1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12#include <linux/bcd.h>
13#include <linux/module.h>
14#include <linux/version.h>
15#include <linux/kernel.h>
16#include <linux/sched/task_stack.h>
17#include <linux/slab.h>
18#include <linux/completion.h>
19#include <linux/utsname.h>
20#include <linux/mm.h>
21#include <asm/io.h>
22#include <linux/device.h>
23#include <linux/dma-mapping.h>
24#include <linux/mutex.h>
25#include <asm/irq.h>
26#include <asm/byteorder.h>
27#include <asm/unaligned.h>
28#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/pm_runtime.h>
31#include <linux/types.h>
32#include <linux/genalloc.h>
33#include <linux/io.h>
34#include <linux/kcov.h>
35
36#include <linux/phy/phy.h>
37#include <linux/usb.h>
38#include <linux/usb/hcd.h>
39#include <linux/usb/otg.h>
40
41#include "usb.h"
42#include "phy.h"
43
44
45/*-------------------------------------------------------------------------*/
46
47/*
48 * USB Host Controller Driver framework
49 *
50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51 * HCD-specific behaviors/bugs.
52 *
53 * This does error checks, tracks devices and urbs, and delegates to a
54 * "hc_driver" only for code (and data) that really needs to know about
55 * hardware differences.  That includes root hub registers, i/o queues,
56 * and so on ... but as little else as possible.
57 *
58 * Shared code includes most of the "root hub" code (these are emulated,
59 * though each HC's hardware works differently) and PCI glue, plus request
60 * tracking overhead.  The HCD code should only block on spinlocks or on
61 * hardware handshaking; blocking on software events (such as other kernel
62 * threads releasing resources, or completing actions) is all generic.
63 *
64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66 * only by the hub driver ... and that neither should be seen or used by
67 * usb client device drivers.
68 *
69 * Contributors of ideas or unattributed patches include: David Brownell,
70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71 *
72 * HISTORY:
73 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
74 *		associated cleanup.  "usb_hcd" still != "usb_bus".
75 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
76 */
77
78/*-------------------------------------------------------------------------*/
79
80/* Keep track of which host controller drivers are loaded */
81unsigned long usb_hcds_loaded;
82EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84/* host controllers we manage */
85DEFINE_IDR (usb_bus_idr);
86EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88/* used when allocating bus numbers */
89#define USB_MAXBUS		64
90
91/* used when updating list of hcds */
92DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
93EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95/* used for controlling access to virtual root hubs */
96static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98/* used when updating an endpoint's URB list */
99static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101/* used to protect against unlinking URBs after the device is gone */
102static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104/* wait queue for synchronous unlinks */
105DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107/*-------------------------------------------------------------------------*/
108
109/*
110 * Sharable chunks of root hub code.
111 */
112
113/*-------------------------------------------------------------------------*/
114#define KERNEL_REL	bin2bcd(LINUX_VERSION_MAJOR)
115#define KERNEL_VER	bin2bcd(LINUX_VERSION_PATCHLEVEL)
116
117/* usb 3.1 root hub device descriptor */
118static const u8 usb31_rh_dev_descriptor[18] = {
119	0x12,       /*  __u8  bLength; */
120	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
122
123	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
124	0x00,	    /*  __u8  bDeviceSubClass; */
125	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
126	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
127
128	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
129	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
130	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
131
132	0x03,       /*  __u8  iManufacturer; */
133	0x02,       /*  __u8  iProduct; */
134	0x01,       /*  __u8  iSerialNumber; */
135	0x01        /*  __u8  bNumConfigurations; */
136};
137
138/* usb 3.0 root hub device descriptor */
139static const u8 usb3_rh_dev_descriptor[18] = {
140	0x12,       /*  __u8  bLength; */
141	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
143
144	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
145	0x00,	    /*  __u8  bDeviceSubClass; */
146	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
147	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
148
149	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
150	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
151	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
152
153	0x03,       /*  __u8  iManufacturer; */
154	0x02,       /*  __u8  iProduct; */
155	0x01,       /*  __u8  iSerialNumber; */
156	0x01        /*  __u8  bNumConfigurations; */
157};
158
159/* usb 2.0 root hub device descriptor */
160static const u8 usb2_rh_dev_descriptor[18] = {
161	0x12,       /*  __u8  bLength; */
162	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
164
165	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
166	0x00,	    /*  __u8  bDeviceSubClass; */
167	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
168	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
169
170	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
171	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
172	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
173
174	0x03,       /*  __u8  iManufacturer; */
175	0x02,       /*  __u8  iProduct; */
176	0x01,       /*  __u8  iSerialNumber; */
177	0x01        /*  __u8  bNumConfigurations; */
178};
179
180/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
181
182/* usb 1.1 root hub device descriptor */
183static const u8 usb11_rh_dev_descriptor[18] = {
184	0x12,       /*  __u8  bLength; */
185	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
186	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
187
188	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
189	0x00,	    /*  __u8  bDeviceSubClass; */
190	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
191	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
192
193	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
194	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
195	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
196
197	0x03,       /*  __u8  iManufacturer; */
198	0x02,       /*  __u8  iProduct; */
199	0x01,       /*  __u8  iSerialNumber; */
200	0x01        /*  __u8  bNumConfigurations; */
201};
202
203
204/*-------------------------------------------------------------------------*/
205
206/* Configuration descriptors for our root hubs */
207
208static const u8 fs_rh_config_descriptor[] = {
209
210	/* one configuration */
211	0x09,       /*  __u8  bLength; */
212	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
213	0x19, 0x00, /*  __le16 wTotalLength; */
214	0x01,       /*  __u8  bNumInterfaces; (1) */
215	0x01,       /*  __u8  bConfigurationValue; */
216	0x00,       /*  __u8  iConfiguration; */
217	0xc0,       /*  __u8  bmAttributes;
218				 Bit 7: must be set,
219				     6: Self-powered,
220				     5: Remote wakeup,
221				     4..0: resvd */
222	0x00,       /*  __u8  MaxPower; */
223
224	/* USB 1.1:
225	 * USB 2.0, single TT organization (mandatory):
226	 *	one interface, protocol 0
227	 *
228	 * USB 2.0, multiple TT organization (optional):
229	 *	two interfaces, protocols 1 (like single TT)
230	 *	and 2 (multiple TT mode) ... config is
231	 *	sometimes settable
232	 *	NOT IMPLEMENTED
233	 */
234
235	/* one interface */
236	0x09,       /*  __u8  if_bLength; */
237	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
238	0x00,       /*  __u8  if_bInterfaceNumber; */
239	0x00,       /*  __u8  if_bAlternateSetting; */
240	0x01,       /*  __u8  if_bNumEndpoints; */
241	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
242	0x00,       /*  __u8  if_bInterfaceSubClass; */
243	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
244	0x00,       /*  __u8  if_iInterface; */
245
246	/* one endpoint (status change endpoint) */
247	0x07,       /*  __u8  ep_bLength; */
248	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
249	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
250	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
251	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
252	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
253};
254
255static const u8 hs_rh_config_descriptor[] = {
256
257	/* one configuration */
258	0x09,       /*  __u8  bLength; */
259	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
260	0x19, 0x00, /*  __le16 wTotalLength; */
261	0x01,       /*  __u8  bNumInterfaces; (1) */
262	0x01,       /*  __u8  bConfigurationValue; */
263	0x00,       /*  __u8  iConfiguration; */
264	0xc0,       /*  __u8  bmAttributes;
265				 Bit 7: must be set,
266				     6: Self-powered,
267				     5: Remote wakeup,
268				     4..0: resvd */
269	0x00,       /*  __u8  MaxPower; */
270
271	/* USB 1.1:
272	 * USB 2.0, single TT organization (mandatory):
273	 *	one interface, protocol 0
274	 *
275	 * USB 2.0, multiple TT organization (optional):
276	 *	two interfaces, protocols 1 (like single TT)
277	 *	and 2 (multiple TT mode) ... config is
278	 *	sometimes settable
279	 *	NOT IMPLEMENTED
280	 */
281
282	/* one interface */
283	0x09,       /*  __u8  if_bLength; */
284	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
285	0x00,       /*  __u8  if_bInterfaceNumber; */
286	0x00,       /*  __u8  if_bAlternateSetting; */
287	0x01,       /*  __u8  if_bNumEndpoints; */
288	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
289	0x00,       /*  __u8  if_bInterfaceSubClass; */
290	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
291	0x00,       /*  __u8  if_iInterface; */
292
293	/* one endpoint (status change endpoint) */
294	0x07,       /*  __u8  ep_bLength; */
295	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
296	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
297	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
298		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
299		     * see hub.c:hub_configure() for details. */
300	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
301	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
302};
303
304static const u8 ss_rh_config_descriptor[] = {
305	/* one configuration */
306	0x09,       /*  __u8  bLength; */
307	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
308	0x1f, 0x00, /*  __le16 wTotalLength; */
309	0x01,       /*  __u8  bNumInterfaces; (1) */
310	0x01,       /*  __u8  bConfigurationValue; */
311	0x00,       /*  __u8  iConfiguration; */
312	0xc0,       /*  __u8  bmAttributes;
313				 Bit 7: must be set,
314				     6: Self-powered,
315				     5: Remote wakeup,
316				     4..0: resvd */
317	0x00,       /*  __u8  MaxPower; */
318
319	/* one interface */
320	0x09,       /*  __u8  if_bLength; */
321	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
322	0x00,       /*  __u8  if_bInterfaceNumber; */
323	0x00,       /*  __u8  if_bAlternateSetting; */
324	0x01,       /*  __u8  if_bNumEndpoints; */
325	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
326	0x00,       /*  __u8  if_bInterfaceSubClass; */
327	0x00,       /*  __u8  if_bInterfaceProtocol; */
328	0x00,       /*  __u8  if_iInterface; */
329
330	/* one endpoint (status change endpoint) */
331	0x07,       /*  __u8  ep_bLength; */
332	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
333	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
334	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
335		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
336		     * see hub.c:hub_configure() for details. */
337	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
338	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
339
340	/* one SuperSpeed endpoint companion descriptor */
341	0x06,        /* __u8 ss_bLength */
342	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
343		     /* Companion */
344	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
345	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
346	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
347};
348
349/* authorized_default behaviour:
350 * -1 is authorized for all devices (leftover from wireless USB)
351 * 0 is unauthorized for all devices
352 * 1 is authorized for all devices
353 * 2 is authorized for internal devices
354 */
355#define USB_AUTHORIZE_WIRED	-1
356#define USB_AUTHORIZE_NONE	0
357#define USB_AUTHORIZE_ALL	1
358#define USB_AUTHORIZE_INTERNAL	2
359
360static int authorized_default = CONFIG_USB_DEFAULT_AUTHORIZATION_MODE;
361module_param(authorized_default, int, S_IRUGO|S_IWUSR);
362MODULE_PARM_DESC(authorized_default,
363		"Default USB device authorization: 0 is not authorized, 1 is authorized (default), 2 is authorized for internal devices, -1 is authorized (same as 1)");
364/*-------------------------------------------------------------------------*/
365
366/**
367 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
368 * @s: Null-terminated ASCII (actually ISO-8859-1) string
369 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
370 * @len: Length (in bytes; may be odd) of descriptor buffer.
371 *
372 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
373 * whichever is less.
374 *
375 * Note:
376 * USB String descriptors can contain at most 126 characters; input
377 * strings longer than that are truncated.
378 */
379static unsigned
380ascii2desc(char const *s, u8 *buf, unsigned len)
381{
382	unsigned n, t = 2 + 2*strlen(s);
383
384	if (t > 254)
385		t = 254;	/* Longest possible UTF string descriptor */
386	if (len > t)
387		len = t;
388
389	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
390
391	n = len;
392	while (n--) {
393		*buf++ = t;
394		if (!n--)
395			break;
396		*buf++ = t >> 8;
397		t = (unsigned char)*s++;
398	}
399	return len;
400}
401
402/**
403 * rh_string() - provides string descriptors for root hub
404 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
405 * @hcd: the host controller for this root hub
406 * @data: buffer for output packet
407 * @len: length of the provided buffer
408 *
409 * Produces either a manufacturer, product or serial number string for the
410 * virtual root hub device.
411 *
412 * Return: The number of bytes filled in: the length of the descriptor or
413 * of the provided buffer, whichever is less.
414 */
415static unsigned
416rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
417{
418	char buf[100];
419	char const *s;
420	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
421
422	/* language ids */
423	switch (id) {
424	case 0:
425		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
426		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
427		if (len > 4)
428			len = 4;
429		memcpy(data, langids, len);
430		return len;
431	case 1:
432		/* Serial number */
433		s = hcd->self.bus_name;
434		break;
435	case 2:
436		/* Product name */
437		s = hcd->product_desc;
438		break;
439	case 3:
440		/* Manufacturer */
441		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
442			init_utsname()->release, hcd->driver->description);
443		s = buf;
444		break;
445	default:
446		/* Can't happen; caller guarantees it */
447		return 0;
448	}
449
450	return ascii2desc(s, data, len);
451}
452
453
454/* Root hub control transfers execute synchronously */
455static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
456{
457	struct usb_ctrlrequest *cmd;
458	u16		typeReq, wValue, wIndex, wLength;
459	u8		*ubuf = urb->transfer_buffer;
460	unsigned	len = 0;
461	int		status;
462	u8		patch_wakeup = 0;
463	u8		patch_protocol = 0;
464	u16		tbuf_size;
465	u8		*tbuf = NULL;
466	const u8	*bufp;
467
468	might_sleep();
469
470	spin_lock_irq(&hcd_root_hub_lock);
471	status = usb_hcd_link_urb_to_ep(hcd, urb);
472	spin_unlock_irq(&hcd_root_hub_lock);
473	if (status)
474		return status;
475	urb->hcpriv = hcd;	/* Indicate it's queued */
476
477	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
478	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
479	wValue   = le16_to_cpu (cmd->wValue);
480	wIndex   = le16_to_cpu (cmd->wIndex);
481	wLength  = le16_to_cpu (cmd->wLength);
482
483	if (wLength > urb->transfer_buffer_length)
484		goto error;
485
486	/*
487	 * tbuf should be at least as big as the
488	 * USB hub descriptor.
489	 */
490	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
491	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
492	if (!tbuf) {
493		status = -ENOMEM;
494		goto err_alloc;
495	}
496
497	bufp = tbuf;
498
499
500	urb->actual_length = 0;
501	switch (typeReq) {
502
503	/* DEVICE REQUESTS */
504
505	/* The root hub's remote wakeup enable bit is implemented using
506	 * driver model wakeup flags.  If this system supports wakeup
507	 * through USB, userspace may change the default "allow wakeup"
508	 * policy through sysfs or these calls.
509	 *
510	 * Most root hubs support wakeup from downstream devices, for
511	 * runtime power management (disabling USB clocks and reducing
512	 * VBUS power usage).  However, not all of them do so; silicon,
513	 * board, and BIOS bugs here are not uncommon, so these can't
514	 * be treated quite like external hubs.
515	 *
516	 * Likewise, not all root hubs will pass wakeup events upstream,
517	 * to wake up the whole system.  So don't assume root hub and
518	 * controller capabilities are identical.
519	 */
520
521	case DeviceRequest | USB_REQ_GET_STATUS:
522		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
523					<< USB_DEVICE_REMOTE_WAKEUP)
524				| (1 << USB_DEVICE_SELF_POWERED);
525		tbuf[1] = 0;
526		len = 2;
527		break;
528	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
529		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
530			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
531		else
532			goto error;
533		break;
534	case DeviceOutRequest | USB_REQ_SET_FEATURE:
535		if (device_can_wakeup(&hcd->self.root_hub->dev)
536				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
537			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
538		else
539			goto error;
540		break;
541	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
542		tbuf[0] = 1;
543		len = 1;
544		fallthrough;
545	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
546		break;
547	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
548		switch (wValue & 0xff00) {
549		case USB_DT_DEVICE << 8:
550			switch (hcd->speed) {
551			case HCD_USB32:
552			case HCD_USB31:
553				bufp = usb31_rh_dev_descriptor;
554				break;
555			case HCD_USB3:
556				bufp = usb3_rh_dev_descriptor;
557				break;
558			case HCD_USB2:
559				bufp = usb2_rh_dev_descriptor;
560				break;
561			case HCD_USB11:
562				bufp = usb11_rh_dev_descriptor;
563				break;
564			default:
565				goto error;
566			}
567			len = 18;
568			if (hcd->has_tt)
569				patch_protocol = 1;
570			break;
571		case USB_DT_CONFIG << 8:
572			switch (hcd->speed) {
573			case HCD_USB32:
574			case HCD_USB31:
575			case HCD_USB3:
576				bufp = ss_rh_config_descriptor;
577				len = sizeof ss_rh_config_descriptor;
578				break;
579			case HCD_USB2:
580				bufp = hs_rh_config_descriptor;
581				len = sizeof hs_rh_config_descriptor;
582				break;
583			case HCD_USB11:
584				bufp = fs_rh_config_descriptor;
585				len = sizeof fs_rh_config_descriptor;
586				break;
587			default:
588				goto error;
589			}
590			if (device_can_wakeup(&hcd->self.root_hub->dev))
591				patch_wakeup = 1;
592			break;
593		case USB_DT_STRING << 8:
594			if ((wValue & 0xff) < 4)
595				urb->actual_length = rh_string(wValue & 0xff,
596						hcd, ubuf, wLength);
597			else /* unsupported IDs --> "protocol stall" */
598				goto error;
599			break;
600		case USB_DT_BOS << 8:
601			goto nongeneric;
602		default:
603			goto error;
604		}
605		break;
606	case DeviceRequest | USB_REQ_GET_INTERFACE:
607		tbuf[0] = 0;
608		len = 1;
609		fallthrough;
610	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
611		break;
612	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
613		/* wValue == urb->dev->devaddr */
614		dev_dbg (hcd->self.controller, "root hub device address %d\n",
615			wValue);
616		break;
617
618	/* INTERFACE REQUESTS (no defined feature/status flags) */
619
620	/* ENDPOINT REQUESTS */
621
622	case EndpointRequest | USB_REQ_GET_STATUS:
623		/* ENDPOINT_HALT flag */
624		tbuf[0] = 0;
625		tbuf[1] = 0;
626		len = 2;
627		fallthrough;
628	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
629	case EndpointOutRequest | USB_REQ_SET_FEATURE:
630		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
631		break;
632
633	/* CLASS REQUESTS (and errors) */
634
635	default:
636nongeneric:
637		/* non-generic request */
638		switch (typeReq) {
639		case GetHubStatus:
640			len = 4;
641			break;
642		case GetPortStatus:
643			if (wValue == HUB_PORT_STATUS)
644				len = 4;
645			else
646				/* other port status types return 8 bytes */
647				len = 8;
648			break;
649		case GetHubDescriptor:
650			len = sizeof (struct usb_hub_descriptor);
651			break;
652		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
653			/* len is returned by hub_control */
654			break;
655		}
656		status = hcd->driver->hub_control (hcd,
657			typeReq, wValue, wIndex,
658			tbuf, wLength);
659
660		if (typeReq == GetHubDescriptor)
661			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
662				(struct usb_hub_descriptor *)tbuf);
663		break;
664error:
665		/* "protocol stall" on error */
666		status = -EPIPE;
667	}
668
669	if (status < 0) {
670		len = 0;
671		if (status != -EPIPE) {
672			dev_dbg (hcd->self.controller,
673				"CTRL: TypeReq=0x%x val=0x%x "
674				"idx=0x%x len=%d ==> %d\n",
675				typeReq, wValue, wIndex,
676				wLength, status);
677		}
678	} else if (status > 0) {
679		/* hub_control may return the length of data copied. */
680		len = status;
681		status = 0;
682	}
683	if (len) {
684		if (urb->transfer_buffer_length < len)
685			len = urb->transfer_buffer_length;
686		urb->actual_length = len;
687		/* always USB_DIR_IN, toward host */
688		memcpy (ubuf, bufp, len);
689
690		/* report whether RH hardware supports remote wakeup */
691		if (patch_wakeup &&
692				len > offsetof (struct usb_config_descriptor,
693						bmAttributes))
694			((struct usb_config_descriptor *)ubuf)->bmAttributes
695				|= USB_CONFIG_ATT_WAKEUP;
696
697		/* report whether RH hardware has an integrated TT */
698		if (patch_protocol &&
699				len > offsetof(struct usb_device_descriptor,
700						bDeviceProtocol))
701			((struct usb_device_descriptor *) ubuf)->
702				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
703	}
704
705	kfree(tbuf);
706 err_alloc:
707
708	/* any errors get returned through the urb completion */
709	spin_lock_irq(&hcd_root_hub_lock);
710	usb_hcd_unlink_urb_from_ep(hcd, urb);
711	usb_hcd_giveback_urb(hcd, urb, status);
712	spin_unlock_irq(&hcd_root_hub_lock);
713	return 0;
714}
715
716/*-------------------------------------------------------------------------*/
717
718/*
719 * Root Hub interrupt transfers are polled using a timer if the
720 * driver requests it; otherwise the driver is responsible for
721 * calling usb_hcd_poll_rh_status() when an event occurs.
722 *
723 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
724 */
725void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
726{
727	struct urb	*urb;
728	int		length;
729	int		status;
730	unsigned long	flags;
731	char		buffer[6];	/* Any root hubs with > 31 ports? */
732
733	if (unlikely(!hcd->rh_pollable))
734		return;
735	if (!hcd->uses_new_polling && !hcd->status_urb)
736		return;
737
738	length = hcd->driver->hub_status_data(hcd, buffer);
739	if (length > 0) {
740
741		/* try to complete the status urb */
742		spin_lock_irqsave(&hcd_root_hub_lock, flags);
743		urb = hcd->status_urb;
744		if (urb) {
745			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
746			hcd->status_urb = NULL;
747			if (urb->transfer_buffer_length >= length) {
748				status = 0;
749			} else {
750				status = -EOVERFLOW;
751				length = urb->transfer_buffer_length;
752			}
753			urb->actual_length = length;
754			memcpy(urb->transfer_buffer, buffer, length);
755
756			usb_hcd_unlink_urb_from_ep(hcd, urb);
757			usb_hcd_giveback_urb(hcd, urb, status);
758		} else {
759			length = 0;
760			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
761		}
762		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
763	}
764
765	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
766	 * exceed that limit if HZ is 100. The math is more clunky than
767	 * maybe expected, this is to make sure that all timers for USB devices
768	 * fire at the same time to give the CPU a break in between */
769	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
770			(length == 0 && hcd->status_urb != NULL))
771		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
772}
773EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
774
775/* timer callback */
776static void rh_timer_func (struct timer_list *t)
777{
778	struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
779
780	usb_hcd_poll_rh_status(_hcd);
781}
782
783/*-------------------------------------------------------------------------*/
784
785static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
786{
787	int		retval;
788	unsigned long	flags;
789	unsigned	len = 1 + (urb->dev->maxchild / 8);
790
791	spin_lock_irqsave (&hcd_root_hub_lock, flags);
792	if (hcd->status_urb || urb->transfer_buffer_length < len) {
793		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
794		retval = -EINVAL;
795		goto done;
796	}
797
798	retval = usb_hcd_link_urb_to_ep(hcd, urb);
799	if (retval)
800		goto done;
801
802	hcd->status_urb = urb;
803	urb->hcpriv = hcd;	/* indicate it's queued */
804	if (!hcd->uses_new_polling)
805		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
806
807	/* If a status change has already occurred, report it ASAP */
808	else if (HCD_POLL_PENDING(hcd))
809		mod_timer(&hcd->rh_timer, jiffies);
810	retval = 0;
811 done:
812	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
813	return retval;
814}
815
816static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
817{
818	if (usb_endpoint_xfer_int(&urb->ep->desc))
819		return rh_queue_status (hcd, urb);
820	if (usb_endpoint_xfer_control(&urb->ep->desc))
821		return rh_call_control (hcd, urb);
822	return -EINVAL;
823}
824
825/*-------------------------------------------------------------------------*/
826
827/* Unlinks of root-hub control URBs are legal, but they don't do anything
828 * since these URBs always execute synchronously.
829 */
830static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
831{
832	unsigned long	flags;
833	int		rc;
834
835	spin_lock_irqsave(&hcd_root_hub_lock, flags);
836	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
837	if (rc)
838		goto done;
839
840	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
841		;	/* Do nothing */
842
843	} else {				/* Status URB */
844		if (!hcd->uses_new_polling)
845			del_timer (&hcd->rh_timer);
846		if (urb == hcd->status_urb) {
847			hcd->status_urb = NULL;
848			usb_hcd_unlink_urb_from_ep(hcd, urb);
849			usb_hcd_giveback_urb(hcd, urb, status);
850		}
851	}
852 done:
853	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
854	return rc;
855}
856
857
858/*-------------------------------------------------------------------------*/
859
860/**
861 * usb_bus_init - shared initialization code
862 * @bus: the bus structure being initialized
863 *
864 * This code is used to initialize a usb_bus structure, memory for which is
865 * separately managed.
866 */
867static void usb_bus_init (struct usb_bus *bus)
868{
869	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
870
871	bus->devnum_next = 1;
872
873	bus->root_hub = NULL;
874	bus->busnum = -1;
875	bus->bandwidth_allocated = 0;
876	bus->bandwidth_int_reqs  = 0;
877	bus->bandwidth_isoc_reqs = 0;
878	mutex_init(&bus->devnum_next_mutex);
879}
880
881/*-------------------------------------------------------------------------*/
882
883/**
884 * usb_register_bus - registers the USB host controller with the usb core
885 * @bus: pointer to the bus to register
886 *
887 * Context: task context, might sleep.
888 *
889 * Assigns a bus number, and links the controller into usbcore data
890 * structures so that it can be seen by scanning the bus list.
891 *
892 * Return: 0 if successful. A negative error code otherwise.
893 */
894static int usb_register_bus(struct usb_bus *bus)
895{
896	int result = -E2BIG;
897	int busnum;
898
899	mutex_lock(&usb_bus_idr_lock);
900	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
901	if (busnum < 0) {
902		pr_err("%s: failed to get bus number\n", usbcore_name);
903		goto error_find_busnum;
904	}
905	bus->busnum = busnum;
906	mutex_unlock(&usb_bus_idr_lock);
907
908	usb_notify_add_bus(bus);
909
910	dev_info (bus->controller, "new USB bus registered, assigned bus "
911		  "number %d\n", bus->busnum);
912	return 0;
913
914error_find_busnum:
915	mutex_unlock(&usb_bus_idr_lock);
916	return result;
917}
918
919/**
920 * usb_deregister_bus - deregisters the USB host controller
921 * @bus: pointer to the bus to deregister
922 *
923 * Context: task context, might sleep.
924 *
925 * Recycles the bus number, and unlinks the controller from usbcore data
926 * structures so that it won't be seen by scanning the bus list.
927 */
928static void usb_deregister_bus (struct usb_bus *bus)
929{
930	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
931
932	/*
933	 * NOTE: make sure that all the devices are removed by the
934	 * controller code, as well as having it call this when cleaning
935	 * itself up
936	 */
937	mutex_lock(&usb_bus_idr_lock);
938	idr_remove(&usb_bus_idr, bus->busnum);
939	mutex_unlock(&usb_bus_idr_lock);
940
941	usb_notify_remove_bus(bus);
942}
943
944/**
945 * register_root_hub - called by usb_add_hcd() to register a root hub
946 * @hcd: host controller for this root hub
947 *
948 * This function registers the root hub with the USB subsystem.  It sets up
949 * the device properly in the device tree and then calls usb_new_device()
950 * to register the usb device.  It also assigns the root hub's USB address
951 * (always 1).
952 *
953 * Return: 0 if successful. A negative error code otherwise.
954 */
955static int register_root_hub(struct usb_hcd *hcd)
956{
957	struct device *parent_dev = hcd->self.controller;
958	struct usb_device *usb_dev = hcd->self.root_hub;
959	struct usb_device_descriptor *descr;
960	const int devnum = 1;
961	int retval;
962
963	usb_dev->devnum = devnum;
964	usb_dev->bus->devnum_next = devnum + 1;
965	set_bit (devnum, usb_dev->bus->devmap.devicemap);
966	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
967
968	mutex_lock(&usb_bus_idr_lock);
969
970	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
971	descr = usb_get_device_descriptor(usb_dev);
972	if (IS_ERR(descr)) {
973		retval = PTR_ERR(descr);
974		mutex_unlock(&usb_bus_idr_lock);
975		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
976				dev_name(&usb_dev->dev), retval);
977		return retval;
978	}
979	usb_dev->descriptor = *descr;
980	kfree(descr);
981
982	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
983		retval = usb_get_bos_descriptor(usb_dev);
984		if (!retval) {
985			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
986		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
987			mutex_unlock(&usb_bus_idr_lock);
988			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
989					dev_name(&usb_dev->dev), retval);
990			return retval;
991		}
992	}
993
994	retval = usb_new_device (usb_dev);
995	if (retval) {
996		dev_err (parent_dev, "can't register root hub for %s, %d\n",
997				dev_name(&usb_dev->dev), retval);
998	} else {
999		spin_lock_irq (&hcd_root_hub_lock);
1000		hcd->rh_registered = 1;
1001		spin_unlock_irq (&hcd_root_hub_lock);
1002
1003		/* Did the HC die before the root hub was registered? */
1004		if (HCD_DEAD(hcd))
1005			usb_hc_died (hcd);	/* This time clean up */
1006	}
1007	mutex_unlock(&usb_bus_idr_lock);
1008
1009	return retval;
1010}
1011
1012/*
1013 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1014 * @bus: the bus which the root hub belongs to
1015 * @portnum: the port which is being resumed
1016 *
1017 * HCDs should call this function when they know that a resume signal is
1018 * being sent to a root-hub port.  The root hub will be prevented from
1019 * going into autosuspend until usb_hcd_end_port_resume() is called.
1020 *
1021 * The bus's private lock must be held by the caller.
1022 */
1023void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1024{
1025	unsigned bit = 1 << portnum;
1026
1027	if (!(bus->resuming_ports & bit)) {
1028		bus->resuming_ports |= bit;
1029		pm_runtime_get_noresume(&bus->root_hub->dev);
1030	}
1031}
1032EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1033
1034/*
1035 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1036 * @bus: the bus which the root hub belongs to
1037 * @portnum: the port which is being resumed
1038 *
1039 * HCDs should call this function when they know that a resume signal has
1040 * stopped being sent to a root-hub port.  The root hub will be allowed to
1041 * autosuspend again.
1042 *
1043 * The bus's private lock must be held by the caller.
1044 */
1045void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1046{
1047	unsigned bit = 1 << portnum;
1048
1049	if (bus->resuming_ports & bit) {
1050		bus->resuming_ports &= ~bit;
1051		pm_runtime_put_noidle(&bus->root_hub->dev);
1052	}
1053}
1054EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1055
1056/*-------------------------------------------------------------------------*/
1057
1058/**
1059 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1060 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1061 * @is_input: true iff the transaction sends data to the host
1062 * @isoc: true for isochronous transactions, false for interrupt ones
1063 * @bytecount: how many bytes in the transaction.
1064 *
1065 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1066 *
1067 * Note:
1068 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1069 * scheduled in software, this function is only used for such scheduling.
1070 */
1071long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1072{
1073	unsigned long	tmp;
1074
1075	switch (speed) {
1076	case USB_SPEED_LOW: 	/* INTR only */
1077		if (is_input) {
1078			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1079			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1080		} else {
1081			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1082			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1083		}
1084	case USB_SPEED_FULL:	/* ISOC or INTR */
1085		if (isoc) {
1086			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1087			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1088		} else {
1089			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1090			return 9107L + BW_HOST_DELAY + tmp;
1091		}
1092	case USB_SPEED_HIGH:	/* ISOC or INTR */
1093		/* FIXME adjust for input vs output */
1094		if (isoc)
1095			tmp = HS_NSECS_ISO (bytecount);
1096		else
1097			tmp = HS_NSECS (bytecount);
1098		return tmp;
1099	default:
1100		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1101		return -1;
1102	}
1103}
1104EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1105
1106
1107/*-------------------------------------------------------------------------*/
1108
1109/*
1110 * Generic HC operations.
1111 */
1112
1113/*-------------------------------------------------------------------------*/
1114
1115/**
1116 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1117 * @hcd: host controller to which @urb was submitted
1118 * @urb: URB being submitted
1119 *
1120 * Host controller drivers should call this routine in their enqueue()
1121 * method.  The HCD's private spinlock must be held and interrupts must
1122 * be disabled.  The actions carried out here are required for URB
1123 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1124 *
1125 * Return: 0 for no error, otherwise a negative error code (in which case
1126 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1127 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1128 * the private spinlock and returning.
1129 */
1130int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1131{
1132	int		rc = 0;
1133
1134	spin_lock(&hcd_urb_list_lock);
1135
1136	/* Check that the URB isn't being killed */
1137	if (unlikely(atomic_read(&urb->reject))) {
1138		rc = -EPERM;
1139		goto done;
1140	}
1141
1142	if (unlikely(!urb->ep->enabled)) {
1143		rc = -ENOENT;
1144		goto done;
1145	}
1146
1147	if (unlikely(!urb->dev->can_submit)) {
1148		rc = -EHOSTUNREACH;
1149		goto done;
1150	}
1151
1152	/*
1153	 * Check the host controller's state and add the URB to the
1154	 * endpoint's queue.
1155	 */
1156	if (HCD_RH_RUNNING(hcd)) {
1157		urb->unlinked = 0;
1158		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1159	} else {
1160		rc = -ESHUTDOWN;
1161		goto done;
1162	}
1163 done:
1164	spin_unlock(&hcd_urb_list_lock);
1165	return rc;
1166}
1167EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1168
1169/**
1170 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1171 * @hcd: host controller to which @urb was submitted
1172 * @urb: URB being checked for unlinkability
1173 * @status: error code to store in @urb if the unlink succeeds
1174 *
1175 * Host controller drivers should call this routine in their dequeue()
1176 * method.  The HCD's private spinlock must be held and interrupts must
1177 * be disabled.  The actions carried out here are required for making
1178 * sure than an unlink is valid.
1179 *
1180 * Return: 0 for no error, otherwise a negative error code (in which case
1181 * the dequeue() method must fail).  The possible error codes are:
1182 *
1183 *	-EIDRM: @urb was not submitted or has already completed.
1184 *		The completion function may not have been called yet.
1185 *
1186 *	-EBUSY: @urb has already been unlinked.
1187 */
1188int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1189		int status)
1190{
1191	struct list_head	*tmp;
1192
1193	/* insist the urb is still queued */
1194	list_for_each(tmp, &urb->ep->urb_list) {
1195		if (tmp == &urb->urb_list)
1196			break;
1197	}
1198	if (tmp != &urb->urb_list)
1199		return -EIDRM;
1200
1201	/* Any status except -EINPROGRESS means something already started to
1202	 * unlink this URB from the hardware.  So there's no more work to do.
1203	 */
1204	if (urb->unlinked)
1205		return -EBUSY;
1206	urb->unlinked = status;
1207	return 0;
1208}
1209EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1210
1211/**
1212 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1213 * @hcd: host controller to which @urb was submitted
1214 * @urb: URB being unlinked
1215 *
1216 * Host controller drivers should call this routine before calling
1217 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1218 * interrupts must be disabled.  The actions carried out here are required
1219 * for URB completion.
1220 */
1221void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1222{
1223	/* clear all state linking urb to this dev (and hcd) */
1224	spin_lock(&hcd_urb_list_lock);
1225	list_del_init(&urb->urb_list);
1226	spin_unlock(&hcd_urb_list_lock);
1227}
1228EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1229
1230/*
1231 * Some usb host controllers can only perform dma using a small SRAM area,
1232 * or have restrictions on addressable DRAM.
1233 * The usb core itself is however optimized for host controllers that can dma
1234 * using regular system memory - like pci devices doing bus mastering.
1235 *
1236 * To support host controllers with limited dma capabilities we provide dma
1237 * bounce buffers. This feature can be enabled by initializing
1238 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1239 *
1240 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1241 * data for dma using the genalloc API.
1242 *
1243 * So, to summarize...
1244 *
1245 * - We need "local" memory, canonical example being
1246 *   a small SRAM on a discrete controller being the
1247 *   only memory that the controller can read ...
1248 *   (a) "normal" kernel memory is no good, and
1249 *   (b) there's not enough to share
1250 *
1251 * - So we use that, even though the primary requirement
1252 *   is that the memory be "local" (hence addressable
1253 *   by that device), not "coherent".
1254 *
1255 */
1256
1257static int hcd_alloc_coherent(struct usb_bus *bus,
1258			      gfp_t mem_flags, dma_addr_t *dma_handle,
1259			      void **vaddr_handle, size_t size,
1260			      enum dma_data_direction dir)
1261{
1262	unsigned char *vaddr;
1263
1264	if (*vaddr_handle == NULL) {
1265		WARN_ON_ONCE(1);
1266		return -EFAULT;
1267	}
1268
1269	vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long),
1270				 mem_flags, dma_handle);
1271	if (!vaddr)
1272		return -ENOMEM;
1273
1274	/*
1275	 * Store the virtual address of the buffer at the end
1276	 * of the allocated dma buffer. The size of the buffer
1277	 * may be uneven so use unaligned functions instead
1278	 * of just rounding up. It makes sense to optimize for
1279	 * memory footprint over access speed since the amount
1280	 * of memory available for dma may be limited.
1281	 */
1282	put_unaligned((unsigned long)*vaddr_handle,
1283		      (unsigned long *)(vaddr + size));
1284
1285	if (dir == DMA_TO_DEVICE)
1286		memcpy(vaddr, *vaddr_handle, size);
1287
1288	*vaddr_handle = vaddr;
1289	return 0;
1290}
1291
1292static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1293			      void **vaddr_handle, size_t size,
1294			      enum dma_data_direction dir)
1295{
1296	unsigned char *vaddr = *vaddr_handle;
1297
1298	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1299
1300	if (dir == DMA_FROM_DEVICE)
1301		memcpy(vaddr, *vaddr_handle, size);
1302
1303	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1304
1305	*vaddr_handle = vaddr;
1306	*dma_handle = 0;
1307}
1308
1309void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1310{
1311	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1312	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1313		dma_unmap_single(hcd->self.sysdev,
1314				urb->setup_dma,
1315				sizeof(struct usb_ctrlrequest),
1316				DMA_TO_DEVICE);
1317	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1318		hcd_free_coherent(urb->dev->bus,
1319				&urb->setup_dma,
1320				(void **) &urb->setup_packet,
1321				sizeof(struct usb_ctrlrequest),
1322				DMA_TO_DEVICE);
1323
1324	/* Make it safe to call this routine more than once */
1325	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1326}
1327EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1328
1329static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1330{
1331	if (hcd->driver->unmap_urb_for_dma)
1332		hcd->driver->unmap_urb_for_dma(hcd, urb);
1333	else
1334		usb_hcd_unmap_urb_for_dma(hcd, urb);
1335}
1336
1337void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1338{
1339	enum dma_data_direction dir;
1340
1341	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1342
1343	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1344	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1345	    (urb->transfer_flags & URB_DMA_MAP_SG))
1346		dma_unmap_sg(hcd->self.sysdev,
1347				urb->sg,
1348				urb->num_sgs,
1349				dir);
1350	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1351		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1352		dma_unmap_page(hcd->self.sysdev,
1353				urb->transfer_dma,
1354				urb->transfer_buffer_length,
1355				dir);
1356	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1357		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1358		dma_unmap_single(hcd->self.sysdev,
1359				urb->transfer_dma,
1360				urb->transfer_buffer_length,
1361				dir);
1362	else if (urb->transfer_flags & URB_MAP_LOCAL)
1363		hcd_free_coherent(urb->dev->bus,
1364				&urb->transfer_dma,
1365				&urb->transfer_buffer,
1366				urb->transfer_buffer_length,
1367				dir);
1368
1369	/* Make it safe to call this routine more than once */
1370	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1371			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1372}
1373EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1374
1375static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1376			   gfp_t mem_flags)
1377{
1378	if (hcd->driver->map_urb_for_dma)
1379		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1380	else
1381		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1382}
1383
1384int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1385			    gfp_t mem_flags)
1386{
1387	enum dma_data_direction dir;
1388	int ret = 0;
1389
1390	/* Map the URB's buffers for DMA access.
1391	 * Lower level HCD code should use *_dma exclusively,
1392	 * unless it uses pio or talks to another transport,
1393	 * or uses the provided scatter gather list for bulk.
1394	 */
1395
1396	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1397		if (hcd->self.uses_pio_for_control)
1398			return ret;
1399		if (hcd->localmem_pool) {
1400			ret = hcd_alloc_coherent(
1401					urb->dev->bus, mem_flags,
1402					&urb->setup_dma,
1403					(void **)&urb->setup_packet,
1404					sizeof(struct usb_ctrlrequest),
1405					DMA_TO_DEVICE);
1406			if (ret)
1407				return ret;
1408			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1409		} else if (hcd_uses_dma(hcd)) {
1410			if (object_is_on_stack(urb->setup_packet)) {
1411				WARN_ONCE(1, "setup packet is on stack\n");
1412				return -EAGAIN;
1413			}
1414
1415			urb->setup_dma = dma_map_single(
1416					hcd->self.sysdev,
1417					urb->setup_packet,
1418					sizeof(struct usb_ctrlrequest),
1419					DMA_TO_DEVICE);
1420			if (dma_mapping_error(hcd->self.sysdev,
1421						urb->setup_dma))
1422				return -EAGAIN;
1423			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1424		}
1425	}
1426
1427	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1428	if (urb->transfer_buffer_length != 0
1429	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1430		if (hcd->localmem_pool) {
1431			ret = hcd_alloc_coherent(
1432					urb->dev->bus, mem_flags,
1433					&urb->transfer_dma,
1434					&urb->transfer_buffer,
1435					urb->transfer_buffer_length,
1436					dir);
1437			if (ret == 0)
1438				urb->transfer_flags |= URB_MAP_LOCAL;
1439		} else if (hcd_uses_dma(hcd)) {
1440			if (urb->num_sgs) {
1441				int n;
1442
1443				/* We don't support sg for isoc transfers ! */
1444				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1445					WARN_ON(1);
1446					return -EINVAL;
1447				}
1448
1449				n = dma_map_sg(
1450						hcd->self.sysdev,
1451						urb->sg,
1452						urb->num_sgs,
1453						dir);
1454				if (!n)
1455					ret = -EAGAIN;
1456				else
1457					urb->transfer_flags |= URB_DMA_MAP_SG;
1458				urb->num_mapped_sgs = n;
1459				if (n != urb->num_sgs)
1460					urb->transfer_flags |=
1461							URB_DMA_SG_COMBINED;
1462			} else if (urb->sg) {
1463				struct scatterlist *sg = urb->sg;
1464				urb->transfer_dma = dma_map_page(
1465						hcd->self.sysdev,
1466						sg_page(sg),
1467						sg->offset,
1468						urb->transfer_buffer_length,
1469						dir);
1470				if (dma_mapping_error(hcd->self.sysdev,
1471						urb->transfer_dma))
1472					ret = -EAGAIN;
1473				else
1474					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1475			} else if (object_is_on_stack(urb->transfer_buffer)) {
1476				WARN_ONCE(1, "transfer buffer is on stack\n");
1477				ret = -EAGAIN;
1478			} else {
1479				urb->transfer_dma = dma_map_single(
1480						hcd->self.sysdev,
1481						urb->transfer_buffer,
1482						urb->transfer_buffer_length,
1483						dir);
1484				if (dma_mapping_error(hcd->self.sysdev,
1485						urb->transfer_dma))
1486					ret = -EAGAIN;
1487				else
1488					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1489			}
1490		}
1491		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1492				URB_SETUP_MAP_LOCAL)))
1493			usb_hcd_unmap_urb_for_dma(hcd, urb);
1494	}
1495	return ret;
1496}
1497EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1498
1499/*-------------------------------------------------------------------------*/
1500
1501/* may be called in any context with a valid urb->dev usecount
1502 * caller surrenders "ownership" of urb
1503 * expects usb_submit_urb() to have sanity checked and conditioned all
1504 * inputs in the urb
1505 */
1506int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1507{
1508	int			status;
1509	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1510
1511	/* increment urb's reference count as part of giving it to the HCD
1512	 * (which will control it).  HCD guarantees that it either returns
1513	 * an error or calls giveback(), but not both.
1514	 */
1515	usb_get_urb(urb);
1516	atomic_inc(&urb->use_count);
1517	atomic_inc(&urb->dev->urbnum);
1518	usbmon_urb_submit(&hcd->self, urb);
1519
1520	/* NOTE requirements on root-hub callers (usbfs and the hub
1521	 * driver, for now):  URBs' urb->transfer_buffer must be
1522	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1523	 * they could clobber root hub response data.  Also, control
1524	 * URBs must be submitted in process context with interrupts
1525	 * enabled.
1526	 */
1527
1528	if (is_root_hub(urb->dev)) {
1529		status = rh_urb_enqueue(hcd, urb);
1530	} else {
1531		status = map_urb_for_dma(hcd, urb, mem_flags);
1532		if (likely(status == 0)) {
1533			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1534			if (unlikely(status))
1535				unmap_urb_for_dma(hcd, urb);
1536		}
1537	}
1538
1539	if (unlikely(status)) {
1540		usbmon_urb_submit_error(&hcd->self, urb, status);
1541		urb->hcpriv = NULL;
1542		INIT_LIST_HEAD(&urb->urb_list);
1543		atomic_dec(&urb->use_count);
1544		/*
1545		 * Order the write of urb->use_count above before the read
1546		 * of urb->reject below.  Pairs with the memory barriers in
1547		 * usb_kill_urb() and usb_poison_urb().
1548		 */
1549		smp_mb__after_atomic();
1550
1551		atomic_dec(&urb->dev->urbnum);
1552		if (atomic_read(&urb->reject))
1553			wake_up(&usb_kill_urb_queue);
1554		usb_put_urb(urb);
1555	}
1556	return status;
1557}
1558
1559/*-------------------------------------------------------------------------*/
1560
1561/* this makes the hcd giveback() the urb more quickly, by kicking it
1562 * off hardware queues (which may take a while) and returning it as
1563 * soon as practical.  we've already set up the urb's return status,
1564 * but we can't know if the callback completed already.
1565 */
1566static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1567{
1568	int		value;
1569
1570	if (is_root_hub(urb->dev))
1571		value = usb_rh_urb_dequeue(hcd, urb, status);
1572	else {
1573
1574		/* The only reason an HCD might fail this call is if
1575		 * it has not yet fully queued the urb to begin with.
1576		 * Such failures should be harmless. */
1577		value = hcd->driver->urb_dequeue(hcd, urb, status);
1578	}
1579	return value;
1580}
1581
1582/*
1583 * called in any context
1584 *
1585 * caller guarantees urb won't be recycled till both unlink()
1586 * and the urb's completion function return
1587 */
1588int usb_hcd_unlink_urb (struct urb *urb, int status)
1589{
1590	struct usb_hcd		*hcd;
1591	struct usb_device	*udev = urb->dev;
1592	int			retval = -EIDRM;
1593	unsigned long		flags;
1594
1595	/* Prevent the device and bus from going away while
1596	 * the unlink is carried out.  If they are already gone
1597	 * then urb->use_count must be 0, since disconnected
1598	 * devices can't have any active URBs.
1599	 */
1600	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1601	if (atomic_read(&urb->use_count) > 0) {
1602		retval = 0;
1603		usb_get_dev(udev);
1604	}
1605	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1606	if (retval == 0) {
1607		hcd = bus_to_hcd(urb->dev->bus);
1608		retval = unlink1(hcd, urb, status);
1609		if (retval == 0)
1610			retval = -EINPROGRESS;
1611		else if (retval != -EIDRM && retval != -EBUSY)
1612			dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1613					urb, retval);
1614		usb_put_dev(udev);
1615	}
1616	return retval;
1617}
1618
1619/*-------------------------------------------------------------------------*/
1620
1621static void __usb_hcd_giveback_urb(struct urb *urb)
1622{
1623	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1624	struct usb_anchor *anchor = urb->anchor;
1625	int status = urb->unlinked;
1626
1627	urb->hcpriv = NULL;
1628	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1629	    urb->actual_length < urb->transfer_buffer_length &&
1630	    !status))
1631		status = -EREMOTEIO;
1632
1633	unmap_urb_for_dma(hcd, urb);
1634	usbmon_urb_complete(&hcd->self, urb, status);
1635	usb_anchor_suspend_wakeups(anchor);
1636	usb_unanchor_urb(urb);
1637	if (likely(status == 0))
1638		usb_led_activity(USB_LED_EVENT_HOST);
1639
1640	/* pass ownership to the completion handler */
1641	urb->status = status;
1642	/*
1643	 * This function can be called in task context inside another remote
1644	 * coverage collection section, but kcov doesn't support that kind of
1645	 * recursion yet. Only collect coverage in softirq context for now.
1646	 */
1647	kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1648	urb->complete(urb);
1649	kcov_remote_stop_softirq();
1650
1651	usb_anchor_resume_wakeups(anchor);
1652	atomic_dec(&urb->use_count);
1653	/*
1654	 * Order the write of urb->use_count above before the read
1655	 * of urb->reject below.  Pairs with the memory barriers in
1656	 * usb_kill_urb() and usb_poison_urb().
1657	 */
1658	smp_mb__after_atomic();
1659
1660	if (unlikely(atomic_read(&urb->reject)))
1661		wake_up(&usb_kill_urb_queue);
1662	usb_put_urb(urb);
1663}
1664
1665static void usb_giveback_urb_bh(struct work_struct *work)
1666{
1667	struct giveback_urb_bh *bh =
1668		container_of(work, struct giveback_urb_bh, bh);
1669	struct list_head local_list;
1670
1671	spin_lock_irq(&bh->lock);
1672	bh->running = true;
1673	list_replace_init(&bh->head, &local_list);
1674	spin_unlock_irq(&bh->lock);
1675
1676	while (!list_empty(&local_list)) {
1677		struct urb *urb;
1678
1679		urb = list_entry(local_list.next, struct urb, urb_list);
1680		list_del_init(&urb->urb_list);
1681		bh->completing_ep = urb->ep;
1682		__usb_hcd_giveback_urb(urb);
1683		bh->completing_ep = NULL;
1684	}
1685
1686	/*
1687	 * giveback new URBs next time to prevent this function
1688	 * from not exiting for a long time.
1689	 */
1690	spin_lock_irq(&bh->lock);
1691	if (!list_empty(&bh->head)) {
1692		if (bh->high_prio)
1693			queue_work(system_bh_highpri_wq, &bh->bh);
1694		else
1695			queue_work(system_bh_wq, &bh->bh);
1696	}
1697	bh->running = false;
1698	spin_unlock_irq(&bh->lock);
1699}
1700
1701/**
1702 * usb_hcd_giveback_urb - return URB from HCD to device driver
1703 * @hcd: host controller returning the URB
1704 * @urb: urb being returned to the USB device driver.
1705 * @status: completion status code for the URB.
1706 *
1707 * Context: atomic. The completion callback is invoked in caller's context.
1708 * For HCDs with HCD_BH flag set, the completion callback is invoked in BH
1709 * context (except for URBs submitted to the root hub which always complete in
1710 * caller's context).
1711 *
1712 * This hands the URB from HCD to its USB device driver, using its
1713 * completion function.  The HCD has freed all per-urb resources
1714 * (and is done using urb->hcpriv).  It also released all HCD locks;
1715 * the device driver won't cause problems if it frees, modifies,
1716 * or resubmits this URB.
1717 *
1718 * If @urb was unlinked, the value of @status will be overridden by
1719 * @urb->unlinked.  Erroneous short transfers are detected in case
1720 * the HCD hasn't checked for them.
1721 */
1722void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1723{
1724	struct giveback_urb_bh *bh;
1725	bool running;
1726
1727	/* pass status to BH via unlinked */
1728	if (likely(!urb->unlinked))
1729		urb->unlinked = status;
1730
1731	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1732		__usb_hcd_giveback_urb(urb);
1733		return;
1734	}
1735
1736	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1737		bh = &hcd->high_prio_bh;
1738	else
1739		bh = &hcd->low_prio_bh;
1740
1741	spin_lock(&bh->lock);
1742	list_add_tail(&urb->urb_list, &bh->head);
1743	running = bh->running;
1744	spin_unlock(&bh->lock);
1745
1746	if (running)
1747		;
1748	else if (bh->high_prio)
1749		queue_work(system_bh_highpri_wq, &bh->bh);
1750	else
1751		queue_work(system_bh_wq, &bh->bh);
1752}
1753EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1754
1755/*-------------------------------------------------------------------------*/
1756
1757/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1758 * queue to drain completely.  The caller must first insure that no more
1759 * URBs can be submitted for this endpoint.
1760 */
1761void usb_hcd_flush_endpoint(struct usb_device *udev,
1762		struct usb_host_endpoint *ep)
1763{
1764	struct usb_hcd		*hcd;
1765	struct urb		*urb;
1766
1767	if (!ep)
1768		return;
1769	might_sleep();
1770	hcd = bus_to_hcd(udev->bus);
1771
1772	/* No more submits can occur */
1773	spin_lock_irq(&hcd_urb_list_lock);
1774rescan:
1775	list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1776		int	is_in;
1777
1778		if (urb->unlinked)
1779			continue;
1780		usb_get_urb (urb);
1781		is_in = usb_urb_dir_in(urb);
1782		spin_unlock(&hcd_urb_list_lock);
1783
1784		/* kick hcd */
1785		unlink1(hcd, urb, -ESHUTDOWN);
1786		dev_dbg (hcd->self.controller,
1787			"shutdown urb %pK ep%d%s-%s\n",
1788			urb, usb_endpoint_num(&ep->desc),
1789			is_in ? "in" : "out",
1790			usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1791		usb_put_urb (urb);
1792
1793		/* list contents may have changed */
1794		spin_lock(&hcd_urb_list_lock);
1795		goto rescan;
1796	}
1797	spin_unlock_irq(&hcd_urb_list_lock);
1798
1799	/* Wait until the endpoint queue is completely empty */
1800	while (!list_empty (&ep->urb_list)) {
1801		spin_lock_irq(&hcd_urb_list_lock);
1802
1803		/* The list may have changed while we acquired the spinlock */
1804		urb = NULL;
1805		if (!list_empty (&ep->urb_list)) {
1806			urb = list_entry (ep->urb_list.prev, struct urb,
1807					urb_list);
1808			usb_get_urb (urb);
1809		}
1810		spin_unlock_irq(&hcd_urb_list_lock);
1811
1812		if (urb) {
1813			usb_kill_urb (urb);
1814			usb_put_urb (urb);
1815		}
1816	}
1817}
1818
1819/**
1820 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1821 *				the bus bandwidth
1822 * @udev: target &usb_device
1823 * @new_config: new configuration to install
1824 * @cur_alt: the current alternate interface setting
1825 * @new_alt: alternate interface setting that is being installed
1826 *
1827 * To change configurations, pass in the new configuration in new_config,
1828 * and pass NULL for cur_alt and new_alt.
1829 *
1830 * To reset a device's configuration (put the device in the ADDRESSED state),
1831 * pass in NULL for new_config, cur_alt, and new_alt.
1832 *
1833 * To change alternate interface settings, pass in NULL for new_config,
1834 * pass in the current alternate interface setting in cur_alt,
1835 * and pass in the new alternate interface setting in new_alt.
1836 *
1837 * Return: An error if the requested bandwidth change exceeds the
1838 * bus bandwidth or host controller internal resources.
1839 */
1840int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1841		struct usb_host_config *new_config,
1842		struct usb_host_interface *cur_alt,
1843		struct usb_host_interface *new_alt)
1844{
1845	int num_intfs, i, j;
1846	struct usb_host_interface *alt = NULL;
1847	int ret = 0;
1848	struct usb_hcd *hcd;
1849	struct usb_host_endpoint *ep;
1850
1851	hcd = bus_to_hcd(udev->bus);
1852	if (!hcd->driver->check_bandwidth)
1853		return 0;
1854
1855	/* Configuration is being removed - set configuration 0 */
1856	if (!new_config && !cur_alt) {
1857		for (i = 1; i < 16; ++i) {
1858			ep = udev->ep_out[i];
1859			if (ep)
1860				hcd->driver->drop_endpoint(hcd, udev, ep);
1861			ep = udev->ep_in[i];
1862			if (ep)
1863				hcd->driver->drop_endpoint(hcd, udev, ep);
1864		}
1865		hcd->driver->check_bandwidth(hcd, udev);
1866		return 0;
1867	}
1868	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1869	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1870	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1871	 * ok to exclude it.
1872	 */
1873	if (new_config) {
1874		num_intfs = new_config->desc.bNumInterfaces;
1875		/* Remove endpoints (except endpoint 0, which is always on the
1876		 * schedule) from the old config from the schedule
1877		 */
1878		for (i = 1; i < 16; ++i) {
1879			ep = udev->ep_out[i];
1880			if (ep) {
1881				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1882				if (ret < 0)
1883					goto reset;
1884			}
1885			ep = udev->ep_in[i];
1886			if (ep) {
1887				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1888				if (ret < 0)
1889					goto reset;
1890			}
1891		}
1892		for (i = 0; i < num_intfs; ++i) {
1893			struct usb_host_interface *first_alt;
1894			int iface_num;
1895
1896			first_alt = &new_config->intf_cache[i]->altsetting[0];
1897			iface_num = first_alt->desc.bInterfaceNumber;
1898			/* Set up endpoints for alternate interface setting 0 */
1899			alt = usb_find_alt_setting(new_config, iface_num, 0);
1900			if (!alt)
1901				/* No alt setting 0? Pick the first setting. */
1902				alt = first_alt;
1903
1904			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1905				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1906				if (ret < 0)
1907					goto reset;
1908			}
1909		}
1910	}
1911	if (cur_alt && new_alt) {
1912		struct usb_interface *iface = usb_ifnum_to_if(udev,
1913				cur_alt->desc.bInterfaceNumber);
1914
1915		if (!iface)
1916			return -EINVAL;
1917		if (iface->resetting_device) {
1918			/*
1919			 * The USB core just reset the device, so the xHCI host
1920			 * and the device will think alt setting 0 is installed.
1921			 * However, the USB core will pass in the alternate
1922			 * setting installed before the reset as cur_alt.  Dig
1923			 * out the alternate setting 0 structure, or the first
1924			 * alternate setting if a broken device doesn't have alt
1925			 * setting 0.
1926			 */
1927			cur_alt = usb_altnum_to_altsetting(iface, 0);
1928			if (!cur_alt)
1929				cur_alt = &iface->altsetting[0];
1930		}
1931
1932		/* Drop all the endpoints in the current alt setting */
1933		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1934			ret = hcd->driver->drop_endpoint(hcd, udev,
1935					&cur_alt->endpoint[i]);
1936			if (ret < 0)
1937				goto reset;
1938		}
1939		/* Add all the endpoints in the new alt setting */
1940		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1941			ret = hcd->driver->add_endpoint(hcd, udev,
1942					&new_alt->endpoint[i]);
1943			if (ret < 0)
1944				goto reset;
1945		}
1946	}
1947	ret = hcd->driver->check_bandwidth(hcd, udev);
1948reset:
1949	if (ret < 0)
1950		hcd->driver->reset_bandwidth(hcd, udev);
1951	return ret;
1952}
1953
1954/* Disables the endpoint: synchronizes with the hcd to make sure all
1955 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1956 * have been called previously.  Use for set_configuration, set_interface,
1957 * driver removal, physical disconnect.
1958 *
1959 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1960 * type, maxpacket size, toggle, halt status, and scheduling.
1961 */
1962void usb_hcd_disable_endpoint(struct usb_device *udev,
1963		struct usb_host_endpoint *ep)
1964{
1965	struct usb_hcd		*hcd;
1966
1967	might_sleep();
1968	hcd = bus_to_hcd(udev->bus);
1969	if (hcd->driver->endpoint_disable)
1970		hcd->driver->endpoint_disable(hcd, ep);
1971}
1972
1973/**
1974 * usb_hcd_reset_endpoint - reset host endpoint state
1975 * @udev: USB device.
1976 * @ep:   the endpoint to reset.
1977 *
1978 * Resets any host endpoint state such as the toggle bit, sequence
1979 * number and current window.
1980 */
1981void usb_hcd_reset_endpoint(struct usb_device *udev,
1982			    struct usb_host_endpoint *ep)
1983{
1984	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1985
1986	if (hcd->driver->endpoint_reset)
1987		hcd->driver->endpoint_reset(hcd, ep);
1988	else {
1989		int epnum = usb_endpoint_num(&ep->desc);
1990		int is_out = usb_endpoint_dir_out(&ep->desc);
1991		int is_control = usb_endpoint_xfer_control(&ep->desc);
1992
1993		usb_settoggle(udev, epnum, is_out, 0);
1994		if (is_control)
1995			usb_settoggle(udev, epnum, !is_out, 0);
1996	}
1997}
1998
1999/**
2000 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2001 * @interface:		alternate setting that includes all endpoints.
2002 * @eps:		array of endpoints that need streams.
2003 * @num_eps:		number of endpoints in the array.
2004 * @num_streams:	number of streams to allocate.
2005 * @mem_flags:		flags hcd should use to allocate memory.
2006 *
2007 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2008 * Drivers may queue multiple transfers to different stream IDs, which may
2009 * complete in a different order than they were queued.
2010 *
2011 * Return: On success, the number of allocated streams. On failure, a negative
2012 * error code.
2013 */
2014int usb_alloc_streams(struct usb_interface *interface,
2015		struct usb_host_endpoint **eps, unsigned int num_eps,
2016		unsigned int num_streams, gfp_t mem_flags)
2017{
2018	struct usb_hcd *hcd;
2019	struct usb_device *dev;
2020	int i, ret;
2021
2022	dev = interface_to_usbdev(interface);
2023	hcd = bus_to_hcd(dev->bus);
2024	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2025		return -EINVAL;
2026	if (dev->speed < USB_SPEED_SUPER)
2027		return -EINVAL;
2028	if (dev->state < USB_STATE_CONFIGURED)
2029		return -ENODEV;
2030
2031	for (i = 0; i < num_eps; i++) {
2032		/* Streams only apply to bulk endpoints. */
2033		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2034			return -EINVAL;
2035		/* Re-alloc is not allowed */
2036		if (eps[i]->streams)
2037			return -EINVAL;
2038	}
2039
2040	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2041			num_streams, mem_flags);
2042	if (ret < 0)
2043		return ret;
2044
2045	for (i = 0; i < num_eps; i++)
2046		eps[i]->streams = ret;
2047
2048	return ret;
2049}
2050EXPORT_SYMBOL_GPL(usb_alloc_streams);
2051
2052/**
2053 * usb_free_streams - free bulk endpoint stream IDs.
2054 * @interface:	alternate setting that includes all endpoints.
2055 * @eps:	array of endpoints to remove streams from.
2056 * @num_eps:	number of endpoints in the array.
2057 * @mem_flags:	flags hcd should use to allocate memory.
2058 *
2059 * Reverts a group of bulk endpoints back to not using stream IDs.
2060 * Can fail if we are given bad arguments, or HCD is broken.
2061 *
2062 * Return: 0 on success. On failure, a negative error code.
2063 */
2064int usb_free_streams(struct usb_interface *interface,
2065		struct usb_host_endpoint **eps, unsigned int num_eps,
2066		gfp_t mem_flags)
2067{
2068	struct usb_hcd *hcd;
2069	struct usb_device *dev;
2070	int i, ret;
2071
2072	dev = interface_to_usbdev(interface);
2073	hcd = bus_to_hcd(dev->bus);
2074	if (dev->speed < USB_SPEED_SUPER)
2075		return -EINVAL;
2076
2077	/* Double-free is not allowed */
2078	for (i = 0; i < num_eps; i++)
2079		if (!eps[i] || !eps[i]->streams)
2080			return -EINVAL;
2081
2082	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2083	if (ret < 0)
2084		return ret;
2085
2086	for (i = 0; i < num_eps; i++)
2087		eps[i]->streams = 0;
2088
2089	return ret;
2090}
2091EXPORT_SYMBOL_GPL(usb_free_streams);
2092
2093/* Protect against drivers that try to unlink URBs after the device
2094 * is gone, by waiting until all unlinks for @udev are finished.
2095 * Since we don't currently track URBs by device, simply wait until
2096 * nothing is running in the locked region of usb_hcd_unlink_urb().
2097 */
2098void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2099{
2100	spin_lock_irq(&hcd_urb_unlink_lock);
2101	spin_unlock_irq(&hcd_urb_unlink_lock);
2102}
2103
2104/*-------------------------------------------------------------------------*/
2105
2106/* called in any context */
2107int usb_hcd_get_frame_number (struct usb_device *udev)
2108{
2109	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2110
2111	if (!HCD_RH_RUNNING(hcd))
2112		return -ESHUTDOWN;
2113	return hcd->driver->get_frame_number (hcd);
2114}
2115
2116/*-------------------------------------------------------------------------*/
2117#ifdef CONFIG_USB_HCD_TEST_MODE
2118
2119static void usb_ehset_completion(struct urb *urb)
2120{
2121	struct completion  *done = urb->context;
2122
2123	complete(done);
2124}
2125/*
2126 * Allocate and initialize a control URB. This request will be used by the
2127 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2128 * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2129 * Return NULL if failed.
2130 */
2131static struct urb *request_single_step_set_feature_urb(
2132	struct usb_device	*udev,
2133	void			*dr,
2134	void			*buf,
2135	struct completion	*done)
2136{
2137	struct urb *urb;
2138	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2139
2140	urb = usb_alloc_urb(0, GFP_KERNEL);
2141	if (!urb)
2142		return NULL;
2143
2144	urb->pipe = usb_rcvctrlpipe(udev, 0);
2145
2146	urb->ep = &udev->ep0;
2147	urb->dev = udev;
2148	urb->setup_packet = (void *)dr;
2149	urb->transfer_buffer = buf;
2150	urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2151	urb->complete = usb_ehset_completion;
2152	urb->status = -EINPROGRESS;
2153	urb->actual_length = 0;
2154	urb->transfer_flags = URB_DIR_IN;
2155	usb_get_urb(urb);
2156	atomic_inc(&urb->use_count);
2157	atomic_inc(&urb->dev->urbnum);
2158	if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2159		usb_put_urb(urb);
2160		usb_free_urb(urb);
2161		return NULL;
2162	}
2163
2164	urb->context = done;
2165	return urb;
2166}
2167
2168int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2169{
2170	int retval = -ENOMEM;
2171	struct usb_ctrlrequest *dr;
2172	struct urb *urb;
2173	struct usb_device *udev;
2174	struct usb_device_descriptor *buf;
2175	DECLARE_COMPLETION_ONSTACK(done);
2176
2177	/* Obtain udev of the rhub's child port */
2178	udev = usb_hub_find_child(hcd->self.root_hub, port);
2179	if (!udev) {
2180		dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2181		return -ENODEV;
2182	}
2183	buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2184	if (!buf)
2185		return -ENOMEM;
2186
2187	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2188	if (!dr) {
2189		kfree(buf);
2190		return -ENOMEM;
2191	}
2192
2193	/* Fill Setup packet for GetDescriptor */
2194	dr->bRequestType = USB_DIR_IN;
2195	dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2196	dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2197	dr->wIndex = 0;
2198	dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2199	urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2200	if (!urb)
2201		goto cleanup;
2202
2203	/* Submit just the SETUP stage */
2204	retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2205	if (retval)
2206		goto out1;
2207	if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2208		usb_kill_urb(urb);
2209		retval = -ETIMEDOUT;
2210		dev_err(hcd->self.controller,
2211			"%s SETUP stage timed out on ep0\n", __func__);
2212		goto out1;
2213	}
2214	msleep(15 * 1000);
2215
2216	/* Complete remaining DATA and STATUS stages using the same URB */
2217	urb->status = -EINPROGRESS;
2218	usb_get_urb(urb);
2219	atomic_inc(&urb->use_count);
2220	atomic_inc(&urb->dev->urbnum);
2221	retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2222	if (!retval && !wait_for_completion_timeout(&done,
2223						msecs_to_jiffies(2000))) {
2224		usb_kill_urb(urb);
2225		retval = -ETIMEDOUT;
2226		dev_err(hcd->self.controller,
2227			"%s IN stage timed out on ep0\n", __func__);
2228	}
2229out1:
2230	usb_free_urb(urb);
2231cleanup:
2232	kfree(dr);
2233	kfree(buf);
2234	return retval;
2235}
2236EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2237#endif /* CONFIG_USB_HCD_TEST_MODE */
2238
2239/*-------------------------------------------------------------------------*/
2240
2241#ifdef	CONFIG_PM
2242
2243int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2244{
2245	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2246	int		status;
2247	int		old_state = hcd->state;
2248
2249	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2250			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2251			rhdev->do_remote_wakeup);
2252	if (HCD_DEAD(hcd)) {
2253		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2254		return 0;
2255	}
2256
2257	if (!hcd->driver->bus_suspend) {
2258		status = -ENOENT;
2259	} else {
2260		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2261		hcd->state = HC_STATE_QUIESCING;
2262		status = hcd->driver->bus_suspend(hcd);
2263	}
2264	if (status == 0) {
2265		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2266		hcd->state = HC_STATE_SUSPENDED;
2267
2268		if (!PMSG_IS_AUTO(msg))
2269			usb_phy_roothub_suspend(hcd->self.sysdev,
2270						hcd->phy_roothub);
2271
2272		/* Did we race with a root-hub wakeup event? */
2273		if (rhdev->do_remote_wakeup) {
2274			char	buffer[6];
2275
2276			status = hcd->driver->hub_status_data(hcd, buffer);
2277			if (status != 0) {
2278				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2279				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2280				status = -EBUSY;
2281			}
2282		}
2283	} else {
2284		spin_lock_irq(&hcd_root_hub_lock);
2285		if (!HCD_DEAD(hcd)) {
2286			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2287			hcd->state = old_state;
2288		}
2289		spin_unlock_irq(&hcd_root_hub_lock);
2290		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2291				"suspend", status);
2292	}
2293	return status;
2294}
2295
2296int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2297{
2298	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2299	int		status;
2300	int		old_state = hcd->state;
2301
2302	dev_dbg(&rhdev->dev, "usb %sresume\n",
2303			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2304	if (HCD_DEAD(hcd)) {
2305		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2306		return 0;
2307	}
2308
2309	if (!PMSG_IS_AUTO(msg)) {
2310		status = usb_phy_roothub_resume(hcd->self.sysdev,
2311						hcd->phy_roothub);
2312		if (status)
2313			return status;
2314	}
2315
2316	if (!hcd->driver->bus_resume)
2317		return -ENOENT;
2318	if (HCD_RH_RUNNING(hcd))
2319		return 0;
2320
2321	hcd->state = HC_STATE_RESUMING;
2322	status = hcd->driver->bus_resume(hcd);
2323	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2324	if (status == 0)
2325		status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2326
2327	if (status == 0) {
2328		struct usb_device *udev;
2329		int port1;
2330
2331		spin_lock_irq(&hcd_root_hub_lock);
2332		if (!HCD_DEAD(hcd)) {
2333			usb_set_device_state(rhdev, rhdev->actconfig
2334					? USB_STATE_CONFIGURED
2335					: USB_STATE_ADDRESS);
2336			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2337			hcd->state = HC_STATE_RUNNING;
2338		}
2339		spin_unlock_irq(&hcd_root_hub_lock);
2340
2341		/*
2342		 * Check whether any of the enabled ports on the root hub are
2343		 * unsuspended.  If they are then a TRSMRCY delay is needed
2344		 * (this is what the USB-2 spec calls a "global resume").
2345		 * Otherwise we can skip the delay.
2346		 */
2347		usb_hub_for_each_child(rhdev, port1, udev) {
2348			if (udev->state != USB_STATE_NOTATTACHED &&
2349					!udev->port_is_suspended) {
2350				usleep_range(10000, 11000);	/* TRSMRCY */
2351				break;
2352			}
2353		}
2354	} else {
2355		hcd->state = old_state;
2356		usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2357		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2358				"resume", status);
2359		if (status != -ESHUTDOWN)
2360			usb_hc_died(hcd);
2361	}
2362	return status;
2363}
2364
2365/* Workqueue routine for root-hub remote wakeup */
2366static void hcd_resume_work(struct work_struct *work)
2367{
2368	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2369	struct usb_device *udev = hcd->self.root_hub;
2370
2371	usb_remote_wakeup(udev);
2372}
2373
2374/**
2375 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2376 * @hcd: host controller for this root hub
2377 *
2378 * The USB host controller calls this function when its root hub is
2379 * suspended (with the remote wakeup feature enabled) and a remote
2380 * wakeup request is received.  The routine submits a workqueue request
2381 * to resume the root hub (that is, manage its downstream ports again).
2382 */
2383void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2384{
2385	unsigned long flags;
2386
2387	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2388	if (hcd->rh_registered) {
2389		pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2390		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2391		queue_work(pm_wq, &hcd->wakeup_work);
2392	}
2393	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2394}
2395EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2396
2397#endif	/* CONFIG_PM */
2398
2399/*-------------------------------------------------------------------------*/
2400
2401#ifdef	CONFIG_USB_OTG
2402
2403/**
2404 * usb_bus_start_enum - start immediate enumeration (for OTG)
2405 * @bus: the bus (must use hcd framework)
2406 * @port_num: 1-based number of port; usually bus->otg_port
2407 * Context: atomic
2408 *
2409 * Starts enumeration, with an immediate reset followed later by
2410 * hub_wq identifying and possibly configuring the device.
2411 * This is needed by OTG controller drivers, where it helps meet
2412 * HNP protocol timing requirements for starting a port reset.
2413 *
2414 * Return: 0 if successful.
2415 */
2416int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2417{
2418	struct usb_hcd		*hcd;
2419	int			status = -EOPNOTSUPP;
2420
2421	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2422	 * boards with root hubs hooked up to internal devices (instead of
2423	 * just the OTG port) may need more attention to resetting...
2424	 */
2425	hcd = bus_to_hcd(bus);
2426	if (port_num && hcd->driver->start_port_reset)
2427		status = hcd->driver->start_port_reset(hcd, port_num);
2428
2429	/* allocate hub_wq shortly after (first) root port reset finishes;
2430	 * it may issue others, until at least 50 msecs have passed.
2431	 */
2432	if (status == 0)
2433		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2434	return status;
2435}
2436EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2437
2438#endif
2439
2440/*-------------------------------------------------------------------------*/
2441
2442/**
2443 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2444 * @irq: the IRQ being raised
2445 * @__hcd: pointer to the HCD whose IRQ is being signaled
2446 *
2447 * If the controller isn't HALTed, calls the driver's irq handler.
2448 * Checks whether the controller is now dead.
2449 *
2450 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2451 */
2452irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2453{
2454	struct usb_hcd		*hcd = __hcd;
2455	irqreturn_t		rc;
2456
2457	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2458		rc = IRQ_NONE;
2459	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2460		rc = IRQ_NONE;
2461	else
2462		rc = IRQ_HANDLED;
2463
2464	return rc;
2465}
2466EXPORT_SYMBOL_GPL(usb_hcd_irq);
2467
2468/*-------------------------------------------------------------------------*/
2469
2470/* Workqueue routine for when the root-hub has died. */
2471static void hcd_died_work(struct work_struct *work)
2472{
2473	struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2474	static char *env[] = {
2475		"ERROR=DEAD",
2476		NULL
2477	};
2478
2479	/* Notify user space that the host controller has died */
2480	kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2481}
2482
2483/**
2484 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2485 * @hcd: pointer to the HCD representing the controller
2486 *
2487 * This is called by bus glue to report a USB host controller that died
2488 * while operations may still have been pending.  It's called automatically
2489 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2490 *
2491 * Only call this function with the primary HCD.
2492 */
2493void usb_hc_died (struct usb_hcd *hcd)
2494{
2495	unsigned long flags;
2496
2497	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2498
2499	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2500	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2501	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2502	if (hcd->rh_registered) {
2503		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2504
2505		/* make hub_wq clean up old urbs and devices */
2506		usb_set_device_state (hcd->self.root_hub,
2507				USB_STATE_NOTATTACHED);
2508		usb_kick_hub_wq(hcd->self.root_hub);
2509	}
2510	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2511		hcd = hcd->shared_hcd;
2512		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2513		set_bit(HCD_FLAG_DEAD, &hcd->flags);
2514		if (hcd->rh_registered) {
2515			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2516
2517			/* make hub_wq clean up old urbs and devices */
2518			usb_set_device_state(hcd->self.root_hub,
2519					USB_STATE_NOTATTACHED);
2520			usb_kick_hub_wq(hcd->self.root_hub);
2521		}
2522	}
2523
2524	/* Handle the case where this function gets called with a shared HCD */
2525	if (usb_hcd_is_primary_hcd(hcd))
2526		schedule_work(&hcd->died_work);
2527	else
2528		schedule_work(&hcd->primary_hcd->died_work);
2529
2530	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2531	/* Make sure that the other roothub is also deallocated. */
2532}
2533EXPORT_SYMBOL_GPL (usb_hc_died);
2534
2535/*-------------------------------------------------------------------------*/
2536
2537static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2538{
2539
2540	spin_lock_init(&bh->lock);
2541	INIT_LIST_HEAD(&bh->head);
2542	INIT_WORK(&bh->bh, usb_giveback_urb_bh);
2543}
2544
2545struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2546		struct device *sysdev, struct device *dev, const char *bus_name,
2547		struct usb_hcd *primary_hcd)
2548{
2549	struct usb_hcd *hcd;
2550
2551	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2552	if (!hcd)
2553		return NULL;
2554	if (primary_hcd == NULL) {
2555		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2556				GFP_KERNEL);
2557		if (!hcd->address0_mutex) {
2558			kfree(hcd);
2559			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2560			return NULL;
2561		}
2562		mutex_init(hcd->address0_mutex);
2563		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2564				GFP_KERNEL);
2565		if (!hcd->bandwidth_mutex) {
2566			kfree(hcd->address0_mutex);
2567			kfree(hcd);
2568			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2569			return NULL;
2570		}
2571		mutex_init(hcd->bandwidth_mutex);
2572		dev_set_drvdata(dev, hcd);
2573	} else {
2574		mutex_lock(&usb_port_peer_mutex);
2575		hcd->address0_mutex = primary_hcd->address0_mutex;
2576		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2577		hcd->primary_hcd = primary_hcd;
2578		primary_hcd->primary_hcd = primary_hcd;
2579		hcd->shared_hcd = primary_hcd;
2580		primary_hcd->shared_hcd = hcd;
2581		mutex_unlock(&usb_port_peer_mutex);
2582	}
2583
2584	kref_init(&hcd->kref);
2585
2586	usb_bus_init(&hcd->self);
2587	hcd->self.controller = dev;
2588	hcd->self.sysdev = sysdev;
2589	hcd->self.bus_name = bus_name;
2590
2591	timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2592#ifdef CONFIG_PM
2593	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2594#endif
2595
2596	INIT_WORK(&hcd->died_work, hcd_died_work);
2597
2598	hcd->driver = driver;
2599	hcd->speed = driver->flags & HCD_MASK;
2600	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2601			"USB Host Controller";
2602	return hcd;
2603}
2604EXPORT_SYMBOL_GPL(__usb_create_hcd);
2605
2606/**
2607 * usb_create_shared_hcd - create and initialize an HCD structure
2608 * @driver: HC driver that will use this hcd
2609 * @dev: device for this HC, stored in hcd->self.controller
2610 * @bus_name: value to store in hcd->self.bus_name
2611 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2612 *              PCI device.  Only allocate certain resources for the primary HCD
2613 *
2614 * Context: task context, might sleep.
2615 *
2616 * Allocate a struct usb_hcd, with extra space at the end for the
2617 * HC driver's private data.  Initialize the generic members of the
2618 * hcd structure.
2619 *
2620 * Return: On success, a pointer to the created and initialized HCD structure.
2621 * On failure (e.g. if memory is unavailable), %NULL.
2622 */
2623struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2624		struct device *dev, const char *bus_name,
2625		struct usb_hcd *primary_hcd)
2626{
2627	return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2628}
2629EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2630
2631/**
2632 * usb_create_hcd - create and initialize an HCD structure
2633 * @driver: HC driver that will use this hcd
2634 * @dev: device for this HC, stored in hcd->self.controller
2635 * @bus_name: value to store in hcd->self.bus_name
2636 *
2637 * Context: task context, might sleep.
2638 *
2639 * Allocate a struct usb_hcd, with extra space at the end for the
2640 * HC driver's private data.  Initialize the generic members of the
2641 * hcd structure.
2642 *
2643 * Return: On success, a pointer to the created and initialized HCD
2644 * structure. On failure (e.g. if memory is unavailable), %NULL.
2645 */
2646struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2647		struct device *dev, const char *bus_name)
2648{
2649	return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2650}
2651EXPORT_SYMBOL_GPL(usb_create_hcd);
2652
2653/*
2654 * Roothubs that share one PCI device must also share the bandwidth mutex.
2655 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2656 * deallocated.
2657 *
2658 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2659 * freed.  When hcd_release() is called for either hcd in a peer set,
2660 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2661 */
2662static void hcd_release(struct kref *kref)
2663{
2664	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2665
2666	mutex_lock(&usb_port_peer_mutex);
2667	if (hcd->shared_hcd) {
2668		struct usb_hcd *peer = hcd->shared_hcd;
2669
2670		peer->shared_hcd = NULL;
2671		peer->primary_hcd = NULL;
2672	} else {
2673		kfree(hcd->address0_mutex);
2674		kfree(hcd->bandwidth_mutex);
2675	}
2676	mutex_unlock(&usb_port_peer_mutex);
2677	kfree(hcd);
2678}
2679
2680struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2681{
2682	if (hcd)
2683		kref_get (&hcd->kref);
2684	return hcd;
2685}
2686EXPORT_SYMBOL_GPL(usb_get_hcd);
2687
2688void usb_put_hcd (struct usb_hcd *hcd)
2689{
2690	if (hcd)
2691		kref_put (&hcd->kref, hcd_release);
2692}
2693EXPORT_SYMBOL_GPL(usb_put_hcd);
2694
2695int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2696{
2697	if (!hcd->primary_hcd)
2698		return 1;
2699	return hcd == hcd->primary_hcd;
2700}
2701EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2702
2703int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2704{
2705	if (!hcd->driver->find_raw_port_number)
2706		return port1;
2707
2708	return hcd->driver->find_raw_port_number(hcd, port1);
2709}
2710
2711static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2712		unsigned int irqnum, unsigned long irqflags)
2713{
2714	int retval;
2715
2716	if (hcd->driver->irq) {
2717
2718		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2719				hcd->driver->description, hcd->self.busnum);
2720		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2721				hcd->irq_descr, hcd);
2722		if (retval != 0) {
2723			dev_err(hcd->self.controller,
2724					"request interrupt %d failed\n",
2725					irqnum);
2726			return retval;
2727		}
2728		hcd->irq = irqnum;
2729		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2730				(hcd->driver->flags & HCD_MEMORY) ?
2731					"io mem" : "io port",
2732				(unsigned long long)hcd->rsrc_start);
2733	} else {
2734		hcd->irq = 0;
2735		if (hcd->rsrc_start)
2736			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2737					(hcd->driver->flags & HCD_MEMORY) ?
2738						"io mem" : "io port",
2739					(unsigned long long)hcd->rsrc_start);
2740	}
2741	return 0;
2742}
2743
2744/*
2745 * Before we free this root hub, flush in-flight peering attempts
2746 * and disable peer lookups
2747 */
2748static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2749{
2750	struct usb_device *rhdev;
2751
2752	mutex_lock(&usb_port_peer_mutex);
2753	rhdev = hcd->self.root_hub;
2754	hcd->self.root_hub = NULL;
2755	mutex_unlock(&usb_port_peer_mutex);
2756	usb_put_dev(rhdev);
2757}
2758
2759/**
2760 * usb_stop_hcd - Halt the HCD
2761 * @hcd: the usb_hcd that has to be halted
2762 *
2763 * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2764 */
2765static void usb_stop_hcd(struct usb_hcd *hcd)
2766{
2767	hcd->rh_pollable = 0;
2768	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2769	del_timer_sync(&hcd->rh_timer);
2770
2771	hcd->driver->stop(hcd);
2772	hcd->state = HC_STATE_HALT;
2773
2774	/* In case the HCD restarted the timer, stop it again. */
2775	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2776	del_timer_sync(&hcd->rh_timer);
2777}
2778
2779/**
2780 * usb_add_hcd - finish generic HCD structure initialization and register
2781 * @hcd: the usb_hcd structure to initialize
2782 * @irqnum: Interrupt line to allocate
2783 * @irqflags: Interrupt type flags
2784 *
2785 * Finish the remaining parts of generic HCD initialization: allocate the
2786 * buffers of consistent memory, register the bus, request the IRQ line,
2787 * and call the driver's reset() and start() routines.
2788 */
2789int usb_add_hcd(struct usb_hcd *hcd,
2790		unsigned int irqnum, unsigned long irqflags)
2791{
2792	int retval;
2793	struct usb_device *rhdev;
2794	struct usb_hcd *shared_hcd;
2795
2796	if (!hcd->skip_phy_initialization) {
2797		if (usb_hcd_is_primary_hcd(hcd)) {
2798			hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2799			if (IS_ERR(hcd->phy_roothub))
2800				return PTR_ERR(hcd->phy_roothub);
2801		} else {
2802			hcd->phy_roothub = usb_phy_roothub_alloc_usb3_phy(hcd->self.sysdev);
2803			if (IS_ERR(hcd->phy_roothub))
2804				return PTR_ERR(hcd->phy_roothub);
2805		}
2806
2807		retval = usb_phy_roothub_init(hcd->phy_roothub);
2808		if (retval)
2809			return retval;
2810
2811		retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2812						  PHY_MODE_USB_HOST_SS);
2813		if (retval)
2814			retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2815							  PHY_MODE_USB_HOST);
2816		if (retval)
2817			goto err_usb_phy_roothub_power_on;
2818
2819		retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2820		if (retval)
2821			goto err_usb_phy_roothub_power_on;
2822	}
2823
2824	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2825
2826	switch (authorized_default) {
2827	case USB_AUTHORIZE_NONE:
2828		hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2829		break;
2830
2831	case USB_AUTHORIZE_INTERNAL:
2832		hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2833		break;
2834
2835	case USB_AUTHORIZE_ALL:
2836	case USB_AUTHORIZE_WIRED:
2837	default:
2838		hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2839		break;
2840	}
2841
2842	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2843
2844	/* per default all interfaces are authorized */
2845	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2846
2847	/* HC is in reset state, but accessible.  Now do the one-time init,
2848	 * bottom up so that hcds can customize the root hubs before hub_wq
2849	 * starts talking to them.  (Note, bus id is assigned early too.)
2850	 */
2851	retval = hcd_buffer_create(hcd);
2852	if (retval != 0) {
2853		dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2854		goto err_create_buf;
2855	}
2856
2857	retval = usb_register_bus(&hcd->self);
2858	if (retval < 0)
2859		goto err_register_bus;
2860
2861	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2862	if (rhdev == NULL) {
2863		dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2864		retval = -ENOMEM;
2865		goto err_allocate_root_hub;
2866	}
2867	mutex_lock(&usb_port_peer_mutex);
2868	hcd->self.root_hub = rhdev;
2869	mutex_unlock(&usb_port_peer_mutex);
2870
2871	rhdev->rx_lanes = 1;
2872	rhdev->tx_lanes = 1;
2873	rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2874
2875	switch (hcd->speed) {
2876	case HCD_USB11:
2877		rhdev->speed = USB_SPEED_FULL;
2878		break;
2879	case HCD_USB2:
2880		rhdev->speed = USB_SPEED_HIGH;
2881		break;
2882	case HCD_USB3:
2883		rhdev->speed = USB_SPEED_SUPER;
2884		break;
2885	case HCD_USB32:
2886		rhdev->rx_lanes = 2;
2887		rhdev->tx_lanes = 2;
2888		rhdev->ssp_rate = USB_SSP_GEN_2x2;
2889		rhdev->speed = USB_SPEED_SUPER_PLUS;
2890		break;
2891	case HCD_USB31:
2892		rhdev->ssp_rate = USB_SSP_GEN_2x1;
2893		rhdev->speed = USB_SPEED_SUPER_PLUS;
2894		break;
2895	default:
2896		retval = -EINVAL;
2897		goto err_set_rh_speed;
2898	}
2899
2900	/* wakeup flag init defaults to "everything works" for root hubs,
2901	 * but drivers can override it in reset() if needed, along with
2902	 * recording the overall controller's system wakeup capability.
2903	 */
2904	device_set_wakeup_capable(&rhdev->dev, 1);
2905
2906	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2907	 * registered.  But since the controller can die at any time,
2908	 * let's initialize the flag before touching the hardware.
2909	 */
2910	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2911
2912	/* "reset" is misnamed; its role is now one-time init. the controller
2913	 * should already have been reset (and boot firmware kicked off etc).
2914	 */
2915	if (hcd->driver->reset) {
2916		retval = hcd->driver->reset(hcd);
2917		if (retval < 0) {
2918			dev_err(hcd->self.controller, "can't setup: %d\n",
2919					retval);
2920			goto err_hcd_driver_setup;
2921		}
2922	}
2923	hcd->rh_pollable = 1;
2924
2925	retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2926	if (retval)
2927		goto err_hcd_driver_setup;
2928
2929	/* NOTE: root hub and controller capabilities may not be the same */
2930	if (device_can_wakeup(hcd->self.controller)
2931			&& device_can_wakeup(&hcd->self.root_hub->dev))
2932		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2933
2934	/* initialize BHs */
2935	init_giveback_urb_bh(&hcd->high_prio_bh);
2936	hcd->high_prio_bh.high_prio = true;
2937	init_giveback_urb_bh(&hcd->low_prio_bh);
2938
2939	/* enable irqs just before we start the controller,
2940	 * if the BIOS provides legacy PCI irqs.
2941	 */
2942	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2943		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2944		if (retval)
2945			goto err_request_irq;
2946	}
2947
2948	hcd->state = HC_STATE_RUNNING;
2949	retval = hcd->driver->start(hcd);
2950	if (retval < 0) {
2951		dev_err(hcd->self.controller, "startup error %d\n", retval);
2952		goto err_hcd_driver_start;
2953	}
2954
2955	/* starting here, usbcore will pay attention to the shared HCD roothub */
2956	shared_hcd = hcd->shared_hcd;
2957	if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2958		retval = register_root_hub(shared_hcd);
2959		if (retval != 0)
2960			goto err_register_root_hub;
2961
2962		if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2963			usb_hcd_poll_rh_status(shared_hcd);
2964	}
2965
2966	/* starting here, usbcore will pay attention to this root hub */
2967	if (!HCD_DEFER_RH_REGISTER(hcd)) {
2968		retval = register_root_hub(hcd);
2969		if (retval != 0)
2970			goto err_register_root_hub;
2971
2972		if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2973			usb_hcd_poll_rh_status(hcd);
2974	}
2975
2976	return retval;
2977
2978err_register_root_hub:
2979	usb_stop_hcd(hcd);
2980err_hcd_driver_start:
2981	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2982		free_irq(irqnum, hcd);
2983err_request_irq:
2984err_hcd_driver_setup:
2985err_set_rh_speed:
2986	usb_put_invalidate_rhdev(hcd);
2987err_allocate_root_hub:
2988	usb_deregister_bus(&hcd->self);
2989err_register_bus:
2990	hcd_buffer_destroy(hcd);
2991err_create_buf:
2992	usb_phy_roothub_power_off(hcd->phy_roothub);
2993err_usb_phy_roothub_power_on:
2994	usb_phy_roothub_exit(hcd->phy_roothub);
2995
2996	return retval;
2997}
2998EXPORT_SYMBOL_GPL(usb_add_hcd);
2999
3000/**
3001 * usb_remove_hcd - shutdown processing for generic HCDs
3002 * @hcd: the usb_hcd structure to remove
3003 *
3004 * Context: task context, might sleep.
3005 *
3006 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3007 * invoking the HCD's stop() method.
3008 */
3009void usb_remove_hcd(struct usb_hcd *hcd)
3010{
3011	struct usb_device *rhdev;
3012	bool rh_registered;
3013
3014	if (!hcd) {
3015		pr_debug("%s: hcd is NULL\n", __func__);
3016		return;
3017	}
3018	rhdev = hcd->self.root_hub;
3019
3020	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3021
3022	usb_get_dev(rhdev);
3023	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3024	if (HC_IS_RUNNING (hcd->state))
3025		hcd->state = HC_STATE_QUIESCING;
3026
3027	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3028	spin_lock_irq (&hcd_root_hub_lock);
3029	rh_registered = hcd->rh_registered;
3030	hcd->rh_registered = 0;
3031	spin_unlock_irq (&hcd_root_hub_lock);
3032
3033#ifdef CONFIG_PM
3034	cancel_work_sync(&hcd->wakeup_work);
3035#endif
3036	cancel_work_sync(&hcd->died_work);
3037
3038	mutex_lock(&usb_bus_idr_lock);
3039	if (rh_registered)
3040		usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
3041	mutex_unlock(&usb_bus_idr_lock);
3042
3043	/*
3044	 * flush_work() isn't needed here because:
3045	 * - driver's disconnect() called from usb_disconnect() should
3046	 *   make sure its URBs are completed during the disconnect()
3047	 *   callback
3048	 *
3049	 * - it is too late to run complete() here since driver may have
3050	 *   been removed already now
3051	 */
3052
3053	/* Prevent any more root-hub status calls from the timer.
3054	 * The HCD might still restart the timer (if a port status change
3055	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3056	 * the hub_status_data() callback.
3057	 */
3058	usb_stop_hcd(hcd);
3059
3060	if (usb_hcd_is_primary_hcd(hcd)) {
3061		if (hcd->irq > 0)
3062			free_irq(hcd->irq, hcd);
3063	}
3064
3065	usb_deregister_bus(&hcd->self);
3066	hcd_buffer_destroy(hcd);
3067
3068	usb_phy_roothub_power_off(hcd->phy_roothub);
3069	usb_phy_roothub_exit(hcd->phy_roothub);
3070
3071	usb_put_invalidate_rhdev(hcd);
3072	hcd->flags = 0;
3073}
3074EXPORT_SYMBOL_GPL(usb_remove_hcd);
3075
3076void
3077usb_hcd_platform_shutdown(struct platform_device *dev)
3078{
3079	struct usb_hcd *hcd = platform_get_drvdata(dev);
3080
3081	/* No need for pm_runtime_put(), we're shutting down */
3082	pm_runtime_get_sync(&dev->dev);
3083
3084	if (hcd->driver->shutdown)
3085		hcd->driver->shutdown(hcd);
3086}
3087EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3088
3089int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3090			    dma_addr_t dma, size_t size)
3091{
3092	int err;
3093	void *local_mem;
3094
3095	hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3096						  dev_to_node(hcd->self.sysdev),
3097						  dev_name(hcd->self.sysdev));
3098	if (IS_ERR(hcd->localmem_pool))
3099		return PTR_ERR(hcd->localmem_pool);
3100
3101	/*
3102	 * if a physical SRAM address was passed, map it, otherwise
3103	 * allocate system memory as a buffer.
3104	 */
3105	if (phys_addr)
3106		local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3107					  size, MEMREMAP_WC);
3108	else
3109		local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma,
3110					     GFP_KERNEL,
3111					     DMA_ATTR_WRITE_COMBINE);
3112
3113	if (IS_ERR_OR_NULL(local_mem)) {
3114		if (!local_mem)
3115			return -ENOMEM;
3116
3117		return PTR_ERR(local_mem);
3118	}
3119
3120	/*
3121	 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3122	 * It's not backed by system memory and thus there's no kernel mapping
3123	 * for it.
3124	 */
3125	err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3126				dma, size, dev_to_node(hcd->self.sysdev));
3127	if (err < 0) {
3128		dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3129			err);
3130		return err;
3131	}
3132
3133	return 0;
3134}
3135EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3136
3137/*-------------------------------------------------------------------------*/
3138
3139#if IS_ENABLED(CONFIG_USB_MON)
3140
3141const struct usb_mon_operations *mon_ops;
3142
3143/*
3144 * The registration is unlocked.
3145 * We do it this way because we do not want to lock in hot paths.
3146 *
3147 * Notice that the code is minimally error-proof. Because usbmon needs
3148 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3149 */
3150
3151int usb_mon_register(const struct usb_mon_operations *ops)
3152{
3153
3154	if (mon_ops)
3155		return -EBUSY;
3156
3157	mon_ops = ops;
3158	mb();
3159	return 0;
3160}
3161EXPORT_SYMBOL_GPL (usb_mon_register);
3162
3163void usb_mon_deregister (void)
3164{
3165
3166	if (mon_ops == NULL) {
3167		printk(KERN_ERR "USB: monitor was not registered\n");
3168		return;
3169	}
3170	mon_ops = NULL;
3171	mb();
3172}
3173EXPORT_SYMBOL_GPL (usb_mon_deregister);
3174
3175#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3176