1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2022 Qualcomm Innovation Center. All rights reserved.
4 *
5 * Authors:
6 *	Asutosh Das <quic_asutoshd@quicinc.com>
7 *	Can Guo <quic_cang@quicinc.com>
8 */
9
10#include <asm/unaligned.h>
11#include <linux/dma-mapping.h>
12#include <linux/module.h>
13#include <linux/platform_device.h>
14#include "ufshcd-priv.h"
15#include <linux/delay.h>
16#include <scsi/scsi_cmnd.h>
17#include <linux/bitfield.h>
18#include <linux/iopoll.h>
19
20#define MAX_QUEUE_SUP GENMASK(7, 0)
21#define UFS_MCQ_MIN_RW_QUEUES 2
22#define UFS_MCQ_MIN_READ_QUEUES 0
23#define UFS_MCQ_MIN_POLL_QUEUES 0
24#define QUEUE_EN_OFFSET 31
25#define QUEUE_ID_OFFSET 16
26
27#define MCQ_CFG_MAC_MASK	GENMASK(16, 8)
28#define MCQ_QCFG_SIZE		0x40
29#define MCQ_ENTRY_SIZE_IN_DWORD	8
30#define CQE_UCD_BA GENMASK_ULL(63, 7)
31
32/* Max mcq register polling time in microseconds */
33#define MCQ_POLL_US 500000
34
35static int rw_queue_count_set(const char *val, const struct kernel_param *kp)
36{
37	return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_RW_QUEUES,
38				     num_possible_cpus());
39}
40
41static const struct kernel_param_ops rw_queue_count_ops = {
42	.set = rw_queue_count_set,
43	.get = param_get_uint,
44};
45
46static unsigned int rw_queues;
47module_param_cb(rw_queues, &rw_queue_count_ops, &rw_queues, 0644);
48MODULE_PARM_DESC(rw_queues,
49		 "Number of interrupt driven I/O queues used for rw. Default value is nr_cpus");
50
51static int read_queue_count_set(const char *val, const struct kernel_param *kp)
52{
53	return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_READ_QUEUES,
54				     num_possible_cpus());
55}
56
57static const struct kernel_param_ops read_queue_count_ops = {
58	.set = read_queue_count_set,
59	.get = param_get_uint,
60};
61
62static unsigned int read_queues;
63module_param_cb(read_queues, &read_queue_count_ops, &read_queues, 0644);
64MODULE_PARM_DESC(read_queues,
65		 "Number of interrupt driven read queues used for read. Default value is 0");
66
67static int poll_queue_count_set(const char *val, const struct kernel_param *kp)
68{
69	return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_POLL_QUEUES,
70				     num_possible_cpus());
71}
72
73static const struct kernel_param_ops poll_queue_count_ops = {
74	.set = poll_queue_count_set,
75	.get = param_get_uint,
76};
77
78static unsigned int poll_queues = 1;
79module_param_cb(poll_queues, &poll_queue_count_ops, &poll_queues, 0644);
80MODULE_PARM_DESC(poll_queues,
81		 "Number of poll queues used for r/w. Default value is 1");
82
83/**
84 * ufshcd_mcq_config_mac - Set the #Max Activ Cmds.
85 * @hba: per adapter instance
86 * @max_active_cmds: maximum # of active commands to the device at any time.
87 *
88 * The controller won't send more than the max_active_cmds to the device at
89 * any time.
90 */
91void ufshcd_mcq_config_mac(struct ufs_hba *hba, u32 max_active_cmds)
92{
93	u32 val;
94
95	val = ufshcd_readl(hba, REG_UFS_MCQ_CFG);
96	val &= ~MCQ_CFG_MAC_MASK;
97	val |= FIELD_PREP(MCQ_CFG_MAC_MASK, max_active_cmds - 1);
98	ufshcd_writel(hba, val, REG_UFS_MCQ_CFG);
99}
100EXPORT_SYMBOL_GPL(ufshcd_mcq_config_mac);
101
102/**
103 * ufshcd_mcq_req_to_hwq - find the hardware queue on which the
104 * request would be issued.
105 * @hba: per adapter instance
106 * @req: pointer to the request to be issued
107 *
108 * Return: the hardware queue instance on which the request would
109 * be queued.
110 */
111struct ufs_hw_queue *ufshcd_mcq_req_to_hwq(struct ufs_hba *hba,
112					 struct request *req)
113{
114	u32 utag = blk_mq_unique_tag(req);
115	u32 hwq = blk_mq_unique_tag_to_hwq(utag);
116
117	return &hba->uhq[hwq];
118}
119
120/**
121 * ufshcd_mcq_decide_queue_depth - decide the queue depth
122 * @hba: per adapter instance
123 *
124 * Return: queue-depth on success, non-zero on error
125 *
126 * MAC - Max. Active Command of the Host Controller (HC)
127 * HC wouldn't send more than this commands to the device.
128 * It is mandatory to implement get_hba_mac() to enable MCQ mode.
129 * Calculates and adjusts the queue depth based on the depth
130 * supported by the HC and ufs device.
131 */
132int ufshcd_mcq_decide_queue_depth(struct ufs_hba *hba)
133{
134	int mac;
135
136	/* Mandatory to implement get_hba_mac() */
137	mac = ufshcd_mcq_vops_get_hba_mac(hba);
138	if (mac < 0) {
139		dev_err(hba->dev, "Failed to get mac, err=%d\n", mac);
140		return mac;
141	}
142
143	WARN_ON_ONCE(!hba->dev_info.bqueuedepth);
144	/*
145	 * max. value of bqueuedepth = 256, mac is host dependent.
146	 * It is mandatory for UFS device to define bQueueDepth if
147	 * shared queuing architecture is enabled.
148	 */
149	return min_t(int, mac, hba->dev_info.bqueuedepth);
150}
151
152static int ufshcd_mcq_config_nr_queues(struct ufs_hba *hba)
153{
154	int i;
155	u32 hba_maxq, rem, tot_queues;
156	struct Scsi_Host *host = hba->host;
157
158	/* maxq is 0 based value */
159	hba_maxq = FIELD_GET(MAX_QUEUE_SUP, hba->mcq_capabilities) + 1;
160
161	tot_queues = read_queues + poll_queues + rw_queues;
162
163	if (hba_maxq < tot_queues) {
164		dev_err(hba->dev, "Total queues (%d) exceeds HC capacity (%d)\n",
165			tot_queues, hba_maxq);
166		return -EOPNOTSUPP;
167	}
168
169	rem = hba_maxq;
170
171	if (rw_queues) {
172		hba->nr_queues[HCTX_TYPE_DEFAULT] = rw_queues;
173		rem -= hba->nr_queues[HCTX_TYPE_DEFAULT];
174	} else {
175		rw_queues = num_possible_cpus();
176	}
177
178	if (poll_queues) {
179		hba->nr_queues[HCTX_TYPE_POLL] = poll_queues;
180		rem -= hba->nr_queues[HCTX_TYPE_POLL];
181	}
182
183	if (read_queues) {
184		hba->nr_queues[HCTX_TYPE_READ] = read_queues;
185		rem -= hba->nr_queues[HCTX_TYPE_READ];
186	}
187
188	if (!hba->nr_queues[HCTX_TYPE_DEFAULT])
189		hba->nr_queues[HCTX_TYPE_DEFAULT] = min3(rem, rw_queues,
190							 num_possible_cpus());
191
192	for (i = 0; i < HCTX_MAX_TYPES; i++)
193		host->nr_hw_queues += hba->nr_queues[i];
194
195	hba->nr_hw_queues = host->nr_hw_queues;
196	return 0;
197}
198
199int ufshcd_mcq_memory_alloc(struct ufs_hba *hba)
200{
201	struct ufs_hw_queue *hwq;
202	size_t utrdl_size, cqe_size;
203	int i;
204
205	for (i = 0; i < hba->nr_hw_queues; i++) {
206		hwq = &hba->uhq[i];
207
208		utrdl_size = sizeof(struct utp_transfer_req_desc) *
209			     hwq->max_entries;
210		hwq->sqe_base_addr = dmam_alloc_coherent(hba->dev, utrdl_size,
211							 &hwq->sqe_dma_addr,
212							 GFP_KERNEL);
213		if (!hwq->sqe_dma_addr) {
214			dev_err(hba->dev, "SQE allocation failed\n");
215			return -ENOMEM;
216		}
217
218		cqe_size = sizeof(struct cq_entry) * hwq->max_entries;
219		hwq->cqe_base_addr = dmam_alloc_coherent(hba->dev, cqe_size,
220							 &hwq->cqe_dma_addr,
221							 GFP_KERNEL);
222		if (!hwq->cqe_dma_addr) {
223			dev_err(hba->dev, "CQE allocation failed\n");
224			return -ENOMEM;
225		}
226	}
227
228	return 0;
229}
230
231
232/* Operation and runtime registers configuration */
233#define MCQ_CFG_n(r, i)	((r) + MCQ_QCFG_SIZE * (i))
234#define MCQ_OPR_OFFSET_n(p, i) \
235	(hba->mcq_opr[(p)].offset + hba->mcq_opr[(p)].stride * (i))
236
237static void __iomem *mcq_opr_base(struct ufs_hba *hba,
238					 enum ufshcd_mcq_opr n, int i)
239{
240	struct ufshcd_mcq_opr_info_t *opr = &hba->mcq_opr[n];
241
242	return opr->base + opr->stride * i;
243}
244
245u32 ufshcd_mcq_read_cqis(struct ufs_hba *hba, int i)
246{
247	return readl(mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIS);
248}
249EXPORT_SYMBOL_GPL(ufshcd_mcq_read_cqis);
250
251void ufshcd_mcq_write_cqis(struct ufs_hba *hba, u32 val, int i)
252{
253	writel(val, mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIS);
254}
255EXPORT_SYMBOL_GPL(ufshcd_mcq_write_cqis);
256
257/*
258 * Current MCQ specification doesn't provide a Task Tag or its equivalent in
259 * the Completion Queue Entry. Find the Task Tag using an indirect method.
260 */
261static int ufshcd_mcq_get_tag(struct ufs_hba *hba, struct cq_entry *cqe)
262{
263	u64 addr;
264
265	/* sizeof(struct utp_transfer_cmd_desc) must be a multiple of 128 */
266	BUILD_BUG_ON(sizeof(struct utp_transfer_cmd_desc) & GENMASK(6, 0));
267
268	/* Bits 63:7 UCD base address, 6:5 are reserved, 4:0 is SQ ID */
269	addr = (le64_to_cpu(cqe->command_desc_base_addr) & CQE_UCD_BA) -
270		hba->ucdl_dma_addr;
271
272	return div_u64(addr, ufshcd_get_ucd_size(hba));
273}
274
275static void ufshcd_mcq_process_cqe(struct ufs_hba *hba,
276				   struct ufs_hw_queue *hwq)
277{
278	struct cq_entry *cqe = ufshcd_mcq_cur_cqe(hwq);
279	int tag = ufshcd_mcq_get_tag(hba, cqe);
280
281	if (cqe->command_desc_base_addr) {
282		ufshcd_compl_one_cqe(hba, tag, cqe);
283		/* After processed the cqe, mark it empty (invalid) entry */
284		cqe->command_desc_base_addr = 0;
285	}
286}
287
288void ufshcd_mcq_compl_all_cqes_lock(struct ufs_hba *hba,
289				    struct ufs_hw_queue *hwq)
290{
291	unsigned long flags;
292	u32 entries = hwq->max_entries;
293
294	spin_lock_irqsave(&hwq->cq_lock, flags);
295	while (entries > 0) {
296		ufshcd_mcq_process_cqe(hba, hwq);
297		ufshcd_mcq_inc_cq_head_slot(hwq);
298		entries--;
299	}
300
301	ufshcd_mcq_update_cq_tail_slot(hwq);
302	hwq->cq_head_slot = hwq->cq_tail_slot;
303	spin_unlock_irqrestore(&hwq->cq_lock, flags);
304}
305
306unsigned long ufshcd_mcq_poll_cqe_lock(struct ufs_hba *hba,
307				       struct ufs_hw_queue *hwq)
308{
309	unsigned long completed_reqs = 0;
310	unsigned long flags;
311
312	spin_lock_irqsave(&hwq->cq_lock, flags);
313	ufshcd_mcq_update_cq_tail_slot(hwq);
314	while (!ufshcd_mcq_is_cq_empty(hwq)) {
315		ufshcd_mcq_process_cqe(hba, hwq);
316		ufshcd_mcq_inc_cq_head_slot(hwq);
317		completed_reqs++;
318	}
319
320	if (completed_reqs)
321		ufshcd_mcq_update_cq_head(hwq);
322	spin_unlock_irqrestore(&hwq->cq_lock, flags);
323
324	return completed_reqs;
325}
326EXPORT_SYMBOL_GPL(ufshcd_mcq_poll_cqe_lock);
327
328void ufshcd_mcq_make_queues_operational(struct ufs_hba *hba)
329{
330	struct ufs_hw_queue *hwq;
331	u16 qsize;
332	int i;
333
334	for (i = 0; i < hba->nr_hw_queues; i++) {
335		hwq = &hba->uhq[i];
336		hwq->id = i;
337		qsize = hwq->max_entries * MCQ_ENTRY_SIZE_IN_DWORD - 1;
338
339		/* Submission Queue Lower Base Address */
340		ufsmcq_writelx(hba, lower_32_bits(hwq->sqe_dma_addr),
341			      MCQ_CFG_n(REG_SQLBA, i));
342		/* Submission Queue Upper Base Address */
343		ufsmcq_writelx(hba, upper_32_bits(hwq->sqe_dma_addr),
344			      MCQ_CFG_n(REG_SQUBA, i));
345		/* Submission Queue Doorbell Address Offset */
346		ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_SQD, i),
347			      MCQ_CFG_n(REG_SQDAO, i));
348		/* Submission Queue Interrupt Status Address Offset */
349		ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_SQIS, i),
350			      MCQ_CFG_n(REG_SQISAO, i));
351
352		/* Completion Queue Lower Base Address */
353		ufsmcq_writelx(hba, lower_32_bits(hwq->cqe_dma_addr),
354			      MCQ_CFG_n(REG_CQLBA, i));
355		/* Completion Queue Upper Base Address */
356		ufsmcq_writelx(hba, upper_32_bits(hwq->cqe_dma_addr),
357			      MCQ_CFG_n(REG_CQUBA, i));
358		/* Completion Queue Doorbell Address Offset */
359		ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_CQD, i),
360			      MCQ_CFG_n(REG_CQDAO, i));
361		/* Completion Queue Interrupt Status Address Offset */
362		ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_CQIS, i),
363			      MCQ_CFG_n(REG_CQISAO, i));
364
365		/* Save the base addresses for quicker access */
366		hwq->mcq_sq_head = mcq_opr_base(hba, OPR_SQD, i) + REG_SQHP;
367		hwq->mcq_sq_tail = mcq_opr_base(hba, OPR_SQD, i) + REG_SQTP;
368		hwq->mcq_cq_head = mcq_opr_base(hba, OPR_CQD, i) + REG_CQHP;
369		hwq->mcq_cq_tail = mcq_opr_base(hba, OPR_CQD, i) + REG_CQTP;
370
371		/* Reinitializing is needed upon HC reset */
372		hwq->sq_tail_slot = hwq->cq_tail_slot = hwq->cq_head_slot = 0;
373
374		/* Enable Tail Entry Push Status interrupt only for non-poll queues */
375		if (i < hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL])
376			writel(1, mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIE);
377
378		/* Completion Queue Enable|Size to Completion Queue Attribute */
379		ufsmcq_writel(hba, (1 << QUEUE_EN_OFFSET) | qsize,
380			      MCQ_CFG_n(REG_CQATTR, i));
381
382		/*
383		 * Submission Qeueue Enable|Size|Completion Queue ID to
384		 * Submission Queue Attribute
385		 */
386		ufsmcq_writel(hba, (1 << QUEUE_EN_OFFSET) | qsize |
387			      (i << QUEUE_ID_OFFSET),
388			      MCQ_CFG_n(REG_SQATTR, i));
389	}
390}
391EXPORT_SYMBOL_GPL(ufshcd_mcq_make_queues_operational);
392
393void ufshcd_mcq_enable_esi(struct ufs_hba *hba)
394{
395	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x2,
396		      REG_UFS_MEM_CFG);
397}
398EXPORT_SYMBOL_GPL(ufshcd_mcq_enable_esi);
399
400void ufshcd_mcq_enable(struct ufs_hba *hba)
401{
402	ufshcd_rmwl(hba, MCQ_MODE_SELECT, MCQ_MODE_SELECT, REG_UFS_MEM_CFG);
403}
404EXPORT_SYMBOL_GPL(ufshcd_mcq_enable);
405
406void ufshcd_mcq_config_esi(struct ufs_hba *hba, struct msi_msg *msg)
407{
408	ufshcd_writel(hba, msg->address_lo, REG_UFS_ESILBA);
409	ufshcd_writel(hba, msg->address_hi, REG_UFS_ESIUBA);
410}
411EXPORT_SYMBOL_GPL(ufshcd_mcq_config_esi);
412
413int ufshcd_mcq_init(struct ufs_hba *hba)
414{
415	struct Scsi_Host *host = hba->host;
416	struct ufs_hw_queue *hwq;
417	int ret, i;
418
419	ret = ufshcd_mcq_config_nr_queues(hba);
420	if (ret)
421		return ret;
422
423	ret = ufshcd_vops_mcq_config_resource(hba);
424	if (ret)
425		return ret;
426
427	ret = ufshcd_mcq_vops_op_runtime_config(hba);
428	if (ret) {
429		dev_err(hba->dev, "Operation runtime config failed, ret=%d\n",
430			ret);
431		return ret;
432	}
433	hba->uhq = devm_kzalloc(hba->dev,
434				hba->nr_hw_queues * sizeof(struct ufs_hw_queue),
435				GFP_KERNEL);
436	if (!hba->uhq) {
437		dev_err(hba->dev, "ufs hw queue memory allocation failed\n");
438		return -ENOMEM;
439	}
440
441	for (i = 0; i < hba->nr_hw_queues; i++) {
442		hwq = &hba->uhq[i];
443		hwq->max_entries = hba->nutrs + 1;
444		spin_lock_init(&hwq->sq_lock);
445		spin_lock_init(&hwq->cq_lock);
446		mutex_init(&hwq->sq_mutex);
447	}
448
449	/* The very first HW queue serves device commands */
450	hba->dev_cmd_queue = &hba->uhq[0];
451
452	host->host_tagset = 1;
453	return 0;
454}
455
456static int ufshcd_mcq_sq_stop(struct ufs_hba *hba, struct ufs_hw_queue *hwq)
457{
458	void __iomem *reg;
459	u32 id = hwq->id, val;
460	int err;
461
462	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_RTC)
463		return -ETIMEDOUT;
464
465	writel(SQ_STOP, mcq_opr_base(hba, OPR_SQD, id) + REG_SQRTC);
466	reg = mcq_opr_base(hba, OPR_SQD, id) + REG_SQRTS;
467	err = read_poll_timeout(readl, val, val & SQ_STS, 20,
468				MCQ_POLL_US, false, reg);
469	if (err)
470		dev_err(hba->dev, "%s: failed. hwq-id=%d, err=%d\n",
471			__func__, id, err);
472	return err;
473}
474
475static int ufshcd_mcq_sq_start(struct ufs_hba *hba, struct ufs_hw_queue *hwq)
476{
477	void __iomem *reg;
478	u32 id = hwq->id, val;
479	int err;
480
481	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_RTC)
482		return -ETIMEDOUT;
483
484	writel(SQ_START, mcq_opr_base(hba, OPR_SQD, id) + REG_SQRTC);
485	reg = mcq_opr_base(hba, OPR_SQD, id) + REG_SQRTS;
486	err = read_poll_timeout(readl, val, !(val & SQ_STS), 20,
487				MCQ_POLL_US, false, reg);
488	if (err)
489		dev_err(hba->dev, "%s: failed. hwq-id=%d, err=%d\n",
490			__func__, id, err);
491	return err;
492}
493
494/**
495 * ufshcd_mcq_sq_cleanup - Clean up submission queue resources
496 * associated with the pending command.
497 * @hba: per adapter instance.
498 * @task_tag: The command's task tag.
499 *
500 * Return: 0 for success; error code otherwise.
501 */
502int ufshcd_mcq_sq_cleanup(struct ufs_hba *hba, int task_tag)
503{
504	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
505	struct scsi_cmnd *cmd = lrbp->cmd;
506	struct ufs_hw_queue *hwq;
507	void __iomem *reg, *opr_sqd_base;
508	u32 nexus, id, val;
509	int err;
510
511	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_RTC)
512		return -ETIMEDOUT;
513
514	if (task_tag != hba->nutrs - UFSHCD_NUM_RESERVED) {
515		if (!cmd)
516			return -EINVAL;
517		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
518	} else {
519		hwq = hba->dev_cmd_queue;
520	}
521
522	id = hwq->id;
523
524	mutex_lock(&hwq->sq_mutex);
525
526	/* stop the SQ fetching before working on it */
527	err = ufshcd_mcq_sq_stop(hba, hwq);
528	if (err)
529		goto unlock;
530
531	/* SQCTI = EXT_IID, IID, LUN, Task Tag */
532	nexus = lrbp->lun << 8 | task_tag;
533	opr_sqd_base = mcq_opr_base(hba, OPR_SQD, id);
534	writel(nexus, opr_sqd_base + REG_SQCTI);
535
536	/* SQRTCy.ICU = 1 */
537	writel(SQ_ICU, opr_sqd_base + REG_SQRTC);
538
539	/* Poll SQRTSy.CUS = 1. Return result from SQRTSy.RTC */
540	reg = opr_sqd_base + REG_SQRTS;
541	err = read_poll_timeout(readl, val, val & SQ_CUS, 20,
542				MCQ_POLL_US, false, reg);
543	if (err)
544		dev_err(hba->dev, "%s: failed. hwq=%d, tag=%d err=%ld\n",
545			__func__, id, task_tag,
546			FIELD_GET(SQ_ICU_ERR_CODE_MASK, readl(reg)));
547
548	if (ufshcd_mcq_sq_start(hba, hwq))
549		err = -ETIMEDOUT;
550
551unlock:
552	mutex_unlock(&hwq->sq_mutex);
553	return err;
554}
555
556/**
557 * ufshcd_mcq_nullify_sqe - Nullify the submission queue entry.
558 * Write the sqe's Command Type to 0xF. The host controller will not
559 * fetch any sqe with Command Type = 0xF.
560 *
561 * @utrd: UTP Transfer Request Descriptor to be nullified.
562 */
563static void ufshcd_mcq_nullify_sqe(struct utp_transfer_req_desc *utrd)
564{
565	utrd->header.command_type = 0xf;
566}
567
568/**
569 * ufshcd_mcq_sqe_search - Search for the command in the submission queue
570 * If the command is in the submission queue and not issued to the device yet,
571 * nullify the sqe so the host controller will skip fetching the sqe.
572 *
573 * @hba: per adapter instance.
574 * @hwq: Hardware Queue to be searched.
575 * @task_tag: The command's task tag.
576 *
577 * Return: true if the SQE containing the command is present in the SQ
578 * (not fetched by the controller); returns false if the SQE is not in the SQ.
579 */
580static bool ufshcd_mcq_sqe_search(struct ufs_hba *hba,
581				  struct ufs_hw_queue *hwq, int task_tag)
582{
583	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
584	struct utp_transfer_req_desc *utrd;
585	__le64  cmd_desc_base_addr;
586	bool ret = false;
587	u64 addr, match;
588	u32 sq_head_slot;
589
590	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_RTC)
591		return true;
592
593	mutex_lock(&hwq->sq_mutex);
594
595	ufshcd_mcq_sq_stop(hba, hwq);
596	sq_head_slot = ufshcd_mcq_get_sq_head_slot(hwq);
597	if (sq_head_slot == hwq->sq_tail_slot)
598		goto out;
599
600	cmd_desc_base_addr = lrbp->utr_descriptor_ptr->command_desc_base_addr;
601	addr = le64_to_cpu(cmd_desc_base_addr) & CQE_UCD_BA;
602
603	while (sq_head_slot != hwq->sq_tail_slot) {
604		utrd = hwq->sqe_base_addr +
605				sq_head_slot * sizeof(struct utp_transfer_req_desc);
606		match = le64_to_cpu(utrd->command_desc_base_addr) & CQE_UCD_BA;
607		if (addr == match) {
608			ufshcd_mcq_nullify_sqe(utrd);
609			ret = true;
610			goto out;
611		}
612
613		sq_head_slot++;
614		if (sq_head_slot == hwq->max_entries)
615			sq_head_slot = 0;
616	}
617
618out:
619	ufshcd_mcq_sq_start(hba, hwq);
620	mutex_unlock(&hwq->sq_mutex);
621	return ret;
622}
623
624/**
625 * ufshcd_mcq_abort - Abort the command in MCQ.
626 * @cmd: The command to be aborted.
627 *
628 * Return: SUCCESS or FAILED error codes
629 */
630int ufshcd_mcq_abort(struct scsi_cmnd *cmd)
631{
632	struct Scsi_Host *host = cmd->device->host;
633	struct ufs_hba *hba = shost_priv(host);
634	int tag = scsi_cmd_to_rq(cmd)->tag;
635	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
636	struct ufs_hw_queue *hwq;
637	unsigned long flags;
638	int err = FAILED;
639
640	if (!ufshcd_cmd_inflight(lrbp->cmd)) {
641		dev_err(hba->dev,
642			"%s: skip abort. cmd at tag %d already completed.\n",
643			__func__, tag);
644		goto out;
645	}
646
647	/* Skip task abort in case previous aborts failed and report failure */
648	if (lrbp->req_abort_skip) {
649		dev_err(hba->dev, "%s: skip abort. tag %d failed earlier\n",
650			__func__, tag);
651		goto out;
652	}
653
654	hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
655
656	if (ufshcd_mcq_sqe_search(hba, hwq, tag)) {
657		/*
658		 * Failure. The command should not be "stuck" in SQ for
659		 * a long time which resulted in command being aborted.
660		 */
661		dev_err(hba->dev, "%s: cmd found in sq. hwq=%d, tag=%d\n",
662			__func__, hwq->id, tag);
663		goto out;
664	}
665
666	/*
667	 * The command is not in the submission queue, and it is not
668	 * in the completion queue either. Query the device to see if
669	 * the command is being processed in the device.
670	 */
671	if (ufshcd_try_to_abort_task(hba, tag)) {
672		dev_err(hba->dev, "%s: device abort failed %d\n", __func__, err);
673		lrbp->req_abort_skip = true;
674		goto out;
675	}
676
677	err = SUCCESS;
678	spin_lock_irqsave(&hwq->cq_lock, flags);
679	if (ufshcd_cmd_inflight(lrbp->cmd))
680		ufshcd_release_scsi_cmd(hba, lrbp);
681	spin_unlock_irqrestore(&hwq->cq_lock, flags);
682
683out:
684	return err;
685}
686