = -1;
4288
4289	/* All other fields are filled when scheduling */
4290}
4291
4292static inline void itd_patch(struct fotg210_hcd *fotg210,
4293		struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4294		unsigned index, u16 uframe)
4295{
4296	struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4297	unsigned pg = itd->pg;
4298
4299	uframe &= 0x07;
4300	itd->index[uframe] = index;
4301
4302	itd->hw_transaction[uframe] = uf->transaction;
4303	itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4304	itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4305	itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4306
4307	/* iso_frame_desc[].offset must be strictly increasing */
4308	if (unlikely(uf->cross)) {
4309		u64 bufp = uf->bufp + 4096;
4310
4311		itd->pg = ++pg;
4312		itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4313		itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4314	}
4315}
4316
4317static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4318		struct fotg210_itd *itd)
4319{
4320	union fotg210_shadow *prev = &fotg210->pshadow[frame];
4321	__hc32 *hw_p = &fotg210->periodic[frame];
4322	union fotg210_shadow here = *prev;
4323	__hc32 type = 0;
4324
4325	/* skip any iso nodes which might belong to previous microframes */
4326	while (here.ptr) {
4327		type = Q_NEXT_TYPE(fotg210, *hw_p);
4328		if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4329			break;
4330		prev = periodic_next_shadow(fotg210, prev, type);
4331		hw_p = shadow_next_periodic(fotg210, &here, type);
4332		here = *prev;
4333	}
4334
4335	itd->itd_next = here;
4336	itd->hw_next = *hw_p;
4337	prev->itd = itd;
4338	itd->frame = frame;
4339	wmb();
4340	*hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4341}
4342
4343/* fit urb's itds into the selected schedule slot; activate as needed */
4344static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4345		unsigned mod, struct fotg210_iso_stream *stream)
4346{
4347	int packet;
4348	unsigned next_uframe, uframe, frame;
4349	struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4350	struct fotg210_itd *itd;
4351
4352	next_uframe = stream->next_uframe & (mod - 1);
4353
4354	if (unlikely(list_empty(&stream->td_list))) {
4355		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4356				+= stream->bandwidth;
4357		fotg210_dbg(fotg210,
4358			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4359			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4360			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4361			urb->interval,
4362			next_uframe >> 3, next_uframe & 0x7);
4363	}
4364
4365	/* fill iTDs uframe by uframe */
4366	for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4367		if (itd == NULL) {
4368			/* ASSERT:  we have all necessary itds */
4369
4370			/* ASSERT:  no itds for this endpoint in this uframe */
4371
4372			itd = list_entry(iso_sched->td_list.next,
4373					struct fotg210_itd, itd_list);
4374			list_move_tail(&itd->itd_list, &stream->td_list);
4375			itd->stream = stream;
4376			itd->urb = urb;
4377			itd_init(fotg210, stream, itd);
4378		}
4379
4380		uframe = next_uframe & 0x07;
4381		frame = next_uframe >> 3;
4382
4383		itd_patch(fotg210, itd, iso_sched, packet, uframe);
4384
4385		next_uframe += stream->interval;
4386		next_uframe &= mod - 1;
4387		packet++;
4388
4389		/* link completed itds into the schedule */
4390		if (((next_uframe >> 3) != frame)
4391				|| packet == urb->number_of_packets) {
4392			itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4393					itd);
4394			itd = NULL;
4395		}
4396	}
4397	stream->next_uframe = next_uframe;
4398
4399	/* don't need that schedule data any more */
4400	iso_sched_free(stream, iso_sched);
4401	urb->hcpriv = NULL;
4402
4403	++fotg210->isoc_count;
4404	enable_periodic(fotg210);
4405}
4406
4407#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4408		FOTG210_ISOC_XACTERR)
4409
4410/* Process and recycle a completed ITD.  Return true iff its urb completed,
4411 * and hence its completion callback probably added things to the hardware
4412 * schedule.
4413 *
4414 * Note that we carefully avoid recycling this descriptor until after any
4415 * completion callback runs, so that it won't be reused quickly.  That is,
4416 * assuming (a) no more than two urbs per frame on this endpoint, and also
4417 * (b) only this endpoint's completions submit URBs.  It seems some silicon
4418 * corrupts things if you reuse completed descriptors very quickly...
4419 */
4420static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4421{
4422	struct urb *urb = itd->urb;
4423	struct usb_iso_packet_descriptor *desc;
4424	u32 t;
4425	unsigned uframe;
4426	int urb_index = -1;
4427	struct fotg210_iso_stream *stream = itd->stream;
4428	struct usb_device *dev;
4429	bool retval = false;
4430
4431	/* for each uframe with a packet */
4432	for (uframe = 0; uframe < 8; uframe++) {
4433		if (likely(itd->index[uframe] == -1))
4434			continue;
4435		urb_index = itd->index[uframe];
4436		desc = &urb->iso_frame_desc[urb_index];
4437
4438		t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4439		itd->hw_transaction[uframe] = 0;
4440
4441		/* report transfer status */
4442		if (unlikely(t & ISO_ERRS)) {
4443			urb->error_count++;
4444			if (t & FOTG210_ISOC_BUF_ERR)
4445				desc->status = usb_pipein(urb->pipe)
4446					? -ENOSR  /* hc couldn't read */
4447					: -ECOMM; /* hc couldn't write */
4448			else if (t & FOTG210_ISOC_BABBLE)
4449				desc->status = -EOVERFLOW;
4450			else /* (t & FOTG210_ISOC_XACTERR) */
4451				desc->status = -EPROTO;
4452
4453			/* HC need not update length with this error */
4454			if (!(t & FOTG210_ISOC_BABBLE)) {
4455				desc->actual_length = FOTG210_ITD_LENGTH(t);
4456				urb->actual_length += desc->actual_length;
4457			}
4458		} else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4459			desc->status = 0;
4460			desc->actual_length = FOTG210_ITD_LENGTH(t);
4461			urb->actual_length += desc->actual_length;
4462		} else {
4463			/* URB was too late */
4464			desc->status = -EXDEV;
4465		}
4466	}
4467
4468	/* handle completion now? */
4469	if (likely((urb_index + 1) != urb->number_of_packets))
4470		goto done;
4471
4472	/* ASSERT: it's really the last itd for this urb
4473	 * list_for_each_entry (itd, &stream->td_list, itd_list)
4474	 *	BUG_ON (itd->urb == urb);
4475	 */
4476
4477	/* give urb back to the driver; completion often (re)submits */
4478	dev = urb->dev;
4479	fotg210_urb_done(fotg210, urb, 0);
4480	retval = true;
4481	urb = NULL;
4482
4483	--fotg210->isoc_count;
4484	disable_periodic(fotg210);
4485
4486	if (unlikely(list_is_singular(&stream->td_list))) {
4487		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4488				-= stream->bandwidth;
4489		fotg210_dbg(fotg210,
4490			"deschedule devp %s ep%d%s-iso\n",
4491			dev->devpath, stream->bEndpointAddress & 0x0f,
4492			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4493	}
4494
4495done:
4496	itd->urb = NULL;
4497
4498	/* Add to the end of the free list for later reuse */
4499	list_move_tail(&itd->itd_list, &stream->free_list);
4500
4501	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4502	if (list_empty(&stream->td_list)) {
4503		list_splice_tail_init(&stream->free_list,
4504				&fotg210->cached_itd_list);
4505		start_free_itds(fotg210);
4506	}
4507
4508	return retval;
4509}
4510
4511static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4512		gfp_t mem_flags)
4513{
4514	int status = -EINVAL;
4515	unsigned long flags;
4516	struct fotg210_iso_stream *stream;
4517
4518	/* Get iso_stream head */
4519	stream = iso_stream_find(fotg210, urb);
4520	if (unlikely(stream == NULL)) {
4521		fotg210_dbg(fotg210, "can't get iso stream\n");
4522		return -ENOMEM;
4523	}
4524	if (unlikely(urb->interval != stream->interval &&
4525			fotg210_port_speed(fotg210, 0) ==
4526			USB_PORT_STAT_HIGH_SPEED)) {
4527		fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4528				stream->interval, urb->interval);
4529		goto done;
4530	}
4531
4532#ifdef FOTG210_URB_TRACE
4533	fotg210_dbg(fotg210,
4534			"%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4535			__func__, urb->dev->devpath, urb,
4536			usb_pipeendpoint(urb->pipe),
4537			usb_pipein(urb->pipe) ? "in" : "out",
4538			urb->transfer_buffer_length,
4539			urb->number_of_packets, urb->interval,
4540			stream);
4541#endif
4542
4543	/* allocate ITDs w/o locking anything */
4544	status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4545	if (unlikely(status < 0)) {
4546		fotg210_dbg(fotg210, "can't init itds\n");
4547		goto done;
4548	}
4549
4550	/* schedule ... need to lock */
4551	spin_lock_irqsave(&fotg210->lock, flags);
4552	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4553		status = -ESHUTDOWN;
4554		goto done_not_linked;
4555	}
4556	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4557	if (unlikely(status))
4558		goto done_not_linked;
4559	status = iso_stream_schedule(fotg210, urb, stream);
4560	if (likely(status == 0))
4561		itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4562	else
4563		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4564done_not_linked:
4565	spin_unlock_irqrestore(&fotg210->lock, flags);
4566done:
4567	return status;
4568}
4569
4570static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4571		unsigned now_frame, bool live)
4572{
4573	unsigned uf;
4574	bool modified;
4575	union fotg210_shadow q, *q_p;
4576	__hc32 type, *hw_p;
4577
4578	/* scan each element in frame's queue for completions */
4579	q_p = &fotg210->pshadow[frame];
4580	hw_p = &fotg210->periodic[frame];
4581	q.ptr = q_p->ptr;
4582	type = Q_NEXT_TYPE(fotg210, *hw_p);
4583	modified = false;
4584
4585	while (q.ptr) {
4586		switch (hc32_to_cpu(fotg210, type)) {
4587		case Q_TYPE_ITD:
4588			/* If this ITD is still active, leave it for
4589			 * later processing ... check the next entry.
4590			 * No need to check for activity unless the
4591			 * frame is current.
4592			 */
4593			if (frame == now_frame && live) {
4594				rmb();
4595				for (uf = 0; uf < 8; uf++) {
4596					if (q.itd->hw_transaction[uf] &
4597							ITD_ACTIVE(fotg210))
4598						break;
4599				}
4600				if (uf < 8) {
4601					q_p = &q.itd->itd_next;
4602					hw_p = &q.itd->hw_next;
4603					type = Q_NEXT_TYPE(fotg210,
4604							q.itd->hw_next);
4605					q = *q_p;
4606					break;
4607				}
4608			}
4609
4610			/* Take finished ITDs out of the schedule
4611			 * and process them:  recycle, maybe report
4612			 * URB completion.  HC won't cache the
4613			 * pointer for much longer, if at all.
4614			 */
4615			*q_p = q.itd->itd_next;
4616			*hw_p = q.itd->hw_next;
4617			type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4618			wmb();
4619			modified = itd_complete(fotg210, q.itd);
4620			q = *q_p;
4621			break;
4622		default:
4623			fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4624					type, frame, q.ptr);
4625			fallthrough;
4626		case Q_TYPE_QH:
4627		case Q_TYPE_FSTN:
4628			/* End of the iTDs and siTDs */
4629			q.ptr = NULL;
4630			break;
4631		}
4632
4633		/* assume completion callbacks modify the queue */
4634		if (unlikely(modified && fotg210->isoc_count > 0))
4635			return -EINVAL;
4636	}
4637	return 0;
4638}
4639
4640static void scan_isoc(struct fotg210_hcd *fotg210)
4641{
4642	unsigned uf, now_frame, frame, ret;
4643	unsigned fmask = fotg210->periodic_size - 1;
4644	bool live;
4645
4646	/*
4647	 * When running, scan from last scan point up to "now"
4648	 * else clean up by scanning everything that's left.
4649	 * Touches as few pages as possible:  cache-friendly.
4650	 */
4651	if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4652		uf = fotg210_read_frame_index(fotg210);
4653		now_frame = (uf >> 3) & fmask;
4654		live = true;
4655	} else  {
4656		now_frame = (fotg210->next_frame - 1) & fmask;
4657		live = false;
4658	}
4659	fotg210->now_frame = now_frame;
4660
4661	frame = fotg210->next_frame;
4662	for (;;) {
4663		ret = 1;
4664		while (ret != 0)
4665			ret = scan_frame_queue(fotg210, frame,
4666					now_frame, live);
4667
4668		/* Stop when we have reached the current frame */
4669		if (frame == now_frame)
4670			break;
4671		frame = (frame + 1) & fmask;
4672	}
4673	fotg210->next_frame = now_frame;
4674}
4675
4676/* Display / Set uframe_periodic_max
4677 */
4678static ssize_t uframe_periodic_max_show(struct device *dev,
4679		struct device_attribute *attr, char *buf)
4680{
4681	struct fotg210_hcd *fotg210;
4682
4683	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4684	return sysfs_emit(buf, "%d\n", fotg210->uframe_periodic_max);
4685}
4686
4687static ssize_t uframe_periodic_max_store(struct device *dev,
4688		struct device_attribute *attr, const char *buf, size_t count)
4689{
4690	struct fotg210_hcd *fotg210;
4691	unsigned uframe_periodic_max;
4692	unsigned frame, uframe;
4693	unsigned short allocated_max;
4694	unsigned long flags;
4695	ssize_t ret;
4696
4697	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4698
4699	ret = kstrtouint(buf, 0, &uframe_periodic_max);
4700	if (ret)
4701		return ret;
4702
4703	if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4704		fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4705				uframe_periodic_max);
4706		return -EINVAL;
4707	}
4708
4709	ret = -EINVAL;
4710
4711	/*
4712	 * lock, so that our checking does not race with possible periodic
4713	 * bandwidth allocation through submitting new urbs.
4714	 */
4715	spin_lock_irqsave(&fotg210->lock, flags);
4716
4717	/*
4718	 * for request to decrease max periodic bandwidth, we have to check
4719	 * every microframe in the schedule to see whether the decrease is
4720	 * possible.
4721	 */
4722	if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4723		allocated_max = 0;
4724
4725		for (frame = 0; frame < fotg210->periodic_size; ++frame)
4726			for (uframe = 0; uframe < 7; ++uframe)
4727				allocated_max = max(allocated_max,
4728						periodic_usecs(fotg210, frame,
4729						uframe));
4730
4731		if (allocated_max > uframe_periodic_max) {
4732			fotg210_info(fotg210,
4733					"cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4734					allocated_max, uframe_periodic_max);
4735			goto out_unlock;
4736		}
4737	}
4738
4739	/* increasing is always ok */
4740
4741	fotg210_info(fotg210,
4742			"setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4743			100 * uframe_periodic_max/125, uframe_periodic_max);
4744
4745	if (uframe_periodic_max != 100)
4746		fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4747
4748	fotg210->uframe_periodic_max = uframe_periodic_max;
4749	ret = count;
4750
4751out_unlock:
4752	spin_unlock_irqrestore(&fotg210->lock, flags);
4753	return ret;
4754}
4755
4756static DEVICE_ATTR_RW(uframe_periodic_max);
4757
4758static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4759{
4760	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4761
4762	return device_create_file(controller, &dev_attr_uframe_periodic_max);
4763}
4764
4765static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4766{
4767	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4768
4769	device_remove_file(controller, &dev_attr_uframe_periodic_max);
4770}
4771/* On some systems, leaving remote wakeup enabled prevents system shutdown.
4772 * The firmware seems to think that powering off is a wakeup event!
4773 * This routine turns off remote wakeup and everything else, on all ports.
4774 */
4775static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4776{
4777	u32 __iomem *status_reg = &fotg210->regs->port_status;
4778
4779	fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4780}
4781
4782/* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4783 * Must be called with interrupts enabled and the lock not held.
4784 */
4785static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4786{
4787	fotg210_halt(fotg210);
4788
4789	spin_lock_irq(&fotg210->lock);
4790	fotg210->rh_state = FOTG210_RH_HALTED;
4791	fotg210_turn_off_all_ports(fotg210);
4792	spin_unlock_irq(&fotg210->lock);
4793}
4794
4795/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4796 * This forcibly disables dma and IRQs, helping kexec and other cases
4797 * where the next system software may expect clean state.
4798 */
4799static void fotg210_shutdown(struct usb_hcd *hcd)
4800{
4801	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4802
4803	spin_lock_irq(&fotg210->lock);
4804	fotg210->shutdown = true;
4805	fotg210->rh_state = FOTG210_RH_STOPPING;
4806	fotg210->enabled_hrtimer_events = 0;
4807	spin_unlock_irq(&fotg210->lock);
4808
4809	fotg210_silence_controller(fotg210);
4810
4811	hrtimer_cancel(&fotg210->hrtimer);
4812}
4813
4814/* fotg210_work is called from some interrupts, timers, and so on.
4815 * it calls driver completion functions, after dropping fotg210->lock.
4816 */
4817static void fotg210_work(struct fotg210_hcd *fotg210)
4818{
4819	/* another CPU may drop fotg210->lock during a schedule scan while
4820	 * it reports urb completions.  this flag guards against bogus
4821	 * attempts at re-entrant schedule scanning.
4822	 */
4823	if (fotg210->scanning) {
4824		fotg210->need_rescan = true;
4825		return;
4826	}
4827	fotg210->scanning = true;
4828
4829rescan:
4830	fotg210->need_rescan = false;
4831	if (fotg210->async_count)
4832		scan_async(fotg210);
4833	if (fotg210->intr_count > 0)
4834		scan_intr(fotg210);
4835	if (fotg210->isoc_count > 0)
4836		scan_isoc(fotg210);
4837	if (fotg210->need_rescan)
4838		goto rescan;
4839	fotg210->scanning = false;
4840
4841	/* the IO watchdog guards against hardware or driver bugs that
4842	 * misplace IRQs, and should let us run completely without IRQs.
4843	 * such lossage has been observed on both VT6202 and VT8235.
4844	 */
4845	turn_on_io_watchdog(fotg210);
4846}
4847
4848/* Called when the fotg210_hcd module is removed.
4849 */
4850static void fotg210_stop(struct usb_hcd *hcd)
4851{
4852	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4853
4854	fotg210_dbg(fotg210, "stop\n");
4855
4856	/* no more interrupts ... */
4857
4858	spin_lock_irq(&fotg210->lock);
4859	fotg210->enabled_hrtimer_events = 0;
4860	spin_unlock_irq(&fotg210->lock);
4861
4862	fotg210_quiesce(fotg210);
4863	fotg210_silence_controller(fotg210);
4864	fotg210_reset(fotg210);
4865
4866	hrtimer_cancel(&fotg210->hrtimer);
4867	remove_sysfs_files(fotg210);
4868	remove_debug_files(fotg210);
4869
4870	/* root hub is shut down separately (first, when possible) */
4871	spin_lock_irq(&fotg210->lock);
4872	end_free_itds(fotg210);
4873	spin_unlock_irq(&fotg210->lock);
4874	fotg210_mem_cleanup(fotg210);
4875
4876#ifdef FOTG210_STATS
4877	fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4878			fotg210->stats.normal, fotg210->stats.error,
4879			fotg210->stats.iaa, fotg210->stats.lost_iaa);
4880	fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4881			fotg210->stats.complete, fotg210->stats.unlink);
4882#endif
4883
4884	dbg_status(fotg210, "fotg210_stop completed",
4885			fotg210_readl(fotg210, &fotg210->regs->status));
4886}
4887
4888/* one-time init, only for memory state */
4889static int hcd_fotg210_init(struct usb_hcd *hcd)
4890{
4891	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4892	u32 temp;
4893	int retval;
4894	u32 hcc_params;
4895	struct fotg210_qh_hw *hw;
4896
4897	spin_lock_init(&fotg210->lock);
4898
4899	/*
4900	 * keep io watchdog by default, those good HCDs could turn off it later
4901	 */
4902	fotg210->need_io_watchdog = 1;
4903
4904	hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4905	fotg210->hrtimer.function = fotg210_hrtimer_func;
4906	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4907
4908	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4909
4910	/*
4911	 * by default set standard 80% (== 100 usec/uframe) max periodic
4912	 * bandwidth as required by USB 2.0
4913	 */
4914	fotg210->uframe_periodic_max = 100;
4915
4916	/*
4917	 * hw default: 1K periodic list heads, one per frame.
4918	 * periodic_size can shrink by USBCMD update if hcc_params allows.
4919	 */
4920	fotg210->periodic_size = DEFAULT_I_TDPS;
4921	INIT_LIST_HEAD(&fotg210->intr_qh_list);
4922	INIT_LIST_HEAD(&fotg210->cached_itd_list);
4923
4924	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4925		/* periodic schedule size can be smaller than default */
4926		switch (FOTG210_TUNE_FLS) {
4927		case 0:
4928			fotg210->periodic_size = 1024;
4929			break;
4930		case 1:
4931			fotg210->periodic_size = 512;
4932			break;
4933		case 2:
4934			fotg210->periodic_size = 256;
4935			break;
4936		default:
4937			BUG();
4938		}
4939	}
4940	retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4941	if (retval < 0)
4942		return retval;
4943
4944	/* controllers may cache some of the periodic schedule ... */
4945	fotg210->i_thresh = 2;
4946
4947	/*
4948	 * dedicate a qh for the async ring head, since we couldn't unlink
4949	 * a 'real' qh without stopping the async schedule [4.8].  use it
4950	 * as the 'reclamation list head' too.
4951	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4952	 * from automatically advancing to the next td after short reads.
4953	 */
4954	fotg210->async->qh_next.qh = NULL;
4955	hw = fotg210->async->hw;
4956	hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4957	hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4958	hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4959	hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4960	fotg210->async->qh_state = QH_STATE_LINKED;
4961	hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4962
4963	/* clear interrupt enables, set irq latency */
4964	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4965		log2_irq_thresh = 0;
4966	temp = 1 << (16 + log2_irq_thresh);
4967	if (HCC_CANPARK(hcc_params)) {
4968		/* HW default park == 3, on hardware that supports it (like
4969		 * NVidia and ALI silicon), maximizes throughput on the async
4970		 * schedule by avoiding QH fetches between transfers.
4971		 *
4972		 * With fast usb storage devices and NForce2, "park" seems to
4973		 * make problems:  throughput reduction (!), data errors...
4974		 */
4975		if (park) {
4976			park = min_t(unsigned, park, 3);
4977			temp |= CMD_PARK;
4978			temp |= park << 8;
4979		}
4980		fotg210_dbg(fotg210, "park %d\n", park);
4981	}
4982	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4983		/* periodic schedule size can be smaller than default */
4984		temp &= ~(3 << 2);
4985		temp |= (FOTG210_TUNE_FLS << 2);
4986	}
4987	fotg210->command = temp;
4988
4989	/* Accept arbitrarily long scatter-gather lists */
4990	if (!hcd->localmem_pool)
4991		hcd->self.sg_tablesize = ~0;
4992	return 0;
4993}
4994
4995/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
4996static int fotg210_run(struct usb_hcd *hcd)
4997{
4998	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4999	u32 temp;
5000
5001	hcd->uses_new_polling = 1;
5002
5003	/* EHCI spec section 4.1 */
5004
5005	fotg210_writel(fotg210, fotg210->periodic_dma,
5006			&fotg210->regs->frame_list);
5007	fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5008			&fotg210->regs->async_next);
5009
5010	/*
5011	 * hcc_params controls whether fotg210->regs->segment must (!!!)
5012	 * be used; it constrains QH/ITD/SITD and QTD locations.
5013	 * dma_pool consistent memory always uses segment zero.
5014	 * streaming mappings for I/O buffers, like dma_map_single(),
5015	 * can return segments above 4GB, if the device allows.
5016	 *
5017	 * NOTE:  the dma mask is visible through dev->dma_mask, so
5018	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5019	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5020	 * host side drivers though.
5021	 */
5022	fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5023
5024	/*
5025	 * Philips, Intel, and maybe others need CMD_RUN before the
5026	 * root hub will detect new devices (why?); NEC doesn't
5027	 */
5028	fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5029	fotg210->command |= CMD_RUN;
5030	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5031	dbg_cmd(fotg210, "init", fotg210->command);
5032
5033	/*
5034	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5035	 * are explicitly handed to companion controller(s), so no TT is
5036	 * involved with the root hub.  (Except where one is integrated,
5037	 * and there's no companion controller unless maybe for USB OTG.)
5038	 *
5039	 * Turning on the CF flag will transfer ownership of all ports
5040	 * from the companions to the EHCI controller.  If any of the
5041	 * companions are in the middle of a port reset at the time, it
5042	 * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5043	 * guarantees that no resets are in progress.  After we set CF,
5044	 * a short delay lets the hardware catch up; new resets shouldn't
5045	 * be started before the port switching actions could complete.
5046	 */
5047	down_write(&ehci_cf_port_reset_rwsem);
5048	fotg210->rh_state = FOTG210_RH_RUNNING;
5049	/* unblock posted writes */
5050	fotg210_readl(fotg210, &fotg210->regs->command);
5051	usleep_range(5000, 10000);
5052	up_write(&ehci_cf_port_reset_rwsem);
5053	fotg210->last_periodic_enable = ktime_get_real();
5054
5055	temp = HC_VERSION(fotg210,
5056			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5057	fotg210_info(fotg210,
5058			"USB %x.%x started, EHCI %x.%02x\n",
5059			((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5060			temp >> 8, temp & 0xff);
5061
5062	fotg210_writel(fotg210, INTR_MASK,
5063			&fotg210->regs->intr_enable); /* Turn On Interrupts */
5064
5065	/* GRR this is run-once init(), being done every time the HC starts.
5066	 * So long as they're part of class devices, we can't do it init()
5067	 * since the class device isn't created that early.
5068	 */
5069	create_debug_files(fotg210);
5070	create_sysfs_files(fotg210);
5071
5072	return 0;
5073}
5074
5075static int fotg210_setup(struct usb_hcd *hcd)
5076{
5077	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5078	int retval;
5079
5080	fotg210->regs = (void __iomem *)fotg210->caps +
5081			HC_LENGTH(fotg210,
5082			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5083	dbg_hcs_params(fotg210, "reset");
5084	dbg_hcc_params(fotg210, "reset");
5085
5086	/* cache this readonly data; minimize chip reads */
5087	fotg210->hcs_params = fotg210_readl(fotg210,
5088			&fotg210->caps->hcs_params);
5089
5090	fotg210->sbrn = HCD_USB2;
5091
5092	/* data structure init */
5093	retval = hcd_fotg210_init(hcd);
5094	if (retval)
5095		return retval;
5096
5097	retval = fotg210_halt(fotg210);
5098	if (retval)
5099		return retval;
5100
5101	fotg210_reset(fotg210);
5102
5103	return 0;
5104}
5105
5106static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5107{
5108	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5109	u32 status, masked_status, pcd_status = 0, cmd;
5110	int bh;
5111
5112	spin_lock(&fotg210->lock);
5113
5114	status = fotg210_readl(fotg210, &fotg210->regs->status);
5115
5116	/* e.g. cardbus physical eject */
5117	if (status == ~(u32) 0) {
5118		fotg210_dbg(fotg210, "device removed\n");
5119		goto dead;
5120	}
5121
5122	/*
5123	 * We don't use STS_FLR, but some controllers don't like it to
5124	 * remain on, so mask it out along with the other status bits.
5125	 */
5126	masked_status = status & (INTR_MASK | STS_FLR);
5127
5128	/* Shared IRQ? */
5129	if (!masked_status ||
5130			unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5131		spin_unlock(&fotg210->lock);
5132		return IRQ_NONE;
5133	}
5134
5135	/* clear (just) interrupts */
5136	fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5137	cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5138	bh = 0;
5139
5140	/* unrequested/ignored: Frame List Rollover */
5141	dbg_status(fotg210, "irq", status);
5142
5143	/* INT, ERR, and IAA interrupt rates can be throttled */
5144
5145	/* normal [4.15.1.2] or error [4.15.1.1] completion */
5146	if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5147		if (likely((status & STS_ERR) == 0))
5148			INCR(fotg210->stats.normal);
5149		else
5150			INCR(fotg210->stats.error);
5151		bh = 1;
5152	}
5153
5154	/* complete the unlinking of some qh [4.15.2.3] */
5155	if (status & STS_IAA) {
5156
5157		/* Turn off the IAA watchdog */
5158		fotg210->enabled_hrtimer_events &=
5159			~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5160
5161		/*
5162		 * Mild optimization: Allow another IAAD to reset the
5163		 * hrtimer, if one occurs before the next expiration.
5164		 * In theory we could always cancel the hrtimer, but
5165		 * tests show that about half the time it will be reset
5166		 * for some other event anyway.
5167		 */
5168		if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5169			++fotg210->next_hrtimer_event;
5170
5171		/* guard against (alleged) silicon errata */
5172		if (cmd & CMD_IAAD)
5173			fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5174		if (fotg210->async_iaa) {
5175			INCR(fotg210->stats.iaa);
5176			end_unlink_async(fotg210);
5177		} else
5178			fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5179	}
5180
5181	/* remote wakeup [4.3.1] */
5182	if (status & STS_PCD) {
5183		int pstatus;
5184		u32 __iomem *status_reg = &fotg210->regs->port_status;
5185
5186		/* kick root hub later */
5187		pcd_status = status;
5188
5189		/* resume root hub? */
5190		if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5191			usb_hcd_resume_root_hub(hcd);
5192
5193		pstatus = fotg210_readl(fotg210, status_reg);
5194
5195		if (test_bit(0, &fotg210->suspended_ports) &&
5196				((pstatus & PORT_RESUME) ||
5197				!(pstatus & PORT_SUSPEND)) &&
5198				(pstatus & PORT_PE) &&
5199				fotg210->reset_done[0] == 0) {
5200
5201			/* start 20 msec resume signaling from this port,
5202			 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5203			 * stop that signaling.  Use 5 ms extra for safety,
5204			 * like usb_port_resume() does.
5205			 */
5206			fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5207			set_bit(0, &fotg210->resuming_ports);
5208			fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5209			mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5210		}
5211	}
5212
5213	/* PCI errors [4.15.2.4] */
5214	if (unlikely((status & STS_FATAL) != 0)) {
5215		fotg210_err(fotg210, "fatal error\n");
5216		dbg_cmd(fotg210, "fatal", cmd);
5217		dbg_status(fotg210, "fatal", status);
5218dead:
5219		usb_hc_died(hcd);
5220
5221		/* Don't let the controller do anything more */
5222		fotg210->shutdown = true;
5223		fotg210->rh_state = FOTG210_RH_STOPPING;
5224		fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5225		fotg210_writel(fotg210, fotg210->command,
5226				&fotg210->regs->command);
5227		fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5228		fotg210_handle_controller_death(fotg210);
5229
5230		/* Handle completions when the controller stops */
5231		bh = 0;
5232	}
5233
5234	if (bh)
5235		fotg210_work(fotg210);
5236	spin_unlock(&fotg210->lock);
5237	if (pcd_status)
5238		usb_hcd_poll_rh_status(hcd);
5239	return IRQ_HANDLED;
5240}
5241
5242/* non-error returns are a promise to giveback() the urb later
5243 * we drop ownership so next owner (or urb unlink) can get it
5244 *
5245 * urb + dev is in hcd.self.controller.urb_list
5246 * we're queueing TDs onto software and hardware lists
5247 *
5248 * hcd-specific init for hcpriv hasn't been done yet
5249 *
5250 * NOTE:  control, bulk, and interrupt share the same code to append TDs
5251 * to a (possibly active) QH, and the same QH scanning code.
5252 */
5253static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5254		gfp_t mem_flags)
5255{
5256	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5257	struct list_head qtd_list;
5258
5259	INIT_LIST_HEAD(&qtd_list);
5260
5261	switch (usb_pipetype(urb->pipe)) {
5262	case PIPE_CONTROL:
5263		/* qh_completions() code doesn't handle all the fault cases
5264		 * in multi-TD control transfers.  Even 1KB is rare anyway.
5265		 */
5266		if (urb->transfer_buffer_length > (16 * 1024))
5267			return -EMSGSIZE;
5268		fallthrough;
5269	/* case PIPE_BULK: */
5270	default:
5271		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5272			return -ENOMEM;
5273		return submit_async(fotg210, urb, &qtd_list, mem_flags);
5274
5275	case PIPE_INTERRUPT:
5276		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5277			return -ENOMEM;
5278		return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5279
5280	case PIPE_ISOCHRONOUS:
5281		return itd_submit(fotg210, urb, mem_flags);
5282	}
5283}
5284
5285/* remove from hardware lists
5286 * completions normally happen asynchronously
5287 */
5288
5289static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5290{
5291	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5292	struct fotg210_qh *qh;
5293	unsigned long flags;
5294	int rc;
5295
5296	spin_lock_irqsave(&fotg210->lock, flags);
5297	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5298	if (rc)
5299		goto done;
5300
5301	switch (usb_pipetype(urb->pipe)) {
5302	/* case PIPE_CONTROL: */
5303	/* case PIPE_BULK:*/
5304	default:
5305		qh = (struct fotg210_qh *) urb->hcpriv;
5306		if (!qh)
5307			break;
5308		switch (qh->qh_state) {
5309		case QH_STATE_LINKED:
5310		case QH_STATE_COMPLETING:
5311			start_unlink_async(fotg210, qh);
5312			break;
5313		case QH_STATE_UNLINK:
5314		case QH_STATE_UNLINK_WAIT:
5315			/* already started */
5316			break;
5317		case QH_STATE_IDLE:
5318			/* QH might be waiting for a Clear-TT-Buffer */
5319			qh_completions(fotg210, qh);
5320			break;
5321		}
5322		break;
5323
5324	case PIPE_INTERRUPT:
5325		qh = (struct fotg210_qh *) urb->hcpriv;
5326		if (!qh)
5327			break;
5328		switch (qh->qh_state) {
5329		case QH_STATE_LINKED:
5330		case QH_STATE_COMPLETING:
5331			start_unlink_intr(fotg210, qh);
5332			break;
5333		case QH_STATE_IDLE:
5334			qh_completions(fotg210, qh);
5335			break;
5336		default:
5337			fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5338					qh, qh->qh_state);
5339			goto done;
5340		}
5341		break;
5342
5343	case PIPE_ISOCHRONOUS:
5344		/* itd... */
5345
5346		/* wait till next completion, do it then. */
5347		/* completion irqs can wait up to 1024 msec, */
5348		break;
5349	}
5350done:
5351	spin_unlock_irqrestore(&fotg210->lock, flags);
5352	return rc;
5353}
5354
5355/* bulk qh holds the data toggle */
5356
5357static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5358		struct usb_host_endpoint *ep)
5359{
5360	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5361	unsigned long flags;
5362	struct fotg210_qh *qh, *tmp;
5363
5364	/* ASSERT:  any requests/urbs are being unlinked */
5365	/* ASSERT:  nobody can be submitting urbs for this any more */
5366
5367rescan:
5368	spin_lock_irqsave(&fotg210->lock, flags);
5369	qh = ep->hcpriv;
5370	if (!qh)
5371		goto done;
5372
5373	/* endpoints can be iso streams.  for now, we don't
5374	 * accelerate iso completions ... so spin a while.
5375	 */
5376	if (qh->hw == NULL) {
5377		struct fotg210_iso_stream *stream = ep->hcpriv;
5378
5379		if (!list_empty(&stream->td_list))
5380			goto idle_timeout;
5381
5382		/* BUG_ON(!list_empty(&stream->free_list)); */
5383		kfree(stream);
5384		goto done;
5385	}
5386
5387	if (fotg210->rh_state < FOTG210_RH_RUNNING)
5388		qh->qh_state = QH_STATE_IDLE;
5389	switch (qh->qh_state) {
5390	case QH_STATE_LINKED:
5391	case QH_STATE_COMPLETING:
5392		for (tmp = fotg210->async->qh_next.qh;
5393				tmp && tmp != qh;
5394				tmp = tmp->qh_next.qh)
5395			continue;
5396		/* periodic qh self-unlinks on empty, and a COMPLETING qh
5397		 * may already be unlinked.
5398		 */
5399		if (tmp)
5400			start_unlink_async(fotg210, qh);
5401		fallthrough;
5402	case QH_STATE_UNLINK:		/* wait for hw to finish? */
5403	case QH_STATE_UNLINK_WAIT:
5404idle_timeout:
5405		spin_unlock_irqrestore(&fotg210->lock, flags);
5406		schedule_timeout_uninterruptible(1);
5407		goto rescan;
5408	case QH_STATE_IDLE:		/* fully unlinked */
5409		if (qh->clearing_tt)
5410			goto idle_timeout;
5411		if (list_empty(&qh->qtd_list)) {
5412			qh_destroy(fotg210, qh);
5413			break;
5414		}
5415		fallthrough;
5416	default:
5417		/* caller was supposed to have unlinked any requests;
5418		 * that's not our job.  just leak this memory.
5419		 */
5420		fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5421				qh, ep->desc.bEndpointAddress, qh->qh_state,
5422				list_empty(&qh->qtd_list) ? "" : "(has tds)");
5423		break;
5424	}
5425done:
5426	ep->hcpriv = NULL;
5427	spin_unlock_irqrestore(&fotg210->lock, flags);
5428}
5429
5430static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5431		struct usb_host_endpoint *ep)
5432{
5433	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5434	struct fotg210_qh *qh;
5435	int eptype = usb_endpoint_type(&ep->desc);
5436	int epnum = usb_endpoint_num(&ep->desc);
5437	int is_out = usb_endpoint_dir_out(&ep->desc);
5438	unsigned long flags;
5439
5440	if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5441		return;
5442
5443	spin_lock_irqsave(&fotg210->lock, flags);
5444	qh = ep->hcpriv;
5445
5446	/* For Bulk and Interrupt endpoints we maintain the toggle state
5447	 * in the hardware; the toggle bits in udev aren't used at all.
5448	 * When an endpoint is reset by usb_clear_halt() we must reset
5449	 * the toggle bit in the QH.
5450	 */
5451	if (qh) {
5452		usb_settoggle(qh->dev, epnum, is_out, 0);
5453		if (!list_empty(&qh->qtd_list)) {
5454			WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5455		} else if (qh->qh_state == QH_STATE_LINKED ||
5456				qh->qh_state == QH_STATE_COMPLETING) {
5457
5458			/* The toggle value in the QH can't be updated
5459			 * while the QH is active.  Unlink it now;
5460			 * re-linking will call qh_refresh().
5461			 */
5462			if (eptype == USB_ENDPOINT_XFER_BULK)
5463				start_unlink_async(fotg210, qh);
5464			else
5465				start_unlink_intr(fotg210, qh);
5466		}
5467	}
5468	spin_unlock_irqrestore(&fotg210->lock, flags);
5469}
5470
5471static int fotg210_get_frame(struct usb_hcd *hcd)
5472{
5473	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5474
5475	return (fotg210_read_frame_index(fotg210) >> 3) %
5476		fotg210->periodic_size;
5477}
5478
5479/* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5480 * because its registers (and irq) are shared between host/gadget/otg
5481 * functions  and in order to facilitate role switching we cannot
5482 * give the fotg210 driver exclusive access to those.
5483 */
5484
5485static const struct hc_driver fotg210_fotg210_hc_driver = {
5486	.description		= hcd_name,
5487	.product_desc		= "Faraday USB2.0 Host Controller",
5488	.hcd_priv_size		= sizeof(struct fotg210_hcd),
5489
5490	/*
5491	 * generic hardware linkage
5492	 */
5493	.irq			= fotg210_irq,
5494	.flags			= HCD_MEMORY | HCD_DMA | HCD_USB2,
5495
5496	/*
5497	 * basic lifecycle operations
5498	 */
5499	.reset			= hcd_fotg210_init,
5500	.start			= fotg210_run,
5501	.stop			= fotg210_stop,
5502	.shutdown		= fotg210_shutdown,
5503
5504	/*
5505	 * managing i/o requests and associated device resources
5506	 */
5507	.urb_enqueue		= fotg210_urb_enqueue,
5508	.urb_dequeue		= fotg210_urb_dequeue,
5509	.endpoint_disable	= fotg210_endpoint_disable,
5510	.endpoint_reset		= fotg210_endpoint_reset,
5511
5512	/*
5513	 * scheduling support
5514	 */
5515	.get_frame_number	= fotg210_get_frame,
5516
5517	/*
5518	 * root hub support
5519	 */
5520	.hub_status_data	= fotg210_hub_status_data,
5521	.hub_control		= fotg210_hub_control,
5522	.bus_suspend		= fotg210_bus_suspend,
5523	.bus_resume		= fotg210_bus_resume,
5524
5525	.relinquish_port	= fotg210_relinquish_port,
5526	.port_handed_over	= fotg210_port_handed_over,
5527
5528	.clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5529};
5530
5531static void fotg210_init(struct fotg210_hcd *fotg210)
5532{
5533	u32 value;
5534
5535	iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5536			&fotg210->regs->gmir);
5537
5538	value = ioread32(&fotg210->regs->otgcsr);
5539	value &= ~OTGCSR_A_BUS_DROP;
5540	value |= OTGCSR_A_BUS_REQ;
5541	iowrite32(value, &fotg210->regs->otgcsr);
5542}
5543
5544/*
5545 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5546 *
5547 * Allocates basic resources for this USB host controller, and
5548 * then invokes the start() method for the HCD associated with it
5549 * through the hotplug entry's driver_data.
5550 */
5551int fotg210_hcd_probe(struct platform_device *pdev, struct fotg210 *fotg)
5552{
5553	struct device *dev = &pdev->dev;
5554	struct usb_hcd *hcd;
5555	int irq;
5556	int retval;
5557	struct fotg210_hcd *fotg210;
5558
5559	if (usb_disabled())
5560		return -ENODEV;
5561
5562	pdev->dev.power.power_state = PMSG_ON;
5563
5564	irq = platform_get_irq(pdev, 0);
5565	if (irq < 0)
5566		return irq;
5567
5568	hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5569			dev_name(dev));
5570	if (!hcd) {
5571		retval = dev_err_probe(dev, -ENOMEM, "failed to create hcd\n");
5572		goto fail_create_hcd;
5573	}
5574
5575	hcd->has_tt = 1;
5576
5577	hcd->regs = fotg->base;
5578
5579	hcd->rsrc_start = fotg->res->start;
5580	hcd->rsrc_len = resource_size(fotg->res);
5581
5582	fotg210 = hcd_to_fotg210(hcd);
5583
5584	fotg210->fotg = fotg;
5585	fotg210->caps = hcd->regs;
5586
5587	retval = fotg210_setup(hcd);
5588	if (retval)
5589		goto failed_put_hcd;
5590
5591	fotg210_init(fotg210);
5592
5593	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5594	if (retval) {
5595		dev_err_probe(dev, retval, "failed to add hcd\n");
5596		goto failed_put_hcd;
5597	}
5598	device_wakeup_enable(hcd->self.controller);
5599	platform_set_drvdata(pdev, hcd);
5600
5601	return retval;
5602
5603failed_put_hcd:
5604	usb_put_hcd(hcd);
5605fail_create_hcd:
5606	return dev_err_probe(dev, retval, "init %s fail\n", dev_name(dev));
5607}
5608
5609/*
5610 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5611 * @dev: USB Host Controller being removed
5612 *
5613 */
5614int fotg210_hcd_remove(struct platform_device *pdev)
5615{
5616	struct usb_hcd *hcd = platform_get_drvdata(pdev);
5617
5618	usb_remove_hcd(hcd);
5619	usb_put_hcd(hcd);
5620
5621	return 0;
5622}
5623
5624int __init fotg210_hcd_init(void)
5625{
5626	if (usb_disabled())
5627		return -ENODEV;
5628
5629	set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5630	if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5631			test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5632		pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5633
5634	pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5635			hcd_name, sizeof(struct fotg210_qh),
5636			sizeof(struct fotg210_qtd),
5637			sizeof(struct fotg210_itd));
5638
5639	fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5640
5641	return 0;
5642}
5643
5644void __exit fotg210_hcd_cleanup(void)
5645{
5646	debugfs_remove(fotg210_debug_root);
5647	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5648}
5649