1// SPDX-License-Identifier: GPL-2.0-or-later
2/*******************************************************************************
3 * Filename:  target_core_transport.c
4 *
5 * This file contains the Generic Target Engine Core.
6 *
7 * (c) Copyright 2002-2013 Datera, Inc.
8 *
9 * Nicholas A. Bellinger <nab@kernel.org>
10 *
11 ******************************************************************************/
12
13#include <linux/net.h>
14#include <linux/delay.h>
15#include <linux/string.h>
16#include <linux/timer.h>
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/kthread.h>
20#include <linux/in.h>
21#include <linux/cdrom.h>
22#include <linux/module.h>
23#include <linux/ratelimit.h>
24#include <linux/vmalloc.h>
25#include <asm/unaligned.h>
26#include <net/sock.h>
27#include <net/tcp.h>
28#include <scsi/scsi_proto.h>
29#include <scsi/scsi_common.h>
30
31#include <target/target_core_base.h>
32#include <target/target_core_backend.h>
33#include <target/target_core_fabric.h>
34
35#include "target_core_internal.h"
36#include "target_core_alua.h"
37#include "target_core_pr.h"
38#include "target_core_ua.h"
39
40#define CREATE_TRACE_POINTS
41#include <trace/events/target.h>
42
43static struct workqueue_struct *target_completion_wq;
44static struct workqueue_struct *target_submission_wq;
45static struct kmem_cache *se_sess_cache;
46struct kmem_cache *se_ua_cache;
47struct kmem_cache *t10_pr_reg_cache;
48struct kmem_cache *t10_alua_lu_gp_cache;
49struct kmem_cache *t10_alua_lu_gp_mem_cache;
50struct kmem_cache *t10_alua_tg_pt_gp_cache;
51struct kmem_cache *t10_alua_lba_map_cache;
52struct kmem_cache *t10_alua_lba_map_mem_cache;
53
54static void transport_complete_task_attr(struct se_cmd *cmd);
55static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
56static void transport_handle_queue_full(struct se_cmd *cmd,
57		struct se_device *dev, int err, bool write_pending);
58static void target_complete_ok_work(struct work_struct *work);
59
60int init_se_kmem_caches(void)
61{
62	se_sess_cache = kmem_cache_create("se_sess_cache",
63			sizeof(struct se_session), __alignof__(struct se_session),
64			0, NULL);
65	if (!se_sess_cache) {
66		pr_err("kmem_cache_create() for struct se_session"
67				" failed\n");
68		goto out;
69	}
70	se_ua_cache = kmem_cache_create("se_ua_cache",
71			sizeof(struct se_ua), __alignof__(struct se_ua),
72			0, NULL);
73	if (!se_ua_cache) {
74		pr_err("kmem_cache_create() for struct se_ua failed\n");
75		goto out_free_sess_cache;
76	}
77	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
78			sizeof(struct t10_pr_registration),
79			__alignof__(struct t10_pr_registration), 0, NULL);
80	if (!t10_pr_reg_cache) {
81		pr_err("kmem_cache_create() for struct t10_pr_registration"
82				" failed\n");
83		goto out_free_ua_cache;
84	}
85	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
86			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
87			0, NULL);
88	if (!t10_alua_lu_gp_cache) {
89		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
90				" failed\n");
91		goto out_free_pr_reg_cache;
92	}
93	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
94			sizeof(struct t10_alua_lu_gp_member),
95			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
96	if (!t10_alua_lu_gp_mem_cache) {
97		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
98				"cache failed\n");
99		goto out_free_lu_gp_cache;
100	}
101	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
102			sizeof(struct t10_alua_tg_pt_gp),
103			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
104	if (!t10_alua_tg_pt_gp_cache) {
105		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
106				"cache failed\n");
107		goto out_free_lu_gp_mem_cache;
108	}
109	t10_alua_lba_map_cache = kmem_cache_create(
110			"t10_alua_lba_map_cache",
111			sizeof(struct t10_alua_lba_map),
112			__alignof__(struct t10_alua_lba_map), 0, NULL);
113	if (!t10_alua_lba_map_cache) {
114		pr_err("kmem_cache_create() for t10_alua_lba_map_"
115				"cache failed\n");
116		goto out_free_tg_pt_gp_cache;
117	}
118	t10_alua_lba_map_mem_cache = kmem_cache_create(
119			"t10_alua_lba_map_mem_cache",
120			sizeof(struct t10_alua_lba_map_member),
121			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
122	if (!t10_alua_lba_map_mem_cache) {
123		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
124				"cache failed\n");
125		goto out_free_lba_map_cache;
126	}
127
128	target_completion_wq = alloc_workqueue("target_completion",
129					       WQ_MEM_RECLAIM, 0);
130	if (!target_completion_wq)
131		goto out_free_lba_map_mem_cache;
132
133	target_submission_wq = alloc_workqueue("target_submission",
134					       WQ_MEM_RECLAIM, 0);
135	if (!target_submission_wq)
136		goto out_free_completion_wq;
137
138	return 0;
139
140out_free_completion_wq:
141	destroy_workqueue(target_completion_wq);
142out_free_lba_map_mem_cache:
143	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
144out_free_lba_map_cache:
145	kmem_cache_destroy(t10_alua_lba_map_cache);
146out_free_tg_pt_gp_cache:
147	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
148out_free_lu_gp_mem_cache:
149	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
150out_free_lu_gp_cache:
151	kmem_cache_destroy(t10_alua_lu_gp_cache);
152out_free_pr_reg_cache:
153	kmem_cache_destroy(t10_pr_reg_cache);
154out_free_ua_cache:
155	kmem_cache_destroy(se_ua_cache);
156out_free_sess_cache:
157	kmem_cache_destroy(se_sess_cache);
158out:
159	return -ENOMEM;
160}
161
162void release_se_kmem_caches(void)
163{
164	destroy_workqueue(target_submission_wq);
165	destroy_workqueue(target_completion_wq);
166	kmem_cache_destroy(se_sess_cache);
167	kmem_cache_destroy(se_ua_cache);
168	kmem_cache_destroy(t10_pr_reg_cache);
169	kmem_cache_destroy(t10_alua_lu_gp_cache);
170	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
171	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
172	kmem_cache_destroy(t10_alua_lba_map_cache);
173	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
174}
175
176/* This code ensures unique mib indexes are handed out. */
177static DEFINE_SPINLOCK(scsi_mib_index_lock);
178static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
179
180/*
181 * Allocate a new row index for the entry type specified
182 */
183u32 scsi_get_new_index(scsi_index_t type)
184{
185	u32 new_index;
186
187	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
188
189	spin_lock(&scsi_mib_index_lock);
190	new_index = ++scsi_mib_index[type];
191	spin_unlock(&scsi_mib_index_lock);
192
193	return new_index;
194}
195
196void transport_subsystem_check_init(void)
197{
198	int ret;
199	static int sub_api_initialized;
200
201	if (sub_api_initialized)
202		return;
203
204	ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
205	if (ret != 0)
206		pr_err("Unable to load target_core_iblock\n");
207
208	ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
209	if (ret != 0)
210		pr_err("Unable to load target_core_file\n");
211
212	ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
213	if (ret != 0)
214		pr_err("Unable to load target_core_pscsi\n");
215
216	ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
217	if (ret != 0)
218		pr_err("Unable to load target_core_user\n");
219
220	sub_api_initialized = 1;
221}
222
223static void target_release_cmd_refcnt(struct percpu_ref *ref)
224{
225	struct target_cmd_counter *cmd_cnt  = container_of(ref,
226							   typeof(*cmd_cnt),
227							   refcnt);
228	wake_up(&cmd_cnt->refcnt_wq);
229}
230
231struct target_cmd_counter *target_alloc_cmd_counter(void)
232{
233	struct target_cmd_counter *cmd_cnt;
234	int rc;
235
236	cmd_cnt = kzalloc(sizeof(*cmd_cnt), GFP_KERNEL);
237	if (!cmd_cnt)
238		return NULL;
239
240	init_completion(&cmd_cnt->stop_done);
241	init_waitqueue_head(&cmd_cnt->refcnt_wq);
242	atomic_set(&cmd_cnt->stopped, 0);
243
244	rc = percpu_ref_init(&cmd_cnt->refcnt, target_release_cmd_refcnt, 0,
245			     GFP_KERNEL);
246	if (rc)
247		goto free_cmd_cnt;
248
249	return cmd_cnt;
250
251free_cmd_cnt:
252	kfree(cmd_cnt);
253	return NULL;
254}
255EXPORT_SYMBOL_GPL(target_alloc_cmd_counter);
256
257void target_free_cmd_counter(struct target_cmd_counter *cmd_cnt)
258{
259	/*
260	 * Drivers like loop do not call target_stop_session during session
261	 * shutdown so we have to drop the ref taken at init time here.
262	 */
263	if (!atomic_read(&cmd_cnt->stopped))
264		percpu_ref_put(&cmd_cnt->refcnt);
265
266	percpu_ref_exit(&cmd_cnt->refcnt);
267	kfree(cmd_cnt);
268}
269EXPORT_SYMBOL_GPL(target_free_cmd_counter);
270
271/**
272 * transport_init_session - initialize a session object
273 * @se_sess: Session object pointer.
274 *
275 * The caller must have zero-initialized @se_sess before calling this function.
276 */
277void transport_init_session(struct se_session *se_sess)
278{
279	INIT_LIST_HEAD(&se_sess->sess_list);
280	INIT_LIST_HEAD(&se_sess->sess_acl_list);
281	spin_lock_init(&se_sess->sess_cmd_lock);
282}
283EXPORT_SYMBOL(transport_init_session);
284
285/**
286 * transport_alloc_session - allocate a session object and initialize it
287 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
288 */
289struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
290{
291	struct se_session *se_sess;
292
293	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
294	if (!se_sess) {
295		pr_err("Unable to allocate struct se_session from"
296				" se_sess_cache\n");
297		return ERR_PTR(-ENOMEM);
298	}
299	transport_init_session(se_sess);
300	se_sess->sup_prot_ops = sup_prot_ops;
301
302	return se_sess;
303}
304EXPORT_SYMBOL(transport_alloc_session);
305
306/**
307 * transport_alloc_session_tags - allocate target driver private data
308 * @se_sess:  Session pointer.
309 * @tag_num:  Maximum number of in-flight commands between initiator and target.
310 * @tag_size: Size in bytes of the private data a target driver associates with
311 *	      each command.
312 */
313int transport_alloc_session_tags(struct se_session *se_sess,
314			         unsigned int tag_num, unsigned int tag_size)
315{
316	int rc;
317
318	se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
319					 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
320	if (!se_sess->sess_cmd_map) {
321		pr_err("Unable to allocate se_sess->sess_cmd_map\n");
322		return -ENOMEM;
323	}
324
325	rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
326			false, GFP_KERNEL, NUMA_NO_NODE);
327	if (rc < 0) {
328		pr_err("Unable to init se_sess->sess_tag_pool,"
329			" tag_num: %u\n", tag_num);
330		kvfree(se_sess->sess_cmd_map);
331		se_sess->sess_cmd_map = NULL;
332		return -ENOMEM;
333	}
334
335	return 0;
336}
337EXPORT_SYMBOL(transport_alloc_session_tags);
338
339/**
340 * transport_init_session_tags - allocate a session and target driver private data
341 * @tag_num:  Maximum number of in-flight commands between initiator and target.
342 * @tag_size: Size in bytes of the private data a target driver associates with
343 *	      each command.
344 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
345 */
346static struct se_session *
347transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
348			    enum target_prot_op sup_prot_ops)
349{
350	struct se_session *se_sess;
351	int rc;
352
353	if (tag_num != 0 && !tag_size) {
354		pr_err("init_session_tags called with percpu-ida tag_num:"
355		       " %u, but zero tag_size\n", tag_num);
356		return ERR_PTR(-EINVAL);
357	}
358	if (!tag_num && tag_size) {
359		pr_err("init_session_tags called with percpu-ida tag_size:"
360		       " %u, but zero tag_num\n", tag_size);
361		return ERR_PTR(-EINVAL);
362	}
363
364	se_sess = transport_alloc_session(sup_prot_ops);
365	if (IS_ERR(se_sess))
366		return se_sess;
367
368	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
369	if (rc < 0) {
370		transport_free_session(se_sess);
371		return ERR_PTR(-ENOMEM);
372	}
373
374	return se_sess;
375}
376
377/*
378 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
379 */
380void __transport_register_session(
381	struct se_portal_group *se_tpg,
382	struct se_node_acl *se_nacl,
383	struct se_session *se_sess,
384	void *fabric_sess_ptr)
385{
386	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
387	unsigned char buf[PR_REG_ISID_LEN];
388	unsigned long flags;
389
390	se_sess->se_tpg = se_tpg;
391	se_sess->fabric_sess_ptr = fabric_sess_ptr;
392	/*
393	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
394	 *
395	 * Only set for struct se_session's that will actually be moving I/O.
396	 * eg: *NOT* discovery sessions.
397	 */
398	if (se_nacl) {
399		/*
400		 *
401		 * Determine if fabric allows for T10-PI feature bits exposed to
402		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
403		 *
404		 * If so, then always save prot_type on a per se_node_acl node
405		 * basis and re-instate the previous sess_prot_type to avoid
406		 * disabling PI from below any previously initiator side
407		 * registered LUNs.
408		 */
409		if (se_nacl->saved_prot_type)
410			se_sess->sess_prot_type = se_nacl->saved_prot_type;
411		else if (tfo->tpg_check_prot_fabric_only)
412			se_sess->sess_prot_type = se_nacl->saved_prot_type =
413					tfo->tpg_check_prot_fabric_only(se_tpg);
414		/*
415		 * If the fabric module supports an ISID based TransportID,
416		 * save this value in binary from the fabric I_T Nexus now.
417		 */
418		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
419			memset(&buf[0], 0, PR_REG_ISID_LEN);
420			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
421					&buf[0], PR_REG_ISID_LEN);
422			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
423		}
424
425		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
426		/*
427		 * The se_nacl->nacl_sess pointer will be set to the
428		 * last active I_T Nexus for each struct se_node_acl.
429		 */
430		se_nacl->nacl_sess = se_sess;
431
432		list_add_tail(&se_sess->sess_acl_list,
433			      &se_nacl->acl_sess_list);
434		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
435	}
436	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
437
438	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
439		se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
440}
441EXPORT_SYMBOL(__transport_register_session);
442
443void transport_register_session(
444	struct se_portal_group *se_tpg,
445	struct se_node_acl *se_nacl,
446	struct se_session *se_sess,
447	void *fabric_sess_ptr)
448{
449	unsigned long flags;
450
451	spin_lock_irqsave(&se_tpg->session_lock, flags);
452	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
453	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
454}
455EXPORT_SYMBOL(transport_register_session);
456
457struct se_session *
458target_setup_session(struct se_portal_group *tpg,
459		     unsigned int tag_num, unsigned int tag_size,
460		     enum target_prot_op prot_op,
461		     const char *initiatorname, void *private,
462		     int (*callback)(struct se_portal_group *,
463				     struct se_session *, void *))
464{
465	struct target_cmd_counter *cmd_cnt;
466	struct se_session *sess;
467	int rc;
468
469	cmd_cnt = target_alloc_cmd_counter();
470	if (!cmd_cnt)
471		return ERR_PTR(-ENOMEM);
472	/*
473	 * If the fabric driver is using percpu-ida based pre allocation
474	 * of I/O descriptor tags, go ahead and perform that setup now..
475	 */
476	if (tag_num != 0)
477		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
478	else
479		sess = transport_alloc_session(prot_op);
480
481	if (IS_ERR(sess)) {
482		rc = PTR_ERR(sess);
483		goto free_cnt;
484	}
485	sess->cmd_cnt = cmd_cnt;
486
487	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
488					(unsigned char *)initiatorname);
489	if (!sess->se_node_acl) {
490		rc = -EACCES;
491		goto free_sess;
492	}
493	/*
494	 * Go ahead and perform any remaining fabric setup that is
495	 * required before transport_register_session().
496	 */
497	if (callback != NULL) {
498		rc = callback(tpg, sess, private);
499		if (rc)
500			goto free_sess;
501	}
502
503	transport_register_session(tpg, sess->se_node_acl, sess, private);
504	return sess;
505
506free_sess:
507	transport_free_session(sess);
508	return ERR_PTR(rc);
509
510free_cnt:
511	target_free_cmd_counter(cmd_cnt);
512	return ERR_PTR(rc);
513}
514EXPORT_SYMBOL(target_setup_session);
515
516ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
517{
518	struct se_session *se_sess;
519	ssize_t len = 0;
520
521	spin_lock_bh(&se_tpg->session_lock);
522	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
523		if (!se_sess->se_node_acl)
524			continue;
525		if (!se_sess->se_node_acl->dynamic_node_acl)
526			continue;
527		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
528			break;
529
530		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
531				se_sess->se_node_acl->initiatorname);
532		len += 1; /* Include NULL terminator */
533	}
534	spin_unlock_bh(&se_tpg->session_lock);
535
536	return len;
537}
538EXPORT_SYMBOL(target_show_dynamic_sessions);
539
540static void target_complete_nacl(struct kref *kref)
541{
542	struct se_node_acl *nacl = container_of(kref,
543				struct se_node_acl, acl_kref);
544	struct se_portal_group *se_tpg = nacl->se_tpg;
545
546	if (!nacl->dynamic_stop) {
547		complete(&nacl->acl_free_comp);
548		return;
549	}
550
551	mutex_lock(&se_tpg->acl_node_mutex);
552	list_del_init(&nacl->acl_list);
553	mutex_unlock(&se_tpg->acl_node_mutex);
554
555	core_tpg_wait_for_nacl_pr_ref(nacl);
556	core_free_device_list_for_node(nacl, se_tpg);
557	kfree(nacl);
558}
559
560void target_put_nacl(struct se_node_acl *nacl)
561{
562	kref_put(&nacl->acl_kref, target_complete_nacl);
563}
564EXPORT_SYMBOL(target_put_nacl);
565
566void transport_deregister_session_configfs(struct se_session *se_sess)
567{
568	struct se_node_acl *se_nacl;
569	unsigned long flags;
570	/*
571	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
572	 */
573	se_nacl = se_sess->se_node_acl;
574	if (se_nacl) {
575		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
576		if (!list_empty(&se_sess->sess_acl_list))
577			list_del_init(&se_sess->sess_acl_list);
578		/*
579		 * If the session list is empty, then clear the pointer.
580		 * Otherwise, set the struct se_session pointer from the tail
581		 * element of the per struct se_node_acl active session list.
582		 */
583		if (list_empty(&se_nacl->acl_sess_list))
584			se_nacl->nacl_sess = NULL;
585		else {
586			se_nacl->nacl_sess = container_of(
587					se_nacl->acl_sess_list.prev,
588					struct se_session, sess_acl_list);
589		}
590		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
591	}
592}
593EXPORT_SYMBOL(transport_deregister_session_configfs);
594
595void transport_free_session(struct se_session *se_sess)
596{
597	struct se_node_acl *se_nacl = se_sess->se_node_acl;
598
599	/*
600	 * Drop the se_node_acl->nacl_kref obtained from within
601	 * core_tpg_get_initiator_node_acl().
602	 */
603	if (se_nacl) {
604		struct se_portal_group *se_tpg = se_nacl->se_tpg;
605		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
606		unsigned long flags;
607
608		se_sess->se_node_acl = NULL;
609
610		/*
611		 * Also determine if we need to drop the extra ->cmd_kref if
612		 * it had been previously dynamically generated, and
613		 * the endpoint is not caching dynamic ACLs.
614		 */
615		mutex_lock(&se_tpg->acl_node_mutex);
616		if (se_nacl->dynamic_node_acl &&
617		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
618			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
619			if (list_empty(&se_nacl->acl_sess_list))
620				se_nacl->dynamic_stop = true;
621			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
622
623			if (se_nacl->dynamic_stop)
624				list_del_init(&se_nacl->acl_list);
625		}
626		mutex_unlock(&se_tpg->acl_node_mutex);
627
628		if (se_nacl->dynamic_stop)
629			target_put_nacl(se_nacl);
630
631		target_put_nacl(se_nacl);
632	}
633	if (se_sess->sess_cmd_map) {
634		sbitmap_queue_free(&se_sess->sess_tag_pool);
635		kvfree(se_sess->sess_cmd_map);
636	}
637	if (se_sess->cmd_cnt)
638		target_free_cmd_counter(se_sess->cmd_cnt);
639	kmem_cache_free(se_sess_cache, se_sess);
640}
641EXPORT_SYMBOL(transport_free_session);
642
643static int target_release_res(struct se_device *dev, void *data)
644{
645	struct se_session *sess = data;
646
647	if (dev->reservation_holder == sess)
648		target_release_reservation(dev);
649	return 0;
650}
651
652void transport_deregister_session(struct se_session *se_sess)
653{
654	struct se_portal_group *se_tpg = se_sess->se_tpg;
655	unsigned long flags;
656
657	if (!se_tpg) {
658		transport_free_session(se_sess);
659		return;
660	}
661
662	spin_lock_irqsave(&se_tpg->session_lock, flags);
663	list_del(&se_sess->sess_list);
664	se_sess->se_tpg = NULL;
665	se_sess->fabric_sess_ptr = NULL;
666	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
667
668	/*
669	 * Since the session is being removed, release SPC-2
670	 * reservations held by the session that is disappearing.
671	 */
672	target_for_each_device(target_release_res, se_sess);
673
674	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
675		se_tpg->se_tpg_tfo->fabric_name);
676	/*
677	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
678	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
679	 * removal context from within transport_free_session() code.
680	 *
681	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
682	 * to release all remaining generate_node_acl=1 created ACL resources.
683	 */
684
685	transport_free_session(se_sess);
686}
687EXPORT_SYMBOL(transport_deregister_session);
688
689void target_remove_session(struct se_session *se_sess)
690{
691	transport_deregister_session_configfs(se_sess);
692	transport_deregister_session(se_sess);
693}
694EXPORT_SYMBOL(target_remove_session);
695
696static void target_remove_from_state_list(struct se_cmd *cmd)
697{
698	struct se_device *dev = cmd->se_dev;
699	unsigned long flags;
700
701	if (!dev)
702		return;
703
704	spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
705	if (cmd->state_active) {
706		list_del(&cmd->state_list);
707		cmd->state_active = false;
708	}
709	spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
710}
711
712static void target_remove_from_tmr_list(struct se_cmd *cmd)
713{
714	struct se_device *dev = NULL;
715	unsigned long flags;
716
717	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
718		dev = cmd->se_tmr_req->tmr_dev;
719
720	if (dev) {
721		spin_lock_irqsave(&dev->se_tmr_lock, flags);
722		if (cmd->se_tmr_req->tmr_dev)
723			list_del_init(&cmd->se_tmr_req->tmr_list);
724		spin_unlock_irqrestore(&dev->se_tmr_lock, flags);
725	}
726}
727/*
728 * This function is called by the target core after the target core has
729 * finished processing a SCSI command or SCSI TMF. Both the regular command
730 * processing code and the code for aborting commands can call this
731 * function. CMD_T_STOP is set if and only if another thread is waiting
732 * inside transport_wait_for_tasks() for t_transport_stop_comp.
733 */
734static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
735{
736	unsigned long flags;
737
738	spin_lock_irqsave(&cmd->t_state_lock, flags);
739	/*
740	 * Determine if frontend context caller is requesting the stopping of
741	 * this command for frontend exceptions.
742	 */
743	if (cmd->transport_state & CMD_T_STOP) {
744		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
745			__func__, __LINE__, cmd->tag);
746
747		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
748
749		complete_all(&cmd->t_transport_stop_comp);
750		return 1;
751	}
752	cmd->transport_state &= ~CMD_T_ACTIVE;
753	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
754
755	/*
756	 * Some fabric modules like tcm_loop can release their internally
757	 * allocated I/O reference and struct se_cmd now.
758	 *
759	 * Fabric modules are expected to return '1' here if the se_cmd being
760	 * passed is released at this point, or zero if not being released.
761	 */
762	return cmd->se_tfo->check_stop_free(cmd);
763}
764
765static void transport_lun_remove_cmd(struct se_cmd *cmd)
766{
767	struct se_lun *lun = cmd->se_lun;
768
769	if (!lun)
770		return;
771
772	target_remove_from_state_list(cmd);
773	target_remove_from_tmr_list(cmd);
774
775	if (cmpxchg(&cmd->lun_ref_active, true, false))
776		percpu_ref_put(&lun->lun_ref);
777
778	/*
779	 * Clear struct se_cmd->se_lun before the handoff to FE.
780	 */
781	cmd->se_lun = NULL;
782}
783
784static void target_complete_failure_work(struct work_struct *work)
785{
786	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
787
788	transport_generic_request_failure(cmd, cmd->sense_reason);
789}
790
791/*
792 * Used when asking transport to copy Sense Data from the underlying
793 * Linux/SCSI struct scsi_cmnd
794 */
795static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
796{
797	struct se_device *dev = cmd->se_dev;
798
799	WARN_ON(!cmd->se_lun);
800
801	if (!dev)
802		return NULL;
803
804	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
805		return NULL;
806
807	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
808
809	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
810		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
811	return cmd->sense_buffer;
812}
813
814void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
815{
816	unsigned char *cmd_sense_buf;
817	unsigned long flags;
818
819	spin_lock_irqsave(&cmd->t_state_lock, flags);
820	cmd_sense_buf = transport_get_sense_buffer(cmd);
821	if (!cmd_sense_buf) {
822		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
823		return;
824	}
825
826	cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
827	memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
828	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
829}
830EXPORT_SYMBOL(transport_copy_sense_to_cmd);
831
832static void target_handle_abort(struct se_cmd *cmd)
833{
834	bool tas = cmd->transport_state & CMD_T_TAS;
835	bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
836	int ret;
837
838	pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
839
840	if (tas) {
841		if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
842			cmd->scsi_status = SAM_STAT_TASK_ABORTED;
843			pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
844				 cmd->t_task_cdb[0], cmd->tag);
845			trace_target_cmd_complete(cmd);
846			ret = cmd->se_tfo->queue_status(cmd);
847			if (ret) {
848				transport_handle_queue_full(cmd, cmd->se_dev,
849							    ret, false);
850				return;
851			}
852		} else {
853			cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
854			cmd->se_tfo->queue_tm_rsp(cmd);
855		}
856	} else {
857		/*
858		 * Allow the fabric driver to unmap any resources before
859		 * releasing the descriptor via TFO->release_cmd().
860		 */
861		cmd->se_tfo->aborted_task(cmd);
862		if (ack_kref)
863			WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
864		/*
865		 * To do: establish a unit attention condition on the I_T
866		 * nexus associated with cmd. See also the paragraph "Aborting
867		 * commands" in SAM.
868		 */
869	}
870
871	WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
872
873	transport_lun_remove_cmd(cmd);
874
875	transport_cmd_check_stop_to_fabric(cmd);
876}
877
878static void target_abort_work(struct work_struct *work)
879{
880	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
881
882	target_handle_abort(cmd);
883}
884
885static bool target_cmd_interrupted(struct se_cmd *cmd)
886{
887	int post_ret;
888
889	if (cmd->transport_state & CMD_T_ABORTED) {
890		if (cmd->transport_complete_callback)
891			cmd->transport_complete_callback(cmd, false, &post_ret);
892		INIT_WORK(&cmd->work, target_abort_work);
893		queue_work(target_completion_wq, &cmd->work);
894		return true;
895	} else if (cmd->transport_state & CMD_T_STOP) {
896		if (cmd->transport_complete_callback)
897			cmd->transport_complete_callback(cmd, false, &post_ret);
898		complete_all(&cmd->t_transport_stop_comp);
899		return true;
900	}
901
902	return false;
903}
904
905/* May be called from interrupt context so must not sleep. */
906void target_complete_cmd_with_sense(struct se_cmd *cmd, u8 scsi_status,
907				    sense_reason_t sense_reason)
908{
909	struct se_wwn *wwn = cmd->se_sess->se_tpg->se_tpg_wwn;
910	int success, cpu;
911	unsigned long flags;
912
913	if (target_cmd_interrupted(cmd))
914		return;
915
916	cmd->scsi_status = scsi_status;
917	cmd->sense_reason = sense_reason;
918
919	spin_lock_irqsave(&cmd->t_state_lock, flags);
920	switch (cmd->scsi_status) {
921	case SAM_STAT_CHECK_CONDITION:
922		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
923			success = 1;
924		else
925			success = 0;
926		break;
927	default:
928		success = 1;
929		break;
930	}
931
932	cmd->t_state = TRANSPORT_COMPLETE;
933	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
934	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
935
936	INIT_WORK(&cmd->work, success ? target_complete_ok_work :
937		  target_complete_failure_work);
938
939	if (!wwn || wwn->cmd_compl_affinity == SE_COMPL_AFFINITY_CPUID)
940		cpu = cmd->cpuid;
941	else
942		cpu = wwn->cmd_compl_affinity;
943
944	queue_work_on(cpu, target_completion_wq, &cmd->work);
945}
946EXPORT_SYMBOL(target_complete_cmd_with_sense);
947
948void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
949{
950	target_complete_cmd_with_sense(cmd, scsi_status, scsi_status ?
951			      TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE :
952			      TCM_NO_SENSE);
953}
954EXPORT_SYMBOL(target_complete_cmd);
955
956void target_set_cmd_data_length(struct se_cmd *cmd, int length)
957{
958	if (length < cmd->data_length) {
959		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
960			cmd->residual_count += cmd->data_length - length;
961		} else {
962			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
963			cmd->residual_count = cmd->data_length - length;
964		}
965
966		cmd->data_length = length;
967	}
968}
969EXPORT_SYMBOL(target_set_cmd_data_length);
970
971void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
972{
973	if (scsi_status == SAM_STAT_GOOD ||
974	    cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) {
975		target_set_cmd_data_length(cmd, length);
976	}
977
978	target_complete_cmd(cmd, scsi_status);
979}
980EXPORT_SYMBOL(target_complete_cmd_with_length);
981
982static void target_add_to_state_list(struct se_cmd *cmd)
983{
984	struct se_device *dev = cmd->se_dev;
985	unsigned long flags;
986
987	spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
988	if (!cmd->state_active) {
989		list_add_tail(&cmd->state_list,
990			      &dev->queues[cmd->cpuid].state_list);
991		cmd->state_active = true;
992	}
993	spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
994}
995
996/*
997 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
998 */
999static void transport_write_pending_qf(struct se_cmd *cmd);
1000static void transport_complete_qf(struct se_cmd *cmd);
1001
1002void target_qf_do_work(struct work_struct *work)
1003{
1004	struct se_device *dev = container_of(work, struct se_device,
1005					qf_work_queue);
1006	LIST_HEAD(qf_cmd_list);
1007	struct se_cmd *cmd, *cmd_tmp;
1008
1009	spin_lock_irq(&dev->qf_cmd_lock);
1010	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
1011	spin_unlock_irq(&dev->qf_cmd_lock);
1012
1013	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
1014		list_del(&cmd->se_qf_node);
1015		atomic_dec_mb(&dev->dev_qf_count);
1016
1017		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
1018			" context: %s\n", cmd->se_tfo->fabric_name, cmd,
1019			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
1020			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
1021			: "UNKNOWN");
1022
1023		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
1024			transport_write_pending_qf(cmd);
1025		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
1026			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
1027			transport_complete_qf(cmd);
1028	}
1029}
1030
1031unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1032{
1033	switch (cmd->data_direction) {
1034	case DMA_NONE:
1035		return "NONE";
1036	case DMA_FROM_DEVICE:
1037		return "READ";
1038	case DMA_TO_DEVICE:
1039		return "WRITE";
1040	case DMA_BIDIRECTIONAL:
1041		return "BIDI";
1042	default:
1043		break;
1044	}
1045
1046	return "UNKNOWN";
1047}
1048
1049void transport_dump_dev_state(
1050	struct se_device *dev,
1051	char *b,
1052	int *bl)
1053{
1054	*bl += sprintf(b + *bl, "Status: ");
1055	if (dev->export_count)
1056		*bl += sprintf(b + *bl, "ACTIVATED");
1057	else
1058		*bl += sprintf(b + *bl, "DEACTIVATED");
1059
1060	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
1061	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
1062		dev->dev_attrib.block_size,
1063		dev->dev_attrib.hw_max_sectors);
1064	*bl += sprintf(b + *bl, "        ");
1065}
1066
1067void transport_dump_vpd_proto_id(
1068	struct t10_vpd *vpd,
1069	unsigned char *p_buf,
1070	int p_buf_len)
1071{
1072	unsigned char buf[VPD_TMP_BUF_SIZE];
1073	int len;
1074
1075	memset(buf, 0, VPD_TMP_BUF_SIZE);
1076	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1077
1078	switch (vpd->protocol_identifier) {
1079	case 0x00:
1080		sprintf(buf+len, "Fibre Channel\n");
1081		break;
1082	case 0x10:
1083		sprintf(buf+len, "Parallel SCSI\n");
1084		break;
1085	case 0x20:
1086		sprintf(buf+len, "SSA\n");
1087		break;
1088	case 0x30:
1089		sprintf(buf+len, "IEEE 1394\n");
1090		break;
1091	case 0x40:
1092		sprintf(buf+len, "SCSI Remote Direct Memory Access"
1093				" Protocol\n");
1094		break;
1095	case 0x50:
1096		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1097		break;
1098	case 0x60:
1099		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1100		break;
1101	case 0x70:
1102		sprintf(buf+len, "Automation/Drive Interface Transport"
1103				" Protocol\n");
1104		break;
1105	case 0x80:
1106		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1107		break;
1108	default:
1109		sprintf(buf+len, "Unknown 0x%02x\n",
1110				vpd->protocol_identifier);
1111		break;
1112	}
1113
1114	if (p_buf)
1115		strncpy(p_buf, buf, p_buf_len);
1116	else
1117		pr_debug("%s", buf);
1118}
1119
1120void
1121transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1122{
1123	/*
1124	 * Check if the Protocol Identifier Valid (PIV) bit is set..
1125	 *
1126	 * from spc3r23.pdf section 7.5.1
1127	 */
1128	 if (page_83[1] & 0x80) {
1129		vpd->protocol_identifier = (page_83[0] & 0xf0);
1130		vpd->protocol_identifier_set = 1;
1131		transport_dump_vpd_proto_id(vpd, NULL, 0);
1132	}
1133}
1134EXPORT_SYMBOL(transport_set_vpd_proto_id);
1135
1136int transport_dump_vpd_assoc(
1137	struct t10_vpd *vpd,
1138	unsigned char *p_buf,
1139	int p_buf_len)
1140{
1141	unsigned char buf[VPD_TMP_BUF_SIZE];
1142	int ret = 0;
1143	int len;
1144
1145	memset(buf, 0, VPD_TMP_BUF_SIZE);
1146	len = sprintf(buf, "T10 VPD Identifier Association: ");
1147
1148	switch (vpd->association) {
1149	case 0x00:
1150		sprintf(buf+len, "addressed logical unit\n");
1151		break;
1152	case 0x10:
1153		sprintf(buf+len, "target port\n");
1154		break;
1155	case 0x20:
1156		sprintf(buf+len, "SCSI target device\n");
1157		break;
1158	default:
1159		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1160		ret = -EINVAL;
1161		break;
1162	}
1163
1164	if (p_buf)
1165		strncpy(p_buf, buf, p_buf_len);
1166	else
1167		pr_debug("%s", buf);
1168
1169	return ret;
1170}
1171
1172int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1173{
1174	/*
1175	 * The VPD identification association..
1176	 *
1177	 * from spc3r23.pdf Section 7.6.3.1 Table 297
1178	 */
1179	vpd->association = (page_83[1] & 0x30);
1180	return transport_dump_vpd_assoc(vpd, NULL, 0);
1181}
1182EXPORT_SYMBOL(transport_set_vpd_assoc);
1183
1184int transport_dump_vpd_ident_type(
1185	struct t10_vpd *vpd,
1186	unsigned char *p_buf,
1187	int p_buf_len)
1188{
1189	unsigned char buf[VPD_TMP_BUF_SIZE];
1190	int ret = 0;
1191	int len;
1192
1193	memset(buf, 0, VPD_TMP_BUF_SIZE);
1194	len = sprintf(buf, "T10 VPD Identifier Type: ");
1195
1196	switch (vpd->device_identifier_type) {
1197	case 0x00:
1198		sprintf(buf+len, "Vendor specific\n");
1199		break;
1200	case 0x01:
1201		sprintf(buf+len, "T10 Vendor ID based\n");
1202		break;
1203	case 0x02:
1204		sprintf(buf+len, "EUI-64 based\n");
1205		break;
1206	case 0x03:
1207		sprintf(buf+len, "NAA\n");
1208		break;
1209	case 0x04:
1210		sprintf(buf+len, "Relative target port identifier\n");
1211		break;
1212	case 0x08:
1213		sprintf(buf+len, "SCSI name string\n");
1214		break;
1215	default:
1216		sprintf(buf+len, "Unsupported: 0x%02x\n",
1217				vpd->device_identifier_type);
1218		ret = -EINVAL;
1219		break;
1220	}
1221
1222	if (p_buf) {
1223		if (p_buf_len < strlen(buf)+1)
1224			return -EINVAL;
1225		strncpy(p_buf, buf, p_buf_len);
1226	} else {
1227		pr_debug("%s", buf);
1228	}
1229
1230	return ret;
1231}
1232
1233int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1234{
1235	/*
1236	 * The VPD identifier type..
1237	 *
1238	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1239	 */
1240	vpd->device_identifier_type = (page_83[1] & 0x0f);
1241	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1242}
1243EXPORT_SYMBOL(transport_set_vpd_ident_type);
1244
1245int transport_dump_vpd_ident(
1246	struct t10_vpd *vpd,
1247	unsigned char *p_buf,
1248	int p_buf_len)
1249{
1250	unsigned char buf[VPD_TMP_BUF_SIZE];
1251	int ret = 0;
1252
1253	memset(buf, 0, VPD_TMP_BUF_SIZE);
1254
1255	switch (vpd->device_identifier_code_set) {
1256	case 0x01: /* Binary */
1257		snprintf(buf, sizeof(buf),
1258			"T10 VPD Binary Device Identifier: %s\n",
1259			&vpd->device_identifier[0]);
1260		break;
1261	case 0x02: /* ASCII */
1262		snprintf(buf, sizeof(buf),
1263			"T10 VPD ASCII Device Identifier: %s\n",
1264			&vpd->device_identifier[0]);
1265		break;
1266	case 0x03: /* UTF-8 */
1267		snprintf(buf, sizeof(buf),
1268			"T10 VPD UTF-8 Device Identifier: %s\n",
1269			&vpd->device_identifier[0]);
1270		break;
1271	default:
1272		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1273			" 0x%02x", vpd->device_identifier_code_set);
1274		ret = -EINVAL;
1275		break;
1276	}
1277
1278	if (p_buf)
1279		strncpy(p_buf, buf, p_buf_len);
1280	else
1281		pr_debug("%s", buf);
1282
1283	return ret;
1284}
1285
1286int
1287transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1288{
1289	static const char hex_str[] = "0123456789abcdef";
1290	int j = 0, i = 4; /* offset to start of the identifier */
1291
1292	/*
1293	 * The VPD Code Set (encoding)
1294	 *
1295	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1296	 */
1297	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1298	switch (vpd->device_identifier_code_set) {
1299	case 0x01: /* Binary */
1300		vpd->device_identifier[j++] =
1301				hex_str[vpd->device_identifier_type];
1302		while (i < (4 + page_83[3])) {
1303			vpd->device_identifier[j++] =
1304				hex_str[(page_83[i] & 0xf0) >> 4];
1305			vpd->device_identifier[j++] =
1306				hex_str[page_83[i] & 0x0f];
1307			i++;
1308		}
1309		break;
1310	case 0x02: /* ASCII */
1311	case 0x03: /* UTF-8 */
1312		while (i < (4 + page_83[3]))
1313			vpd->device_identifier[j++] = page_83[i++];
1314		break;
1315	default:
1316		break;
1317	}
1318
1319	return transport_dump_vpd_ident(vpd, NULL, 0);
1320}
1321EXPORT_SYMBOL(transport_set_vpd_ident);
1322
1323static sense_reason_t
1324target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1325			       unsigned int size)
1326{
1327	u32 mtl;
1328
1329	if (!cmd->se_tfo->max_data_sg_nents)
1330		return TCM_NO_SENSE;
1331	/*
1332	 * Check if fabric enforced maximum SGL entries per I/O descriptor
1333	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1334	 * residual_count and reduce original cmd->data_length to maximum
1335	 * length based on single PAGE_SIZE entry scatter-lists.
1336	 */
1337	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1338	if (cmd->data_length > mtl) {
1339		/*
1340		 * If an existing CDB overflow is present, calculate new residual
1341		 * based on CDB size minus fabric maximum transfer length.
1342		 *
1343		 * If an existing CDB underflow is present, calculate new residual
1344		 * based on original cmd->data_length minus fabric maximum transfer
1345		 * length.
1346		 *
1347		 * Otherwise, set the underflow residual based on cmd->data_length
1348		 * minus fabric maximum transfer length.
1349		 */
1350		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1351			cmd->residual_count = (size - mtl);
1352		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1353			u32 orig_dl = size + cmd->residual_count;
1354			cmd->residual_count = (orig_dl - mtl);
1355		} else {
1356			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1357			cmd->residual_count = (cmd->data_length - mtl);
1358		}
1359		cmd->data_length = mtl;
1360		/*
1361		 * Reset sbc_check_prot() calculated protection payload
1362		 * length based upon the new smaller MTL.
1363		 */
1364		if (cmd->prot_length) {
1365			u32 sectors = (mtl / dev->dev_attrib.block_size);
1366			cmd->prot_length = dev->prot_length * sectors;
1367		}
1368	}
1369	return TCM_NO_SENSE;
1370}
1371
1372/**
1373 * target_cmd_size_check - Check whether there will be a residual.
1374 * @cmd: SCSI command.
1375 * @size: Data buffer size derived from CDB. The data buffer size provided by
1376 *   the SCSI transport driver is available in @cmd->data_length.
1377 *
1378 * Compare the data buffer size from the CDB with the data buffer limit from the transport
1379 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1380 *
1381 * Note: target drivers set @cmd->data_length by calling __target_init_cmd().
1382 *
1383 * Return: TCM_NO_SENSE
1384 */
1385sense_reason_t
1386target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1387{
1388	struct se_device *dev = cmd->se_dev;
1389
1390	if (cmd->unknown_data_length) {
1391		cmd->data_length = size;
1392	} else if (size != cmd->data_length) {
1393		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1394			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1395			" 0x%02x\n", cmd->se_tfo->fabric_name,
1396				cmd->data_length, size, cmd->t_task_cdb[0]);
1397		/*
1398		 * For READ command for the overflow case keep the existing
1399		 * fabric provided ->data_length. Otherwise for the underflow
1400		 * case, reset ->data_length to the smaller SCSI expected data
1401		 * transfer length.
1402		 */
1403		if (size > cmd->data_length) {
1404			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1405			cmd->residual_count = (size - cmd->data_length);
1406		} else {
1407			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1408			cmd->residual_count = (cmd->data_length - size);
1409			/*
1410			 * Do not truncate ->data_length for WRITE command to
1411			 * dump all payload
1412			 */
1413			if (cmd->data_direction == DMA_FROM_DEVICE) {
1414				cmd->data_length = size;
1415			}
1416		}
1417
1418		if (cmd->data_direction == DMA_TO_DEVICE) {
1419			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1420				pr_err_ratelimited("Rejecting underflow/overflow"
1421						   " for WRITE data CDB\n");
1422				return TCM_INVALID_FIELD_IN_COMMAND_IU;
1423			}
1424			/*
1425			 * Some fabric drivers like iscsi-target still expect to
1426			 * always reject overflow writes.  Reject this case until
1427			 * full fabric driver level support for overflow writes
1428			 * is introduced tree-wide.
1429			 */
1430			if (size > cmd->data_length) {
1431				pr_err_ratelimited("Rejecting overflow for"
1432						   " WRITE control CDB\n");
1433				return TCM_INVALID_CDB_FIELD;
1434			}
1435		}
1436	}
1437
1438	return target_check_max_data_sg_nents(cmd, dev, size);
1439
1440}
1441
1442/*
1443 * Used by fabric modules containing a local struct se_cmd within their
1444 * fabric dependent per I/O descriptor.
1445 *
1446 * Preserves the value of @cmd->tag.
1447 */
1448void __target_init_cmd(struct se_cmd *cmd,
1449		       const struct target_core_fabric_ops *tfo,
1450		       struct se_session *se_sess, u32 data_length,
1451		       int data_direction, int task_attr,
1452		       unsigned char *sense_buffer, u64 unpacked_lun,
1453		       struct target_cmd_counter *cmd_cnt)
1454{
1455	INIT_LIST_HEAD(&cmd->se_delayed_node);
1456	INIT_LIST_HEAD(&cmd->se_qf_node);
1457	INIT_LIST_HEAD(&cmd->state_list);
1458	init_completion(&cmd->t_transport_stop_comp);
1459	cmd->free_compl = NULL;
1460	cmd->abrt_compl = NULL;
1461	spin_lock_init(&cmd->t_state_lock);
1462	INIT_WORK(&cmd->work, NULL);
1463	kref_init(&cmd->cmd_kref);
1464
1465	cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1466	cmd->se_tfo = tfo;
1467	cmd->se_sess = se_sess;
1468	cmd->data_length = data_length;
1469	cmd->data_direction = data_direction;
1470	cmd->sam_task_attr = task_attr;
1471	cmd->sense_buffer = sense_buffer;
1472	cmd->orig_fe_lun = unpacked_lun;
1473	cmd->cmd_cnt = cmd_cnt;
1474
1475	if (!(cmd->se_cmd_flags & SCF_USE_CPUID))
1476		cmd->cpuid = raw_smp_processor_id();
1477
1478	cmd->state_active = false;
1479}
1480EXPORT_SYMBOL(__target_init_cmd);
1481
1482static sense_reason_t
1483transport_check_alloc_task_attr(struct se_cmd *cmd)
1484{
1485	struct se_device *dev = cmd->se_dev;
1486
1487	/*
1488	 * Check if SAM Task Attribute emulation is enabled for this
1489	 * struct se_device storage object
1490	 */
1491	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1492		return 0;
1493
1494	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1495		pr_debug("SAM Task Attribute ACA"
1496			" emulation is not supported\n");
1497		return TCM_INVALID_CDB_FIELD;
1498	}
1499
1500	return 0;
1501}
1502
1503sense_reason_t
1504target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb, gfp_t gfp)
1505{
1506	sense_reason_t ret;
1507
1508	/*
1509	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1510	 * for VARIABLE_LENGTH_CMD
1511	 */
1512	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1513		pr_err("Received SCSI CDB with command_size: %d that"
1514			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1515			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1516		ret = TCM_INVALID_CDB_FIELD;
1517		goto err;
1518	}
1519	/*
1520	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1521	 * allocate the additional extended CDB buffer now..  Otherwise
1522	 * setup the pointer from __t_task_cdb to t_task_cdb.
1523	 */
1524	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1525		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), gfp);
1526		if (!cmd->t_task_cdb) {
1527			pr_err("Unable to allocate cmd->t_task_cdb"
1528				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1529				scsi_command_size(cdb),
1530				(unsigned long)sizeof(cmd->__t_task_cdb));
1531			ret = TCM_OUT_OF_RESOURCES;
1532			goto err;
1533		}
1534	}
1535	/*
1536	 * Copy the original CDB into cmd->
1537	 */
1538	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1539
1540	trace_target_sequencer_start(cmd);
1541	return 0;
1542
1543err:
1544	/*
1545	 * Copy the CDB here to allow trace_target_cmd_complete() to
1546	 * print the cdb to the trace buffers.
1547	 */
1548	memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
1549					 (unsigned int)TCM_MAX_COMMAND_SIZE));
1550	return ret;
1551}
1552EXPORT_SYMBOL(target_cmd_init_cdb);
1553
1554sense_reason_t
1555target_cmd_parse_cdb(struct se_cmd *cmd)
1556{
1557	struct se_device *dev = cmd->se_dev;
1558	sense_reason_t ret;
1559
1560	ret = dev->transport->parse_cdb(cmd);
1561	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1562		pr_debug_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1563				     cmd->se_tfo->fabric_name,
1564				     cmd->se_sess->se_node_acl->initiatorname,
1565				     cmd->t_task_cdb[0]);
1566	if (ret)
1567		return ret;
1568
1569	ret = transport_check_alloc_task_attr(cmd);
1570	if (ret)
1571		return ret;
1572
1573	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1574	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1575	return 0;
1576}
1577EXPORT_SYMBOL(target_cmd_parse_cdb);
1578
1579static int __target_submit(struct se_cmd *cmd)
1580{
1581	sense_reason_t ret;
1582
1583	might_sleep();
1584
1585	/*
1586	 * Check if we need to delay processing because of ALUA
1587	 * Active/NonOptimized primary access state..
1588	 */
1589	core_alua_check_nonop_delay(cmd);
1590
1591	if (cmd->t_data_nents != 0) {
1592		/*
1593		 * This is primarily a hack for udev and tcm loop which sends
1594		 * INQUIRYs with a single page and expects the data to be
1595		 * cleared.
1596		 */
1597		if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1598		    cmd->data_direction == DMA_FROM_DEVICE) {
1599			struct scatterlist *sgl = cmd->t_data_sg;
1600			unsigned char *buf = NULL;
1601
1602			BUG_ON(!sgl);
1603
1604			buf = kmap_local_page(sg_page(sgl));
1605			if (buf) {
1606				memset(buf + sgl->offset, 0, sgl->length);
1607				kunmap_local(buf);
1608			}
1609		}
1610	}
1611
1612	if (!cmd->se_lun) {
1613		dump_stack();
1614		pr_err("cmd->se_lun is NULL\n");
1615		return -EINVAL;
1616	}
1617
1618	/*
1619	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1620	 * outstanding descriptors are handled correctly during shutdown via
1621	 * transport_wait_for_tasks()
1622	 *
1623	 * Also, we don't take cmd->t_state_lock here as we only expect
1624	 * this to be called for initial descriptor submission.
1625	 */
1626	cmd->t_state = TRANSPORT_NEW_CMD;
1627	cmd->transport_state |= CMD_T_ACTIVE;
1628
1629	/*
1630	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1631	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1632	 * and call transport_generic_request_failure() if necessary..
1633	 */
1634	ret = transport_generic_new_cmd(cmd);
1635	if (ret)
1636		transport_generic_request_failure(cmd, ret);
1637	return 0;
1638}
1639
1640sense_reason_t
1641transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1642		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1643{
1644	if (!sgl || !sgl_count)
1645		return 0;
1646
1647	/*
1648	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1649	 * scatterlists already have been set to follow what the fabric
1650	 * passes for the original expected data transfer length.
1651	 */
1652	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1653		pr_warn("Rejecting SCSI DATA overflow for fabric using"
1654			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1655		return TCM_INVALID_CDB_FIELD;
1656	}
1657
1658	cmd->t_data_sg = sgl;
1659	cmd->t_data_nents = sgl_count;
1660	cmd->t_bidi_data_sg = sgl_bidi;
1661	cmd->t_bidi_data_nents = sgl_bidi_count;
1662
1663	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1664	return 0;
1665}
1666
1667/**
1668 * target_init_cmd - initialize se_cmd
1669 * @se_cmd: command descriptor to init
1670 * @se_sess: associated se_sess for endpoint
1671 * @sense: pointer to SCSI sense buffer
1672 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1673 * @data_length: fabric expected data transfer length
1674 * @task_attr: SAM task attribute
1675 * @data_dir: DMA data direction
1676 * @flags: flags for command submission from target_sc_flags_tables
1677 *
1678 * Task tags are supported if the caller has set @se_cmd->tag.
1679 *
1680 * Returns:
1681 *	- less than zero to signal active I/O shutdown failure.
1682 *	- zero on success.
1683 *
1684 * If the fabric driver calls target_stop_session, then it must check the
1685 * return code and handle failures. This will never fail for other drivers,
1686 * and the return code can be ignored.
1687 */
1688int target_init_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1689		    unsigned char *sense, u64 unpacked_lun,
1690		    u32 data_length, int task_attr, int data_dir, int flags)
1691{
1692	struct se_portal_group *se_tpg;
1693
1694	se_tpg = se_sess->se_tpg;
1695	BUG_ON(!se_tpg);
1696	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1697
1698	if (flags & TARGET_SCF_USE_CPUID)
1699		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1700	/*
1701	 * Signal bidirectional data payloads to target-core
1702	 */
1703	if (flags & TARGET_SCF_BIDI_OP)
1704		se_cmd->se_cmd_flags |= SCF_BIDI;
1705
1706	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1707		se_cmd->unknown_data_length = 1;
1708	/*
1709	 * Initialize se_cmd for target operation.  From this point
1710	 * exceptions are handled by sending exception status via
1711	 * target_core_fabric_ops->queue_status() callback
1712	 */
1713	__target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length,
1714			  data_dir, task_attr, sense, unpacked_lun,
1715			  se_sess->cmd_cnt);
1716
1717	/*
1718	 * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is
1719	 * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second
1720	 * kref_put() to happen during fabric packet acknowledgement.
1721	 */
1722	return target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1723}
1724EXPORT_SYMBOL_GPL(target_init_cmd);
1725
1726/**
1727 * target_submit_prep - prepare cmd for submission
1728 * @se_cmd: command descriptor to prep
1729 * @cdb: pointer to SCSI CDB
1730 * @sgl: struct scatterlist memory for unidirectional mapping
1731 * @sgl_count: scatterlist count for unidirectional mapping
1732 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1733 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1734 * @sgl_prot: struct scatterlist memory protection information
1735 * @sgl_prot_count: scatterlist count for protection information
1736 * @gfp: gfp allocation type
1737 *
1738 * Returns:
1739 *	- less than zero to signal failure.
1740 *	- zero on success.
1741 *
1742 * If failure is returned, lio will the callers queue_status to complete
1743 * the cmd.
1744 */
1745int target_submit_prep(struct se_cmd *se_cmd, unsigned char *cdb,
1746		       struct scatterlist *sgl, u32 sgl_count,
1747		       struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1748		       struct scatterlist *sgl_prot, u32 sgl_prot_count,
1749		       gfp_t gfp)
1750{
1751	sense_reason_t rc;
1752
1753	rc = target_cmd_init_cdb(se_cmd, cdb, gfp);
1754	if (rc)
1755		goto send_cc_direct;
1756
1757	/*
1758	 * Locate se_lun pointer and attach it to struct se_cmd
1759	 */
1760	rc = transport_lookup_cmd_lun(se_cmd);
1761	if (rc)
1762		goto send_cc_direct;
1763
1764	rc = target_cmd_parse_cdb(se_cmd);
1765	if (rc != 0)
1766		goto generic_fail;
1767
1768	/*
1769	 * Save pointers for SGLs containing protection information,
1770	 * if present.
1771	 */
1772	if (sgl_prot_count) {
1773		se_cmd->t_prot_sg = sgl_prot;
1774		se_cmd->t_prot_nents = sgl_prot_count;
1775		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1776	}
1777
1778	/*
1779	 * When a non zero sgl_count has been passed perform SGL passthrough
1780	 * mapping for pre-allocated fabric memory instead of having target
1781	 * core perform an internal SGL allocation..
1782	 */
1783	if (sgl_count != 0) {
1784		BUG_ON(!sgl);
1785
1786		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1787				sgl_bidi, sgl_bidi_count);
1788		if (rc != 0)
1789			goto generic_fail;
1790	}
1791
1792	return 0;
1793
1794send_cc_direct:
1795	transport_send_check_condition_and_sense(se_cmd, rc, 0);
1796	target_put_sess_cmd(se_cmd);
1797	return -EIO;
1798
1799generic_fail:
1800	transport_generic_request_failure(se_cmd, rc);
1801	return -EIO;
1802}
1803EXPORT_SYMBOL_GPL(target_submit_prep);
1804
1805/**
1806 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1807 *
1808 * @se_cmd: command descriptor to submit
1809 * @se_sess: associated se_sess for endpoint
1810 * @cdb: pointer to SCSI CDB
1811 * @sense: pointer to SCSI sense buffer
1812 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1813 * @data_length: fabric expected data transfer length
1814 * @task_attr: SAM task attribute
1815 * @data_dir: DMA data direction
1816 * @flags: flags for command submission from target_sc_flags_tables
1817 *
1818 * Task tags are supported if the caller has set @se_cmd->tag.
1819 *
1820 * This may only be called from process context, and also currently
1821 * assumes internal allocation of fabric payload buffer by target-core.
1822 *
1823 * It also assumes interal target core SGL memory allocation.
1824 *
1825 * This function must only be used by drivers that do their own
1826 * sync during shutdown and does not use target_stop_session. If there
1827 * is a failure this function will call into the fabric driver's
1828 * queue_status with a CHECK_CONDITION.
1829 */
1830void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1831		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1832		u32 data_length, int task_attr, int data_dir, int flags)
1833{
1834	int rc;
1835
1836	rc = target_init_cmd(se_cmd, se_sess, sense, unpacked_lun, data_length,
1837			     task_attr, data_dir, flags);
1838	WARN(rc, "Invalid target_submit_cmd use. Driver must not use target_stop_session or call target_init_cmd directly.\n");
1839	if (rc)
1840		return;
1841
1842	if (target_submit_prep(se_cmd, cdb, NULL, 0, NULL, 0, NULL, 0,
1843			       GFP_KERNEL))
1844		return;
1845
1846	target_submit(se_cmd);
1847}
1848EXPORT_SYMBOL(target_submit_cmd);
1849
1850
1851static struct se_dev_plug *target_plug_device(struct se_device *se_dev)
1852{
1853	struct se_dev_plug *se_plug;
1854
1855	if (!se_dev->transport->plug_device)
1856		return NULL;
1857
1858	se_plug = se_dev->transport->plug_device(se_dev);
1859	if (!se_plug)
1860		return NULL;
1861
1862	se_plug->se_dev = se_dev;
1863	/*
1864	 * We have a ref to the lun at this point, but the cmds could
1865	 * complete before we unplug, so grab a ref to the se_device so we
1866	 * can call back into the backend.
1867	 */
1868	config_group_get(&se_dev->dev_group);
1869	return se_plug;
1870}
1871
1872static void target_unplug_device(struct se_dev_plug *se_plug)
1873{
1874	struct se_device *se_dev = se_plug->se_dev;
1875
1876	se_dev->transport->unplug_device(se_plug);
1877	config_group_put(&se_dev->dev_group);
1878}
1879
1880void target_queued_submit_work(struct work_struct *work)
1881{
1882	struct se_cmd_queue *sq = container_of(work, struct se_cmd_queue, work);
1883	struct se_cmd *se_cmd, *next_cmd;
1884	struct se_dev_plug *se_plug = NULL;
1885	struct se_device *se_dev = NULL;
1886	struct llist_node *cmd_list;
1887
1888	cmd_list = llist_del_all(&sq->cmd_list);
1889	if (!cmd_list)
1890		/* Previous call took what we were queued to submit */
1891		return;
1892
1893	cmd_list = llist_reverse_order(cmd_list);
1894	llist_for_each_entry_safe(se_cmd, next_cmd, cmd_list, se_cmd_list) {
1895		if (!se_dev) {
1896			se_dev = se_cmd->se_dev;
1897			se_plug = target_plug_device(se_dev);
1898		}
1899
1900		__target_submit(se_cmd);
1901	}
1902
1903	if (se_plug)
1904		target_unplug_device(se_plug);
1905}
1906
1907/**
1908 * target_queue_submission - queue the cmd to run on the LIO workqueue
1909 * @se_cmd: command descriptor to submit
1910 */
1911static void target_queue_submission(struct se_cmd *se_cmd)
1912{
1913	struct se_device *se_dev = se_cmd->se_dev;
1914	int cpu = se_cmd->cpuid;
1915	struct se_cmd_queue *sq;
1916
1917	sq = &se_dev->queues[cpu].sq;
1918	llist_add(&se_cmd->se_cmd_list, &sq->cmd_list);
1919	queue_work_on(cpu, target_submission_wq, &sq->work);
1920}
1921
1922/**
1923 * target_submit - perform final initialization and submit cmd to LIO core
1924 * @se_cmd: command descriptor to submit
1925 *
1926 * target_submit_prep or something similar must have been called on the cmd,
1927 * and this must be called from process context.
1928 */
1929int target_submit(struct se_cmd *se_cmd)
1930{
1931	const struct target_core_fabric_ops *tfo = se_cmd->se_sess->se_tpg->se_tpg_tfo;
1932	struct se_dev_attrib *da = &se_cmd->se_dev->dev_attrib;
1933	u8 submit_type;
1934
1935	if (da->submit_type == TARGET_FABRIC_DEFAULT_SUBMIT)
1936		submit_type = tfo->default_submit_type;
1937	else if (da->submit_type == TARGET_DIRECT_SUBMIT &&
1938		 tfo->direct_submit_supp)
1939		submit_type = TARGET_DIRECT_SUBMIT;
1940	else
1941		submit_type = TARGET_QUEUE_SUBMIT;
1942
1943	if (submit_type == TARGET_DIRECT_SUBMIT)
1944		return __target_submit(se_cmd);
1945
1946	target_queue_submission(se_cmd);
1947	return 0;
1948}
1949EXPORT_SYMBOL_GPL(target_submit);
1950
1951static void target_complete_tmr_failure(struct work_struct *work)
1952{
1953	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1954
1955	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1956	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1957
1958	transport_lun_remove_cmd(se_cmd);
1959	transport_cmd_check_stop_to_fabric(se_cmd);
1960}
1961
1962/**
1963 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1964 *                     for TMR CDBs
1965 *
1966 * @se_cmd: command descriptor to submit
1967 * @se_sess: associated se_sess for endpoint
1968 * @sense: pointer to SCSI sense buffer
1969 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1970 * @fabric_tmr_ptr: fabric context for TMR req
1971 * @tm_type: Type of TM request
1972 * @gfp: gfp type for caller
1973 * @tag: referenced task tag for TMR_ABORT_TASK
1974 * @flags: submit cmd flags
1975 *
1976 * Callable from all contexts.
1977 **/
1978
1979int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1980		unsigned char *sense, u64 unpacked_lun,
1981		void *fabric_tmr_ptr, unsigned char tm_type,
1982		gfp_t gfp, u64 tag, int flags)
1983{
1984	struct se_portal_group *se_tpg;
1985	int ret;
1986
1987	se_tpg = se_sess->se_tpg;
1988	BUG_ON(!se_tpg);
1989
1990	__target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1991			  0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun,
1992			  se_sess->cmd_cnt);
1993	/*
1994	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1995	 * allocation failure.
1996	 */
1997	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1998	if (ret < 0)
1999		return -ENOMEM;
2000
2001	if (tm_type == TMR_ABORT_TASK)
2002		se_cmd->se_tmr_req->ref_task_tag = tag;
2003
2004	/* See target_submit_cmd for commentary */
2005	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
2006	if (ret) {
2007		core_tmr_release_req(se_cmd->se_tmr_req);
2008		return ret;
2009	}
2010
2011	ret = transport_lookup_tmr_lun(se_cmd);
2012	if (ret)
2013		goto failure;
2014
2015	transport_generic_handle_tmr(se_cmd);
2016	return 0;
2017
2018	/*
2019	 * For callback during failure handling, push this work off
2020	 * to process context with TMR_LUN_DOES_NOT_EXIST status.
2021	 */
2022failure:
2023	INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
2024	schedule_work(&se_cmd->work);
2025	return 0;
2026}
2027EXPORT_SYMBOL(target_submit_tmr);
2028
2029/*
2030 * Handle SAM-esque emulation for generic transport request failures.
2031 */
2032void transport_generic_request_failure(struct se_cmd *cmd,
2033		sense_reason_t sense_reason)
2034{
2035	int ret = 0, post_ret;
2036
2037	pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
2038		 sense_reason);
2039	target_show_cmd("-----[ ", cmd);
2040
2041	/*
2042	 * For SAM Task Attribute emulation for failed struct se_cmd
2043	 */
2044	transport_complete_task_attr(cmd);
2045
2046	if (cmd->transport_complete_callback)
2047		cmd->transport_complete_callback(cmd, false, &post_ret);
2048
2049	if (cmd->transport_state & CMD_T_ABORTED) {
2050		INIT_WORK(&cmd->work, target_abort_work);
2051		queue_work(target_completion_wq, &cmd->work);
2052		return;
2053	}
2054
2055	switch (sense_reason) {
2056	case TCM_NON_EXISTENT_LUN:
2057	case TCM_UNSUPPORTED_SCSI_OPCODE:
2058	case TCM_INVALID_CDB_FIELD:
2059	case TCM_INVALID_PARAMETER_LIST:
2060	case TCM_PARAMETER_LIST_LENGTH_ERROR:
2061	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2062	case TCM_UNKNOWN_MODE_PAGE:
2063	case TCM_WRITE_PROTECTED:
2064	case TCM_ADDRESS_OUT_OF_RANGE:
2065	case TCM_CHECK_CONDITION_ABORT_CMD:
2066	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2067	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2068	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2069	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2070	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
2071	case TCM_TOO_MANY_TARGET_DESCS:
2072	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
2073	case TCM_TOO_MANY_SEGMENT_DESCS:
2074	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
2075	case TCM_INVALID_FIELD_IN_COMMAND_IU:
2076	case TCM_ALUA_TG_PT_STANDBY:
2077	case TCM_ALUA_TG_PT_UNAVAILABLE:
2078	case TCM_ALUA_STATE_TRANSITION:
2079	case TCM_ALUA_OFFLINE:
2080		break;
2081	case TCM_OUT_OF_RESOURCES:
2082		cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
2083		goto queue_status;
2084	case TCM_LUN_BUSY:
2085		cmd->scsi_status = SAM_STAT_BUSY;
2086		goto queue_status;
2087	case TCM_RESERVATION_CONFLICT:
2088		/*
2089		 * No SENSE Data payload for this case, set SCSI Status
2090		 * and queue the response to $FABRIC_MOD.
2091		 *
2092		 * Uses linux/include/scsi/scsi.h SAM status codes defs
2093		 */
2094		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2095		/*
2096		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2097		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2098		 * CONFLICT STATUS.
2099		 *
2100		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2101		 */
2102		if (cmd->se_sess &&
2103		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
2104					== TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
2105			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
2106					       cmd->orig_fe_lun, 0x2C,
2107					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2108		}
2109
2110		goto queue_status;
2111	default:
2112		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2113			cmd->t_task_cdb[0], sense_reason);
2114		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2115		break;
2116	}
2117
2118	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
2119	if (ret)
2120		goto queue_full;
2121
2122check_stop:
2123	transport_lun_remove_cmd(cmd);
2124	transport_cmd_check_stop_to_fabric(cmd);
2125	return;
2126
2127queue_status:
2128	trace_target_cmd_complete(cmd);
2129	ret = cmd->se_tfo->queue_status(cmd);
2130	if (!ret)
2131		goto check_stop;
2132queue_full:
2133	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2134}
2135EXPORT_SYMBOL(transport_generic_request_failure);
2136
2137void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
2138{
2139	sense_reason_t ret;
2140
2141	if (!cmd->execute_cmd) {
2142		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2143		goto err;
2144	}
2145	if (do_checks) {
2146		/*
2147		 * Check for an existing UNIT ATTENTION condition after
2148		 * target_handle_task_attr() has done SAM task attr
2149		 * checking, and possibly have already defered execution
2150		 * out to target_restart_delayed_cmds() context.
2151		 */
2152		ret = target_scsi3_ua_check(cmd);
2153		if (ret)
2154			goto err;
2155
2156		ret = target_alua_state_check(cmd);
2157		if (ret)
2158			goto err;
2159
2160		ret = target_check_reservation(cmd);
2161		if (ret) {
2162			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2163			goto err;
2164		}
2165	}
2166
2167	ret = cmd->execute_cmd(cmd);
2168	if (!ret)
2169		return;
2170err:
2171	spin_lock_irq(&cmd->t_state_lock);
2172	cmd->transport_state &= ~CMD_T_SENT;
2173	spin_unlock_irq(&cmd->t_state_lock);
2174
2175	transport_generic_request_failure(cmd, ret);
2176}
2177
2178static int target_write_prot_action(struct se_cmd *cmd)
2179{
2180	u32 sectors;
2181	/*
2182	 * Perform WRITE_INSERT of PI using software emulation when backend
2183	 * device has PI enabled, if the transport has not already generated
2184	 * PI using hardware WRITE_INSERT offload.
2185	 */
2186	switch (cmd->prot_op) {
2187	case TARGET_PROT_DOUT_INSERT:
2188		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
2189			sbc_dif_generate(cmd);
2190		break;
2191	case TARGET_PROT_DOUT_STRIP:
2192		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
2193			break;
2194
2195		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2196		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2197					     sectors, 0, cmd->t_prot_sg, 0);
2198		if (unlikely(cmd->pi_err)) {
2199			spin_lock_irq(&cmd->t_state_lock);
2200			cmd->transport_state &= ~CMD_T_SENT;
2201			spin_unlock_irq(&cmd->t_state_lock);
2202			transport_generic_request_failure(cmd, cmd->pi_err);
2203			return -1;
2204		}
2205		break;
2206	default:
2207		break;
2208	}
2209
2210	return 0;
2211}
2212
2213static bool target_handle_task_attr(struct se_cmd *cmd)
2214{
2215	struct se_device *dev = cmd->se_dev;
2216
2217	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2218		return false;
2219
2220	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2221
2222	/*
2223	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2224	 * to allow the passed struct se_cmd list of tasks to the front of the list.
2225	 */
2226	switch (cmd->sam_task_attr) {
2227	case TCM_HEAD_TAG:
2228		atomic_inc_mb(&dev->non_ordered);
2229		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2230			 cmd->t_task_cdb[0]);
2231		return false;
2232	case TCM_ORDERED_TAG:
2233		atomic_inc_mb(&dev->delayed_cmd_count);
2234
2235		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2236			 cmd->t_task_cdb[0]);
2237		break;
2238	default:
2239		/*
2240		 * For SIMPLE and UNTAGGED Task Attribute commands
2241		 */
2242		atomic_inc_mb(&dev->non_ordered);
2243
2244		if (atomic_read(&dev->delayed_cmd_count) == 0)
2245			return false;
2246		break;
2247	}
2248
2249	if (cmd->sam_task_attr != TCM_ORDERED_TAG) {
2250		atomic_inc_mb(&dev->delayed_cmd_count);
2251		/*
2252		 * We will account for this when we dequeue from the delayed
2253		 * list.
2254		 */
2255		atomic_dec_mb(&dev->non_ordered);
2256	}
2257
2258	spin_lock_irq(&cmd->t_state_lock);
2259	cmd->transport_state &= ~CMD_T_SENT;
2260	spin_unlock_irq(&cmd->t_state_lock);
2261
2262	spin_lock(&dev->delayed_cmd_lock);
2263	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2264	spin_unlock(&dev->delayed_cmd_lock);
2265
2266	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2267		cmd->t_task_cdb[0], cmd->sam_task_attr);
2268	/*
2269	 * We may have no non ordered cmds when this function started or we
2270	 * could have raced with the last simple/head cmd completing, so kick
2271	 * the delayed handler here.
2272	 */
2273	schedule_work(&dev->delayed_cmd_work);
2274	return true;
2275}
2276
2277void target_execute_cmd(struct se_cmd *cmd)
2278{
2279	/*
2280	 * Determine if frontend context caller is requesting the stopping of
2281	 * this command for frontend exceptions.
2282	 *
2283	 * If the received CDB has already been aborted stop processing it here.
2284	 */
2285	if (target_cmd_interrupted(cmd))
2286		return;
2287
2288	spin_lock_irq(&cmd->t_state_lock);
2289	cmd->t_state = TRANSPORT_PROCESSING;
2290	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2291	spin_unlock_irq(&cmd->t_state_lock);
2292
2293	if (target_write_prot_action(cmd))
2294		return;
2295
2296	if (target_handle_task_attr(cmd))
2297		return;
2298
2299	__target_execute_cmd(cmd, true);
2300}
2301EXPORT_SYMBOL(target_execute_cmd);
2302
2303/*
2304 * Process all commands up to the last received ORDERED task attribute which
2305 * requires another blocking boundary
2306 */
2307void target_do_delayed_work(struct work_struct *work)
2308{
2309	struct se_device *dev = container_of(work, struct se_device,
2310					     delayed_cmd_work);
2311
2312	spin_lock(&dev->delayed_cmd_lock);
2313	while (!dev->ordered_sync_in_progress) {
2314		struct se_cmd *cmd;
2315
2316		if (list_empty(&dev->delayed_cmd_list))
2317			break;
2318
2319		cmd = list_entry(dev->delayed_cmd_list.next,
2320				 struct se_cmd, se_delayed_node);
2321
2322		if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2323			/*
2324			 * Check if we started with:
2325			 * [ordered] [simple] [ordered]
2326			 * and we are now at the last ordered so we have to wait
2327			 * for the simple cmd.
2328			 */
2329			if (atomic_read(&dev->non_ordered) > 0)
2330				break;
2331
2332			dev->ordered_sync_in_progress = true;
2333		}
2334
2335		list_del(&cmd->se_delayed_node);
2336		atomic_dec_mb(&dev->delayed_cmd_count);
2337		spin_unlock(&dev->delayed_cmd_lock);
2338
2339		if (cmd->sam_task_attr != TCM_ORDERED_TAG)
2340			atomic_inc_mb(&dev->non_ordered);
2341
2342		cmd->transport_state |= CMD_T_SENT;
2343
2344		__target_execute_cmd(cmd, true);
2345
2346		spin_lock(&dev->delayed_cmd_lock);
2347	}
2348	spin_unlock(&dev->delayed_cmd_lock);
2349}
2350
2351/*
2352 * Called from I/O completion to determine which dormant/delayed
2353 * and ordered cmds need to have their tasks added to the execution queue.
2354 */
2355static void transport_complete_task_attr(struct se_cmd *cmd)
2356{
2357	struct se_device *dev = cmd->se_dev;
2358
2359	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2360		return;
2361
2362	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2363		goto restart;
2364
2365	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2366		atomic_dec_mb(&dev->non_ordered);
2367		dev->dev_cur_ordered_id++;
2368	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2369		atomic_dec_mb(&dev->non_ordered);
2370		dev->dev_cur_ordered_id++;
2371		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2372			 dev->dev_cur_ordered_id);
2373	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2374		spin_lock(&dev->delayed_cmd_lock);
2375		dev->ordered_sync_in_progress = false;
2376		spin_unlock(&dev->delayed_cmd_lock);
2377
2378		dev->dev_cur_ordered_id++;
2379		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2380			 dev->dev_cur_ordered_id);
2381	}
2382	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2383
2384restart:
2385	if (atomic_read(&dev->delayed_cmd_count) > 0)
2386		schedule_work(&dev->delayed_cmd_work);
2387}
2388
2389static void transport_complete_qf(struct se_cmd *cmd)
2390{
2391	int ret = 0;
2392
2393	transport_complete_task_attr(cmd);
2394	/*
2395	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2396	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2397	 * the same callbacks should not be retried.  Return CHECK_CONDITION
2398	 * if a scsi_status is not already set.
2399	 *
2400	 * If a fabric driver ->queue_status() has returned non zero, always
2401	 * keep retrying no matter what..
2402	 */
2403	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2404		if (cmd->scsi_status)
2405			goto queue_status;
2406
2407		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2408		goto queue_status;
2409	}
2410
2411	/*
2412	 * Check if we need to send a sense buffer from
2413	 * the struct se_cmd in question. We do NOT want
2414	 * to take this path of the IO has been marked as
2415	 * needing to be treated like a "normal read". This
2416	 * is the case if it's a tape read, and either the
2417	 * FM, EOM, or ILI bits are set, but there is no
2418	 * sense data.
2419	 */
2420	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2421	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2422		goto queue_status;
2423
2424	switch (cmd->data_direction) {
2425	case DMA_FROM_DEVICE:
2426		/* queue status if not treating this as a normal read */
2427		if (cmd->scsi_status &&
2428		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2429			goto queue_status;
2430
2431		trace_target_cmd_complete(cmd);
2432		ret = cmd->se_tfo->queue_data_in(cmd);
2433		break;
2434	case DMA_TO_DEVICE:
2435		if (cmd->se_cmd_flags & SCF_BIDI) {
2436			ret = cmd->se_tfo->queue_data_in(cmd);
2437			break;
2438		}
2439		fallthrough;
2440	case DMA_NONE:
2441queue_status:
2442		trace_target_cmd_complete(cmd);
2443		ret = cmd->se_tfo->queue_status(cmd);
2444		break;
2445	default:
2446		break;
2447	}
2448
2449	if (ret < 0) {
2450		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2451		return;
2452	}
2453	transport_lun_remove_cmd(cmd);
2454	transport_cmd_check_stop_to_fabric(cmd);
2455}
2456
2457static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2458					int err, bool write_pending)
2459{
2460	/*
2461	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2462	 * ->queue_data_in() callbacks from new process context.
2463	 *
2464	 * Otherwise for other errors, transport_complete_qf() will send
2465	 * CHECK_CONDITION via ->queue_status() instead of attempting to
2466	 * retry associated fabric driver data-transfer callbacks.
2467	 */
2468	if (err == -EAGAIN || err == -ENOMEM) {
2469		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2470						 TRANSPORT_COMPLETE_QF_OK;
2471	} else {
2472		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2473		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2474	}
2475
2476	spin_lock_irq(&dev->qf_cmd_lock);
2477	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2478	atomic_inc_mb(&dev->dev_qf_count);
2479	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2480
2481	schedule_work(&cmd->se_dev->qf_work_queue);
2482}
2483
2484static bool target_read_prot_action(struct se_cmd *cmd)
2485{
2486	switch (cmd->prot_op) {
2487	case TARGET_PROT_DIN_STRIP:
2488		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2489			u32 sectors = cmd->data_length >>
2490				  ilog2(cmd->se_dev->dev_attrib.block_size);
2491
2492			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2493						     sectors, 0, cmd->t_prot_sg,
2494						     0);
2495			if (cmd->pi_err)
2496				return true;
2497		}
2498		break;
2499	case TARGET_PROT_DIN_INSERT:
2500		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2501			break;
2502
2503		sbc_dif_generate(cmd);
2504		break;
2505	default:
2506		break;
2507	}
2508
2509	return false;
2510}
2511
2512static void target_complete_ok_work(struct work_struct *work)
2513{
2514	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2515	int ret;
2516
2517	/*
2518	 * Check if we need to move delayed/dormant tasks from cmds on the
2519	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2520	 * Attribute.
2521	 */
2522	transport_complete_task_attr(cmd);
2523
2524	/*
2525	 * Check to schedule QUEUE_FULL work, or execute an existing
2526	 * cmd->transport_qf_callback()
2527	 */
2528	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2529		schedule_work(&cmd->se_dev->qf_work_queue);
2530
2531	/*
2532	 * Check if we need to send a sense buffer from
2533	 * the struct se_cmd in question. We do NOT want
2534	 * to take this path of the IO has been marked as
2535	 * needing to be treated like a "normal read". This
2536	 * is the case if it's a tape read, and either the
2537	 * FM, EOM, or ILI bits are set, but there is no
2538	 * sense data.
2539	 */
2540	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2541	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2542		WARN_ON(!cmd->scsi_status);
2543		ret = transport_send_check_condition_and_sense(
2544					cmd, 0, 1);
2545		if (ret)
2546			goto queue_full;
2547
2548		transport_lun_remove_cmd(cmd);
2549		transport_cmd_check_stop_to_fabric(cmd);
2550		return;
2551	}
2552	/*
2553	 * Check for a callback, used by amongst other things
2554	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2555	 */
2556	if (cmd->transport_complete_callback) {
2557		sense_reason_t rc;
2558		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2559		bool zero_dl = !(cmd->data_length);
2560		int post_ret = 0;
2561
2562		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2563		if (!rc && !post_ret) {
2564			if (caw && zero_dl)
2565				goto queue_rsp;
2566
2567			return;
2568		} else if (rc) {
2569			ret = transport_send_check_condition_and_sense(cmd,
2570						rc, 0);
2571			if (ret)
2572				goto queue_full;
2573
2574			transport_lun_remove_cmd(cmd);
2575			transport_cmd_check_stop_to_fabric(cmd);
2576			return;
2577		}
2578	}
2579
2580queue_rsp:
2581	switch (cmd->data_direction) {
2582	case DMA_FROM_DEVICE:
2583		/*
2584		 * if this is a READ-type IO, but SCSI status
2585		 * is set, then skip returning data and just
2586		 * return the status -- unless this IO is marked
2587		 * as needing to be treated as a normal read,
2588		 * in which case we want to go ahead and return
2589		 * the data. This happens, for example, for tape
2590		 * reads with the FM, EOM, or ILI bits set, with
2591		 * no sense data.
2592		 */
2593		if (cmd->scsi_status &&
2594		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2595			goto queue_status;
2596
2597		atomic_long_add(cmd->data_length,
2598				&cmd->se_lun->lun_stats.tx_data_octets);
2599		/*
2600		 * Perform READ_STRIP of PI using software emulation when
2601		 * backend had PI enabled, if the transport will not be
2602		 * performing hardware READ_STRIP offload.
2603		 */
2604		if (target_read_prot_action(cmd)) {
2605			ret = transport_send_check_condition_and_sense(cmd,
2606						cmd->pi_err, 0);
2607			if (ret)
2608				goto queue_full;
2609
2610			transport_lun_remove_cmd(cmd);
2611			transport_cmd_check_stop_to_fabric(cmd);
2612			return;
2613		}
2614
2615		trace_target_cmd_complete(cmd);
2616		ret = cmd->se_tfo->queue_data_in(cmd);
2617		if (ret)
2618			goto queue_full;
2619		break;
2620	case DMA_TO_DEVICE:
2621		atomic_long_add(cmd->data_length,
2622				&cmd->se_lun->lun_stats.rx_data_octets);
2623		/*
2624		 * Check if we need to send READ payload for BIDI-COMMAND
2625		 */
2626		if (cmd->se_cmd_flags & SCF_BIDI) {
2627			atomic_long_add(cmd->data_length,
2628					&cmd->se_lun->lun_stats.tx_data_octets);
2629			ret = cmd->se_tfo->queue_data_in(cmd);
2630			if (ret)
2631				goto queue_full;
2632			break;
2633		}
2634		fallthrough;
2635	case DMA_NONE:
2636queue_status:
2637		trace_target_cmd_complete(cmd);
2638		ret = cmd->se_tfo->queue_status(cmd);
2639		if (ret)
2640			goto queue_full;
2641		break;
2642	default:
2643		break;
2644	}
2645
2646	transport_lun_remove_cmd(cmd);
2647	transport_cmd_check_stop_to_fabric(cmd);
2648	return;
2649
2650queue_full:
2651	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2652		" data_direction: %d\n", cmd, cmd->data_direction);
2653
2654	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2655}
2656
2657void target_free_sgl(struct scatterlist *sgl, int nents)
2658{
2659	sgl_free_n_order(sgl, nents, 0);
2660}
2661EXPORT_SYMBOL(target_free_sgl);
2662
2663static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2664{
2665	/*
2666	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2667	 * emulation, and free + reset pointers if necessary..
2668	 */
2669	if (!cmd->t_data_sg_orig)
2670		return;
2671
2672	kfree(cmd->t_data_sg);
2673	cmd->t_data_sg = cmd->t_data_sg_orig;
2674	cmd->t_data_sg_orig = NULL;
2675	cmd->t_data_nents = cmd->t_data_nents_orig;
2676	cmd->t_data_nents_orig = 0;
2677}
2678
2679static inline void transport_free_pages(struct se_cmd *cmd)
2680{
2681	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2682		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2683		cmd->t_prot_sg = NULL;
2684		cmd->t_prot_nents = 0;
2685	}
2686
2687	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2688		/*
2689		 * Release special case READ buffer payload required for
2690		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2691		 */
2692		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2693			target_free_sgl(cmd->t_bidi_data_sg,
2694					   cmd->t_bidi_data_nents);
2695			cmd->t_bidi_data_sg = NULL;
2696			cmd->t_bidi_data_nents = 0;
2697		}
2698		transport_reset_sgl_orig(cmd);
2699		return;
2700	}
2701	transport_reset_sgl_orig(cmd);
2702
2703	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2704	cmd->t_data_sg = NULL;
2705	cmd->t_data_nents = 0;
2706
2707	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2708	cmd->t_bidi_data_sg = NULL;
2709	cmd->t_bidi_data_nents = 0;
2710}
2711
2712void *transport_kmap_data_sg(struct se_cmd *cmd)
2713{
2714	struct scatterlist *sg = cmd->t_data_sg;
2715	struct page **pages;
2716	int i;
2717
2718	/*
2719	 * We need to take into account a possible offset here for fabrics like
2720	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2721	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2722	 */
2723	if (!cmd->t_data_nents)
2724		return NULL;
2725
2726	BUG_ON(!sg);
2727	if (cmd->t_data_nents == 1)
2728		return kmap(sg_page(sg)) + sg->offset;
2729
2730	/* >1 page. use vmap */
2731	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2732	if (!pages)
2733		return NULL;
2734
2735	/* convert sg[] to pages[] */
2736	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2737		pages[i] = sg_page(sg);
2738	}
2739
2740	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2741	kfree(pages);
2742	if (!cmd->t_data_vmap)
2743		return NULL;
2744
2745	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2746}
2747EXPORT_SYMBOL(transport_kmap_data_sg);
2748
2749void transport_kunmap_data_sg(struct se_cmd *cmd)
2750{
2751	if (!cmd->t_data_nents) {
2752		return;
2753	} else if (cmd->t_data_nents == 1) {
2754		kunmap(sg_page(cmd->t_data_sg));
2755		return;
2756	}
2757
2758	vunmap(cmd->t_data_vmap);
2759	cmd->t_data_vmap = NULL;
2760}
2761EXPORT_SYMBOL(transport_kunmap_data_sg);
2762
2763int
2764target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2765		 bool zero_page, bool chainable)
2766{
2767	gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2768
2769	*sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2770	return *sgl ? 0 : -ENOMEM;
2771}
2772EXPORT_SYMBOL(target_alloc_sgl);
2773
2774/*
2775 * Allocate any required resources to execute the command.  For writes we
2776 * might not have the payload yet, so notify the fabric via a call to
2777 * ->write_pending instead. Otherwise place it on the execution queue.
2778 */
2779sense_reason_t
2780transport_generic_new_cmd(struct se_cmd *cmd)
2781{
2782	unsigned long flags;
2783	int ret = 0;
2784	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2785
2786	if (cmd->prot_op != TARGET_PROT_NORMAL &&
2787	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2788		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2789				       cmd->prot_length, true, false);
2790		if (ret < 0)
2791			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2792	}
2793
2794	/*
2795	 * Determine if the TCM fabric module has already allocated physical
2796	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2797	 * beforehand.
2798	 */
2799	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2800	    cmd->data_length) {
2801
2802		if ((cmd->se_cmd_flags & SCF_BIDI) ||
2803		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2804			u32 bidi_length;
2805
2806			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2807				bidi_length = cmd->t_task_nolb *
2808					      cmd->se_dev->dev_attrib.block_size;
2809			else
2810				bidi_length = cmd->data_length;
2811
2812			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2813					       &cmd->t_bidi_data_nents,
2814					       bidi_length, zero_flag, false);
2815			if (ret < 0)
2816				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2817		}
2818
2819		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2820				       cmd->data_length, zero_flag, false);
2821		if (ret < 0)
2822			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2823	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2824		    cmd->data_length) {
2825		/*
2826		 * Special case for COMPARE_AND_WRITE with fabrics
2827		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2828		 */
2829		u32 caw_length = cmd->t_task_nolb *
2830				 cmd->se_dev->dev_attrib.block_size;
2831
2832		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2833				       &cmd->t_bidi_data_nents,
2834				       caw_length, zero_flag, false);
2835		if (ret < 0)
2836			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2837	}
2838	/*
2839	 * If this command is not a write we can execute it right here,
2840	 * for write buffers we need to notify the fabric driver first
2841	 * and let it call back once the write buffers are ready.
2842	 */
2843	target_add_to_state_list(cmd);
2844	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2845		target_execute_cmd(cmd);
2846		return 0;
2847	}
2848
2849	spin_lock_irqsave(&cmd->t_state_lock, flags);
2850	cmd->t_state = TRANSPORT_WRITE_PENDING;
2851	/*
2852	 * Determine if frontend context caller is requesting the stopping of
2853	 * this command for frontend exceptions.
2854	 */
2855	if (cmd->transport_state & CMD_T_STOP &&
2856	    !cmd->se_tfo->write_pending_must_be_called) {
2857		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2858			 __func__, __LINE__, cmd->tag);
2859
2860		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2861
2862		complete_all(&cmd->t_transport_stop_comp);
2863		return 0;
2864	}
2865	cmd->transport_state &= ~CMD_T_ACTIVE;
2866	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2867
2868	ret = cmd->se_tfo->write_pending(cmd);
2869	if (ret)
2870		goto queue_full;
2871
2872	return 0;
2873
2874queue_full:
2875	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2876	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2877	return 0;
2878}
2879EXPORT_SYMBOL(transport_generic_new_cmd);
2880
2881static void transport_write_pending_qf(struct se_cmd *cmd)
2882{
2883	unsigned long flags;
2884	int ret;
2885	bool stop;
2886
2887	spin_lock_irqsave(&cmd->t_state_lock, flags);
2888	stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2889	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2890
2891	if (stop) {
2892		pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2893			__func__, __LINE__, cmd->tag);
2894		complete_all(&cmd->t_transport_stop_comp);
2895		return;
2896	}
2897
2898	ret = cmd->se_tfo->write_pending(cmd);
2899	if (ret) {
2900		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2901			 cmd);
2902		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2903	}
2904}
2905
2906static bool
2907__transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2908			   unsigned long *flags);
2909
2910static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2911{
2912	unsigned long flags;
2913
2914	spin_lock_irqsave(&cmd->t_state_lock, flags);
2915	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2916	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2917}
2918
2919/*
2920 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2921 * finished.
2922 */
2923void target_put_cmd_and_wait(struct se_cmd *cmd)
2924{
2925	DECLARE_COMPLETION_ONSTACK(compl);
2926
2927	WARN_ON_ONCE(cmd->abrt_compl);
2928	cmd->abrt_compl = &compl;
2929	target_put_sess_cmd(cmd);
2930	wait_for_completion(&compl);
2931}
2932
2933/*
2934 * This function is called by frontend drivers after processing of a command
2935 * has finished.
2936 *
2937 * The protocol for ensuring that either the regular frontend command
2938 * processing flow or target_handle_abort() code drops one reference is as
2939 * follows:
2940 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2941 *   the frontend driver to call this function synchronously or asynchronously.
2942 *   That will cause one reference to be dropped.
2943 * - During regular command processing the target core sets CMD_T_COMPLETE
2944 *   before invoking one of the .queue_*() functions.
2945 * - The code that aborts commands skips commands and TMFs for which
2946 *   CMD_T_COMPLETE has been set.
2947 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2948 *   commands that will be aborted.
2949 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2950 *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2951 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2952 *   be called and will drop a reference.
2953 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2954 *   will be called. target_handle_abort() will drop the final reference.
2955 */
2956int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2957{
2958	DECLARE_COMPLETION_ONSTACK(compl);
2959	int ret = 0;
2960	bool aborted = false, tas = false;
2961
2962	if (wait_for_tasks)
2963		target_wait_free_cmd(cmd, &aborted, &tas);
2964
2965	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2966		/*
2967		 * Handle WRITE failure case where transport_generic_new_cmd()
2968		 * has already added se_cmd to state_list, but fabric has
2969		 * failed command before I/O submission.
2970		 */
2971		if (cmd->state_active)
2972			target_remove_from_state_list(cmd);
2973
2974		if (cmd->se_lun)
2975			transport_lun_remove_cmd(cmd);
2976	}
2977	if (aborted)
2978		cmd->free_compl = &compl;
2979	ret = target_put_sess_cmd(cmd);
2980	if (aborted) {
2981		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2982		wait_for_completion(&compl);
2983		ret = 1;
2984	}
2985	return ret;
2986}
2987EXPORT_SYMBOL(transport_generic_free_cmd);
2988
2989/**
2990 * target_get_sess_cmd - Verify the session is accepting cmds and take ref
2991 * @se_cmd:	command descriptor to add
2992 * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2993 */
2994int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2995{
2996	int ret = 0;
2997
2998	/*
2999	 * Add a second kref if the fabric caller is expecting to handle
3000	 * fabric acknowledgement that requires two target_put_sess_cmd()
3001	 * invocations before se_cmd descriptor release.
3002	 */
3003	if (ack_kref) {
3004		kref_get(&se_cmd->cmd_kref);
3005		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
3006	}
3007
3008	/*
3009	 * Users like xcopy do not use counters since they never do a stop
3010	 * and wait.
3011	 */
3012	if (se_cmd->cmd_cnt) {
3013		if (!percpu_ref_tryget_live(&se_cmd->cmd_cnt->refcnt))
3014			ret = -ESHUTDOWN;
3015	}
3016	if (ret && ack_kref)
3017		target_put_sess_cmd(se_cmd);
3018
3019	return ret;
3020}
3021EXPORT_SYMBOL(target_get_sess_cmd);
3022
3023static void target_free_cmd_mem(struct se_cmd *cmd)
3024{
3025	transport_free_pages(cmd);
3026
3027	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3028		core_tmr_release_req(cmd->se_tmr_req);
3029	if (cmd->t_task_cdb != cmd->__t_task_cdb)
3030		kfree(cmd->t_task_cdb);
3031}
3032
3033static void target_release_cmd_kref(struct kref *kref)
3034{
3035	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
3036	struct target_cmd_counter *cmd_cnt = se_cmd->cmd_cnt;
3037	struct completion *free_compl = se_cmd->free_compl;
3038	struct completion *abrt_compl = se_cmd->abrt_compl;
3039
3040	target_free_cmd_mem(se_cmd);
3041	se_cmd->se_tfo->release_cmd(se_cmd);
3042	if (free_compl)
3043		complete(free_compl);
3044	if (abrt_compl)
3045		complete(abrt_compl);
3046
3047	if (cmd_cnt)
3048		percpu_ref_put(&cmd_cnt->refcnt);
3049}
3050
3051/**
3052 * target_put_sess_cmd - decrease the command reference count
3053 * @se_cmd:	command to drop a reference from
3054 *
3055 * Returns 1 if and only if this target_put_sess_cmd() call caused the
3056 * refcount to drop to zero. Returns zero otherwise.
3057 */
3058int target_put_sess_cmd(struct se_cmd *se_cmd)
3059{
3060	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
3061}
3062EXPORT_SYMBOL(target_put_sess_cmd);
3063
3064static const char *data_dir_name(enum dma_data_direction d)
3065{
3066	switch (d) {
3067	case DMA_BIDIRECTIONAL:	return "BIDI";
3068	case DMA_TO_DEVICE:	return "WRITE";
3069	case DMA_FROM_DEVICE:	return "READ";
3070	case DMA_NONE:		return "NONE";
3071	}
3072
3073	return "(?)";
3074}
3075
3076static const char *cmd_state_name(enum transport_state_table t)
3077{
3078	switch (t) {
3079	case TRANSPORT_NO_STATE:	return "NO_STATE";
3080	case TRANSPORT_NEW_CMD:		return "NEW_CMD";
3081	case TRANSPORT_WRITE_PENDING:	return "WRITE_PENDING";
3082	case TRANSPORT_PROCESSING:	return "PROCESSING";
3083	case TRANSPORT_COMPLETE:	return "COMPLETE";
3084	case TRANSPORT_ISTATE_PROCESSING:
3085					return "ISTATE_PROCESSING";
3086	case TRANSPORT_COMPLETE_QF_WP:	return "COMPLETE_QF_WP";
3087	case TRANSPORT_COMPLETE_QF_OK:	return "COMPLETE_QF_OK";
3088	case TRANSPORT_COMPLETE_QF_ERR:	return "COMPLETE_QF_ERR";
3089	}
3090
3091	return "(?)";
3092}
3093
3094static void target_append_str(char **str, const char *txt)
3095{
3096	char *prev = *str;
3097
3098	*str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
3099		kstrdup(txt, GFP_ATOMIC);
3100	kfree(prev);
3101}
3102
3103/*
3104 * Convert a transport state bitmask into a string. The caller is
3105 * responsible for freeing the returned pointer.
3106 */
3107static char *target_ts_to_str(u32 ts)
3108{
3109	char *str = NULL;
3110
3111	if (ts & CMD_T_ABORTED)
3112		target_append_str(&str, "aborted");
3113	if (ts & CMD_T_ACTIVE)
3114		target_append_str(&str, "active");
3115	if (ts & CMD_T_COMPLETE)
3116		target_append_str(&str, "complete");
3117	if (ts & CMD_T_SENT)
3118		target_append_str(&str, "sent");
3119	if (ts & CMD_T_STOP)
3120		target_append_str(&str, "stop");
3121	if (ts & CMD_T_FABRIC_STOP)
3122		target_append_str(&str, "fabric_stop");
3123
3124	return str;
3125}
3126
3127static const char *target_tmf_name(enum tcm_tmreq_table tmf)
3128{
3129	switch (tmf) {
3130	case TMR_ABORT_TASK:		return "ABORT_TASK";
3131	case TMR_ABORT_TASK_SET:	return "ABORT_TASK_SET";
3132	case TMR_CLEAR_ACA:		return "CLEAR_ACA";
3133	case TMR_CLEAR_TASK_SET:	return "CLEAR_TASK_SET";
3134	case TMR_LUN_RESET:		return "LUN_RESET";
3135	case TMR_TARGET_WARM_RESET:	return "TARGET_WARM_RESET";
3136	case TMR_TARGET_COLD_RESET:	return "TARGET_COLD_RESET";
3137	case TMR_LUN_RESET_PRO:		return "LUN_RESET_PRO";
3138	case TMR_UNKNOWN:		break;
3139	}
3140	return "(?)";
3141}
3142
3143void target_show_cmd(const char *pfx, struct se_cmd *cmd)
3144{
3145	char *ts_str = target_ts_to_str(cmd->transport_state);
3146	const u8 *cdb = cmd->t_task_cdb;
3147	struct se_tmr_req *tmf = cmd->se_tmr_req;
3148
3149	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3150		pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
3151			 pfx, cdb[0], cdb[1], cmd->tag,
3152			 data_dir_name(cmd->data_direction),
3153			 cmd->se_tfo->get_cmd_state(cmd),
3154			 cmd_state_name(cmd->t_state), cmd->data_length,
3155			 kref_read(&cmd->cmd_kref), ts_str);
3156	} else {
3157		pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
3158			 pfx, target_tmf_name(tmf->function), cmd->tag,
3159			 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
3160			 cmd_state_name(cmd->t_state),
3161			 kref_read(&cmd->cmd_kref), ts_str);
3162	}
3163	kfree(ts_str);
3164}
3165EXPORT_SYMBOL(target_show_cmd);
3166
3167static void target_stop_cmd_counter_confirm(struct percpu_ref *ref)
3168{
3169	struct target_cmd_counter *cmd_cnt = container_of(ref,
3170						struct target_cmd_counter,
3171						refcnt);
3172	complete_all(&cmd_cnt->stop_done);
3173}
3174
3175/**
3176 * target_stop_cmd_counter - Stop new IO from being added to the counter.
3177 * @cmd_cnt: counter to stop
3178 */
3179void target_stop_cmd_counter(struct target_cmd_counter *cmd_cnt)
3180{
3181	pr_debug("Stopping command counter.\n");
3182	if (!atomic_cmpxchg(&cmd_cnt->stopped, 0, 1))
3183		percpu_ref_kill_and_confirm(&cmd_cnt->refcnt,
3184					    target_stop_cmd_counter_confirm);
3185}
3186EXPORT_SYMBOL_GPL(target_stop_cmd_counter);
3187
3188/**
3189 * target_stop_session - Stop new IO from being queued on the session.
3190 * @se_sess: session to stop
3191 */
3192void target_stop_session(struct se_session *se_sess)
3193{
3194	target_stop_cmd_counter(se_sess->cmd_cnt);
3195}
3196EXPORT_SYMBOL(target_stop_session);
3197
3198/**
3199 * target_wait_for_cmds - Wait for outstanding cmds.
3200 * @cmd_cnt: counter to wait for active I/O for.
3201 */
3202void target_wait_for_cmds(struct target_cmd_counter *cmd_cnt)
3203{
3204	int ret;
3205
3206	WARN_ON_ONCE(!atomic_read(&cmd_cnt->stopped));
3207
3208	do {
3209		pr_debug("Waiting for running cmds to complete.\n");
3210		ret = wait_event_timeout(cmd_cnt->refcnt_wq,
3211					 percpu_ref_is_zero(&cmd_cnt->refcnt),
3212					 180 * HZ);
3213	} while (ret <= 0);
3214
3215	wait_for_completion(&cmd_cnt->stop_done);
3216	pr_debug("Waiting for cmds done.\n");
3217}
3218EXPORT_SYMBOL_GPL(target_wait_for_cmds);
3219
3220/**
3221 * target_wait_for_sess_cmds - Wait for outstanding commands
3222 * @se_sess: session to wait for active I/O
3223 */
3224void target_wait_for_sess_cmds(struct se_session *se_sess)
3225{
3226	target_wait_for_cmds(se_sess->cmd_cnt);
3227}
3228EXPORT_SYMBOL(target_wait_for_sess_cmds);
3229
3230/*
3231 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
3232 * all references to the LUN have been released. Called during LUN shutdown.
3233 */
3234void transport_clear_lun_ref(struct se_lun *lun)
3235{
3236	percpu_ref_kill(&lun->lun_ref);
3237	wait_for_completion(&lun->lun_shutdown_comp);
3238}
3239
3240static bool
3241__transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
3242			   bool *aborted, bool *tas, unsigned long *flags)
3243	__releases(&cmd->t_state_lock)
3244	__acquires(&cmd->t_state_lock)
3245{
3246	lockdep_assert_held(&cmd->t_state_lock);
3247
3248	if (fabric_stop)
3249		cmd->transport_state |= CMD_T_FABRIC_STOP;
3250
3251	if (cmd->transport_state & CMD_T_ABORTED)
3252		*aborted = true;
3253
3254	if (cmd->transport_state & CMD_T_TAS)
3255		*tas = true;
3256
3257	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3258	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3259		return false;
3260
3261	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3262	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3263		return false;
3264
3265	if (!(cmd->transport_state & CMD_T_ACTIVE))
3266		return false;
3267
3268	if (fabric_stop && *aborted)
3269		return false;
3270
3271	cmd->transport_state |= CMD_T_STOP;
3272
3273	target_show_cmd("wait_for_tasks: Stopping ", cmd);
3274
3275	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3276
3277	while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3278					    180 * HZ))
3279		target_show_cmd("wait for tasks: ", cmd);
3280
3281	spin_lock_irqsave(&cmd->t_state_lock, *flags);
3282	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3283
3284	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3285		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3286
3287	return true;
3288}
3289
3290/**
3291 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3292 * @cmd: command to wait on
3293 */
3294bool transport_wait_for_tasks(struct se_cmd *cmd)
3295{
3296	unsigned long flags;
3297	bool ret, aborted = false, tas = false;
3298
3299	spin_lock_irqsave(&cmd->t_state_lock, flags);
3300	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3301	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3302
3303	return ret;
3304}
3305EXPORT_SYMBOL(transport_wait_for_tasks);
3306
3307struct sense_detail {
3308	u8 key;
3309	u8 asc;
3310	u8 ascq;
3311	bool add_sense_info;
3312};
3313
3314static const struct sense_detail sense_detail_table[] = {
3315	[TCM_NO_SENSE] = {
3316		.key = NOT_READY
3317	},
3318	[TCM_NON_EXISTENT_LUN] = {
3319		.key = ILLEGAL_REQUEST,
3320		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3321	},
3322	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
3323		.key = ILLEGAL_REQUEST,
3324		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3325	},
3326	[TCM_SECTOR_COUNT_TOO_MANY] = {
3327		.key = ILLEGAL_REQUEST,
3328		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3329	},
3330	[TCM_UNKNOWN_MODE_PAGE] = {
3331		.key = ILLEGAL_REQUEST,
3332		.asc = 0x24, /* INVALID FIELD IN CDB */
3333	},
3334	[TCM_CHECK_CONDITION_ABORT_CMD] = {
3335		.key = ABORTED_COMMAND,
3336		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3337		.ascq = 0x03,
3338	},
3339	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
3340		.key = ABORTED_COMMAND,
3341		.asc = 0x0c, /* WRITE ERROR */
3342		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3343	},
3344	[TCM_INVALID_CDB_FIELD] = {
3345		.key = ILLEGAL_REQUEST,
3346		.asc = 0x24, /* INVALID FIELD IN CDB */
3347	},
3348	[TCM_INVALID_PARAMETER_LIST] = {
3349		.key = ILLEGAL_REQUEST,
3350		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3351	},
3352	[TCM_TOO_MANY_TARGET_DESCS] = {
3353		.key = ILLEGAL_REQUEST,
3354		.asc = 0x26,
3355		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3356	},
3357	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3358		.key = ILLEGAL_REQUEST,
3359		.asc = 0x26,
3360		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3361	},
3362	[TCM_TOO_MANY_SEGMENT_DESCS] = {
3363		.key = ILLEGAL_REQUEST,
3364		.asc = 0x26,
3365		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3366	},
3367	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3368		.key = ILLEGAL_REQUEST,
3369		.asc = 0x26,
3370		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3371	},
3372	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3373		.key = ILLEGAL_REQUEST,
3374		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3375	},
3376	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3377		.key = ILLEGAL_REQUEST,
3378		.asc = 0x0c, /* WRITE ERROR */
3379		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3380	},
3381	[TCM_SERVICE_CRC_ERROR] = {
3382		.key = ABORTED_COMMAND,
3383		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3384		.ascq = 0x05, /* N/A */
3385	},
3386	[TCM_SNACK_REJECTED] = {
3387		.key = ABORTED_COMMAND,
3388		.asc = 0x11, /* READ ERROR */
3389		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3390	},
3391	[TCM_WRITE_PROTECTED] = {
3392		.key = DATA_PROTECT,
3393		.asc = 0x27, /* WRITE PROTECTED */
3394	},
3395	[TCM_ADDRESS_OUT_OF_RANGE] = {
3396		.key = ILLEGAL_REQUEST,
3397		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3398	},
3399	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3400		.key = UNIT_ATTENTION,
3401	},
3402	[TCM_MISCOMPARE_VERIFY] = {
3403		.key = MISCOMPARE,
3404		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3405		.ascq = 0x00,
3406		.add_sense_info = true,
3407	},
3408	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3409		.key = ABORTED_COMMAND,
3410		.asc = 0x10,
3411		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3412		.add_sense_info = true,
3413	},
3414	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3415		.key = ABORTED_COMMAND,
3416		.asc = 0x10,
3417		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3418		.add_sense_info = true,
3419	},
3420	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3421		.key = ABORTED_COMMAND,
3422		.asc = 0x10,
3423		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3424		.add_sense_info = true,
3425	},
3426	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3427		.key = COPY_ABORTED,
3428		.asc = 0x0d,
3429		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3430
3431	},
3432	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3433		/*
3434		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3435		 * Solaris initiators.  Returning NOT READY instead means the
3436		 * operations will be retried a finite number of times and we
3437		 * can survive intermittent errors.
3438		 */
3439		.key = NOT_READY,
3440		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3441	},
3442	[TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3443		/*
3444		 * From spc4r22 section5.7.7,5.7.8
3445		 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3446		 * or a REGISTER AND IGNORE EXISTING KEY service action or
3447		 * REGISTER AND MOVE service actionis attempted,
3448		 * but there are insufficient device server resources to complete the
3449		 * operation, then the command shall be terminated with CHECK CONDITION
3450		 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3451		 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3452		 */
3453		.key = ILLEGAL_REQUEST,
3454		.asc = 0x55,
3455		.ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3456	},
3457	[TCM_INVALID_FIELD_IN_COMMAND_IU] = {
3458		.key = ILLEGAL_REQUEST,
3459		.asc = 0x0e,
3460		.ascq = 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */
3461	},
3462	[TCM_ALUA_TG_PT_STANDBY] = {
3463		.key = NOT_READY,
3464		.asc = 0x04,
3465		.ascq = ASCQ_04H_ALUA_TG_PT_STANDBY,
3466	},
3467	[TCM_ALUA_TG_PT_UNAVAILABLE] = {
3468		.key = NOT_READY,
3469		.asc = 0x04,
3470		.ascq = ASCQ_04H_ALUA_TG_PT_UNAVAILABLE,
3471	},
3472	[TCM_ALUA_STATE_TRANSITION] = {
3473		.key = NOT_READY,
3474		.asc = 0x04,
3475		.ascq = ASCQ_04H_ALUA_STATE_TRANSITION,
3476	},
3477	[TCM_ALUA_OFFLINE] = {
3478		.key = NOT_READY,
3479		.asc = 0x04,
3480		.ascq = ASCQ_04H_ALUA_OFFLINE,
3481	},
3482};
3483
3484/**
3485 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3486 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3487 *   be stored.
3488 * @reason: LIO sense reason code. If this argument has the value
3489 *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3490 *   dequeuing a unit attention fails due to multiple commands being processed
3491 *   concurrently, set the command status to BUSY.
3492 *
3493 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3494 */
3495static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3496{
3497	const struct sense_detail *sd;
3498	u8 *buffer = cmd->sense_buffer;
3499	int r = (__force int)reason;
3500	u8 key, asc, ascq;
3501	bool desc_format = target_sense_desc_format(cmd->se_dev);
3502
3503	if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key)
3504		sd = &sense_detail_table[r];
3505	else
3506		sd = &sense_detail_table[(__force int)
3507				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3508
3509	key = sd->key;
3510	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3511		if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3512						       &ascq)) {
3513			cmd->scsi_status = SAM_STAT_BUSY;
3514			return;
3515		}
3516	} else {
3517		WARN_ON_ONCE(sd->asc == 0);
3518		asc = sd->asc;
3519		ascq = sd->ascq;
3520	}
3521
3522	cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3523	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3524	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3525	scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3526	if (sd->add_sense_info)
3527		WARN_ON_ONCE(scsi_set_sense_information(buffer,
3528							cmd->scsi_sense_length,
3529							cmd->sense_info) < 0);
3530}
3531
3532int
3533transport_send_check_condition_and_sense(struct se_cmd *cmd,
3534		sense_reason_t reason, int from_transport)
3535{
3536	unsigned long flags;
3537
3538	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3539
3540	spin_lock_irqsave(&cmd->t_state_lock, flags);
3541	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3542		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3543		return 0;
3544	}
3545	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3546	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3547
3548	if (!from_transport)
3549		translate_sense_reason(cmd, reason);
3550
3551	trace_target_cmd_complete(cmd);
3552	return cmd->se_tfo->queue_status(cmd);
3553}
3554EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3555
3556/**
3557 * target_send_busy - Send SCSI BUSY status back to the initiator
3558 * @cmd: SCSI command for which to send a BUSY reply.
3559 *
3560 * Note: Only call this function if target_submit_cmd*() failed.
3561 */
3562int target_send_busy(struct se_cmd *cmd)
3563{
3564	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3565
3566	cmd->scsi_status = SAM_STAT_BUSY;
3567	trace_target_cmd_complete(cmd);
3568	return cmd->se_tfo->queue_status(cmd);
3569}
3570EXPORT_SYMBOL(target_send_busy);
3571
3572static void target_tmr_work(struct work_struct *work)
3573{
3574	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3575	struct se_device *dev = cmd->se_dev;
3576	struct se_tmr_req *tmr = cmd->se_tmr_req;
3577	int ret;
3578
3579	if (cmd->transport_state & CMD_T_ABORTED)
3580		goto aborted;
3581
3582	switch (tmr->function) {
3583	case TMR_ABORT_TASK:
3584		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3585		break;
3586	case TMR_ABORT_TASK_SET:
3587	case TMR_CLEAR_ACA:
3588	case TMR_CLEAR_TASK_SET:
3589		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3590		break;
3591	case TMR_LUN_RESET:
3592		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3593		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3594					 TMR_FUNCTION_REJECTED;
3595		if (tmr->response == TMR_FUNCTION_COMPLETE) {
3596			target_dev_ua_allocate(dev, 0x29,
3597					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3598		}
3599		break;
3600	case TMR_TARGET_WARM_RESET:
3601		tmr->response = TMR_FUNCTION_REJECTED;
3602		break;
3603	case TMR_TARGET_COLD_RESET:
3604		tmr->response = TMR_FUNCTION_REJECTED;
3605		break;
3606	default:
3607		pr_err("Unknown TMR function: 0x%02x.\n",
3608				tmr->function);
3609		tmr->response = TMR_FUNCTION_REJECTED;
3610		break;
3611	}
3612
3613	if (cmd->transport_state & CMD_T_ABORTED)
3614		goto aborted;
3615
3616	cmd->se_tfo->queue_tm_rsp(cmd);
3617
3618	transport_lun_remove_cmd(cmd);
3619	transport_cmd_check_stop_to_fabric(cmd);
3620	return;
3621
3622aborted:
3623	target_handle_abort(cmd);
3624}
3625
3626int transport_generic_handle_tmr(
3627	struct se_cmd *cmd)
3628{
3629	unsigned long flags;
3630	bool aborted = false;
3631
3632	spin_lock_irqsave(&cmd->se_dev->se_tmr_lock, flags);
3633	list_add_tail(&cmd->se_tmr_req->tmr_list, &cmd->se_dev->dev_tmr_list);
3634	spin_unlock_irqrestore(&cmd->se_dev->se_tmr_lock, flags);
3635
3636	spin_lock_irqsave(&cmd->t_state_lock, flags);
3637	if (cmd->transport_state & CMD_T_ABORTED) {
3638		aborted = true;
3639	} else {
3640		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3641		cmd->transport_state |= CMD_T_ACTIVE;
3642	}
3643	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3644
3645	if (aborted) {
3646		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3647				    cmd->se_tmr_req->function,
3648				    cmd->se_tmr_req->ref_task_tag, cmd->tag);
3649		target_handle_abort(cmd);
3650		return 0;
3651	}
3652
3653	INIT_WORK(&cmd->work, target_tmr_work);
3654	schedule_work(&cmd->work);
3655	return 0;
3656}
3657EXPORT_SYMBOL(transport_generic_handle_tmr);
3658
3659bool
3660target_check_wce(struct se_device *dev)
3661{
3662	bool wce = false;
3663
3664	if (dev->transport->get_write_cache)
3665		wce = dev->transport->get_write_cache(dev);
3666	else if (dev->dev_attrib.emulate_write_cache > 0)
3667		wce = true;
3668
3669	return wce;
3670}
3671
3672bool
3673target_check_fua(struct se_device *dev)
3674{
3675	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3676}
3677