1// SPDX-License-Identifier: GPL-2.0
2/*
3 * A power allocator to manage temperature
4 *
5 * Copyright (C) 2014 ARM Ltd.
6 *
7 */
8
9#define pr_fmt(fmt) "Power allocator: " fmt
10
11#include <linux/slab.h>
12#include <linux/thermal.h>
13
14#define CREATE_TRACE_POINTS
15#include "thermal_trace_ipa.h"
16
17#include "thermal_core.h"
18
19#define FRAC_BITS 10
20#define int_to_frac(x) ((x) << FRAC_BITS)
21#define frac_to_int(x) ((x) >> FRAC_BITS)
22
23/**
24 * mul_frac() - multiply two fixed-point numbers
25 * @x:	first multiplicand
26 * @y:	second multiplicand
27 *
28 * Return: the result of multiplying two fixed-point numbers.  The
29 * result is also a fixed-point number.
30 */
31static inline s64 mul_frac(s64 x, s64 y)
32{
33	return (x * y) >> FRAC_BITS;
34}
35
36/**
37 * div_frac() - divide two fixed-point numbers
38 * @x:	the dividend
39 * @y:	the divisor
40 *
41 * Return: the result of dividing two fixed-point numbers.  The
42 * result is also a fixed-point number.
43 */
44static inline s64 div_frac(s64 x, s64 y)
45{
46	return div_s64(x << FRAC_BITS, y);
47}
48
49/**
50 * struct power_actor - internal power information for power actor
51 * @req_power:		requested power value (not weighted)
52 * @max_power:		max allocatable power for this actor
53 * @granted_power:	granted power for this actor
54 * @extra_actor_power:	extra power that this actor can receive
55 * @weighted_req_power:	weighted requested power as input to IPA
56 */
57struct power_actor {
58	u32 req_power;
59	u32 max_power;
60	u32 granted_power;
61	u32 extra_actor_power;
62	u32 weighted_req_power;
63};
64
65/**
66 * struct power_allocator_params - parameters for the power allocator governor
67 * @allocated_tzp:	whether we have allocated tzp for this thermal zone and
68 *			it needs to be freed on unbind
69 * @err_integral:	accumulated error in the PID controller.
70 * @prev_err:	error in the previous iteration of the PID controller.
71 *		Used to calculate the derivative term.
72 * @sustainable_power:	Sustainable power (heat) that this thermal zone can
73 *			dissipate
74 * @trip_switch_on:	first passive trip point of the thermal zone.  The
75 *			governor switches on when this trip point is crossed.
76 *			If the thermal zone only has one passive trip point,
77 *			@trip_switch_on should be NULL.
78 * @trip_max:		last passive trip point of the thermal zone. The
79 *			temperature we are controlling for.
80 * @total_weight:	Sum of all thermal instances weights
81 * @num_actors:		number of cooling devices supporting IPA callbacks
82 * @buffer_size:	internal buffer size, to avoid runtime re-calculation
83 * @power:		buffer for all power actors internal power information
84 */
85struct power_allocator_params {
86	bool allocated_tzp;
87	s64 err_integral;
88	s32 prev_err;
89	u32 sustainable_power;
90	const struct thermal_trip *trip_switch_on;
91	const struct thermal_trip *trip_max;
92	int total_weight;
93	unsigned int num_actors;
94	unsigned int buffer_size;
95	struct power_actor *power;
96};
97
98static bool power_actor_is_valid(struct power_allocator_params *params,
99				 struct thermal_instance *instance)
100{
101	return (instance->trip == params->trip_max &&
102		 cdev_is_power_actor(instance->cdev));
103}
104
105/**
106 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
107 * @tz: thermal zone we are operating in
108 *
109 * For thermal zones that don't provide a sustainable_power in their
110 * thermal_zone_params, estimate one.  Calculate it using the minimum
111 * power of all the cooling devices as that gives a valid value that
112 * can give some degree of functionality.  For optimal performance of
113 * this governor, provide a sustainable_power in the thermal zone's
114 * thermal_zone_params.
115 */
116static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
117{
118	struct power_allocator_params *params = tz->governor_data;
119	struct thermal_cooling_device *cdev;
120	struct thermal_instance *instance;
121	u32 sustainable_power = 0;
122	u32 min_power;
123
124	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
125		if (!power_actor_is_valid(params, instance))
126			continue;
127
128		cdev = instance->cdev;
129		if (cdev->ops->state2power(cdev, instance->upper, &min_power))
130			continue;
131
132		sustainable_power += min_power;
133	}
134
135	return sustainable_power;
136}
137
138/**
139 * estimate_pid_constants() - Estimate the constants for the PID controller
140 * @tz:		thermal zone for which to estimate the constants
141 * @sustainable_power:	sustainable power for the thermal zone
142 * @trip_switch_on:	trip point for the switch on temperature
143 * @control_temp:	target temperature for the power allocator governor
144 *
145 * This function is used to update the estimation of the PID
146 * controller constants in struct thermal_zone_parameters.
147 */
148static void estimate_pid_constants(struct thermal_zone_device *tz,
149				   u32 sustainable_power,
150				   const struct thermal_trip *trip_switch_on,
151				   int control_temp)
152{
153	u32 temperature_threshold = control_temp;
154	s32 k_i;
155
156	if (trip_switch_on)
157		temperature_threshold -= trip_switch_on->temperature;
158
159	/*
160	 * estimate_pid_constants() tries to find appropriate default
161	 * values for thermal zones that don't provide them. If a
162	 * system integrator has configured a thermal zone with two
163	 * passive trip points at the same temperature, that person
164	 * hasn't put any effort to set up the thermal zone properly
165	 * so just give up.
166	 */
167	if (!temperature_threshold)
168		return;
169
170	tz->tzp->k_po = int_to_frac(sustainable_power) /
171		temperature_threshold;
172
173	tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
174		temperature_threshold;
175
176	k_i = tz->tzp->k_pu / 10;
177	tz->tzp->k_i = k_i > 0 ? k_i : 1;
178
179	/*
180	 * The default for k_d and integral_cutoff is 0, so we can
181	 * leave them as they are.
182	 */
183}
184
185/**
186 * get_sustainable_power() - Get the right sustainable power
187 * @tz:		thermal zone for which to estimate the constants
188 * @params:	parameters for the power allocator governor
189 * @control_temp:	target temperature for the power allocator governor
190 *
191 * This function is used for getting the proper sustainable power value based
192 * on variables which might be updated by the user sysfs interface. If that
193 * happen the new value is going to be estimated and updated. It is also used
194 * after thermal zone binding, where the initial values where set to 0.
195 */
196static u32 get_sustainable_power(struct thermal_zone_device *tz,
197				 struct power_allocator_params *params,
198				 int control_temp)
199{
200	u32 sustainable_power;
201
202	if (!tz->tzp->sustainable_power)
203		sustainable_power = estimate_sustainable_power(tz);
204	else
205		sustainable_power = tz->tzp->sustainable_power;
206
207	/* Check if it's init value 0 or there was update via sysfs */
208	if (sustainable_power != params->sustainable_power) {
209		estimate_pid_constants(tz, sustainable_power,
210				       params->trip_switch_on, control_temp);
211
212		/* Do the estimation only once and make available in sysfs */
213		tz->tzp->sustainable_power = sustainable_power;
214		params->sustainable_power = sustainable_power;
215	}
216
217	return sustainable_power;
218}
219
220/**
221 * pid_controller() - PID controller
222 * @tz:	thermal zone we are operating in
223 * @control_temp:	the target temperature in millicelsius
224 * @max_allocatable_power:	maximum allocatable power for this thermal zone
225 *
226 * This PID controller increases the available power budget so that the
227 * temperature of the thermal zone gets as close as possible to
228 * @control_temp and limits the power if it exceeds it.  k_po is the
229 * proportional term when we are overshooting, k_pu is the
230 * proportional term when we are undershooting.  integral_cutoff is a
231 * threshold below which we stop accumulating the error.  The
232 * accumulated error is only valid if the requested power will make
233 * the system warmer.  If the system is mostly idle, there's no point
234 * in accumulating positive error.
235 *
236 * Return: The power budget for the next period.
237 */
238static u32 pid_controller(struct thermal_zone_device *tz,
239			  int control_temp,
240			  u32 max_allocatable_power)
241{
242	struct power_allocator_params *params = tz->governor_data;
243	s64 p, i, d, power_range;
244	s32 err, max_power_frac;
245	u32 sustainable_power;
246
247	max_power_frac = int_to_frac(max_allocatable_power);
248
249	sustainable_power = get_sustainable_power(tz, params, control_temp);
250
251	err = control_temp - tz->temperature;
252	err = int_to_frac(err);
253
254	/* Calculate the proportional term */
255	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
256
257	/*
258	 * Calculate the integral term
259	 *
260	 * if the error is less than cut off allow integration (but
261	 * the integral is limited to max power)
262	 */
263	i = mul_frac(tz->tzp->k_i, params->err_integral);
264
265	if (err < int_to_frac(tz->tzp->integral_cutoff)) {
266		s64 i_next = i + mul_frac(tz->tzp->k_i, err);
267
268		if (abs(i_next) < max_power_frac) {
269			i = i_next;
270			params->err_integral += err;
271		}
272	}
273
274	/*
275	 * Calculate the derivative term
276	 *
277	 * We do err - prev_err, so with a positive k_d, a decreasing
278	 * error (i.e. driving closer to the line) results in less
279	 * power being applied, slowing down the controller)
280	 */
281	d = mul_frac(tz->tzp->k_d, err - params->prev_err);
282	d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies));
283	params->prev_err = err;
284
285	power_range = p + i + d;
286
287	/* feed-forward the known sustainable dissipatable power */
288	power_range = sustainable_power + frac_to_int(power_range);
289
290	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
291
292	trace_thermal_power_allocator_pid(tz, frac_to_int(err),
293					  frac_to_int(params->err_integral),
294					  frac_to_int(p), frac_to_int(i),
295					  frac_to_int(d), power_range);
296
297	return power_range;
298}
299
300/**
301 * power_actor_set_power() - limit the maximum power a cooling device consumes
302 * @cdev:	pointer to &thermal_cooling_device
303 * @instance:	thermal instance to update
304 * @power:	the power in milliwatts
305 *
306 * Set the cooling device to consume at most @power milliwatts. The limit is
307 * expected to be a cap at the maximum power consumption.
308 *
309 * Return: 0 on success, -EINVAL if the cooling device does not
310 * implement the power actor API or -E* for other failures.
311 */
312static int
313power_actor_set_power(struct thermal_cooling_device *cdev,
314		      struct thermal_instance *instance, u32 power)
315{
316	unsigned long state;
317	int ret;
318
319	ret = cdev->ops->power2state(cdev, power, &state);
320	if (ret)
321		return ret;
322
323	instance->target = clamp_val(state, instance->lower, instance->upper);
324	mutex_lock(&cdev->lock);
325	__thermal_cdev_update(cdev);
326	mutex_unlock(&cdev->lock);
327
328	return 0;
329}
330
331/**
332 * divvy_up_power() - divvy the allocated power between the actors
333 * @power:		buffer for all power actors internal power information
334 * @num_actors:		number of power actors in this thermal zone
335 * @total_req_power:	sum of all weighted requested power for all actors
336 * @power_range:	total allocated power
337 *
338 * This function divides the total allocated power (@power_range)
339 * fairly between the actors.  It first tries to give each actor a
340 * share of the @power_range according to how much power it requested
341 * compared to the rest of the actors.  For example, if only one actor
342 * requests power, then it receives all the @power_range.  If
343 * three actors each requests 1mW, each receives a third of the
344 * @power_range.
345 *
346 * If any actor received more than their maximum power, then that
347 * surplus is re-divvied among the actors based on how far they are
348 * from their respective maximums.
349 */
350static void divvy_up_power(struct power_actor *power, int num_actors,
351			   u32 total_req_power, u32 power_range)
352{
353	u32 capped_extra_power = 0;
354	u32 extra_power = 0;
355	int i;
356
357	/*
358	 * Prevent division by 0 if none of the actors request power.
359	 */
360	if (!total_req_power)
361		total_req_power = 1;
362
363	for (i = 0; i < num_actors; i++) {
364		struct power_actor *pa = &power[i];
365		u64 req_range = (u64)pa->req_power * power_range;
366
367		pa->granted_power = DIV_ROUND_CLOSEST_ULL(req_range,
368							  total_req_power);
369
370		if (pa->granted_power > pa->max_power) {
371			extra_power += pa->granted_power - pa->max_power;
372			pa->granted_power = pa->max_power;
373		}
374
375		pa->extra_actor_power = pa->max_power - pa->granted_power;
376		capped_extra_power += pa->extra_actor_power;
377	}
378
379	if (!extra_power || !capped_extra_power)
380		return;
381
382	/*
383	 * Re-divvy the reclaimed extra among actors based on
384	 * how far they are from the max
385	 */
386	extra_power = min(extra_power, capped_extra_power);
387
388	for (i = 0; i < num_actors; i++) {
389		struct power_actor *pa = &power[i];
390		u64 extra_range = pa->extra_actor_power;
391
392		extra_range *= extra_power;
393		pa->granted_power += DIV_ROUND_CLOSEST_ULL(extra_range,
394						capped_extra_power);
395	}
396}
397
398static int allocate_power(struct thermal_zone_device *tz, int control_temp)
399{
400	struct power_allocator_params *params = tz->governor_data;
401	unsigned int num_actors = params->num_actors;
402	struct power_actor *power = params->power;
403	struct thermal_cooling_device *cdev;
404	struct thermal_instance *instance;
405	u32 total_weighted_req_power = 0;
406	u32 max_allocatable_power = 0;
407	u32 total_granted_power = 0;
408	u32 total_req_power = 0;
409	u32 power_range, weight;
410	int i = 0, ret;
411
412	if (!num_actors)
413		return -ENODEV;
414
415	/* Clean all buffers for new power estimations */
416	memset(power, 0, params->buffer_size);
417
418	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
419		struct power_actor *pa = &power[i];
420
421		if (!power_actor_is_valid(params, instance))
422			continue;
423
424		cdev = instance->cdev;
425
426		ret = cdev->ops->get_requested_power(cdev, &pa->req_power);
427		if (ret)
428			continue;
429
430		if (!params->total_weight)
431			weight = 1 << FRAC_BITS;
432		else
433			weight = instance->weight;
434
435		pa->weighted_req_power = frac_to_int(weight * pa->req_power);
436
437		ret = cdev->ops->state2power(cdev, instance->lower,
438					     &pa->max_power);
439		if (ret)
440			continue;
441
442		total_req_power += pa->req_power;
443		max_allocatable_power += pa->max_power;
444		total_weighted_req_power += pa->weighted_req_power;
445
446		i++;
447	}
448
449	power_range = pid_controller(tz, control_temp, max_allocatable_power);
450
451	divvy_up_power(power, num_actors, total_weighted_req_power,
452		       power_range);
453
454	i = 0;
455	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
456		struct power_actor *pa = &power[i];
457
458		if (!power_actor_is_valid(params, instance))
459			continue;
460
461		power_actor_set_power(instance->cdev, instance,
462				      pa->granted_power);
463		total_granted_power += pa->granted_power;
464
465		trace_thermal_power_actor(tz, i, pa->req_power,
466					  pa->granted_power);
467		i++;
468	}
469
470	trace_thermal_power_allocator(tz, total_req_power, total_granted_power,
471				      num_actors, power_range,
472				      max_allocatable_power, tz->temperature,
473				      control_temp - tz->temperature);
474
475	return 0;
476}
477
478/**
479 * get_governor_trips() - get the two trip points that are key for this governor
480 * @tz:	thermal zone to operate on
481 * @params:	pointer to private data for this governor
482 *
483 * The power allocator governor works optimally with two trips points:
484 * a "switch on" trip point and a "maximum desired temperature".  These
485 * are defined as the first and last passive trip points.
486 *
487 * If there is only one trip point, then that's considered to be the
488 * "maximum desired temperature" trip point and the governor is always
489 * on.  If there are no passive or active trip points, then the
490 * governor won't do anything.  In fact, its throttle function
491 * won't be called at all.
492 */
493static void get_governor_trips(struct thermal_zone_device *tz,
494			       struct power_allocator_params *params)
495{
496	const struct thermal_trip *first_passive = NULL;
497	const struct thermal_trip *last_passive = NULL;
498	const struct thermal_trip *last_active = NULL;
499	const struct thermal_trip *trip;
500
501	for_each_trip(tz, trip) {
502		switch (trip->type) {
503		case THERMAL_TRIP_PASSIVE:
504			if (!first_passive) {
505				first_passive = trip;
506				break;
507			}
508			last_passive = trip;
509			break;
510		case THERMAL_TRIP_ACTIVE:
511			last_active = trip;
512			break;
513		default:
514			break;
515		}
516	}
517
518	if (last_passive) {
519		params->trip_switch_on = first_passive;
520		params->trip_max = last_passive;
521	} else if (first_passive) {
522		params->trip_switch_on = NULL;
523		params->trip_max = first_passive;
524	} else {
525		params->trip_switch_on = NULL;
526		params->trip_max = last_active;
527	}
528}
529
530static void reset_pid_controller(struct power_allocator_params *params)
531{
532	params->err_integral = 0;
533	params->prev_err = 0;
534}
535
536static void allow_maximum_power(struct thermal_zone_device *tz, bool update)
537{
538	struct power_allocator_params *params = tz->governor_data;
539	struct thermal_cooling_device *cdev;
540	struct thermal_instance *instance;
541	u32 req_power;
542
543	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
544		if (!power_actor_is_valid(params, instance))
545			continue;
546
547		cdev = instance->cdev;
548
549		instance->target = 0;
550		mutex_lock(&cdev->lock);
551		/*
552		 * Call for updating the cooling devices local stats and avoid
553		 * periods of dozen of seconds when those have not been
554		 * maintained.
555		 */
556		cdev->ops->get_requested_power(cdev, &req_power);
557
558		if (update)
559			__thermal_cdev_update(cdev);
560
561		mutex_unlock(&cdev->lock);
562	}
563}
564
565/**
566 * check_power_actors() - Check all cooling devices and warn when they are
567 *			not power actors
568 * @tz:		thermal zone to operate on
569 * @params:	power allocator private data
570 *
571 * Check all cooling devices in the @tz and warn every time they are missing
572 * power actor API. The warning should help to investigate the issue, which
573 * could be e.g. lack of Energy Model for a given device.
574 *
575 * If all of the cooling devices currently attached to @tz implement the power
576 * actor API, return the number of them (which may be 0, because some cooling
577 * devices may be attached later). Otherwise, return -EINVAL.
578 */
579static int check_power_actors(struct thermal_zone_device *tz,
580			      struct power_allocator_params *params)
581{
582	struct thermal_instance *instance;
583	int ret = 0;
584
585	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
586		if (instance->trip != params->trip_max)
587			continue;
588
589		if (!cdev_is_power_actor(instance->cdev)) {
590			dev_warn(&tz->device, "power_allocator: %s is not a power actor\n",
591				 instance->cdev->type);
592			return -EINVAL;
593		}
594		ret++;
595	}
596
597	return ret;
598}
599
600static int allocate_actors_buffer(struct power_allocator_params *params,
601				  int num_actors)
602{
603	int ret;
604
605	kfree(params->power);
606
607	/* There might be no cooling devices yet. */
608	if (!num_actors) {
609		ret = 0;
610		goto clean_state;
611	}
612
613	params->power = kcalloc(num_actors, sizeof(struct power_actor),
614				GFP_KERNEL);
615	if (!params->power) {
616		ret = -ENOMEM;
617		goto clean_state;
618	}
619
620	params->num_actors = num_actors;
621	params->buffer_size = num_actors * sizeof(struct power_actor);
622
623	return 0;
624
625clean_state:
626	params->num_actors = 0;
627	params->buffer_size = 0;
628	params->power = NULL;
629	return ret;
630}
631
632static void power_allocator_update_tz(struct thermal_zone_device *tz,
633				      enum thermal_notify_event reason)
634{
635	struct power_allocator_params *params = tz->governor_data;
636	struct thermal_instance *instance;
637	int num_actors = 0;
638
639	switch (reason) {
640	case THERMAL_TZ_BIND_CDEV:
641	case THERMAL_TZ_UNBIND_CDEV:
642		list_for_each_entry(instance, &tz->thermal_instances, tz_node)
643			if (power_actor_is_valid(params, instance))
644				num_actors++;
645
646		if (num_actors == params->num_actors)
647			return;
648
649		allocate_actors_buffer(params, num_actors);
650		break;
651	case THERMAL_INSTANCE_WEIGHT_CHANGED:
652		params->total_weight = 0;
653		list_for_each_entry(instance, &tz->thermal_instances, tz_node)
654			if (power_actor_is_valid(params, instance))
655				params->total_weight += instance->weight;
656		break;
657	default:
658		break;
659	}
660}
661
662/**
663 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
664 * @tz:	thermal zone to bind it to
665 *
666 * Initialize the PID controller parameters and bind it to the thermal
667 * zone.
668 *
669 * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL
670 * when there are unsupported cooling devices in the @tz.
671 */
672static int power_allocator_bind(struct thermal_zone_device *tz)
673{
674	struct power_allocator_params *params;
675	int ret;
676
677	params = kzalloc(sizeof(*params), GFP_KERNEL);
678	if (!params)
679		return -ENOMEM;
680
681	get_governor_trips(tz, params);
682
683	ret = check_power_actors(tz, params);
684	if (ret < 0) {
685		dev_warn(&tz->device, "power_allocator: binding failed\n");
686		kfree(params);
687		return ret;
688	}
689
690	ret = allocate_actors_buffer(params, ret);
691	if (ret) {
692		dev_warn(&tz->device, "power_allocator: allocation failed\n");
693		kfree(params);
694		return ret;
695	}
696
697	if (!tz->tzp) {
698		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
699		if (!tz->tzp) {
700			ret = -ENOMEM;
701			goto free_params;
702		}
703
704		params->allocated_tzp = true;
705	}
706
707	if (!tz->tzp->sustainable_power)
708		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
709	else
710		params->sustainable_power = tz->tzp->sustainable_power;
711
712	if (params->trip_max)
713		estimate_pid_constants(tz, tz->tzp->sustainable_power,
714				       params->trip_switch_on,
715				       params->trip_max->temperature);
716
717	reset_pid_controller(params);
718
719	tz->governor_data = params;
720
721	return 0;
722
723free_params:
724	kfree(params->power);
725	kfree(params);
726
727	return ret;
728}
729
730static void power_allocator_unbind(struct thermal_zone_device *tz)
731{
732	struct power_allocator_params *params = tz->governor_data;
733
734	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
735
736	if (params->allocated_tzp) {
737		kfree(tz->tzp);
738		tz->tzp = NULL;
739	}
740
741	kfree(params->power);
742	kfree(tz->governor_data);
743	tz->governor_data = NULL;
744}
745
746static int power_allocator_throttle(struct thermal_zone_device *tz,
747				    const struct thermal_trip *trip)
748{
749	struct power_allocator_params *params = tz->governor_data;
750	bool update;
751
752	lockdep_assert_held(&tz->lock);
753
754	/*
755	 * We get called for every trip point but we only need to do
756	 * our calculations once
757	 */
758	if (trip != params->trip_max)
759		return 0;
760
761	trip = params->trip_switch_on;
762	if (trip && tz->temperature < trip->temperature) {
763		update = tz->passive;
764		tz->passive = 0;
765		reset_pid_controller(params);
766		allow_maximum_power(tz, update);
767		return 0;
768	}
769
770	tz->passive = 1;
771
772	return allocate_power(tz, params->trip_max->temperature);
773}
774
775static struct thermal_governor thermal_gov_power_allocator = {
776	.name		= "power_allocator",
777	.bind_to_tz	= power_allocator_bind,
778	.unbind_from_tz	= power_allocator_unbind,
779	.throttle	= power_allocator_throttle,
780	.update_tz	= power_allocator_update_tz,
781};
782THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);
783