1// SPDX-License-Identifier: GPL-2.0
2//
3// Copyright (C) 2018 Macronix International Co., Ltd.
4//
5// Authors:
6//	Mason Yang <masonccyang@mxic.com.tw>
7//	zhengxunli <zhengxunli@mxic.com.tw>
8//	Boris Brezillon <boris.brezillon@bootlin.com>
9//
10
11#include <linux/clk.h>
12#include <linux/io.h>
13#include <linux/iopoll.h>
14#include <linux/module.h>
15#include <linux/mtd/nand.h>
16#include <linux/mtd/nand-ecc-mxic.h>
17#include <linux/platform_device.h>
18#include <linux/pm_runtime.h>
19#include <linux/spi/spi.h>
20#include <linux/spi/spi-mem.h>
21
22#define HC_CFG			0x0
23#define HC_CFG_IF_CFG(x)	((x) << 27)
24#define HC_CFG_DUAL_SLAVE	BIT(31)
25#define HC_CFG_INDIVIDUAL	BIT(30)
26#define HC_CFG_NIO(x)		(((x) / 4) << 27)
27#define HC_CFG_TYPE(s, t)	((t) << (23 + ((s) * 2)))
28#define HC_CFG_TYPE_SPI_NOR	0
29#define HC_CFG_TYPE_SPI_NAND	1
30#define HC_CFG_TYPE_SPI_RAM	2
31#define HC_CFG_TYPE_RAW_NAND	3
32#define HC_CFG_SLV_ACT(x)	((x) << 21)
33#define HC_CFG_CLK_PH_EN	BIT(20)
34#define HC_CFG_CLK_POL_INV	BIT(19)
35#define HC_CFG_BIG_ENDIAN	BIT(18)
36#define HC_CFG_DATA_PASS	BIT(17)
37#define HC_CFG_IDLE_SIO_LVL(x)	((x) << 16)
38#define HC_CFG_MAN_START_EN	BIT(3)
39#define HC_CFG_MAN_START	BIT(2)
40#define HC_CFG_MAN_CS_EN	BIT(1)
41#define HC_CFG_MAN_CS_ASSERT	BIT(0)
42
43#define INT_STS			0x4
44#define INT_STS_EN		0x8
45#define INT_SIG_EN		0xc
46#define INT_STS_ALL		GENMASK(31, 0)
47#define INT_RDY_PIN		BIT(26)
48#define INT_RDY_SR		BIT(25)
49#define INT_LNR_SUSP		BIT(24)
50#define INT_ECC_ERR		BIT(17)
51#define INT_CRC_ERR		BIT(16)
52#define INT_LWR_DIS		BIT(12)
53#define INT_LRD_DIS		BIT(11)
54#define INT_SDMA_INT		BIT(10)
55#define INT_DMA_FINISH		BIT(9)
56#define INT_RX_NOT_FULL		BIT(3)
57#define INT_RX_NOT_EMPTY	BIT(2)
58#define INT_TX_NOT_FULL		BIT(1)
59#define INT_TX_EMPTY		BIT(0)
60
61#define HC_EN			0x10
62#define HC_EN_BIT		BIT(0)
63
64#define TXD(x)			(0x14 + ((x) * 4))
65#define RXD			0x24
66
67#define SS_CTRL(s)		(0x30 + ((s) * 4))
68#define LRD_CFG			0x44
69#define LWR_CFG			0x80
70#define RWW_CFG			0x70
71#define OP_READ			BIT(23)
72#define OP_DUMMY_CYC(x)		((x) << 17)
73#define OP_ADDR_BYTES(x)	((x) << 14)
74#define OP_CMD_BYTES(x)		(((x) - 1) << 13)
75#define OP_OCTA_CRC_EN		BIT(12)
76#define OP_DQS_EN		BIT(11)
77#define OP_ENHC_EN		BIT(10)
78#define OP_PREAMBLE_EN		BIT(9)
79#define OP_DATA_DDR		BIT(8)
80#define OP_DATA_BUSW(x)		((x) << 6)
81#define OP_ADDR_DDR		BIT(5)
82#define OP_ADDR_BUSW(x)		((x) << 3)
83#define OP_CMD_DDR		BIT(2)
84#define OP_CMD_BUSW(x)		(x)
85#define OP_BUSW_1		0
86#define OP_BUSW_2		1
87#define OP_BUSW_4		2
88#define OP_BUSW_8		3
89
90#define OCTA_CRC		0x38
91#define OCTA_CRC_IN_EN(s)	BIT(3 + ((s) * 16))
92#define OCTA_CRC_CHUNK(s, x)	((fls((x) / 32)) << (1 + ((s) * 16)))
93#define OCTA_CRC_OUT_EN(s)	BIT(0 + ((s) * 16))
94
95#define ONFI_DIN_CNT(s)		(0x3c + (s))
96
97#define LRD_CTRL		0x48
98#define RWW_CTRL		0x74
99#define LWR_CTRL		0x84
100#define LMODE_EN		BIT(31)
101#define LMODE_SLV_ACT(x)	((x) << 21)
102#define LMODE_CMD1(x)		((x) << 8)
103#define LMODE_CMD0(x)		(x)
104
105#define LRD_ADDR		0x4c
106#define LWR_ADDR		0x88
107#define LRD_RANGE		0x50
108#define LWR_RANGE		0x8c
109
110#define AXI_SLV_ADDR		0x54
111
112#define DMAC_RD_CFG		0x58
113#define DMAC_WR_CFG		0x94
114#define DMAC_CFG_PERIPH_EN	BIT(31)
115#define DMAC_CFG_ALLFLUSH_EN	BIT(30)
116#define DMAC_CFG_LASTFLUSH_EN	BIT(29)
117#define DMAC_CFG_QE(x)		(((x) + 1) << 16)
118#define DMAC_CFG_BURST_LEN(x)	(((x) + 1) << 12)
119#define DMAC_CFG_BURST_SZ(x)	((x) << 8)
120#define DMAC_CFG_DIR_READ	BIT(1)
121#define DMAC_CFG_START		BIT(0)
122
123#define DMAC_RD_CNT		0x5c
124#define DMAC_WR_CNT		0x98
125
126#define SDMA_ADDR		0x60
127
128#define DMAM_CFG		0x64
129#define DMAM_CFG_START		BIT(31)
130#define DMAM_CFG_CONT		BIT(30)
131#define DMAM_CFG_SDMA_GAP(x)	(fls((x) / 8192) << 2)
132#define DMAM_CFG_DIR_READ	BIT(1)
133#define DMAM_CFG_EN		BIT(0)
134
135#define DMAM_CNT		0x68
136
137#define LNR_TIMER_TH		0x6c
138
139#define RDM_CFG0		0x78
140#define RDM_CFG0_POLY(x)	(x)
141
142#define RDM_CFG1		0x7c
143#define RDM_CFG1_RDM_EN		BIT(31)
144#define RDM_CFG1_SEED(x)	(x)
145
146#define LWR_SUSP_CTRL		0x90
147#define LWR_SUSP_CTRL_EN	BIT(31)
148
149#define DMAS_CTRL		0x9c
150#define DMAS_CTRL_EN		BIT(31)
151#define DMAS_CTRL_DIR_READ	BIT(30)
152
153#define DATA_STROB		0xa0
154#define DATA_STROB_EDO_EN	BIT(2)
155#define DATA_STROB_INV_POL	BIT(1)
156#define DATA_STROB_DELAY_2CYC	BIT(0)
157
158#define IDLY_CODE(x)		(0xa4 + ((x) * 4))
159#define IDLY_CODE_VAL(x, v)	((v) << (((x) % 4) * 8))
160
161#define GPIO			0xc4
162#define GPIO_PT(x)		BIT(3 + ((x) * 16))
163#define GPIO_RESET(x)		BIT(2 + ((x) * 16))
164#define GPIO_HOLDB(x)		BIT(1 + ((x) * 16))
165#define GPIO_WPB(x)		BIT((x) * 16)
166
167#define HC_VER			0xd0
168
169#define HW_TEST(x)		(0xe0 + ((x) * 4))
170
171struct mxic_spi {
172	struct device *dev;
173	struct clk *ps_clk;
174	struct clk *send_clk;
175	struct clk *send_dly_clk;
176	void __iomem *regs;
177	u32 cur_speed_hz;
178	struct {
179		void __iomem *map;
180		dma_addr_t dma;
181		size_t size;
182	} linear;
183
184	struct {
185		bool use_pipelined_conf;
186		struct nand_ecc_engine *pipelined_engine;
187		void *ctx;
188	} ecc;
189};
190
191static int mxic_spi_clk_enable(struct mxic_spi *mxic)
192{
193	int ret;
194
195	ret = clk_prepare_enable(mxic->send_clk);
196	if (ret)
197		return ret;
198
199	ret = clk_prepare_enable(mxic->send_dly_clk);
200	if (ret)
201		goto err_send_dly_clk;
202
203	return ret;
204
205err_send_dly_clk:
206	clk_disable_unprepare(mxic->send_clk);
207
208	return ret;
209}
210
211static void mxic_spi_clk_disable(struct mxic_spi *mxic)
212{
213	clk_disable_unprepare(mxic->send_clk);
214	clk_disable_unprepare(mxic->send_dly_clk);
215}
216
217static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code)
218{
219	writel(IDLY_CODE_VAL(0, idly_code) |
220	       IDLY_CODE_VAL(1, idly_code) |
221	       IDLY_CODE_VAL(2, idly_code) |
222	       IDLY_CODE_VAL(3, idly_code),
223	       mxic->regs + IDLY_CODE(0));
224	writel(IDLY_CODE_VAL(4, idly_code) |
225	       IDLY_CODE_VAL(5, idly_code) |
226	       IDLY_CODE_VAL(6, idly_code) |
227	       IDLY_CODE_VAL(7, idly_code),
228	       mxic->regs + IDLY_CODE(1));
229}
230
231static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq)
232{
233	int ret;
234
235	ret = clk_set_rate(mxic->send_clk, freq);
236	if (ret)
237		return ret;
238
239	ret = clk_set_rate(mxic->send_dly_clk, freq);
240	if (ret)
241		return ret;
242
243	/*
244	 * A constant delay range from 0x0 ~ 0x1F for input delay,
245	 * the unit is 78 ps, the max input delay is 2.418 ns.
246	 */
247	mxic_spi_set_input_delay_dqs(mxic, 0xf);
248
249	/*
250	 * Phase degree = 360 * freq * output-delay
251	 * where output-delay is a constant value 1 ns in FPGA.
252	 *
253	 * Get Phase degree = 360 * freq * 1 ns
254	 *                  = 360 * freq * 1 sec / 1000000000
255	 *                  = 9 * freq / 25000000
256	 */
257	ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000);
258	if (ret)
259		return ret;
260
261	return 0;
262}
263
264static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq)
265{
266	int ret;
267
268	if (mxic->cur_speed_hz == freq)
269		return 0;
270
271	mxic_spi_clk_disable(mxic);
272	ret = mxic_spi_clk_setup(mxic, freq);
273	if (ret)
274		return ret;
275
276	ret = mxic_spi_clk_enable(mxic);
277	if (ret)
278		return ret;
279
280	mxic->cur_speed_hz = freq;
281
282	return 0;
283}
284
285static void mxic_spi_hw_init(struct mxic_spi *mxic)
286{
287	writel(0, mxic->regs + DATA_STROB);
288	writel(INT_STS_ALL, mxic->regs + INT_STS_EN);
289	writel(0, mxic->regs + HC_EN);
290	writel(0, mxic->regs + LRD_CFG);
291	writel(0, mxic->regs + LRD_CTRL);
292	writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NOR) |
293	       HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1),
294	       mxic->regs + HC_CFG);
295}
296
297static u32 mxic_spi_prep_hc_cfg(struct spi_device *spi, u32 flags)
298{
299	int nio = 1;
300
301	if (spi->mode & (SPI_TX_OCTAL | SPI_RX_OCTAL))
302		nio = 8;
303	else if (spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD))
304		nio = 4;
305	else if (spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL))
306		nio = 2;
307
308	return flags | HC_CFG_NIO(nio) |
309	       HC_CFG_TYPE(spi_get_chipselect(spi, 0), HC_CFG_TYPE_SPI_NOR) |
310	       HC_CFG_SLV_ACT(spi_get_chipselect(spi, 0)) | HC_CFG_IDLE_SIO_LVL(1);
311}
312
313static u32 mxic_spi_mem_prep_op_cfg(const struct spi_mem_op *op,
314				    unsigned int data_len)
315{
316	u32 cfg = OP_CMD_BYTES(op->cmd.nbytes) |
317		  OP_CMD_BUSW(fls(op->cmd.buswidth) - 1) |
318		  (op->cmd.dtr ? OP_CMD_DDR : 0);
319
320	if (op->addr.nbytes)
321		cfg |= OP_ADDR_BYTES(op->addr.nbytes) |
322		       OP_ADDR_BUSW(fls(op->addr.buswidth) - 1) |
323		       (op->addr.dtr ? OP_ADDR_DDR : 0);
324
325	if (op->dummy.nbytes)
326		cfg |= OP_DUMMY_CYC(op->dummy.nbytes);
327
328	/* Direct mapping data.nbytes field is not populated */
329	if (data_len) {
330		cfg |= OP_DATA_BUSW(fls(op->data.buswidth) - 1) |
331		       (op->data.dtr ? OP_DATA_DDR : 0);
332		if (op->data.dir == SPI_MEM_DATA_IN) {
333			cfg |= OP_READ;
334			if (op->data.dtr)
335				cfg |= OP_DQS_EN;
336		}
337	}
338
339	return cfg;
340}
341
342static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf,
343			      void *rxbuf, unsigned int len)
344{
345	unsigned int pos = 0;
346
347	while (pos < len) {
348		unsigned int nbytes = len - pos;
349		u32 data = 0xffffffff;
350		u32 sts;
351		int ret;
352
353		if (nbytes > 4)
354			nbytes = 4;
355
356		if (txbuf)
357			memcpy(&data, txbuf + pos, nbytes);
358
359		ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
360					 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
361		if (ret)
362			return ret;
363
364		writel(data, mxic->regs + TXD(nbytes % 4));
365
366		ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
367					 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
368		if (ret)
369			return ret;
370
371		ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
372					 sts & INT_RX_NOT_EMPTY, 0,
373					 USEC_PER_SEC);
374		if (ret)
375			return ret;
376
377		data = readl(mxic->regs + RXD);
378		if (rxbuf) {
379			data >>= (8 * (4 - nbytes));
380			memcpy(rxbuf + pos, &data, nbytes);
381		}
382		WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
383
384		pos += nbytes;
385	}
386
387	return 0;
388}
389
390static ssize_t mxic_spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
391					u64 offs, size_t len, void *buf)
392{
393	struct mxic_spi *mxic = spi_controller_get_devdata(desc->mem->spi->controller);
394	int ret;
395	u32 sts;
396
397	if (WARN_ON(offs + desc->info.offset + len > U32_MAX))
398		return -EINVAL;
399
400	writel(mxic_spi_prep_hc_cfg(desc->mem->spi, 0), mxic->regs + HC_CFG);
401
402	writel(mxic_spi_mem_prep_op_cfg(&desc->info.op_tmpl, len),
403	       mxic->regs + LRD_CFG);
404	writel(desc->info.offset + offs, mxic->regs + LRD_ADDR);
405	len = min_t(size_t, len, mxic->linear.size);
406	writel(len, mxic->regs + LRD_RANGE);
407	writel(LMODE_CMD0(desc->info.op_tmpl.cmd.opcode) |
408	       LMODE_SLV_ACT(spi_get_chipselect(desc->mem->spi, 0)) |
409	       LMODE_EN,
410	       mxic->regs + LRD_CTRL);
411
412	if (mxic->ecc.use_pipelined_conf && desc->info.op_tmpl.data.ecc) {
413		ret = mxic_ecc_process_data_pipelined(mxic->ecc.pipelined_engine,
414						      NAND_PAGE_READ,
415						      mxic->linear.dma + offs);
416		if (ret)
417			return ret;
418	} else {
419		memcpy_fromio(buf, mxic->linear.map, len);
420	}
421
422	writel(INT_LRD_DIS, mxic->regs + INT_STS);
423	writel(0, mxic->regs + LRD_CTRL);
424
425	ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
426				 sts & INT_LRD_DIS, 0, USEC_PER_SEC);
427	if (ret)
428		return ret;
429
430	return len;
431}
432
433static ssize_t mxic_spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
434					 u64 offs, size_t len,
435					 const void *buf)
436{
437	struct mxic_spi *mxic = spi_controller_get_devdata(desc->mem->spi->controller);
438	u32 sts;
439	int ret;
440
441	if (WARN_ON(offs + desc->info.offset + len > U32_MAX))
442		return -EINVAL;
443
444	writel(mxic_spi_prep_hc_cfg(desc->mem->spi, 0), mxic->regs + HC_CFG);
445
446	writel(mxic_spi_mem_prep_op_cfg(&desc->info.op_tmpl, len),
447	       mxic->regs + LWR_CFG);
448	writel(desc->info.offset + offs, mxic->regs + LWR_ADDR);
449	len = min_t(size_t, len, mxic->linear.size);
450	writel(len, mxic->regs + LWR_RANGE);
451	writel(LMODE_CMD0(desc->info.op_tmpl.cmd.opcode) |
452	       LMODE_SLV_ACT(spi_get_chipselect(desc->mem->spi, 0)) |
453	       LMODE_EN,
454	       mxic->regs + LWR_CTRL);
455
456	if (mxic->ecc.use_pipelined_conf && desc->info.op_tmpl.data.ecc) {
457		ret = mxic_ecc_process_data_pipelined(mxic->ecc.pipelined_engine,
458						      NAND_PAGE_WRITE,
459						      mxic->linear.dma + offs);
460		if (ret)
461			return ret;
462	} else {
463		memcpy_toio(mxic->linear.map, buf, len);
464	}
465
466	writel(INT_LWR_DIS, mxic->regs + INT_STS);
467	writel(0, mxic->regs + LWR_CTRL);
468
469	ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
470				 sts & INT_LWR_DIS, 0, USEC_PER_SEC);
471	if (ret)
472		return ret;
473
474	return len;
475}
476
477static bool mxic_spi_mem_supports_op(struct spi_mem *mem,
478				     const struct spi_mem_op *op)
479{
480	if (op->data.buswidth > 8 || op->addr.buswidth > 8 ||
481	    op->dummy.buswidth > 8 || op->cmd.buswidth > 8)
482		return false;
483
484	if (op->data.nbytes && op->dummy.nbytes &&
485	    op->data.buswidth != op->dummy.buswidth)
486		return false;
487
488	if (op->addr.nbytes > 7)
489		return false;
490
491	return spi_mem_default_supports_op(mem, op);
492}
493
494static int mxic_spi_mem_dirmap_create(struct spi_mem_dirmap_desc *desc)
495{
496	struct mxic_spi *mxic = spi_controller_get_devdata(desc->mem->spi->controller);
497
498	if (!mxic->linear.map)
499		return -EINVAL;
500
501	if (desc->info.offset + desc->info.length > U32_MAX)
502		return -EINVAL;
503
504	if (!mxic_spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
505		return -EOPNOTSUPP;
506
507	return 0;
508}
509
510static int mxic_spi_mem_exec_op(struct spi_mem *mem,
511				const struct spi_mem_op *op)
512{
513	struct mxic_spi *mxic = spi_controller_get_devdata(mem->spi->controller);
514	int i, ret;
515	u8 addr[8], cmd[2];
516
517	ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz);
518	if (ret)
519		return ret;
520
521	writel(mxic_spi_prep_hc_cfg(mem->spi, HC_CFG_MAN_CS_EN),
522	       mxic->regs + HC_CFG);
523
524	writel(HC_EN_BIT, mxic->regs + HC_EN);
525
526	writel(mxic_spi_mem_prep_op_cfg(op, op->data.nbytes),
527	       mxic->regs + SS_CTRL(spi_get_chipselect(mem->spi, 0)));
528
529	writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
530	       mxic->regs + HC_CFG);
531
532	for (i = 0; i < op->cmd.nbytes; i++)
533		cmd[i] = op->cmd.opcode >> (8 * (op->cmd.nbytes - i - 1));
534
535	ret = mxic_spi_data_xfer(mxic, cmd, NULL, op->cmd.nbytes);
536	if (ret)
537		goto out;
538
539	for (i = 0; i < op->addr.nbytes; i++)
540		addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
541
542	ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes);
543	if (ret)
544		goto out;
545
546	ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes);
547	if (ret)
548		goto out;
549
550	ret = mxic_spi_data_xfer(mxic,
551				 op->data.dir == SPI_MEM_DATA_OUT ?
552				 op->data.buf.out : NULL,
553				 op->data.dir == SPI_MEM_DATA_IN ?
554				 op->data.buf.in : NULL,
555				 op->data.nbytes);
556
557out:
558	writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
559	       mxic->regs + HC_CFG);
560	writel(0, mxic->regs + HC_EN);
561
562	return ret;
563}
564
565static const struct spi_controller_mem_ops mxic_spi_mem_ops = {
566	.supports_op = mxic_spi_mem_supports_op,
567	.exec_op = mxic_spi_mem_exec_op,
568	.dirmap_create = mxic_spi_mem_dirmap_create,
569	.dirmap_read = mxic_spi_mem_dirmap_read,
570	.dirmap_write = mxic_spi_mem_dirmap_write,
571};
572
573static const struct spi_controller_mem_caps mxic_spi_mem_caps = {
574	.dtr = true,
575	.ecc = true,
576};
577
578static void mxic_spi_set_cs(struct spi_device *spi, bool lvl)
579{
580	struct mxic_spi *mxic = spi_controller_get_devdata(spi->controller);
581
582	if (!lvl) {
583		writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
584		       mxic->regs + HC_CFG);
585		writel(HC_EN_BIT, mxic->regs + HC_EN);
586		writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
587		       mxic->regs + HC_CFG);
588	} else {
589		writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
590		       mxic->regs + HC_CFG);
591		writel(0, mxic->regs + HC_EN);
592	}
593}
594
595static int mxic_spi_transfer_one(struct spi_controller *host,
596				 struct spi_device *spi,
597				 struct spi_transfer *t)
598{
599	struct mxic_spi *mxic = spi_controller_get_devdata(host);
600	unsigned int busw = OP_BUSW_1;
601	int ret;
602
603	if (t->rx_buf && t->tx_buf) {
604		if (((spi->mode & SPI_TX_QUAD) &&
605		     !(spi->mode & SPI_RX_QUAD)) ||
606		    ((spi->mode & SPI_TX_DUAL) &&
607		     !(spi->mode & SPI_RX_DUAL)))
608			return -ENOTSUPP;
609	}
610
611	ret = mxic_spi_set_freq(mxic, t->speed_hz);
612	if (ret)
613		return ret;
614
615	if (t->tx_buf) {
616		if (spi->mode & SPI_TX_QUAD)
617			busw = OP_BUSW_4;
618		else if (spi->mode & SPI_TX_DUAL)
619			busw = OP_BUSW_2;
620	} else if (t->rx_buf) {
621		if (spi->mode & SPI_RX_QUAD)
622			busw = OP_BUSW_4;
623		else if (spi->mode & SPI_RX_DUAL)
624			busw = OP_BUSW_2;
625	}
626
627	writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) |
628	       OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0),
629	       mxic->regs + SS_CTRL(0));
630
631	ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len);
632	if (ret)
633		return ret;
634
635	spi_finalize_current_transfer(host);
636
637	return 0;
638}
639
640/* ECC wrapper */
641static int mxic_spi_mem_ecc_init_ctx(struct nand_device *nand)
642{
643	struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops();
644	struct mxic_spi *mxic = nand->ecc.engine->priv;
645
646	mxic->ecc.use_pipelined_conf = true;
647
648	return ops->init_ctx(nand);
649}
650
651static void mxic_spi_mem_ecc_cleanup_ctx(struct nand_device *nand)
652{
653	struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops();
654	struct mxic_spi *mxic = nand->ecc.engine->priv;
655
656	mxic->ecc.use_pipelined_conf = false;
657
658	ops->cleanup_ctx(nand);
659}
660
661static int mxic_spi_mem_ecc_prepare_io_req(struct nand_device *nand,
662					   struct nand_page_io_req *req)
663{
664	struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops();
665
666	return ops->prepare_io_req(nand, req);
667}
668
669static int mxic_spi_mem_ecc_finish_io_req(struct nand_device *nand,
670					  struct nand_page_io_req *req)
671{
672	struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops();
673
674	return ops->finish_io_req(nand, req);
675}
676
677static struct nand_ecc_engine_ops mxic_spi_mem_ecc_engine_pipelined_ops = {
678	.init_ctx = mxic_spi_mem_ecc_init_ctx,
679	.cleanup_ctx = mxic_spi_mem_ecc_cleanup_ctx,
680	.prepare_io_req = mxic_spi_mem_ecc_prepare_io_req,
681	.finish_io_req = mxic_spi_mem_ecc_finish_io_req,
682};
683
684static void mxic_spi_mem_ecc_remove(struct mxic_spi *mxic)
685{
686	if (mxic->ecc.pipelined_engine) {
687		mxic_ecc_put_pipelined_engine(mxic->ecc.pipelined_engine);
688		nand_ecc_unregister_on_host_hw_engine(mxic->ecc.pipelined_engine);
689	}
690}
691
692static int mxic_spi_mem_ecc_probe(struct platform_device *pdev,
693				  struct mxic_spi *mxic)
694{
695	struct nand_ecc_engine *eng;
696
697	if (!mxic_ecc_get_pipelined_ops())
698		return -EOPNOTSUPP;
699
700	eng = mxic_ecc_get_pipelined_engine(pdev);
701	if (IS_ERR(eng))
702		return PTR_ERR(eng);
703
704	eng->dev = &pdev->dev;
705	eng->integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
706	eng->ops = &mxic_spi_mem_ecc_engine_pipelined_ops;
707	eng->priv = mxic;
708	mxic->ecc.pipelined_engine = eng;
709	nand_ecc_register_on_host_hw_engine(eng);
710
711	return 0;
712}
713
714static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev)
715{
716	struct spi_controller *host = dev_get_drvdata(dev);
717	struct mxic_spi *mxic = spi_controller_get_devdata(host);
718
719	mxic_spi_clk_disable(mxic);
720	clk_disable_unprepare(mxic->ps_clk);
721
722	return 0;
723}
724
725static int __maybe_unused mxic_spi_runtime_resume(struct device *dev)
726{
727	struct spi_controller *host = dev_get_drvdata(dev);
728	struct mxic_spi *mxic = spi_controller_get_devdata(host);
729	int ret;
730
731	ret = clk_prepare_enable(mxic->ps_clk);
732	if (ret) {
733		dev_err(dev, "Cannot enable ps_clock.\n");
734		return ret;
735	}
736
737	return mxic_spi_clk_enable(mxic);
738}
739
740static const struct dev_pm_ops mxic_spi_dev_pm_ops = {
741	SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend,
742			   mxic_spi_runtime_resume, NULL)
743};
744
745static int mxic_spi_probe(struct platform_device *pdev)
746{
747	struct spi_controller *host;
748	struct resource *res;
749	struct mxic_spi *mxic;
750	int ret;
751
752	host = devm_spi_alloc_host(&pdev->dev, sizeof(struct mxic_spi));
753	if (!host)
754		return -ENOMEM;
755
756	platform_set_drvdata(pdev, host);
757
758	mxic = spi_controller_get_devdata(host);
759	mxic->dev = &pdev->dev;
760
761	host->dev.of_node = pdev->dev.of_node;
762
763	mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk");
764	if (IS_ERR(mxic->ps_clk))
765		return PTR_ERR(mxic->ps_clk);
766
767	mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk");
768	if (IS_ERR(mxic->send_clk))
769		return PTR_ERR(mxic->send_clk);
770
771	mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk");
772	if (IS_ERR(mxic->send_dly_clk))
773		return PTR_ERR(mxic->send_dly_clk);
774
775	mxic->regs = devm_platform_ioremap_resource_byname(pdev, "regs");
776	if (IS_ERR(mxic->regs))
777		return PTR_ERR(mxic->regs);
778
779	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dirmap");
780	mxic->linear.map = devm_ioremap_resource(&pdev->dev, res);
781	if (!IS_ERR(mxic->linear.map)) {
782		mxic->linear.dma = res->start;
783		mxic->linear.size = resource_size(res);
784	} else {
785		mxic->linear.map = NULL;
786	}
787
788	pm_runtime_enable(&pdev->dev);
789	host->auto_runtime_pm = true;
790
791	host->num_chipselect = 1;
792	host->mem_ops = &mxic_spi_mem_ops;
793	host->mem_caps = &mxic_spi_mem_caps;
794
795	host->set_cs = mxic_spi_set_cs;
796	host->transfer_one = mxic_spi_transfer_one;
797	host->bits_per_word_mask = SPI_BPW_MASK(8);
798	host->mode_bits = SPI_CPOL | SPI_CPHA |
799			  SPI_RX_DUAL | SPI_TX_DUAL |
800			  SPI_RX_QUAD | SPI_TX_QUAD |
801			  SPI_RX_OCTAL | SPI_TX_OCTAL;
802
803	mxic_spi_hw_init(mxic);
804
805	ret = mxic_spi_mem_ecc_probe(pdev, mxic);
806	if (ret == -EPROBE_DEFER) {
807		pm_runtime_disable(&pdev->dev);
808		return ret;
809	}
810
811	ret = spi_register_controller(host);
812	if (ret) {
813		dev_err(&pdev->dev, "spi_register_controller failed\n");
814		pm_runtime_disable(&pdev->dev);
815		mxic_spi_mem_ecc_remove(mxic);
816	}
817
818	return ret;
819}
820
821static void mxic_spi_remove(struct platform_device *pdev)
822{
823	struct spi_controller *host = platform_get_drvdata(pdev);
824	struct mxic_spi *mxic = spi_controller_get_devdata(host);
825
826	pm_runtime_disable(&pdev->dev);
827	mxic_spi_mem_ecc_remove(mxic);
828	spi_unregister_controller(host);
829}
830
831static const struct of_device_id mxic_spi_of_ids[] = {
832	{ .compatible = "mxicy,mx25f0a-spi", },
833	{ /* sentinel */ }
834};
835MODULE_DEVICE_TABLE(of, mxic_spi_of_ids);
836
837static struct platform_driver mxic_spi_driver = {
838	.probe = mxic_spi_probe,
839	.remove_new = mxic_spi_remove,
840	.driver = {
841		.name = "mxic-spi",
842		.of_match_table = mxic_spi_of_ids,
843		.pm = &mxic_spi_dev_pm_ops,
844	},
845};
846module_platform_driver(mxic_spi_driver);
847
848MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
849MODULE_DESCRIPTION("MX25F0A SPI controller driver");
850MODULE_LICENSE("GPL v2");
851