1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2015 MediaTek Inc.
4 * Author: Hanyi Wu <hanyi.wu@mediatek.com>
5 *         Sascha Hauer <s.hauer@pengutronix.de>
6 *         Dawei Chien <dawei.chien@mediatek.com>
7 *         Louis Yu <louis.yu@mediatek.com>
8 */
9
10#include <linux/clk.h>
11#include <linux/delay.h>
12#include <linux/interrupt.h>
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/nvmem-consumer.h>
16#include <linux/of.h>
17#include <linux/of_address.h>
18#include <linux/platform_device.h>
19#include <linux/slab.h>
20#include <linux/io.h>
21#include <linux/thermal.h>
22#include <linux/reset.h>
23#include <linux/types.h>
24
25#include "../thermal_hwmon.h"
26
27/* AUXADC Registers */
28#define AUXADC_CON1_SET_V	0x008
29#define AUXADC_CON1_CLR_V	0x00c
30#define AUXADC_CON2_V		0x010
31#define AUXADC_DATA(channel)	(0x14 + (channel) * 4)
32
33#define APMIXED_SYS_TS_CON0	0x600
34#define APMIXED_SYS_TS_CON1	0x604
35
36/* Thermal Controller Registers */
37#define TEMP_MONCTL0		0x000
38#define TEMP_MONCTL1		0x004
39#define TEMP_MONCTL2		0x008
40#define TEMP_MONIDET0		0x014
41#define TEMP_MONIDET1		0x018
42#define TEMP_MSRCTL0		0x038
43#define TEMP_MSRCTL1		0x03c
44#define TEMP_AHBPOLL		0x040
45#define TEMP_AHBTO		0x044
46#define TEMP_ADCPNP0		0x048
47#define TEMP_ADCPNP1		0x04c
48#define TEMP_ADCPNP2		0x050
49#define TEMP_ADCPNP3		0x0b4
50
51#define TEMP_ADCMUX		0x054
52#define TEMP_ADCEN		0x060
53#define TEMP_PNPMUXADDR		0x064
54#define TEMP_ADCMUXADDR		0x068
55#define TEMP_ADCENADDR		0x074
56#define TEMP_ADCVALIDADDR	0x078
57#define TEMP_ADCVOLTADDR	0x07c
58#define TEMP_RDCTRL		0x080
59#define TEMP_ADCVALIDMASK	0x084
60#define TEMP_ADCVOLTAGESHIFT	0x088
61#define TEMP_ADCWRITECTRL	0x08c
62#define TEMP_MSR0		0x090
63#define TEMP_MSR1		0x094
64#define TEMP_MSR2		0x098
65#define TEMP_MSR3		0x0B8
66
67#define TEMP_SPARE0		0x0f0
68
69#define TEMP_ADCPNP0_1          0x148
70#define TEMP_ADCPNP1_1          0x14c
71#define TEMP_ADCPNP2_1          0x150
72#define TEMP_MSR0_1             0x190
73#define TEMP_MSR1_1             0x194
74#define TEMP_MSR2_1             0x198
75#define TEMP_ADCPNP3_1          0x1b4
76#define TEMP_MSR3_1             0x1B8
77
78#define PTPCORESEL		0x400
79
80#define TEMP_MONCTL1_PERIOD_UNIT(x)	((x) & 0x3ff)
81
82#define TEMP_MONCTL2_FILTER_INTERVAL(x)	(((x) & 0x3ff) << 16)
83#define TEMP_MONCTL2_SENSOR_INTERVAL(x)	((x) & 0x3ff)
84
85#define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x)	(x)
86
87#define TEMP_ADCWRITECTRL_ADC_PNP_WRITE		BIT(0)
88#define TEMP_ADCWRITECTRL_ADC_MUX_WRITE		BIT(1)
89
90#define TEMP_ADCVALIDMASK_VALID_HIGH		BIT(5)
91#define TEMP_ADCVALIDMASK_VALID_POS(bit)	(bit)
92
93/* MT8173 thermal sensors */
94#define MT8173_TS1	0
95#define MT8173_TS2	1
96#define MT8173_TS3	2
97#define MT8173_TS4	3
98#define MT8173_TSABB	4
99
100/* AUXADC channel 11 is used for the temperature sensors */
101#define MT8173_TEMP_AUXADC_CHANNEL	11
102
103/* The total number of temperature sensors in the MT8173 */
104#define MT8173_NUM_SENSORS		5
105
106/* The number of banks in the MT8173 */
107#define MT8173_NUM_ZONES		4
108
109/* The number of sensing points per bank */
110#define MT8173_NUM_SENSORS_PER_ZONE	4
111
112/* The number of controller in the MT8173 */
113#define MT8173_NUM_CONTROLLER		1
114
115/* The calibration coefficient of sensor  */
116#define MT8173_CALIBRATION	165
117
118/* Valid temperatures range */
119#define MT8173_TEMP_MIN		-20000
120#define MT8173_TEMP_MAX		150000
121
122/*
123 * Layout of the fuses providing the calibration data
124 * These macros could be used for MT8183, MT8173, MT2701, and MT2712.
125 * MT8183 has 6 sensors and needs 6 VTS calibration data.
126 * MT8173 has 5 sensors and needs 5 VTS calibration data.
127 * MT2701 has 3 sensors and needs 3 VTS calibration data.
128 * MT2712 has 4 sensors and needs 4 VTS calibration data.
129 */
130#define CALIB_BUF0_VALID_V1		BIT(0)
131#define CALIB_BUF1_ADC_GE_V1(x)		(((x) >> 22) & 0x3ff)
132#define CALIB_BUF0_VTS_TS1_V1(x)	(((x) >> 17) & 0x1ff)
133#define CALIB_BUF0_VTS_TS2_V1(x)	(((x) >> 8) & 0x1ff)
134#define CALIB_BUF1_VTS_TS3_V1(x)	(((x) >> 0) & 0x1ff)
135#define CALIB_BUF2_VTS_TS4_V1(x)	(((x) >> 23) & 0x1ff)
136#define CALIB_BUF2_VTS_TS5_V1(x)	(((x) >> 5) & 0x1ff)
137#define CALIB_BUF2_VTS_TSABB_V1(x)	(((x) >> 14) & 0x1ff)
138#define CALIB_BUF0_DEGC_CALI_V1(x)	(((x) >> 1) & 0x3f)
139#define CALIB_BUF0_O_SLOPE_V1(x)	(((x) >> 26) & 0x3f)
140#define CALIB_BUF0_O_SLOPE_SIGN_V1(x)	(((x) >> 7) & 0x1)
141#define CALIB_BUF1_ID_V1(x)		(((x) >> 9) & 0x1)
142
143/*
144 * Layout of the fuses providing the calibration data
145 * These macros could be used for MT7622.
146 */
147#define CALIB_BUF0_ADC_OE_V2(x)		(((x) >> 22) & 0x3ff)
148#define CALIB_BUF0_ADC_GE_V2(x)		(((x) >> 12) & 0x3ff)
149#define CALIB_BUF0_DEGC_CALI_V2(x)	(((x) >> 6) & 0x3f)
150#define CALIB_BUF0_O_SLOPE_V2(x)	(((x) >> 0) & 0x3f)
151#define CALIB_BUF1_VTS_TS1_V2(x)	(((x) >> 23) & 0x1ff)
152#define CALIB_BUF1_VTS_TS2_V2(x)	(((x) >> 14) & 0x1ff)
153#define CALIB_BUF1_VTS_TSABB_V2(x)	(((x) >> 5) & 0x1ff)
154#define CALIB_BUF1_VALID_V2(x)		(((x) >> 4) & 0x1)
155#define CALIB_BUF1_O_SLOPE_SIGN_V2(x)	(((x) >> 3) & 0x1)
156
157/*
158 * Layout of the fuses providing the calibration data
159 * These macros can be used for MT7981 and MT7986.
160 */
161#define CALIB_BUF0_ADC_GE_V3(x)		(((x) >> 0) & 0x3ff)
162#define CALIB_BUF0_DEGC_CALI_V3(x)	(((x) >> 20) & 0x3f)
163#define CALIB_BUF0_O_SLOPE_V3(x)	(((x) >> 26) & 0x3f)
164#define CALIB_BUF1_VTS_TS1_V3(x)	(((x) >> 0) & 0x1ff)
165#define CALIB_BUF1_VTS_TS2_V3(x)	(((x) >> 21) & 0x1ff)
166#define CALIB_BUF1_VTS_TSABB_V3(x)	(((x) >> 9) & 0x1ff)
167#define CALIB_BUF1_VALID_V3(x)		(((x) >> 18) & 0x1)
168#define CALIB_BUF1_O_SLOPE_SIGN_V3(x)	(((x) >> 19) & 0x1)
169#define CALIB_BUF1_ID_V3(x)		(((x) >> 20) & 0x1)
170
171enum {
172	VTS1,
173	VTS2,
174	VTS3,
175	VTS4,
176	VTS5,
177	VTSABB,
178	MAX_NUM_VTS,
179};
180
181enum mtk_thermal_version {
182	MTK_THERMAL_V1 = 1,
183	MTK_THERMAL_V2,
184	MTK_THERMAL_V3,
185};
186
187/* MT2701 thermal sensors */
188#define MT2701_TS1	0
189#define MT2701_TS2	1
190#define MT2701_TSABB	2
191
192/* AUXADC channel 11 is used for the temperature sensors */
193#define MT2701_TEMP_AUXADC_CHANNEL	11
194
195/* The total number of temperature sensors in the MT2701 */
196#define MT2701_NUM_SENSORS	3
197
198/* The number of sensing points per bank */
199#define MT2701_NUM_SENSORS_PER_ZONE	3
200
201/* The number of controller in the MT2701 */
202#define MT2701_NUM_CONTROLLER		1
203
204/* The calibration coefficient of sensor  */
205#define MT2701_CALIBRATION	165
206
207/* MT2712 thermal sensors */
208#define MT2712_TS1	0
209#define MT2712_TS2	1
210#define MT2712_TS3	2
211#define MT2712_TS4	3
212
213/* AUXADC channel 11 is used for the temperature sensors */
214#define MT2712_TEMP_AUXADC_CHANNEL	11
215
216/* The total number of temperature sensors in the MT2712 */
217#define MT2712_NUM_SENSORS	4
218
219/* The number of sensing points per bank */
220#define MT2712_NUM_SENSORS_PER_ZONE	4
221
222/* The number of controller in the MT2712 */
223#define MT2712_NUM_CONTROLLER		1
224
225/* The calibration coefficient of sensor  */
226#define MT2712_CALIBRATION	165
227
228#define MT7622_TEMP_AUXADC_CHANNEL	11
229#define MT7622_NUM_SENSORS		1
230#define MT7622_NUM_ZONES		1
231#define MT7622_NUM_SENSORS_PER_ZONE	1
232#define MT7622_TS1	0
233#define MT7622_NUM_CONTROLLER		1
234
235/* The maximum number of banks */
236#define MAX_NUM_ZONES		8
237
238/* The calibration coefficient of sensor  */
239#define MT7622_CALIBRATION	165
240
241/* MT8183 thermal sensors */
242#define MT8183_TS1	0
243#define MT8183_TS2	1
244#define MT8183_TS3	2
245#define MT8183_TS4	3
246#define MT8183_TS5	4
247#define MT8183_TSABB	5
248
249/* AUXADC channel  is used for the temperature sensors */
250#define MT8183_TEMP_AUXADC_CHANNEL	11
251
252/* The total number of temperature sensors in the MT8183 */
253#define MT8183_NUM_SENSORS	6
254
255/* The number of banks in the MT8183 */
256#define MT8183_NUM_ZONES               1
257
258/* The number of sensing points per bank */
259#define MT8183_NUM_SENSORS_PER_ZONE	 6
260
261/* The number of controller in the MT8183 */
262#define MT8183_NUM_CONTROLLER		2
263
264/* The calibration coefficient of sensor  */
265#define MT8183_CALIBRATION	153
266
267/* AUXADC channel 11 is used for the temperature sensors */
268#define MT7986_TEMP_AUXADC_CHANNEL	11
269
270/* The total number of temperature sensors in the MT7986 */
271#define MT7986_NUM_SENSORS		1
272
273/* The number of banks in the MT7986 */
274#define MT7986_NUM_ZONES		1
275
276/* The number of sensing points per bank */
277#define MT7986_NUM_SENSORS_PER_ZONE	1
278
279/* MT7986 thermal sensors */
280#define MT7986_TS1			0
281
282/* The number of controller in the MT7986 */
283#define MT7986_NUM_CONTROLLER		1
284
285/* The calibration coefficient of sensor  */
286#define MT7986_CALIBRATION		165
287
288/* MT8365 */
289#define MT8365_TEMP_AUXADC_CHANNEL 11
290#define MT8365_CALIBRATION 164
291#define MT8365_NUM_CONTROLLER 1
292#define MT8365_NUM_BANKS 1
293#define MT8365_NUM_SENSORS 3
294#define MT8365_NUM_SENSORS_PER_ZONE 3
295#define MT8365_TS1 0
296#define MT8365_TS2 1
297#define MT8365_TS3 2
298
299struct mtk_thermal;
300
301struct thermal_bank_cfg {
302	unsigned int num_sensors;
303	const int *sensors;
304};
305
306struct mtk_thermal_bank {
307	struct mtk_thermal *mt;
308	int id;
309};
310
311struct mtk_thermal_data {
312	s32 num_banks;
313	s32 num_sensors;
314	s32 auxadc_channel;
315	const int *vts_index;
316	const int *sensor_mux_values;
317	const int *msr;
318	const int *adcpnp;
319	const int cali_val;
320	const int num_controller;
321	const int *controller_offset;
322	bool need_switch_bank;
323	struct thermal_bank_cfg bank_data[MAX_NUM_ZONES];
324	enum mtk_thermal_version version;
325	u32 apmixed_buffer_ctl_reg;
326	u32 apmixed_buffer_ctl_mask;
327	u32 apmixed_buffer_ctl_set;
328};
329
330struct mtk_thermal {
331	struct device *dev;
332	void __iomem *thermal_base;
333
334	struct clk *clk_peri_therm;
335	struct clk *clk_auxadc;
336	/* lock: for getting and putting banks */
337	struct mutex lock;
338
339	/* Calibration values */
340	s32 adc_ge;
341	s32 adc_oe;
342	s32 degc_cali;
343	s32 o_slope;
344	s32 o_slope_sign;
345	s32 vts[MAX_NUM_VTS];
346
347	const struct mtk_thermal_data *conf;
348	struct mtk_thermal_bank banks[MAX_NUM_ZONES];
349
350	int (*raw_to_mcelsius)(struct mtk_thermal *mt, int sensno, s32 raw);
351};
352
353/* MT8183 thermal sensor data */
354static const int mt8183_bank_data[MT8183_NUM_SENSORS] = {
355	MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB
356};
357
358static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = {
359	TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1
360};
361
362static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = {
363	TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1,
364	TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1
365};
366
367static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 };
368static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100};
369
370static const int mt8183_vts_index[MT8183_NUM_SENSORS] = {
371	VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB
372};
373
374/* MT8173 thermal sensor data */
375static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = {
376	{ MT8173_TS2, MT8173_TS3 },
377	{ MT8173_TS2, MT8173_TS4 },
378	{ MT8173_TS1, MT8173_TS2, MT8173_TSABB },
379	{ MT8173_TS2 },
380};
381
382static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = {
383	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
384};
385
386static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = {
387	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
388};
389
390static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
391static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, };
392
393static const int mt8173_vts_index[MT8173_NUM_SENSORS] = {
394	VTS1, VTS2, VTS3, VTS4, VTSABB
395};
396
397/* MT2701 thermal sensor data */
398static const int mt2701_bank_data[MT2701_NUM_SENSORS] = {
399	MT2701_TS1, MT2701_TS2, MT2701_TSABB
400};
401
402static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = {
403	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
404};
405
406static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = {
407	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
408};
409
410static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 };
411static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, };
412
413static const int mt2701_vts_index[MT2701_NUM_SENSORS] = {
414	VTS1, VTS2, VTS3
415};
416
417/* MT2712 thermal sensor data */
418static const int mt2712_bank_data[MT2712_NUM_SENSORS] = {
419	MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4
420};
421
422static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = {
423	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
424};
425
426static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = {
427	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
428};
429
430static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 };
431static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, };
432
433static const int mt2712_vts_index[MT2712_NUM_SENSORS] = {
434	VTS1, VTS2, VTS3, VTS4
435};
436
437/* MT7622 thermal sensor data */
438static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, };
439static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
440static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
441static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, };
442static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 };
443static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, };
444
445/* MT7986 thermal sensor data */
446static const int mt7986_bank_data[MT7986_NUM_SENSORS] = { MT7986_TS1, };
447static const int mt7986_msr[MT7986_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
448static const int mt7986_adcpnp[MT7986_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
449static const int mt7986_mux_values[MT7986_NUM_SENSORS] = { 0, };
450static const int mt7986_vts_index[MT7986_NUM_SENSORS] = { VTS1 };
451static const int mt7986_tc_offset[MT7986_NUM_CONTROLLER] = { 0x0, };
452
453/* MT8365 thermal sensor data */
454static const int mt8365_bank_data[MT8365_NUM_SENSORS] = {
455	MT8365_TS1, MT8365_TS2, MT8365_TS3
456};
457
458static const int mt8365_msr[MT8365_NUM_SENSORS_PER_ZONE] = {
459	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
460};
461
462static const int mt8365_adcpnp[MT8365_NUM_SENSORS_PER_ZONE] = {
463	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
464};
465
466static const int mt8365_mux_values[MT8365_NUM_SENSORS] = { 0, 1, 2 };
467static const int mt8365_tc_offset[MT8365_NUM_CONTROLLER] = { 0 };
468
469static const int mt8365_vts_index[MT8365_NUM_SENSORS] = { VTS1, VTS2, VTS3 };
470
471/*
472 * The MT8173 thermal controller has four banks. Each bank can read up to
473 * four temperature sensors simultaneously. The MT8173 has a total of 5
474 * temperature sensors. We use each bank to measure a certain area of the
475 * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
476 * areas, hence is used in different banks.
477 *
478 * The thermal core only gets the maximum temperature of all banks, so
479 * the bank concept wouldn't be necessary here. However, the SVS (Smart
480 * Voltage Scaling) unit makes its decisions based on the same bank
481 * data, and this indeed needs the temperatures of the individual banks
482 * for making better decisions.
483 */
484static const struct mtk_thermal_data mt8173_thermal_data = {
485	.auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL,
486	.num_banks = MT8173_NUM_ZONES,
487	.num_sensors = MT8173_NUM_SENSORS,
488	.vts_index = mt8173_vts_index,
489	.cali_val = MT8173_CALIBRATION,
490	.num_controller = MT8173_NUM_CONTROLLER,
491	.controller_offset = mt8173_tc_offset,
492	.need_switch_bank = true,
493	.bank_data = {
494		{
495			.num_sensors = 2,
496			.sensors = mt8173_bank_data[0],
497		}, {
498			.num_sensors = 2,
499			.sensors = mt8173_bank_data[1],
500		}, {
501			.num_sensors = 3,
502			.sensors = mt8173_bank_data[2],
503		}, {
504			.num_sensors = 1,
505			.sensors = mt8173_bank_data[3],
506		},
507	},
508	.msr = mt8173_msr,
509	.adcpnp = mt8173_adcpnp,
510	.sensor_mux_values = mt8173_mux_values,
511	.version = MTK_THERMAL_V1,
512};
513
514/*
515 * The MT2701 thermal controller has one bank, which can read up to
516 * three temperature sensors simultaneously. The MT2701 has a total of 3
517 * temperature sensors.
518 *
519 * The thermal core only gets the maximum temperature of this one bank,
520 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
521 * Voltage Scaling) unit makes its decisions based on the same bank
522 * data.
523 */
524static const struct mtk_thermal_data mt2701_thermal_data = {
525	.auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL,
526	.num_banks = 1,
527	.num_sensors = MT2701_NUM_SENSORS,
528	.vts_index = mt2701_vts_index,
529	.cali_val = MT2701_CALIBRATION,
530	.num_controller = MT2701_NUM_CONTROLLER,
531	.controller_offset = mt2701_tc_offset,
532	.need_switch_bank = true,
533	.bank_data = {
534		{
535			.num_sensors = 3,
536			.sensors = mt2701_bank_data,
537		},
538	},
539	.msr = mt2701_msr,
540	.adcpnp = mt2701_adcpnp,
541	.sensor_mux_values = mt2701_mux_values,
542	.version = MTK_THERMAL_V1,
543};
544
545/*
546 * The MT8365 thermal controller has one bank, which can read up to
547 * four temperature sensors simultaneously. The MT8365 has a total of 3
548 * temperature sensors.
549 *
550 * The thermal core only gets the maximum temperature of this one bank,
551 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
552 * Voltage Scaling) unit makes its decisions based on the same bank
553 * data.
554 */
555static const struct mtk_thermal_data mt8365_thermal_data = {
556	.auxadc_channel = MT8365_TEMP_AUXADC_CHANNEL,
557	.num_banks = MT8365_NUM_BANKS,
558	.num_sensors = MT8365_NUM_SENSORS,
559	.vts_index = mt8365_vts_index,
560	.cali_val = MT8365_CALIBRATION,
561	.num_controller = MT8365_NUM_CONTROLLER,
562	.controller_offset = mt8365_tc_offset,
563	.need_switch_bank = false,
564	.bank_data = {
565		{
566			.num_sensors = MT8365_NUM_SENSORS,
567			.sensors = mt8365_bank_data
568		},
569	},
570	.msr = mt8365_msr,
571	.adcpnp = mt8365_adcpnp,
572	.sensor_mux_values = mt8365_mux_values,
573	.version = MTK_THERMAL_V1,
574	.apmixed_buffer_ctl_reg = APMIXED_SYS_TS_CON0,
575	.apmixed_buffer_ctl_mask = (u32) ~GENMASK(29, 28),
576	.apmixed_buffer_ctl_set = 0,
577};
578
579/*
580 * The MT2712 thermal controller has one bank, which can read up to
581 * four temperature sensors simultaneously. The MT2712 has a total of 4
582 * temperature sensors.
583 *
584 * The thermal core only gets the maximum temperature of this one bank,
585 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
586 * Voltage Scaling) unit makes its decisions based on the same bank
587 * data.
588 */
589static const struct mtk_thermal_data mt2712_thermal_data = {
590	.auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL,
591	.num_banks = 1,
592	.num_sensors = MT2712_NUM_SENSORS,
593	.vts_index = mt2712_vts_index,
594	.cali_val = MT2712_CALIBRATION,
595	.num_controller = MT2712_NUM_CONTROLLER,
596	.controller_offset = mt2712_tc_offset,
597	.need_switch_bank = true,
598	.bank_data = {
599		{
600			.num_sensors = 4,
601			.sensors = mt2712_bank_data,
602		},
603	},
604	.msr = mt2712_msr,
605	.adcpnp = mt2712_adcpnp,
606	.sensor_mux_values = mt2712_mux_values,
607	.version = MTK_THERMAL_V1,
608};
609
610/*
611 * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data
612 * access.
613 */
614static const struct mtk_thermal_data mt7622_thermal_data = {
615	.auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL,
616	.num_banks = MT7622_NUM_ZONES,
617	.num_sensors = MT7622_NUM_SENSORS,
618	.vts_index = mt7622_vts_index,
619	.cali_val = MT7622_CALIBRATION,
620	.num_controller = MT7622_NUM_CONTROLLER,
621	.controller_offset = mt7622_tc_offset,
622	.need_switch_bank = true,
623	.bank_data = {
624		{
625			.num_sensors = 1,
626			.sensors = mt7622_bank_data,
627		},
628	},
629	.msr = mt7622_msr,
630	.adcpnp = mt7622_adcpnp,
631	.sensor_mux_values = mt7622_mux_values,
632	.version = MTK_THERMAL_V2,
633	.apmixed_buffer_ctl_reg = APMIXED_SYS_TS_CON1,
634	.apmixed_buffer_ctl_mask = GENMASK(31, 6) | BIT(3),
635	.apmixed_buffer_ctl_set = BIT(0),
636};
637
638/*
639 * The MT8183 thermal controller has one bank for the current SW framework.
640 * The MT8183 has a total of 6 temperature sensors.
641 * There are two thermal controller to control the six sensor.
642 * The first one bind 2 sensor, and the other bind 4 sensors.
643 * The thermal core only gets the maximum temperature of all sensor, so
644 * the bank concept wouldn't be necessary here. However, the SVS (Smart
645 * Voltage Scaling) unit makes its decisions based on the same bank
646 * data, and this indeed needs the temperatures of the individual banks
647 * for making better decisions.
648 */
649static const struct mtk_thermal_data mt8183_thermal_data = {
650	.auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL,
651	.num_banks = MT8183_NUM_ZONES,
652	.num_sensors = MT8183_NUM_SENSORS,
653	.vts_index = mt8183_vts_index,
654	.cali_val = MT8183_CALIBRATION,
655	.num_controller = MT8183_NUM_CONTROLLER,
656	.controller_offset = mt8183_tc_offset,
657	.need_switch_bank = false,
658	.bank_data = {
659		{
660			.num_sensors = 6,
661			.sensors = mt8183_bank_data,
662		},
663	},
664
665	.msr = mt8183_msr,
666	.adcpnp = mt8183_adcpnp,
667	.sensor_mux_values = mt8183_mux_values,
668	.version = MTK_THERMAL_V1,
669};
670
671/*
672 * MT7986 uses AUXADC Channel 11 for raw data access.
673 */
674static const struct mtk_thermal_data mt7986_thermal_data = {
675	.auxadc_channel = MT7986_TEMP_AUXADC_CHANNEL,
676	.num_banks = MT7986_NUM_ZONES,
677	.num_sensors = MT7986_NUM_SENSORS,
678	.vts_index = mt7986_vts_index,
679	.cali_val = MT7986_CALIBRATION,
680	.num_controller = MT7986_NUM_CONTROLLER,
681	.controller_offset = mt7986_tc_offset,
682	.need_switch_bank = true,
683	.bank_data = {
684		{
685			.num_sensors = 1,
686			.sensors = mt7986_bank_data,
687		},
688	},
689	.msr = mt7986_msr,
690	.adcpnp = mt7986_adcpnp,
691	.sensor_mux_values = mt7986_mux_values,
692	.version = MTK_THERMAL_V3,
693	.apmixed_buffer_ctl_reg = APMIXED_SYS_TS_CON1,
694	.apmixed_buffer_ctl_mask = GENMASK(31, 6) | BIT(3),
695	.apmixed_buffer_ctl_set = BIT(0),
696};
697
698static bool mtk_thermal_temp_is_valid(int temp)
699{
700	return (temp >= MT8173_TEMP_MIN) && (temp <= MT8173_TEMP_MAX);
701}
702
703/**
704 * raw_to_mcelsius_v1 - convert a raw ADC value to mcelsius
705 * @mt:	The thermal controller
706 * @sensno:	sensor number
707 * @raw:	raw ADC value
708 *
709 * This converts the raw ADC value to mcelsius using the SoC specific
710 * calibration constants
711 */
712static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw)
713{
714	s32 tmp;
715
716	raw &= 0xfff;
717
718	tmp = 203450520 << 3;
719	tmp /= mt->conf->cali_val + mt->o_slope;
720	tmp /= 10000 + mt->adc_ge;
721	tmp *= raw - mt->vts[sensno] - 3350;
722	tmp >>= 3;
723
724	return mt->degc_cali * 500 - tmp;
725}
726
727static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw)
728{
729	s32 format_1;
730	s32 format_2;
731	s32 g_oe;
732	s32 g_gain;
733	s32 g_x_roomt;
734	s32 tmp;
735
736	if (raw == 0)
737		return 0;
738
739	raw &= 0xfff;
740	g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12);
741	g_oe = mt->adc_oe - 512;
742	format_1 = mt->vts[VTS2] + 3105 - g_oe;
743	format_2 = (mt->degc_cali * 10) >> 1;
744	g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain;
745
746	tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt;
747	tmp = tmp * 10 * 100 / 11;
748
749	if (mt->o_slope_sign == 0)
750		tmp = tmp / (165 - mt->o_slope);
751	else
752		tmp = tmp / (165 + mt->o_slope);
753
754	return (format_2 - tmp) * 100;
755}
756
757static int raw_to_mcelsius_v3(struct mtk_thermal *mt, int sensno, s32 raw)
758{
759	s32 tmp;
760
761	if (raw == 0)
762		return 0;
763
764	raw &= 0xfff;
765	tmp = 100000 * 15 / 16 * 10000;
766	tmp /= 4096 - 512 + mt->adc_ge;
767	tmp /= 1490;
768	tmp *= raw - mt->vts[sensno] - 2900;
769
770	return mt->degc_cali * 500 - tmp;
771}
772
773/**
774 * mtk_thermal_get_bank - get bank
775 * @bank:	The bank
776 *
777 * The bank registers are banked, we have to select a bank in the
778 * PTPCORESEL register to access it.
779 */
780static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
781{
782	struct mtk_thermal *mt = bank->mt;
783	u32 val;
784
785	if (mt->conf->need_switch_bank) {
786		mutex_lock(&mt->lock);
787
788		val = readl(mt->thermal_base + PTPCORESEL);
789		val &= ~0xf;
790		val |= bank->id;
791		writel(val, mt->thermal_base + PTPCORESEL);
792	}
793}
794
795/**
796 * mtk_thermal_put_bank - release bank
797 * @bank:	The bank
798 *
799 * release a bank previously taken with mtk_thermal_get_bank,
800 */
801static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
802{
803	struct mtk_thermal *mt = bank->mt;
804
805	if (mt->conf->need_switch_bank)
806		mutex_unlock(&mt->lock);
807}
808
809/**
810 * mtk_thermal_bank_temperature - get the temperature of a bank
811 * @bank:	The bank
812 *
813 * The temperature of a bank is considered the maximum temperature of
814 * the sensors associated to the bank.
815 */
816static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
817{
818	struct mtk_thermal *mt = bank->mt;
819	const struct mtk_thermal_data *conf = mt->conf;
820	int i, temp = INT_MIN, max = INT_MIN;
821	u32 raw;
822
823	for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) {
824		raw = readl(mt->thermal_base + conf->msr[i]);
825
826		temp = mt->raw_to_mcelsius(
827			mt, conf->bank_data[bank->id].sensors[i], raw);
828
829		/*
830		 * Depending on the filt/sen intervals and ADC polling time,
831		 * we may need up to 60 milliseconds after initialization: this
832		 * will result in the first reading containing an out of range
833		 * temperature value.
834		 * Validate the reading to both address the aforementioned issue
835		 * and to eventually avoid bogus readings during runtime in the
836		 * event that the AUXADC gets unstable due to high EMI, etc.
837		 */
838		if (!mtk_thermal_temp_is_valid(temp))
839			temp = THERMAL_TEMP_INVALID;
840
841		if (temp > max)
842			max = temp;
843	}
844
845	return max;
846}
847
848static int mtk_read_temp(struct thermal_zone_device *tz, int *temperature)
849{
850	struct mtk_thermal *mt = thermal_zone_device_priv(tz);
851	int i;
852	int tempmax = INT_MIN;
853
854	for (i = 0; i < mt->conf->num_banks; i++) {
855		struct mtk_thermal_bank *bank = &mt->banks[i];
856
857		mtk_thermal_get_bank(bank);
858
859		tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));
860
861		mtk_thermal_put_bank(bank);
862	}
863
864	*temperature = tempmax;
865
866	return 0;
867}
868
869static const struct thermal_zone_device_ops mtk_thermal_ops = {
870	.get_temp = mtk_read_temp,
871};
872
873static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
874				  u32 apmixed_phys_base, u32 auxadc_phys_base,
875				  int ctrl_id)
876{
877	struct mtk_thermal_bank *bank = &mt->banks[num];
878	const struct mtk_thermal_data *conf = mt->conf;
879	int i;
880
881	int offset = mt->conf->controller_offset[ctrl_id];
882	void __iomem *controller_base = mt->thermal_base + offset;
883
884	bank->id = num;
885	bank->mt = mt;
886
887	mtk_thermal_get_bank(bank);
888
889	/* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
890	writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1);
891
892	/*
893	 * filt interval is 1 * 46.540us = 46.54us,
894	 * sen interval is 429 * 46.540us = 19.96ms
895	 */
896	writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
897			TEMP_MONCTL2_SENSOR_INTERVAL(429),
898			controller_base + TEMP_MONCTL2);
899
900	/* poll is set to 10u */
901	writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
902	       controller_base + TEMP_AHBPOLL);
903
904	/* temperature sampling control, 1 sample */
905	writel(0x0, controller_base + TEMP_MSRCTL0);
906
907	/* exceed this polling time, IRQ would be inserted */
908	writel(0xffffffff, controller_base + TEMP_AHBTO);
909
910	/* number of interrupts per event, 1 is enough */
911	writel(0x0, controller_base + TEMP_MONIDET0);
912	writel(0x0, controller_base + TEMP_MONIDET1);
913
914	/*
915	 * The MT8173 thermal controller does not have its own ADC. Instead it
916	 * uses AHB bus accesses to control the AUXADC. To do this the thermal
917	 * controller has to be programmed with the physical addresses of the
918	 * AUXADC registers and with the various bit positions in the AUXADC.
919	 * Also the thermal controller controls a mux in the APMIXEDSYS register
920	 * space.
921	 */
922
923	/*
924	 * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
925	 * automatically by hw
926	 */
927	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX);
928
929	/* AHB address for auxadc mux selection */
930	writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
931	       controller_base + TEMP_ADCMUXADDR);
932
933	if (mt->conf->version == MTK_THERMAL_V1) {
934		/* AHB address for pnp sensor mux selection */
935		writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
936		       controller_base + TEMP_PNPMUXADDR);
937	}
938
939	/* AHB value for auxadc enable */
940	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN);
941
942	/* AHB address for auxadc enable (channel 0 immediate mode selected) */
943	writel(auxadc_phys_base + AUXADC_CON1_SET_V,
944	       controller_base + TEMP_ADCENADDR);
945
946	/* AHB address for auxadc valid bit */
947	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
948	       controller_base + TEMP_ADCVALIDADDR);
949
950	/* AHB address for auxadc voltage output */
951	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
952	       controller_base + TEMP_ADCVOLTADDR);
953
954	/* read valid & voltage are at the same register */
955	writel(0x0, controller_base + TEMP_RDCTRL);
956
957	/* indicate where the valid bit is */
958	writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
959	       controller_base + TEMP_ADCVALIDMASK);
960
961	/* no shift */
962	writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT);
963
964	/* enable auxadc mux write transaction */
965	writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
966		controller_base + TEMP_ADCWRITECTRL);
967
968	for (i = 0; i < conf->bank_data[num].num_sensors; i++)
969		writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]],
970		       mt->thermal_base + conf->adcpnp[i]);
971
972	writel((1 << conf->bank_data[num].num_sensors) - 1,
973	       controller_base + TEMP_MONCTL0);
974
975	writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
976	       TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
977	       controller_base + TEMP_ADCWRITECTRL);
978
979	mtk_thermal_put_bank(bank);
980}
981
982static u64 of_get_phys_base(struct device_node *np)
983{
984	struct resource res;
985
986	if (of_address_to_resource(np, 0, &res))
987		return OF_BAD_ADDR;
988
989	return res.start;
990}
991
992static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf)
993{
994	int i;
995
996	if (!(buf[0] & CALIB_BUF0_VALID_V1))
997		return -EINVAL;
998
999	mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]);
1000
1001	for (i = 0; i < mt->conf->num_sensors; i++) {
1002		switch (mt->conf->vts_index[i]) {
1003		case VTS1:
1004			mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]);
1005			break;
1006		case VTS2:
1007			mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]);
1008			break;
1009		case VTS3:
1010			mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]);
1011			break;
1012		case VTS4:
1013			mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]);
1014			break;
1015		case VTS5:
1016			mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]);
1017			break;
1018		case VTSABB:
1019			mt->vts[VTSABB] =
1020				CALIB_BUF2_VTS_TSABB_V1(buf[2]);
1021			break;
1022		default:
1023			break;
1024		}
1025	}
1026
1027	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]);
1028	if (CALIB_BUF1_ID_V1(buf[1]) &
1029	    CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0]))
1030		mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]);
1031	else
1032		mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]);
1033
1034	return 0;
1035}
1036
1037static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf)
1038{
1039	if (!CALIB_BUF1_VALID_V2(buf[1]))
1040		return -EINVAL;
1041
1042	mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]);
1043	mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]);
1044	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]);
1045	mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]);
1046	mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]);
1047	mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]);
1048	mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]);
1049	mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]);
1050
1051	return 0;
1052}
1053
1054static int mtk_thermal_extract_efuse_v3(struct mtk_thermal *mt, u32 *buf)
1055{
1056	if (!CALIB_BUF1_VALID_V3(buf[1]))
1057		return -EINVAL;
1058
1059	mt->adc_ge = CALIB_BUF0_ADC_GE_V3(buf[0]);
1060	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V3(buf[0]);
1061	mt->o_slope = CALIB_BUF0_O_SLOPE_V3(buf[0]);
1062	mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V3(buf[1]);
1063	mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V3(buf[1]);
1064	mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V3(buf[1]);
1065	mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V3(buf[1]);
1066
1067	if (CALIB_BUF1_ID_V3(buf[1]) == 0)
1068		mt->o_slope = 0;
1069
1070	return 0;
1071}
1072
1073static int mtk_thermal_get_calibration_data(struct device *dev,
1074					    struct mtk_thermal *mt)
1075{
1076	struct nvmem_cell *cell;
1077	u32 *buf;
1078	size_t len;
1079	int i, ret = 0;
1080
1081	/* Start with default values */
1082	mt->adc_ge = 512;
1083	mt->adc_oe = 512;
1084	for (i = 0; i < mt->conf->num_sensors; i++)
1085		mt->vts[i] = 260;
1086	mt->degc_cali = 40;
1087	mt->o_slope = 0;
1088
1089	cell = nvmem_cell_get(dev, "calibration-data");
1090	if (IS_ERR(cell)) {
1091		if (PTR_ERR(cell) == -EPROBE_DEFER)
1092			return PTR_ERR(cell);
1093		return 0;
1094	}
1095
1096	buf = (u32 *)nvmem_cell_read(cell, &len);
1097
1098	nvmem_cell_put(cell);
1099
1100	if (IS_ERR(buf))
1101		return PTR_ERR(buf);
1102
1103	if (len < 3 * sizeof(u32)) {
1104		dev_warn(dev, "invalid calibration data\n");
1105		ret = -EINVAL;
1106		goto out;
1107	}
1108
1109	switch (mt->conf->version) {
1110	case MTK_THERMAL_V1:
1111		ret = mtk_thermal_extract_efuse_v1(mt, buf);
1112		break;
1113	case MTK_THERMAL_V2:
1114		ret = mtk_thermal_extract_efuse_v2(mt, buf);
1115		break;
1116	case MTK_THERMAL_V3:
1117		ret = mtk_thermal_extract_efuse_v3(mt, buf);
1118		break;
1119	default:
1120		ret = -EINVAL;
1121		break;
1122	}
1123
1124	if (ret) {
1125		dev_info(dev, "Device not calibrated, using default calibration values\n");
1126		ret = 0;
1127	}
1128
1129out:
1130	kfree(buf);
1131
1132	return ret;
1133}
1134
1135static const struct of_device_id mtk_thermal_of_match[] = {
1136	{
1137		.compatible = "mediatek,mt8173-thermal",
1138		.data = (void *)&mt8173_thermal_data,
1139	},
1140	{
1141		.compatible = "mediatek,mt2701-thermal",
1142		.data = (void *)&mt2701_thermal_data,
1143	},
1144	{
1145		.compatible = "mediatek,mt2712-thermal",
1146		.data = (void *)&mt2712_thermal_data,
1147	},
1148	{
1149		.compatible = "mediatek,mt7622-thermal",
1150		.data = (void *)&mt7622_thermal_data,
1151	},
1152	{
1153		.compatible = "mediatek,mt7986-thermal",
1154		.data = (void *)&mt7986_thermal_data,
1155	},
1156	{
1157		.compatible = "mediatek,mt8183-thermal",
1158		.data = (void *)&mt8183_thermal_data,
1159	},
1160	{
1161		.compatible = "mediatek,mt8365-thermal",
1162		.data = (void *)&mt8365_thermal_data,
1163	}, {
1164	},
1165};
1166MODULE_DEVICE_TABLE(of, mtk_thermal_of_match);
1167
1168static void mtk_thermal_turn_on_buffer(struct mtk_thermal *mt,
1169				       void __iomem *apmixed_base)
1170{
1171	u32 tmp;
1172
1173	if (!mt->conf->apmixed_buffer_ctl_reg)
1174		return;
1175
1176	tmp = readl(apmixed_base + mt->conf->apmixed_buffer_ctl_reg);
1177	tmp &= mt->conf->apmixed_buffer_ctl_mask;
1178	tmp |= mt->conf->apmixed_buffer_ctl_set;
1179	writel(tmp, apmixed_base + mt->conf->apmixed_buffer_ctl_reg);
1180	udelay(200);
1181}
1182
1183static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt,
1184					    void __iomem *auxadc_base)
1185{
1186	int tmp;
1187
1188	writel(0x800, auxadc_base + AUXADC_CON1_SET_V);
1189	writel(0x1, mt->thermal_base + TEMP_MONCTL0);
1190	tmp = readl(mt->thermal_base + TEMP_MSRCTL1);
1191	writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1);
1192}
1193
1194static int mtk_thermal_probe(struct platform_device *pdev)
1195{
1196	int ret, i, ctrl_id;
1197	struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
1198	struct mtk_thermal *mt;
1199	u64 auxadc_phys_base, apmixed_phys_base;
1200	struct thermal_zone_device *tzdev;
1201	void __iomem *apmixed_base, *auxadc_base;
1202
1203	mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
1204	if (!mt)
1205		return -ENOMEM;
1206
1207	mt->conf = of_device_get_match_data(&pdev->dev);
1208
1209	mt->thermal_base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
1210	if (IS_ERR(mt->thermal_base))
1211		return PTR_ERR(mt->thermal_base);
1212
1213	ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
1214	if (ret)
1215		return ret;
1216
1217	mutex_init(&mt->lock);
1218
1219	mt->dev = &pdev->dev;
1220
1221	auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
1222	if (!auxadc) {
1223		dev_err(&pdev->dev, "missing auxadc node\n");
1224		return -ENODEV;
1225	}
1226
1227	auxadc_base = of_iomap(auxadc, 0);
1228	auxadc_phys_base = of_get_phys_base(auxadc);
1229
1230	of_node_put(auxadc);
1231
1232	if (auxadc_phys_base == OF_BAD_ADDR) {
1233		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
1234		return -EINVAL;
1235	}
1236
1237	apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
1238	if (!apmixedsys) {
1239		dev_err(&pdev->dev, "missing apmixedsys node\n");
1240		return -ENODEV;
1241	}
1242
1243	apmixed_base = of_iomap(apmixedsys, 0);
1244	apmixed_phys_base = of_get_phys_base(apmixedsys);
1245
1246	of_node_put(apmixedsys);
1247
1248	if (apmixed_phys_base == OF_BAD_ADDR) {
1249		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
1250		return -EINVAL;
1251	}
1252
1253	ret = device_reset_optional(&pdev->dev);
1254	if (ret)
1255		return ret;
1256
1257	mt->clk_auxadc = devm_clk_get_enabled(&pdev->dev, "auxadc");
1258	if (IS_ERR(mt->clk_auxadc)) {
1259		ret = PTR_ERR(mt->clk_auxadc);
1260		dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
1261		return ret;
1262	}
1263
1264	mt->clk_peri_therm = devm_clk_get_enabled(&pdev->dev, "therm");
1265	if (IS_ERR(mt->clk_peri_therm)) {
1266		ret = PTR_ERR(mt->clk_peri_therm);
1267		dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
1268		return ret;
1269	}
1270
1271	mtk_thermal_turn_on_buffer(mt, apmixed_base);
1272
1273	if (mt->conf->version != MTK_THERMAL_V1)
1274		mtk_thermal_release_periodic_ts(mt, auxadc_base);
1275
1276	if (mt->conf->version == MTK_THERMAL_V1)
1277		mt->raw_to_mcelsius = raw_to_mcelsius_v1;
1278	else if (mt->conf->version == MTK_THERMAL_V2)
1279		mt->raw_to_mcelsius = raw_to_mcelsius_v2;
1280	else
1281		mt->raw_to_mcelsius = raw_to_mcelsius_v3;
1282
1283	for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++)
1284		for (i = 0; i < mt->conf->num_banks; i++)
1285			mtk_thermal_init_bank(mt, i, apmixed_phys_base,
1286					      auxadc_phys_base, ctrl_id);
1287
1288	tzdev = devm_thermal_of_zone_register(&pdev->dev, 0, mt,
1289					      &mtk_thermal_ops);
1290	if (IS_ERR(tzdev))
1291		return PTR_ERR(tzdev);
1292
1293	ret = devm_thermal_add_hwmon_sysfs(&pdev->dev, tzdev);
1294	if (ret)
1295		dev_warn(&pdev->dev, "error in thermal_add_hwmon_sysfs");
1296
1297	return 0;
1298}
1299
1300static struct platform_driver mtk_thermal_driver = {
1301	.probe = mtk_thermal_probe,
1302	.driver = {
1303		.name = "mtk-thermal",
1304		.of_match_table = mtk_thermal_of_match,
1305	},
1306};
1307
1308module_platform_driver(mtk_thermal_driver);
1309
1310MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>");
1311MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>");
1312MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>");
1313MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
1314MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
1315MODULE_DESCRIPTION("Mediatek thermal driver");
1316MODULE_LICENSE("GPL v2");
1317