1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Xilinx Zynq UltraScale+ MPSoC Quad-SPI (QSPI) controller driver
4 * (host mode only)
5 *
6 * Copyright (C) 2009 - 2015 Xilinx, Inc.
7 */
8
9#include <linux/clk.h>
10#include <linux/delay.h>
11#include <linux/dma-mapping.h>
12#include <linux/dmaengine.h>
13#include <linux/firmware/xlnx-zynqmp.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/module.h>
17#include <linux/of.h>
18#include <linux/platform_device.h>
19#include <linux/pm_runtime.h>
20#include <linux/spi/spi.h>
21#include <linux/spinlock.h>
22#include <linux/workqueue.h>
23#include <linux/spi/spi-mem.h>
24
25/* Generic QSPI register offsets */
26#define GQSPI_CONFIG_OFST		0x00000100
27#define GQSPI_ISR_OFST			0x00000104
28#define GQSPI_IDR_OFST			0x0000010C
29#define GQSPI_IER_OFST			0x00000108
30#define GQSPI_IMASK_OFST		0x00000110
31#define GQSPI_EN_OFST			0x00000114
32#define GQSPI_TXD_OFST			0x0000011C
33#define GQSPI_RXD_OFST			0x00000120
34#define GQSPI_TX_THRESHOLD_OFST		0x00000128
35#define GQSPI_RX_THRESHOLD_OFST		0x0000012C
36#define IOU_TAPDLY_BYPASS_OFST		0x0000003C
37#define GQSPI_LPBK_DLY_ADJ_OFST		0x00000138
38#define GQSPI_GEN_FIFO_OFST		0x00000140
39#define GQSPI_SEL_OFST			0x00000144
40#define GQSPI_GF_THRESHOLD_OFST		0x00000150
41#define GQSPI_FIFO_CTRL_OFST		0x0000014C
42#define GQSPI_QSPIDMA_DST_CTRL_OFST	0x0000080C
43#define GQSPI_QSPIDMA_DST_SIZE_OFST	0x00000804
44#define GQSPI_QSPIDMA_DST_STS_OFST	0x00000808
45#define GQSPI_QSPIDMA_DST_I_STS_OFST	0x00000814
46#define GQSPI_QSPIDMA_DST_I_EN_OFST	0x00000818
47#define GQSPI_QSPIDMA_DST_I_DIS_OFST	0x0000081C
48#define GQSPI_QSPIDMA_DST_I_MASK_OFST	0x00000820
49#define GQSPI_QSPIDMA_DST_ADDR_OFST	0x00000800
50#define GQSPI_QSPIDMA_DST_ADDR_MSB_OFST 0x00000828
51#define GQSPI_DATA_DLY_ADJ_OFST         0x000001F8
52
53/* GQSPI register bit masks */
54#define GQSPI_SEL_MASK				0x00000001
55#define GQSPI_EN_MASK				0x00000001
56#define GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK	0x00000020
57#define GQSPI_ISR_WR_TO_CLR_MASK		0x00000002
58#define GQSPI_IDR_ALL_MASK			0x00000FBE
59#define GQSPI_CFG_MODE_EN_MASK			0xC0000000
60#define GQSPI_CFG_GEN_FIFO_START_MODE_MASK	0x20000000
61#define GQSPI_CFG_ENDIAN_MASK			0x04000000
62#define GQSPI_CFG_EN_POLL_TO_MASK		0x00100000
63#define GQSPI_CFG_WP_HOLD_MASK			0x00080000
64#define GQSPI_CFG_BAUD_RATE_DIV_MASK		0x00000038
65#define GQSPI_CFG_CLK_PHA_MASK			0x00000004
66#define GQSPI_CFG_CLK_POL_MASK			0x00000002
67#define GQSPI_CFG_START_GEN_FIFO_MASK		0x10000000
68#define GQSPI_GENFIFO_IMM_DATA_MASK		0x000000FF
69#define GQSPI_GENFIFO_DATA_XFER			0x00000100
70#define GQSPI_GENFIFO_EXP			0x00000200
71#define GQSPI_GENFIFO_MODE_SPI			0x00000400
72#define GQSPI_GENFIFO_MODE_DUALSPI		0x00000800
73#define GQSPI_GENFIFO_MODE_QUADSPI		0x00000C00
74#define GQSPI_GENFIFO_MODE_MASK			0x00000C00
75#define GQSPI_GENFIFO_CS_LOWER			0x00001000
76#define GQSPI_GENFIFO_CS_UPPER			0x00002000
77#define GQSPI_GENFIFO_BUS_LOWER			0x00004000
78#define GQSPI_GENFIFO_BUS_UPPER			0x00008000
79#define GQSPI_GENFIFO_BUS_BOTH			0x0000C000
80#define GQSPI_GENFIFO_BUS_MASK			0x0000C000
81#define GQSPI_GENFIFO_TX			0x00010000
82#define GQSPI_GENFIFO_RX			0x00020000
83#define GQSPI_GENFIFO_STRIPE			0x00040000
84#define GQSPI_GENFIFO_POLL			0x00080000
85#define GQSPI_GENFIFO_EXP_START			0x00000100
86#define GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK	0x00000004
87#define GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK	0x00000002
88#define GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK	0x00000001
89#define GQSPI_ISR_RXEMPTY_MASK			0x00000800
90#define GQSPI_ISR_GENFIFOFULL_MASK		0x00000400
91#define GQSPI_ISR_GENFIFONOT_FULL_MASK		0x00000200
92#define GQSPI_ISR_TXEMPTY_MASK			0x00000100
93#define GQSPI_ISR_GENFIFOEMPTY_MASK		0x00000080
94#define GQSPI_ISR_RXFULL_MASK			0x00000020
95#define GQSPI_ISR_RXNEMPTY_MASK			0x00000010
96#define GQSPI_ISR_TXFULL_MASK			0x00000008
97#define GQSPI_ISR_TXNOT_FULL_MASK		0x00000004
98#define GQSPI_ISR_POLL_TIME_EXPIRE_MASK		0x00000002
99#define GQSPI_IER_TXNOT_FULL_MASK		0x00000004
100#define GQSPI_IER_RXEMPTY_MASK			0x00000800
101#define GQSPI_IER_POLL_TIME_EXPIRE_MASK		0x00000002
102#define GQSPI_IER_RXNEMPTY_MASK			0x00000010
103#define GQSPI_IER_GENFIFOEMPTY_MASK		0x00000080
104#define GQSPI_IER_TXEMPTY_MASK			0x00000100
105#define GQSPI_QSPIDMA_DST_INTR_ALL_MASK		0x000000FE
106#define GQSPI_QSPIDMA_DST_STS_WTC		0x0000E000
107#define GQSPI_CFG_MODE_EN_DMA_MASK		0x80000000
108#define GQSPI_ISR_IDR_MASK			0x00000994
109#define GQSPI_QSPIDMA_DST_I_EN_DONE_MASK	0x00000002
110#define GQSPI_QSPIDMA_DST_I_STS_DONE_MASK	0x00000002
111#define GQSPI_IRQ_MASK				0x00000980
112
113#define GQSPI_CFG_BAUD_RATE_DIV_SHIFT		3
114#define GQSPI_GENFIFO_CS_SETUP			0x4
115#define GQSPI_GENFIFO_CS_HOLD			0x3
116#define GQSPI_TXD_DEPTH				64
117#define GQSPI_RX_FIFO_THRESHOLD			32
118#define GQSPI_RX_FIFO_FILL	(GQSPI_RX_FIFO_THRESHOLD * 4)
119#define GQSPI_TX_FIFO_THRESHOLD_RESET_VAL	32
120#define GQSPI_TX_FIFO_FILL	(GQSPI_TXD_DEPTH -\
121				GQSPI_TX_FIFO_THRESHOLD_RESET_VAL)
122#define GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL	0X10
123#define GQSPI_QSPIDMA_DST_CTRL_RESET_VAL	0x803FFA00
124#define GQSPI_SELECT_FLASH_CS_LOWER		0x1
125#define GQSPI_SELECT_FLASH_CS_UPPER		0x2
126#define GQSPI_SELECT_FLASH_CS_BOTH		0x3
127#define GQSPI_SELECT_FLASH_BUS_LOWER		0x1
128#define GQSPI_SELECT_FLASH_BUS_UPPER		0x2
129#define GQSPI_SELECT_FLASH_BUS_BOTH		0x3
130#define GQSPI_BAUD_DIV_MAX	7	/* Baud rate divisor maximum */
131#define GQSPI_BAUD_DIV_SHIFT	2	/* Baud rate divisor shift */
132#define GQSPI_SELECT_MODE_SPI		0x1
133#define GQSPI_SELECT_MODE_DUALSPI	0x2
134#define GQSPI_SELECT_MODE_QUADSPI	0x4
135#define GQSPI_DMA_UNALIGN		0x3
136#define GQSPI_DEFAULT_NUM_CS	1	/* Default number of chip selects */
137
138#define GQSPI_MAX_NUM_CS	2	/* Maximum number of chip selects */
139
140#define GQSPI_USE_DATA_DLY		0x1
141#define GQSPI_USE_DATA_DLY_SHIFT	31
142#define GQSPI_DATA_DLY_ADJ_VALUE	0x2
143#define GQSPI_DATA_DLY_ADJ_SHIFT	28
144#define GQSPI_LPBK_DLY_ADJ_DLY_1	0x1
145#define GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT	0x3
146#define TAP_DLY_BYPASS_LQSPI_RX_VALUE	0x1
147#define TAP_DLY_BYPASS_LQSPI_RX_SHIFT	0x2
148
149/* set to differentiate versal from zynqmp, 1=versal, 0=zynqmp */
150#define QSPI_QUIRK_HAS_TAPDELAY		BIT(0)
151
152#define GQSPI_FREQ_37_5MHZ	37500000
153#define GQSPI_FREQ_40MHZ	40000000
154#define GQSPI_FREQ_100MHZ	100000000
155#define GQSPI_FREQ_150MHZ	150000000
156
157#define SPI_AUTOSUSPEND_TIMEOUT		3000
158enum mode_type {GQSPI_MODE_IO, GQSPI_MODE_DMA};
159
160/**
161 * struct qspi_platform_data - zynqmp qspi platform data structure
162 * @quirks:    Flags is used to identify the platform
163 */
164struct qspi_platform_data {
165	u32 quirks;
166};
167
168/**
169 * struct zynqmp_qspi - Defines qspi driver instance
170 * @ctlr:		Pointer to the spi controller information
171 * @regs:		Virtual address of the QSPI controller registers
172 * @refclk:		Pointer to the peripheral clock
173 * @pclk:		Pointer to the APB clock
174 * @irq:		IRQ number
175 * @dev:		Pointer to struct device
176 * @txbuf:		Pointer to the TX buffer
177 * @rxbuf:		Pointer to the RX buffer
178 * @bytes_to_transfer:	Number of bytes left to transfer
179 * @bytes_to_receive:	Number of bytes left to receive
180 * @genfifocs:		Used for chip select
181 * @genfifobus:		Used to select the upper or lower bus
182 * @dma_rx_bytes:	Remaining bytes to receive by DMA mode
183 * @dma_addr:		DMA address after mapping the kernel buffer
184 * @genfifoentry:	Used for storing the genfifoentry instruction.
185 * @mode:		Defines the mode in which QSPI is operating
186 * @data_completion:	completion structure
187 * @op_lock:		Operational lock
188 * @speed_hz:          Current SPI bus clock speed in hz
189 * @has_tapdelay:	Used for tapdelay register available in qspi
190 */
191struct zynqmp_qspi {
192	struct spi_controller *ctlr;
193	void __iomem *regs;
194	struct clk *refclk;
195	struct clk *pclk;
196	int irq;
197	struct device *dev;
198	const void *txbuf;
199	void *rxbuf;
200	int bytes_to_transfer;
201	int bytes_to_receive;
202	u32 genfifocs;
203	u32 genfifobus;
204	u32 dma_rx_bytes;
205	dma_addr_t dma_addr;
206	u32 genfifoentry;
207	enum mode_type mode;
208	struct completion data_completion;
209	struct mutex op_lock;
210	u32 speed_hz;
211	bool has_tapdelay;
212};
213
214/**
215 * zynqmp_gqspi_read - For GQSPI controller read operation
216 * @xqspi:	Pointer to the zynqmp_qspi structure
217 * @offset:	Offset from where to read
218 * Return:      Value at the offset
219 */
220static u32 zynqmp_gqspi_read(struct zynqmp_qspi *xqspi, u32 offset)
221{
222	return readl_relaxed(xqspi->regs + offset);
223}
224
225/**
226 * zynqmp_gqspi_write - For GQSPI controller write operation
227 * @xqspi:	Pointer to the zynqmp_qspi structure
228 * @offset:	Offset where to write
229 * @val:	Value to be written
230 */
231static inline void zynqmp_gqspi_write(struct zynqmp_qspi *xqspi, u32 offset,
232				      u32 val)
233{
234	writel_relaxed(val, (xqspi->regs + offset));
235}
236
237/**
238 * zynqmp_gqspi_selecttarget - For selection of target device
239 * @instanceptr:	Pointer to the zynqmp_qspi structure
240 * @targetcs:	For chip select
241 * @targetbus:	To check which bus is selected- upper or lower
242 */
243static void zynqmp_gqspi_selecttarget(struct zynqmp_qspi *instanceptr,
244				      u8 targetcs, u8 targetbus)
245{
246	/*
247	 * Bus and CS lines selected here will be updated in the instance and
248	 * used for subsequent GENFIFO entries during transfer.
249	 */
250
251	/* Choose target select line */
252	switch (targetcs) {
253	case GQSPI_SELECT_FLASH_CS_BOTH:
254		instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER |
255			GQSPI_GENFIFO_CS_UPPER;
256		break;
257	case GQSPI_SELECT_FLASH_CS_UPPER:
258		instanceptr->genfifocs = GQSPI_GENFIFO_CS_UPPER;
259		break;
260	case GQSPI_SELECT_FLASH_CS_LOWER:
261		instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER;
262		break;
263	default:
264		dev_warn(instanceptr->dev, "Invalid target select\n");
265	}
266
267	/* Choose the bus */
268	switch (targetbus) {
269	case GQSPI_SELECT_FLASH_BUS_BOTH:
270		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER |
271			GQSPI_GENFIFO_BUS_UPPER;
272		break;
273	case GQSPI_SELECT_FLASH_BUS_UPPER:
274		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
275		break;
276	case GQSPI_SELECT_FLASH_BUS_LOWER:
277		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
278		break;
279	default:
280		dev_warn(instanceptr->dev, "Invalid target bus\n");
281	}
282}
283
284/**
285 * zynqmp_qspi_set_tapdelay:   To configure qspi tap delays
286 * @xqspi:             Pointer to the zynqmp_qspi structure
287 * @baudrateval:       Buadrate to configure
288 */
289static void zynqmp_qspi_set_tapdelay(struct zynqmp_qspi *xqspi, u32 baudrateval)
290{
291	u32 tapdlybypass = 0, lpbkdlyadj = 0, datadlyadj = 0, clk_rate;
292	u32 reqhz = 0;
293
294	clk_rate = clk_get_rate(xqspi->refclk);
295	reqhz = (clk_rate / (GQSPI_BAUD_DIV_SHIFT << baudrateval));
296
297	if (!xqspi->has_tapdelay) {
298		if (reqhz <= GQSPI_FREQ_40MHZ) {
299			zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI,
300						      PM_TAPDELAY_BYPASS_ENABLE);
301		} else if (reqhz <= GQSPI_FREQ_100MHZ) {
302			zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI,
303						      PM_TAPDELAY_BYPASS_ENABLE);
304			lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
305			datadlyadj |= ((GQSPI_USE_DATA_DLY <<
306					GQSPI_USE_DATA_DLY_SHIFT)
307					| (GQSPI_DATA_DLY_ADJ_VALUE <<
308						GQSPI_DATA_DLY_ADJ_SHIFT));
309		} else if (reqhz <= GQSPI_FREQ_150MHZ) {
310			lpbkdlyadj |= GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK;
311		}
312	} else {
313		if (reqhz <= GQSPI_FREQ_37_5MHZ) {
314			tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
315					TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
316		} else if (reqhz <= GQSPI_FREQ_100MHZ) {
317			tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
318					TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
319			lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
320			datadlyadj |= (GQSPI_USE_DATA_DLY <<
321					GQSPI_USE_DATA_DLY_SHIFT);
322		} else if (reqhz <= GQSPI_FREQ_150MHZ) {
323			lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK
324				       | (GQSPI_LPBK_DLY_ADJ_DLY_1 <<
325					       GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT));
326		}
327		zynqmp_gqspi_write(xqspi,
328				   IOU_TAPDLY_BYPASS_OFST, tapdlybypass);
329	}
330	zynqmp_gqspi_write(xqspi, GQSPI_LPBK_DLY_ADJ_OFST, lpbkdlyadj);
331	zynqmp_gqspi_write(xqspi, GQSPI_DATA_DLY_ADJ_OFST, datadlyadj);
332}
333
334/**
335 * zynqmp_qspi_init_hw - Initialize the hardware
336 * @xqspi:	Pointer to the zynqmp_qspi structure
337 *
338 * The default settings of the QSPI controller's configurable parameters on
339 * reset are
340 *	- Host mode
341 *	- TX threshold set to 1
342 *	- RX threshold set to 1
343 *	- Flash memory interface mode enabled
344 * This function performs the following actions
345 *	- Disable and clear all the interrupts
346 *	- Enable manual target select
347 *	- Enable manual start
348 *	- Deselect all the chip select lines
349 *	- Set the little endian mode of TX FIFO
350 *	- Set clock phase
351 *	- Set clock polarity and
352 *	- Enable the QSPI controller
353 */
354static void zynqmp_qspi_init_hw(struct zynqmp_qspi *xqspi)
355{
356	u32 config_reg, baud_rate_val = 0;
357	ulong clk_rate;
358
359	/* Select the GQSPI mode */
360	zynqmp_gqspi_write(xqspi, GQSPI_SEL_OFST, GQSPI_SEL_MASK);
361	/* Clear and disable interrupts */
362	zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST,
363			   zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST) |
364			   GQSPI_ISR_WR_TO_CLR_MASK);
365	/* Clear the DMA STS */
366	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
367			   zynqmp_gqspi_read(xqspi,
368					     GQSPI_QSPIDMA_DST_I_STS_OFST));
369	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_STS_OFST,
370			   zynqmp_gqspi_read(xqspi,
371					     GQSPI_QSPIDMA_DST_STS_OFST) |
372					     GQSPI_QSPIDMA_DST_STS_WTC);
373	zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_IDR_ALL_MASK);
374	zynqmp_gqspi_write(xqspi,
375			   GQSPI_QSPIDMA_DST_I_DIS_OFST,
376			   GQSPI_QSPIDMA_DST_INTR_ALL_MASK);
377	/* Disable the GQSPI */
378	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
379	config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
380	config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
381	/* Manual start */
382	config_reg |= GQSPI_CFG_GEN_FIFO_START_MODE_MASK;
383	/* Little endian by default */
384	config_reg &= ~GQSPI_CFG_ENDIAN_MASK;
385	/* Disable poll time out */
386	config_reg &= ~GQSPI_CFG_EN_POLL_TO_MASK;
387	/* Set hold bit */
388	config_reg |= GQSPI_CFG_WP_HOLD_MASK;
389	/* Clear pre-scalar by default */
390	config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
391	/* Set CPHA */
392	if (xqspi->ctlr->mode_bits & SPI_CPHA)
393		config_reg |= GQSPI_CFG_CLK_PHA_MASK;
394	else
395		config_reg &= ~GQSPI_CFG_CLK_PHA_MASK;
396	/* Set CPOL */
397	if (xqspi->ctlr->mode_bits & SPI_CPOL)
398		config_reg |= GQSPI_CFG_CLK_POL_MASK;
399	else
400		config_reg &= ~GQSPI_CFG_CLK_POL_MASK;
401
402	/* Set the clock frequency */
403	clk_rate = clk_get_rate(xqspi->refclk);
404	while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
405	       (clk_rate /
406		(GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) > xqspi->speed_hz)
407		baud_rate_val++;
408
409	config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
410	config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
411
412	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
413
414	/* Set the tapdelay for clock frequency */
415	zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val);
416
417	/* Clear the TX and RX FIFO */
418	zynqmp_gqspi_write(xqspi, GQSPI_FIFO_CTRL_OFST,
419			   GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK |
420			   GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK |
421			   GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK);
422	/* Reset thresholds */
423	zynqmp_gqspi_write(xqspi, GQSPI_TX_THRESHOLD_OFST,
424			   GQSPI_TX_FIFO_THRESHOLD_RESET_VAL);
425	zynqmp_gqspi_write(xqspi, GQSPI_RX_THRESHOLD_OFST,
426			   GQSPI_RX_FIFO_THRESHOLD);
427	zynqmp_gqspi_write(xqspi, GQSPI_GF_THRESHOLD_OFST,
428			   GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL);
429	zynqmp_gqspi_selecttarget(xqspi,
430				  GQSPI_SELECT_FLASH_CS_LOWER,
431				  GQSPI_SELECT_FLASH_BUS_LOWER);
432	/* Initialize DMA */
433	zynqmp_gqspi_write(xqspi,
434			   GQSPI_QSPIDMA_DST_CTRL_OFST,
435			   GQSPI_QSPIDMA_DST_CTRL_RESET_VAL);
436
437	/* Enable the GQSPI */
438	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
439}
440
441/**
442 * zynqmp_qspi_copy_read_data - Copy data to RX buffer
443 * @xqspi:	Pointer to the zynqmp_qspi structure
444 * @data:	The variable where data is stored
445 * @size:	Number of bytes to be copied from data to RX buffer
446 */
447static void zynqmp_qspi_copy_read_data(struct zynqmp_qspi *xqspi,
448				       ulong data, u8 size)
449{
450	memcpy(xqspi->rxbuf, &data, size);
451	xqspi->rxbuf += size;
452	xqspi->bytes_to_receive -= size;
453}
454
455/**
456 * zynqmp_qspi_chipselect - Select or deselect the chip select line
457 * @qspi:	Pointer to the spi_device structure
458 * @is_high:	Select(0) or deselect (1) the chip select line
459 */
460static void zynqmp_qspi_chipselect(struct spi_device *qspi, bool is_high)
461{
462	struct zynqmp_qspi *xqspi = spi_controller_get_devdata(qspi->controller);
463	ulong timeout;
464	u32 genfifoentry = 0, statusreg;
465
466	genfifoentry |= GQSPI_GENFIFO_MODE_SPI;
467
468	if (!is_high) {
469		if (!spi_get_chipselect(qspi, 0)) {
470			xqspi->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
471			xqspi->genfifocs = GQSPI_GENFIFO_CS_LOWER;
472		} else {
473			xqspi->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
474			xqspi->genfifocs = GQSPI_GENFIFO_CS_UPPER;
475		}
476		genfifoentry |= xqspi->genfifobus;
477		genfifoentry |= xqspi->genfifocs;
478		genfifoentry |= GQSPI_GENFIFO_CS_SETUP;
479	} else {
480		genfifoentry |= GQSPI_GENFIFO_CS_HOLD;
481	}
482
483	zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
484
485	/* Manually start the generic FIFO command */
486	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
487			   zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
488			   GQSPI_CFG_START_GEN_FIFO_MASK);
489
490	timeout = jiffies + msecs_to_jiffies(1000);
491
492	/* Wait until the generic FIFO command is empty */
493	do {
494		statusreg = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
495
496		if ((statusreg & GQSPI_ISR_GENFIFOEMPTY_MASK) &&
497		    (statusreg & GQSPI_ISR_TXEMPTY_MASK))
498			break;
499		cpu_relax();
500	} while (!time_after_eq(jiffies, timeout));
501
502	if (time_after_eq(jiffies, timeout))
503		dev_err(xqspi->dev, "Chip select timed out\n");
504}
505
506/**
507 * zynqmp_qspi_selectspimode - Selects SPI mode - x1 or x2 or x4.
508 * @xqspi:	xqspi is a pointer to the GQSPI instance
509 * @spimode:	spimode - SPI or DUAL or QUAD.
510 * Return:	Mask to set desired SPI mode in GENFIFO entry.
511 */
512static inline u32 zynqmp_qspi_selectspimode(struct zynqmp_qspi *xqspi,
513					    u8 spimode)
514{
515	u32 mask = 0;
516
517	switch (spimode) {
518	case GQSPI_SELECT_MODE_DUALSPI:
519		mask = GQSPI_GENFIFO_MODE_DUALSPI;
520		break;
521	case GQSPI_SELECT_MODE_QUADSPI:
522		mask = GQSPI_GENFIFO_MODE_QUADSPI;
523		break;
524	case GQSPI_SELECT_MODE_SPI:
525		mask = GQSPI_GENFIFO_MODE_SPI;
526		break;
527	default:
528		dev_warn(xqspi->dev, "Invalid SPI mode\n");
529	}
530
531	return mask;
532}
533
534/**
535 * zynqmp_qspi_config_op - Configure QSPI controller for specified
536 *				transfer
537 * @xqspi:	Pointer to the zynqmp_qspi structure
538 * @qspi:	Pointer to the spi_device structure
539 *
540 * Sets the operational mode of QSPI controller for the next QSPI transfer and
541 * sets the requested clock frequency.
542 *
543 * Return:	Always 0
544 *
545 * Note:
546 *	If the requested frequency is not an exact match with what can be
547 *	obtained using the pre-scalar value, the driver sets the clock
548 *	frequency which is lower than the requested frequency (maximum lower)
549 *	for the transfer.
550 *
551 *	If the requested frequency is higher or lower than that is supported
552 *	by the QSPI controller the driver will set the highest or lowest
553 *	frequency supported by controller.
554 */
555static int zynqmp_qspi_config_op(struct zynqmp_qspi *xqspi,
556				 struct spi_device *qspi)
557{
558	ulong clk_rate;
559	u32 config_reg, req_speed_hz, baud_rate_val = 0;
560
561	req_speed_hz = qspi->max_speed_hz;
562
563	if (xqspi->speed_hz != req_speed_hz) {
564		xqspi->speed_hz = req_speed_hz;
565
566		/* Set the clock frequency */
567		/* If req_speed_hz == 0, default to lowest speed */
568		clk_rate = clk_get_rate(xqspi->refclk);
569
570		while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
571		       (clk_rate /
572			(GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) >
573		       req_speed_hz)
574			baud_rate_val++;
575
576		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
577
578		config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
579		config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
580		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
581		zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val);
582	}
583	return 0;
584}
585
586/**
587 * zynqmp_qspi_setup_op - Configure the QSPI controller
588 * @qspi:	Pointer to the spi_device structure
589 *
590 * Sets the operational mode of QSPI controller for the next QSPI transfer,
591 * baud rate and divisor value to setup the requested qspi clock.
592 *
593 * Return:	0 on success; error value otherwise.
594 */
595static int zynqmp_qspi_setup_op(struct spi_device *qspi)
596{
597	struct spi_controller *ctlr = qspi->controller;
598	struct zynqmp_qspi *xqspi = spi_controller_get_devdata(ctlr);
599
600	if (ctlr->busy)
601		return -EBUSY;
602
603	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
604
605	return 0;
606}
607
608/**
609 * zynqmp_qspi_filltxfifo - Fills the TX FIFO as long as there is room in
610 *				the FIFO or the bytes required to be
611 *				transmitted.
612 * @xqspi:	Pointer to the zynqmp_qspi structure
613 * @size:	Number of bytes to be copied from TX buffer to TX FIFO
614 */
615static void zynqmp_qspi_filltxfifo(struct zynqmp_qspi *xqspi, int size)
616{
617	u32 count = 0, intermediate;
618
619	while ((xqspi->bytes_to_transfer > 0) && (count < size) && (xqspi->txbuf)) {
620		if (xqspi->bytes_to_transfer >= 4) {
621			memcpy(&intermediate, xqspi->txbuf, 4);
622			xqspi->txbuf += 4;
623			xqspi->bytes_to_transfer -= 4;
624			count += 4;
625		} else {
626			memcpy(&intermediate, xqspi->txbuf,
627			       xqspi->bytes_to_transfer);
628			xqspi->txbuf += xqspi->bytes_to_transfer;
629			xqspi->bytes_to_transfer = 0;
630			count += xqspi->bytes_to_transfer;
631		}
632		zynqmp_gqspi_write(xqspi, GQSPI_TXD_OFST, intermediate);
633	}
634}
635
636/**
637 * zynqmp_qspi_readrxfifo - Fills the RX FIFO as long as there is room in
638 *				the FIFO.
639 * @xqspi:	Pointer to the zynqmp_qspi structure
640 * @size:	Number of bytes to be copied from RX buffer to RX FIFO
641 */
642static void zynqmp_qspi_readrxfifo(struct zynqmp_qspi *xqspi, u32 size)
643{
644	ulong data;
645	int count = 0;
646
647	while ((count < size) && (xqspi->bytes_to_receive > 0)) {
648		if (xqspi->bytes_to_receive >= 4) {
649			(*(u32 *)xqspi->rxbuf) =
650			zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
651			xqspi->rxbuf += 4;
652			xqspi->bytes_to_receive -= 4;
653			count += 4;
654		} else {
655			data = zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
656			count += xqspi->bytes_to_receive;
657			zynqmp_qspi_copy_read_data(xqspi, data,
658						   xqspi->bytes_to_receive);
659			xqspi->bytes_to_receive = 0;
660		}
661	}
662}
663
664/**
665 * zynqmp_qspi_fillgenfifo - Fills the GENFIFO.
666 * @xqspi:	Pointer to the zynqmp_qspi structure
667 * @nbits:	Transfer/Receive buswidth.
668 * @genfifoentry:       Variable in which GENFIFO mask is saved
669 */
670static void zynqmp_qspi_fillgenfifo(struct zynqmp_qspi *xqspi, u8 nbits,
671				    u32 genfifoentry)
672{
673	u32 transfer_len = 0;
674
675	if (xqspi->txbuf) {
676		genfifoentry &= ~GQSPI_GENFIFO_RX;
677		genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
678		genfifoentry |= GQSPI_GENFIFO_TX;
679		transfer_len = xqspi->bytes_to_transfer;
680	} else if (xqspi->rxbuf) {
681		genfifoentry &= ~GQSPI_GENFIFO_TX;
682		genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
683		genfifoentry |= GQSPI_GENFIFO_RX;
684		if (xqspi->mode == GQSPI_MODE_DMA)
685			transfer_len = xqspi->dma_rx_bytes;
686		else
687			transfer_len = xqspi->bytes_to_receive;
688	} else {
689		/* Sending dummy circles here */
690		genfifoentry &= ~(GQSPI_GENFIFO_TX | GQSPI_GENFIFO_RX);
691		genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
692		transfer_len = xqspi->bytes_to_transfer;
693	}
694	genfifoentry |= zynqmp_qspi_selectspimode(xqspi, nbits);
695	xqspi->genfifoentry = genfifoentry;
696
697	if ((transfer_len) < GQSPI_GENFIFO_IMM_DATA_MASK) {
698		genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
699		genfifoentry |= transfer_len;
700		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
701	} else {
702		int tempcount = transfer_len;
703		u32 exponent = 8;	/* 2^8 = 256 */
704		u8 imm_data = tempcount & 0xFF;
705
706		tempcount &= ~(tempcount & 0xFF);
707		/* Immediate entry */
708		if (tempcount != 0) {
709			/* Exponent entries */
710			genfifoentry |= GQSPI_GENFIFO_EXP;
711			while (tempcount != 0) {
712				if (tempcount & GQSPI_GENFIFO_EXP_START) {
713					genfifoentry &=
714						~GQSPI_GENFIFO_IMM_DATA_MASK;
715					genfifoentry |= exponent;
716					zynqmp_gqspi_write(xqspi,
717							   GQSPI_GEN_FIFO_OFST,
718							   genfifoentry);
719				}
720				tempcount = tempcount >> 1;
721				exponent++;
722			}
723		}
724		if (imm_data != 0) {
725			genfifoentry &= ~GQSPI_GENFIFO_EXP;
726			genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
727			genfifoentry |= (u8)(imm_data & 0xFF);
728			zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST,
729					   genfifoentry);
730		}
731	}
732	if (xqspi->mode == GQSPI_MODE_IO && xqspi->rxbuf) {
733		/* Dummy generic FIFO entry */
734		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
735	}
736}
737
738/**
739 * zynqmp_process_dma_irq - Handler for DMA done interrupt of QSPI
740 *				controller
741 * @xqspi:	zynqmp_qspi instance pointer
742 *
743 * This function handles DMA interrupt only.
744 */
745static void zynqmp_process_dma_irq(struct zynqmp_qspi *xqspi)
746{
747	u32 config_reg, genfifoentry;
748
749	dma_unmap_single(xqspi->dev, xqspi->dma_addr,
750			 xqspi->dma_rx_bytes, DMA_FROM_DEVICE);
751	xqspi->rxbuf += xqspi->dma_rx_bytes;
752	xqspi->bytes_to_receive -= xqspi->dma_rx_bytes;
753	xqspi->dma_rx_bytes = 0;
754
755	/* Disabling the DMA interrupts */
756	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_DIS_OFST,
757			   GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
758
759	if (xqspi->bytes_to_receive > 0) {
760		/* Switch to IO mode,for remaining bytes to receive */
761		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
762		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
763		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
764
765		/* Initiate the transfer of remaining bytes */
766		genfifoentry = xqspi->genfifoentry;
767		genfifoentry |= xqspi->bytes_to_receive;
768		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
769
770		/* Dummy generic FIFO entry */
771		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
772
773		/* Manual start */
774		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
775				   (zynqmp_gqspi_read(xqspi,
776						      GQSPI_CONFIG_OFST) |
777				   GQSPI_CFG_START_GEN_FIFO_MASK));
778
779		/* Enable the RX interrupts for IO mode */
780		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
781				   GQSPI_IER_GENFIFOEMPTY_MASK |
782				   GQSPI_IER_RXNEMPTY_MASK |
783				   GQSPI_IER_RXEMPTY_MASK);
784	}
785}
786
787/**
788 * zynqmp_qspi_irq - Interrupt service routine of the QSPI controller
789 * @irq:	IRQ number
790 * @dev_id:	Pointer to the xqspi structure
791 *
792 * This function handles TX empty only.
793 * On TX empty interrupt this function reads the received data from RX FIFO
794 * and fills the TX FIFO if there is any data remaining to be transferred.
795 *
796 * Return:	IRQ_HANDLED when interrupt is handled
797 *		IRQ_NONE otherwise.
798 */
799static irqreturn_t zynqmp_qspi_irq(int irq, void *dev_id)
800{
801	struct zynqmp_qspi *xqspi = (struct zynqmp_qspi *)dev_id;
802	irqreturn_t ret = IRQ_NONE;
803	u32 status, mask, dma_status = 0;
804
805	status = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
806	zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST, status);
807	mask = (status & ~(zynqmp_gqspi_read(xqspi, GQSPI_IMASK_OFST)));
808
809	/* Read and clear DMA status */
810	if (xqspi->mode == GQSPI_MODE_DMA) {
811		dma_status =
812			zynqmp_gqspi_read(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST);
813		zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
814				   dma_status);
815	}
816
817	if (mask & GQSPI_ISR_TXNOT_FULL_MASK) {
818		zynqmp_qspi_filltxfifo(xqspi, GQSPI_TX_FIFO_FILL);
819		ret = IRQ_HANDLED;
820	}
821
822	if (dma_status & GQSPI_QSPIDMA_DST_I_STS_DONE_MASK) {
823		zynqmp_process_dma_irq(xqspi);
824		ret = IRQ_HANDLED;
825	} else if (!(mask & GQSPI_IER_RXEMPTY_MASK) &&
826			(mask & GQSPI_IER_GENFIFOEMPTY_MASK)) {
827		zynqmp_qspi_readrxfifo(xqspi, GQSPI_RX_FIFO_FILL);
828		ret = IRQ_HANDLED;
829	}
830
831	if (xqspi->bytes_to_receive == 0 && xqspi->bytes_to_transfer == 0 &&
832	    ((status & GQSPI_IRQ_MASK) == GQSPI_IRQ_MASK)) {
833		zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_ISR_IDR_MASK);
834		complete(&xqspi->data_completion);
835		ret = IRQ_HANDLED;
836	}
837	return ret;
838}
839
840/**
841 * zynqmp_qspi_setuprxdma - This function sets up the RX DMA operation
842 * @xqspi:	xqspi is a pointer to the GQSPI instance.
843 *
844 * Return:	0 on success; error value otherwise.
845 */
846static int zynqmp_qspi_setuprxdma(struct zynqmp_qspi *xqspi)
847{
848	u32 rx_bytes, rx_rem, config_reg;
849	dma_addr_t addr;
850	u64 dma_align =  (u64)(uintptr_t)xqspi->rxbuf;
851
852	if (xqspi->bytes_to_receive < 8 ||
853	    ((dma_align & GQSPI_DMA_UNALIGN) != 0x0)) {
854		/* Setting to IO mode */
855		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
856		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
857		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
858		xqspi->mode = GQSPI_MODE_IO;
859		xqspi->dma_rx_bytes = 0;
860		return 0;
861	}
862
863	rx_rem = xqspi->bytes_to_receive % 4;
864	rx_bytes = (xqspi->bytes_to_receive - rx_rem);
865
866	addr = dma_map_single(xqspi->dev, (void *)xqspi->rxbuf,
867			      rx_bytes, DMA_FROM_DEVICE);
868	if (dma_mapping_error(xqspi->dev, addr)) {
869		dev_err(xqspi->dev, "ERR:rxdma:memory not mapped\n");
870		return -ENOMEM;
871	}
872
873	xqspi->dma_rx_bytes = rx_bytes;
874	xqspi->dma_addr = addr;
875	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_OFST,
876			   (u32)(addr & 0xffffffff));
877	addr = ((addr >> 16) >> 16);
878	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_MSB_OFST,
879			   ((u32)addr) & 0xfff);
880
881	/* Enabling the DMA mode */
882	config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
883	config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
884	config_reg |= GQSPI_CFG_MODE_EN_DMA_MASK;
885	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
886
887	/* Switch to DMA mode */
888	xqspi->mode = GQSPI_MODE_DMA;
889
890	/* Write the number of bytes to transfer */
891	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_SIZE_OFST, rx_bytes);
892
893	return 0;
894}
895
896/**
897 * zynqmp_qspi_write_op - This function sets up the GENFIFO entries,
898 *			TX FIFO, and fills the TX FIFO with as many
899 *			bytes as possible.
900 * @xqspi:	Pointer to the GQSPI instance.
901 * @tx_nbits:	Transfer buswidth.
902 * @genfifoentry:	Variable in which GENFIFO mask is returned
903 *			to calling function
904 */
905static void zynqmp_qspi_write_op(struct zynqmp_qspi *xqspi, u8 tx_nbits,
906				 u32 genfifoentry)
907{
908	u32 config_reg;
909
910	zynqmp_qspi_fillgenfifo(xqspi, tx_nbits, genfifoentry);
911	zynqmp_qspi_filltxfifo(xqspi, GQSPI_TXD_DEPTH);
912	if (xqspi->mode == GQSPI_MODE_DMA) {
913		config_reg = zynqmp_gqspi_read(xqspi,
914					       GQSPI_CONFIG_OFST);
915		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
916		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
917				   config_reg);
918		xqspi->mode = GQSPI_MODE_IO;
919	}
920}
921
922/**
923 * zynqmp_qspi_read_op - This function sets up the GENFIFO entries and
924 *				RX DMA operation.
925 * @xqspi:	xqspi is a pointer to the GQSPI instance.
926 * @rx_nbits:	Receive buswidth.
927 * @genfifoentry:	genfifoentry is pointer to the variable in which
928 *			GENFIFO	mask is returned to calling function
929 *
930 * Return:	0 on success; error value otherwise.
931 */
932static int zynqmp_qspi_read_op(struct zynqmp_qspi *xqspi, u8 rx_nbits,
933				u32 genfifoentry)
934{
935	int ret;
936
937	ret = zynqmp_qspi_setuprxdma(xqspi);
938	if (ret)
939		return ret;
940	zynqmp_qspi_fillgenfifo(xqspi, rx_nbits, genfifoentry);
941
942	return 0;
943}
944
945/**
946 * zynqmp_qspi_suspend - Suspend method for the QSPI driver
947 * @dev:	Address of the platform_device structure
948 *
949 * This function stops the QSPI driver queue and disables the QSPI controller
950 *
951 * Return:	Always 0
952 */
953static int __maybe_unused zynqmp_qspi_suspend(struct device *dev)
954{
955	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
956	struct spi_controller *ctlr = xqspi->ctlr;
957	int ret;
958
959	ret = spi_controller_suspend(ctlr);
960	if (ret)
961		return ret;
962
963	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
964
965	return 0;
966}
967
968/**
969 * zynqmp_qspi_resume - Resume method for the QSPI driver
970 * @dev:	Address of the platform_device structure
971 *
972 * The function starts the QSPI driver queue and initializes the QSPI
973 * controller
974 *
975 * Return:	0 on success; error value otherwise
976 */
977static int __maybe_unused zynqmp_qspi_resume(struct device *dev)
978{
979	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
980	struct spi_controller *ctlr = xqspi->ctlr;
981
982	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
983
984	spi_controller_resume(ctlr);
985
986	return 0;
987}
988
989/**
990 * zynqmp_runtime_suspend - Runtime suspend method for the SPI driver
991 * @dev:	Address of the platform_device structure
992 *
993 * This function disables the clocks
994 *
995 * Return:	Always 0
996 */
997static int __maybe_unused zynqmp_runtime_suspend(struct device *dev)
998{
999	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
1000
1001	clk_disable_unprepare(xqspi->refclk);
1002	clk_disable_unprepare(xqspi->pclk);
1003
1004	return 0;
1005}
1006
1007/**
1008 * zynqmp_runtime_resume - Runtime resume method for the SPI driver
1009 * @dev:	Address of the platform_device structure
1010 *
1011 * This function enables the clocks
1012 *
1013 * Return:	0 on success and error value on error
1014 */
1015static int __maybe_unused zynqmp_runtime_resume(struct device *dev)
1016{
1017	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
1018	int ret;
1019
1020	ret = clk_prepare_enable(xqspi->pclk);
1021	if (ret) {
1022		dev_err(dev, "Cannot enable APB clock.\n");
1023		return ret;
1024	}
1025
1026	ret = clk_prepare_enable(xqspi->refclk);
1027	if (ret) {
1028		dev_err(dev, "Cannot enable device clock.\n");
1029		clk_disable_unprepare(xqspi->pclk);
1030		return ret;
1031	}
1032
1033	return 0;
1034}
1035
1036/**
1037 * zynqmp_qspi_exec_op() - Initiates the QSPI transfer
1038 * @mem: The SPI memory
1039 * @op: The memory operation to execute
1040 *
1041 * Executes a memory operation.
1042 *
1043 * This function first selects the chip and starts the memory operation.
1044 *
1045 * Return: 0 in case of success, a negative error code otherwise.
1046 */
1047static int zynqmp_qspi_exec_op(struct spi_mem *mem,
1048			       const struct spi_mem_op *op)
1049{
1050	struct zynqmp_qspi *xqspi = spi_controller_get_devdata
1051				    (mem->spi->controller);
1052	int err = 0, i;
1053	u32 genfifoentry = 0;
1054	u16 opcode = op->cmd.opcode;
1055	u64 opaddr;
1056
1057	dev_dbg(xqspi->dev, "cmd:%#x mode:%d.%d.%d.%d\n",
1058		op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
1059		op->dummy.buswidth, op->data.buswidth);
1060
1061	mutex_lock(&xqspi->op_lock);
1062	zynqmp_qspi_config_op(xqspi, mem->spi);
1063	zynqmp_qspi_chipselect(mem->spi, false);
1064	genfifoentry |= xqspi->genfifocs;
1065	genfifoentry |= xqspi->genfifobus;
1066
1067	if (op->cmd.opcode) {
1068		reinit_completion(&xqspi->data_completion);
1069		xqspi->txbuf = &opcode;
1070		xqspi->rxbuf = NULL;
1071		xqspi->bytes_to_transfer = op->cmd.nbytes;
1072		xqspi->bytes_to_receive = 0;
1073		zynqmp_qspi_write_op(xqspi, op->cmd.buswidth, genfifoentry);
1074		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1075				   zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
1076				   GQSPI_CFG_START_GEN_FIFO_MASK);
1077		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1078				   GQSPI_IER_GENFIFOEMPTY_MASK |
1079				   GQSPI_IER_TXNOT_FULL_MASK);
1080		if (!wait_for_completion_timeout
1081		    (&xqspi->data_completion, msecs_to_jiffies(1000))) {
1082			err = -ETIMEDOUT;
1083			goto return_err;
1084		}
1085	}
1086
1087	if (op->addr.nbytes) {
1088		xqspi->txbuf = &opaddr;
1089		for (i = 0; i < op->addr.nbytes; i++) {
1090			*(((u8 *)xqspi->txbuf) + i) = op->addr.val >>
1091					(8 * (op->addr.nbytes - i - 1));
1092		}
1093
1094		reinit_completion(&xqspi->data_completion);
1095		xqspi->rxbuf = NULL;
1096		xqspi->bytes_to_transfer = op->addr.nbytes;
1097		xqspi->bytes_to_receive = 0;
1098		zynqmp_qspi_write_op(xqspi, op->addr.buswidth, genfifoentry);
1099		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1100				   zynqmp_gqspi_read(xqspi,
1101						     GQSPI_CONFIG_OFST) |
1102				   GQSPI_CFG_START_GEN_FIFO_MASK);
1103		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1104				   GQSPI_IER_TXEMPTY_MASK |
1105				   GQSPI_IER_GENFIFOEMPTY_MASK |
1106				   GQSPI_IER_TXNOT_FULL_MASK);
1107		if (!wait_for_completion_timeout
1108		    (&xqspi->data_completion, msecs_to_jiffies(1000))) {
1109			err = -ETIMEDOUT;
1110			goto return_err;
1111		}
1112	}
1113
1114	if (op->dummy.nbytes) {
1115		xqspi->txbuf = NULL;
1116		xqspi->rxbuf = NULL;
1117		/*
1118		 * xqspi->bytes_to_transfer here represents the dummy circles
1119		 * which need to be sent.
1120		 */
1121		xqspi->bytes_to_transfer = op->dummy.nbytes * 8 / op->dummy.buswidth;
1122		xqspi->bytes_to_receive = 0;
1123		/*
1124		 * Using op->data.buswidth instead of op->dummy.buswidth here because
1125		 * we need to use it to configure the correct SPI mode.
1126		 */
1127		zynqmp_qspi_write_op(xqspi, op->data.buswidth,
1128				     genfifoentry);
1129		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1130				   zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
1131				   GQSPI_CFG_START_GEN_FIFO_MASK);
1132	}
1133
1134	if (op->data.nbytes) {
1135		reinit_completion(&xqspi->data_completion);
1136		if (op->data.dir == SPI_MEM_DATA_OUT) {
1137			xqspi->txbuf = (u8 *)op->data.buf.out;
1138			xqspi->rxbuf = NULL;
1139			xqspi->bytes_to_transfer = op->data.nbytes;
1140			xqspi->bytes_to_receive = 0;
1141			zynqmp_qspi_write_op(xqspi, op->data.buswidth,
1142					     genfifoentry);
1143			zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1144					   zynqmp_gqspi_read
1145					   (xqspi, GQSPI_CONFIG_OFST) |
1146					   GQSPI_CFG_START_GEN_FIFO_MASK);
1147			zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1148					   GQSPI_IER_TXEMPTY_MASK |
1149					   GQSPI_IER_GENFIFOEMPTY_MASK |
1150					   GQSPI_IER_TXNOT_FULL_MASK);
1151		} else {
1152			xqspi->txbuf = NULL;
1153			xqspi->rxbuf = (u8 *)op->data.buf.in;
1154			xqspi->bytes_to_receive = op->data.nbytes;
1155			xqspi->bytes_to_transfer = 0;
1156			err = zynqmp_qspi_read_op(xqspi, op->data.buswidth,
1157					    genfifoentry);
1158			if (err)
1159				goto return_err;
1160
1161			zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1162					   zynqmp_gqspi_read
1163					   (xqspi, GQSPI_CONFIG_OFST) |
1164					   GQSPI_CFG_START_GEN_FIFO_MASK);
1165			if (xqspi->mode == GQSPI_MODE_DMA) {
1166				zynqmp_gqspi_write
1167					(xqspi, GQSPI_QSPIDMA_DST_I_EN_OFST,
1168					 GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
1169			} else {
1170				zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1171						   GQSPI_IER_GENFIFOEMPTY_MASK |
1172						   GQSPI_IER_RXNEMPTY_MASK |
1173						   GQSPI_IER_RXEMPTY_MASK);
1174			}
1175		}
1176		if (!wait_for_completion_timeout
1177		    (&xqspi->data_completion, msecs_to_jiffies(1000)))
1178			err = -ETIMEDOUT;
1179	}
1180
1181return_err:
1182
1183	zynqmp_qspi_chipselect(mem->spi, true);
1184	mutex_unlock(&xqspi->op_lock);
1185
1186	return err;
1187}
1188
1189static const struct dev_pm_ops zynqmp_qspi_dev_pm_ops = {
1190	SET_RUNTIME_PM_OPS(zynqmp_runtime_suspend,
1191			   zynqmp_runtime_resume, NULL)
1192	SET_SYSTEM_SLEEP_PM_OPS(zynqmp_qspi_suspend, zynqmp_qspi_resume)
1193};
1194
1195static const struct qspi_platform_data versal_qspi_def = {
1196	.quirks = QSPI_QUIRK_HAS_TAPDELAY,
1197};
1198
1199static const struct of_device_id zynqmp_qspi_of_match[] = {
1200	{ .compatible = "xlnx,zynqmp-qspi-1.0"},
1201	{ .compatible = "xlnx,versal-qspi-1.0", .data = &versal_qspi_def },
1202	{ /* End of table */ }
1203};
1204
1205static const struct spi_controller_mem_ops zynqmp_qspi_mem_ops = {
1206	.exec_op = zynqmp_qspi_exec_op,
1207};
1208
1209/**
1210 * zynqmp_qspi_probe - Probe method for the QSPI driver
1211 * @pdev:	Pointer to the platform_device structure
1212 *
1213 * This function initializes the driver data structures and the hardware.
1214 *
1215 * Return:	0 on success; error value otherwise
1216 */
1217static int zynqmp_qspi_probe(struct platform_device *pdev)
1218{
1219	int ret = 0;
1220	struct spi_controller *ctlr;
1221	struct zynqmp_qspi *xqspi;
1222	struct device *dev = &pdev->dev;
1223	struct device_node *np = dev->of_node;
1224	u32 num_cs;
1225	const struct qspi_platform_data *p_data;
1226
1227	ctlr = spi_alloc_host(&pdev->dev, sizeof(*xqspi));
1228	if (!ctlr)
1229		return -ENOMEM;
1230
1231	xqspi = spi_controller_get_devdata(ctlr);
1232	xqspi->dev = dev;
1233	xqspi->ctlr = ctlr;
1234	platform_set_drvdata(pdev, xqspi);
1235
1236	p_data = of_device_get_match_data(&pdev->dev);
1237	if (p_data && (p_data->quirks & QSPI_QUIRK_HAS_TAPDELAY))
1238		xqspi->has_tapdelay = true;
1239
1240	xqspi->regs = devm_platform_ioremap_resource(pdev, 0);
1241	if (IS_ERR(xqspi->regs)) {
1242		ret = PTR_ERR(xqspi->regs);
1243		goto remove_ctlr;
1244	}
1245
1246	xqspi->pclk = devm_clk_get(&pdev->dev, "pclk");
1247	if (IS_ERR(xqspi->pclk)) {
1248		dev_err(dev, "pclk clock not found.\n");
1249		ret = PTR_ERR(xqspi->pclk);
1250		goto remove_ctlr;
1251	}
1252
1253	xqspi->refclk = devm_clk_get(&pdev->dev, "ref_clk");
1254	if (IS_ERR(xqspi->refclk)) {
1255		dev_err(dev, "ref_clk clock not found.\n");
1256		ret = PTR_ERR(xqspi->refclk);
1257		goto remove_ctlr;
1258	}
1259
1260	ret = clk_prepare_enable(xqspi->pclk);
1261	if (ret) {
1262		dev_err(dev, "Unable to enable APB clock.\n");
1263		goto remove_ctlr;
1264	}
1265
1266	ret = clk_prepare_enable(xqspi->refclk);
1267	if (ret) {
1268		dev_err(dev, "Unable to enable device clock.\n");
1269		goto clk_dis_pclk;
1270	}
1271
1272	init_completion(&xqspi->data_completion);
1273
1274	mutex_init(&xqspi->op_lock);
1275
1276	pm_runtime_use_autosuspend(&pdev->dev);
1277	pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1278	pm_runtime_set_active(&pdev->dev);
1279	pm_runtime_enable(&pdev->dev);
1280
1281	ret = pm_runtime_get_sync(&pdev->dev);
1282	if (ret < 0) {
1283		dev_err(&pdev->dev, "Failed to pm_runtime_get_sync: %d\n", ret);
1284		goto clk_dis_all;
1285	}
1286
1287	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD |
1288		SPI_TX_DUAL | SPI_TX_QUAD;
1289	ctlr->max_speed_hz = clk_get_rate(xqspi->refclk) / 2;
1290	xqspi->speed_hz = ctlr->max_speed_hz;
1291
1292	/* QSPI controller initializations */
1293	zynqmp_qspi_init_hw(xqspi);
1294
1295	xqspi->irq = platform_get_irq(pdev, 0);
1296	if (xqspi->irq < 0) {
1297		ret = xqspi->irq;
1298		goto clk_dis_all;
1299	}
1300	ret = devm_request_irq(&pdev->dev, xqspi->irq, zynqmp_qspi_irq,
1301			       0, pdev->name, xqspi);
1302	if (ret != 0) {
1303		ret = -ENXIO;
1304		dev_err(dev, "request_irq failed\n");
1305		goto clk_dis_all;
1306	}
1307
1308	ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(44));
1309	if (ret)
1310		goto clk_dis_all;
1311
1312	ret = of_property_read_u32(np, "num-cs", &num_cs);
1313	if (ret < 0) {
1314		ctlr->num_chipselect = GQSPI_DEFAULT_NUM_CS;
1315	} else if (num_cs > GQSPI_MAX_NUM_CS) {
1316		ret = -EINVAL;
1317		dev_err(&pdev->dev, "only %d chip selects are available\n",
1318			GQSPI_MAX_NUM_CS);
1319		goto clk_dis_all;
1320	} else {
1321		ctlr->num_chipselect = num_cs;
1322	}
1323
1324	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1325	ctlr->mem_ops = &zynqmp_qspi_mem_ops;
1326	ctlr->setup = zynqmp_qspi_setup_op;
1327	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1328	ctlr->dev.of_node = np;
1329	ctlr->auto_runtime_pm = true;
1330
1331	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1332	if (ret) {
1333		dev_err(&pdev->dev, "spi_register_controller failed\n");
1334		goto clk_dis_all;
1335	}
1336
1337	pm_runtime_mark_last_busy(&pdev->dev);
1338	pm_runtime_put_autosuspend(&pdev->dev);
1339
1340	return 0;
1341
1342clk_dis_all:
1343	pm_runtime_disable(&pdev->dev);
1344	pm_runtime_put_noidle(&pdev->dev);
1345	pm_runtime_set_suspended(&pdev->dev);
1346	clk_disable_unprepare(xqspi->refclk);
1347clk_dis_pclk:
1348	clk_disable_unprepare(xqspi->pclk);
1349remove_ctlr:
1350	spi_controller_put(ctlr);
1351
1352	return ret;
1353}
1354
1355/**
1356 * zynqmp_qspi_remove - Remove method for the QSPI driver
1357 * @pdev:	Pointer to the platform_device structure
1358 *
1359 * This function is called if a device is physically removed from the system or
1360 * if the driver module is being unloaded. It frees all resources allocated to
1361 * the device.
1362 *
1363 * Return:	0 Always
1364 */
1365static void zynqmp_qspi_remove(struct platform_device *pdev)
1366{
1367	struct zynqmp_qspi *xqspi = platform_get_drvdata(pdev);
1368
1369	pm_runtime_get_sync(&pdev->dev);
1370
1371	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
1372
1373	pm_runtime_disable(&pdev->dev);
1374	pm_runtime_put_noidle(&pdev->dev);
1375	pm_runtime_set_suspended(&pdev->dev);
1376	clk_disable_unprepare(xqspi->refclk);
1377	clk_disable_unprepare(xqspi->pclk);
1378}
1379
1380MODULE_DEVICE_TABLE(of, zynqmp_qspi_of_match);
1381
1382static struct platform_driver zynqmp_qspi_driver = {
1383	.probe = zynqmp_qspi_probe,
1384	.remove_new = zynqmp_qspi_remove,
1385	.driver = {
1386		.name = "zynqmp-qspi",
1387		.of_match_table = zynqmp_qspi_of_match,
1388		.pm = &zynqmp_qspi_dev_pm_ops,
1389	},
1390};
1391
1392module_platform_driver(zynqmp_qspi_driver);
1393
1394MODULE_AUTHOR("Xilinx, Inc.");
1395MODULE_DESCRIPTION("Xilinx Zynqmp QSPI driver");
1396MODULE_LICENSE("GPL");
1397