1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2011-2015 Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
4 * Copyright (C) 2016 Hauke Mehrtens <hauke@hauke-m.de>
5 */
6
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/of.h>
10#include <linux/platform_device.h>
11#include <linux/clk.h>
12#include <linux/io.h>
13#include <linux/delay.h>
14#include <linux/interrupt.h>
15#include <linux/sched.h>
16#include <linux/completion.h>
17#include <linux/spinlock.h>
18#include <linux/err.h>
19#include <linux/pm_runtime.h>
20#include <linux/spi/spi.h>
21
22#ifdef CONFIG_LANTIQ
23#include <lantiq_soc.h>
24#endif
25
26#define LTQ_SPI_RX_IRQ_NAME	"spi_rx"
27#define LTQ_SPI_TX_IRQ_NAME	"spi_tx"
28#define LTQ_SPI_ERR_IRQ_NAME	"spi_err"
29#define LTQ_SPI_FRM_IRQ_NAME	"spi_frm"
30
31#define LTQ_SPI_CLC		0x00
32#define LTQ_SPI_PISEL		0x04
33#define LTQ_SPI_ID		0x08
34#define LTQ_SPI_CON		0x10
35#define LTQ_SPI_STAT		0x14
36#define LTQ_SPI_WHBSTATE	0x18
37#define LTQ_SPI_TB		0x20
38#define LTQ_SPI_RB		0x24
39#define LTQ_SPI_RXFCON		0x30
40#define LTQ_SPI_TXFCON		0x34
41#define LTQ_SPI_FSTAT		0x38
42#define LTQ_SPI_BRT		0x40
43#define LTQ_SPI_BRSTAT		0x44
44#define LTQ_SPI_SFCON		0x60
45#define LTQ_SPI_SFSTAT		0x64
46#define LTQ_SPI_GPOCON		0x70
47#define LTQ_SPI_GPOSTAT		0x74
48#define LTQ_SPI_FPGO		0x78
49#define LTQ_SPI_RXREQ		0x80
50#define LTQ_SPI_RXCNT		0x84
51#define LTQ_SPI_DMACON		0xec
52#define LTQ_SPI_IRNEN		0xf4
53
54#define LTQ_SPI_CLC_SMC_S	16	/* Clock divider for sleep mode */
55#define LTQ_SPI_CLC_SMC_M	(0xFF << LTQ_SPI_CLC_SMC_S)
56#define LTQ_SPI_CLC_RMC_S	8	/* Clock divider for normal run mode */
57#define LTQ_SPI_CLC_RMC_M	(0xFF << LTQ_SPI_CLC_RMC_S)
58#define LTQ_SPI_CLC_DISS	BIT(1)	/* Disable status bit */
59#define LTQ_SPI_CLC_DISR	BIT(0)	/* Disable request bit */
60
61#define LTQ_SPI_ID_TXFS_S	24	/* Implemented TX FIFO size */
62#define LTQ_SPI_ID_RXFS_S	16	/* Implemented RX FIFO size */
63#define LTQ_SPI_ID_MOD_S	8	/* Module ID */
64#define LTQ_SPI_ID_MOD_M	(0xff << LTQ_SPI_ID_MOD_S)
65#define LTQ_SPI_ID_CFG_S	5	/* DMA interface support */
66#define LTQ_SPI_ID_CFG_M	(1 << LTQ_SPI_ID_CFG_S)
67#define LTQ_SPI_ID_REV_M	0x1F	/* Hardware revision number */
68
69#define LTQ_SPI_CON_BM_S	16	/* Data width selection */
70#define LTQ_SPI_CON_BM_M	(0x1F << LTQ_SPI_CON_BM_S)
71#define LTQ_SPI_CON_EM		BIT(24)	/* Echo mode */
72#define LTQ_SPI_CON_IDLE	BIT(23)	/* Idle bit value */
73#define LTQ_SPI_CON_ENBV	BIT(22)	/* Enable byte valid control */
74#define LTQ_SPI_CON_RUEN	BIT(12)	/* Receive underflow error enable */
75#define LTQ_SPI_CON_TUEN	BIT(11)	/* Transmit underflow error enable */
76#define LTQ_SPI_CON_AEN		BIT(10)	/* Abort error enable */
77#define LTQ_SPI_CON_REN		BIT(9)	/* Receive overflow error enable */
78#define LTQ_SPI_CON_TEN		BIT(8)	/* Transmit overflow error enable */
79#define LTQ_SPI_CON_LB		BIT(7)	/* Loopback control */
80#define LTQ_SPI_CON_PO		BIT(6)	/* Clock polarity control */
81#define LTQ_SPI_CON_PH		BIT(5)	/* Clock phase control */
82#define LTQ_SPI_CON_HB		BIT(4)	/* Heading control */
83#define LTQ_SPI_CON_RXOFF	BIT(1)	/* Switch receiver off */
84#define LTQ_SPI_CON_TXOFF	BIT(0)	/* Switch transmitter off */
85
86#define LTQ_SPI_STAT_RXBV_S	28
87#define LTQ_SPI_STAT_RXBV_M	(0x7 << LTQ_SPI_STAT_RXBV_S)
88#define LTQ_SPI_STAT_BSY	BIT(13)	/* Busy flag */
89#define LTQ_SPI_STAT_RUE	BIT(12)	/* Receive underflow error flag */
90#define LTQ_SPI_STAT_TUE	BIT(11)	/* Transmit underflow error flag */
91#define LTQ_SPI_STAT_AE		BIT(10)	/* Abort error flag */
92#define LTQ_SPI_STAT_RE		BIT(9)	/* Receive error flag */
93#define LTQ_SPI_STAT_TE		BIT(8)	/* Transmit error flag */
94#define LTQ_SPI_STAT_ME		BIT(7)	/* Mode error flag */
95#define LTQ_SPI_STAT_MS		BIT(1)	/* Host/target select bit */
96#define LTQ_SPI_STAT_EN		BIT(0)	/* Enable bit */
97#define LTQ_SPI_STAT_ERRORS	(LTQ_SPI_STAT_ME | LTQ_SPI_STAT_TE | \
98				 LTQ_SPI_STAT_RE | LTQ_SPI_STAT_AE | \
99				 LTQ_SPI_STAT_TUE | LTQ_SPI_STAT_RUE)
100
101#define LTQ_SPI_WHBSTATE_SETTUE	BIT(15)	/* Set transmit underflow error flag */
102#define LTQ_SPI_WHBSTATE_SETAE	BIT(14)	/* Set abort error flag */
103#define LTQ_SPI_WHBSTATE_SETRE	BIT(13)	/* Set receive error flag */
104#define LTQ_SPI_WHBSTATE_SETTE	BIT(12)	/* Set transmit error flag */
105#define LTQ_SPI_WHBSTATE_CLRTUE	BIT(11)	/* Clear transmit underflow error flag */
106#define LTQ_SPI_WHBSTATE_CLRAE	BIT(10)	/* Clear abort error flag */
107#define LTQ_SPI_WHBSTATE_CLRRE	BIT(9)	/* Clear receive error flag */
108#define LTQ_SPI_WHBSTATE_CLRTE	BIT(8)	/* Clear transmit error flag */
109#define LTQ_SPI_WHBSTATE_SETME	BIT(7)	/* Set mode error flag */
110#define LTQ_SPI_WHBSTATE_CLRME	BIT(6)	/* Clear mode error flag */
111#define LTQ_SPI_WHBSTATE_SETRUE	BIT(5)	/* Set receive underflow error flag */
112#define LTQ_SPI_WHBSTATE_CLRRUE	BIT(4)	/* Clear receive underflow error flag */
113#define LTQ_SPI_WHBSTATE_SETMS	BIT(3)	/* Set host select bit */
114#define LTQ_SPI_WHBSTATE_CLRMS	BIT(2)	/* Clear host select bit */
115#define LTQ_SPI_WHBSTATE_SETEN	BIT(1)	/* Set enable bit (operational mode) */
116#define LTQ_SPI_WHBSTATE_CLREN	BIT(0)	/* Clear enable bit (config mode */
117#define LTQ_SPI_WHBSTATE_CLR_ERRORS	(LTQ_SPI_WHBSTATE_CLRRUE | \
118					 LTQ_SPI_WHBSTATE_CLRME | \
119					 LTQ_SPI_WHBSTATE_CLRTE | \
120					 LTQ_SPI_WHBSTATE_CLRRE | \
121					 LTQ_SPI_WHBSTATE_CLRAE | \
122					 LTQ_SPI_WHBSTATE_CLRTUE)
123
124#define LTQ_SPI_RXFCON_RXFITL_S	8	/* FIFO interrupt trigger level */
125#define LTQ_SPI_RXFCON_RXFLU	BIT(1)	/* FIFO flush */
126#define LTQ_SPI_RXFCON_RXFEN	BIT(0)	/* FIFO enable */
127
128#define LTQ_SPI_TXFCON_TXFITL_S	8	/* FIFO interrupt trigger level */
129#define LTQ_SPI_TXFCON_TXFLU	BIT(1)	/* FIFO flush */
130#define LTQ_SPI_TXFCON_TXFEN	BIT(0)	/* FIFO enable */
131
132#define LTQ_SPI_FSTAT_RXFFL_S	0
133#define LTQ_SPI_FSTAT_TXFFL_S	8
134
135#define LTQ_SPI_GPOCON_ISCSBN_S	8
136#define LTQ_SPI_GPOCON_INVOUTN_S	0
137
138#define LTQ_SPI_FGPO_SETOUTN_S	8
139#define LTQ_SPI_FGPO_CLROUTN_S	0
140
141#define LTQ_SPI_RXREQ_RXCNT_M	0xFFFF	/* Receive count value */
142#define LTQ_SPI_RXCNT_TODO_M	0xFFFF	/* Recevie to-do value */
143
144#define LTQ_SPI_IRNEN_TFI	BIT(4)	/* TX finished interrupt */
145#define LTQ_SPI_IRNEN_F		BIT(3)	/* Frame end interrupt request */
146#define LTQ_SPI_IRNEN_E		BIT(2)	/* Error end interrupt request */
147#define LTQ_SPI_IRNEN_T_XWAY	BIT(1)	/* Transmit end interrupt request */
148#define LTQ_SPI_IRNEN_R_XWAY	BIT(0)	/* Receive end interrupt request */
149#define LTQ_SPI_IRNEN_R_XRX	BIT(1)	/* Transmit end interrupt request */
150#define LTQ_SPI_IRNEN_T_XRX	BIT(0)	/* Receive end interrupt request */
151#define LTQ_SPI_IRNEN_ALL	0x1F
152
153struct lantiq_ssc_spi;
154
155struct lantiq_ssc_hwcfg {
156	int (*cfg_irq)(struct platform_device *pdev, struct lantiq_ssc_spi *spi);
157	unsigned int	irnen_r;
158	unsigned int	irnen_t;
159	unsigned int	irncr;
160	unsigned int	irnicr;
161	bool		irq_ack;
162	u32		fifo_size_mask;
163};
164
165struct lantiq_ssc_spi {
166	struct spi_controller		*host;
167	struct device			*dev;
168	void __iomem			*regbase;
169	struct clk			*spi_clk;
170	struct clk			*fpi_clk;
171	const struct lantiq_ssc_hwcfg	*hwcfg;
172
173	spinlock_t			lock;
174	struct workqueue_struct		*wq;
175	struct work_struct		work;
176
177	const u8			*tx;
178	u8				*rx;
179	unsigned int			tx_todo;
180	unsigned int			rx_todo;
181	unsigned int			bits_per_word;
182	unsigned int			speed_hz;
183	unsigned int			tx_fifo_size;
184	unsigned int			rx_fifo_size;
185	unsigned int			base_cs;
186	unsigned int			fdx_tx_level;
187};
188
189static u32 lantiq_ssc_readl(const struct lantiq_ssc_spi *spi, u32 reg)
190{
191	return __raw_readl(spi->regbase + reg);
192}
193
194static void lantiq_ssc_writel(const struct lantiq_ssc_spi *spi, u32 val,
195			      u32 reg)
196{
197	__raw_writel(val, spi->regbase + reg);
198}
199
200static void lantiq_ssc_maskl(const struct lantiq_ssc_spi *spi, u32 clr,
201			     u32 set, u32 reg)
202{
203	u32 val = __raw_readl(spi->regbase + reg);
204
205	val &= ~clr;
206	val |= set;
207	__raw_writel(val, spi->regbase + reg);
208}
209
210static unsigned int tx_fifo_level(const struct lantiq_ssc_spi *spi)
211{
212	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
213	u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
214
215	return (fstat >> LTQ_SPI_FSTAT_TXFFL_S) & hwcfg->fifo_size_mask;
216}
217
218static unsigned int rx_fifo_level(const struct lantiq_ssc_spi *spi)
219{
220	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
221	u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
222
223	return (fstat >> LTQ_SPI_FSTAT_RXFFL_S) & hwcfg->fifo_size_mask;
224}
225
226static unsigned int tx_fifo_free(const struct lantiq_ssc_spi *spi)
227{
228	return spi->tx_fifo_size - tx_fifo_level(spi);
229}
230
231static void rx_fifo_reset(const struct lantiq_ssc_spi *spi)
232{
233	u32 val = spi->rx_fifo_size << LTQ_SPI_RXFCON_RXFITL_S;
234
235	val |= LTQ_SPI_RXFCON_RXFEN | LTQ_SPI_RXFCON_RXFLU;
236	lantiq_ssc_writel(spi, val, LTQ_SPI_RXFCON);
237}
238
239static void tx_fifo_reset(const struct lantiq_ssc_spi *spi)
240{
241	u32 val = 1 << LTQ_SPI_TXFCON_TXFITL_S;
242
243	val |= LTQ_SPI_TXFCON_TXFEN | LTQ_SPI_TXFCON_TXFLU;
244	lantiq_ssc_writel(spi, val, LTQ_SPI_TXFCON);
245}
246
247static void rx_fifo_flush(const struct lantiq_ssc_spi *spi)
248{
249	lantiq_ssc_maskl(spi, 0, LTQ_SPI_RXFCON_RXFLU, LTQ_SPI_RXFCON);
250}
251
252static void tx_fifo_flush(const struct lantiq_ssc_spi *spi)
253{
254	lantiq_ssc_maskl(spi, 0, LTQ_SPI_TXFCON_TXFLU, LTQ_SPI_TXFCON);
255}
256
257static void hw_enter_config_mode(const struct lantiq_ssc_spi *spi)
258{
259	lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_CLREN, LTQ_SPI_WHBSTATE);
260}
261
262static void hw_enter_active_mode(const struct lantiq_ssc_spi *spi)
263{
264	lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETEN, LTQ_SPI_WHBSTATE);
265}
266
267static void hw_setup_speed_hz(const struct lantiq_ssc_spi *spi,
268			      unsigned int max_speed_hz)
269{
270	u32 spi_clk, brt;
271
272	/*
273	 * SPI module clock is derived from FPI bus clock dependent on
274	 * divider value in CLC.RMS which is always set to 1.
275	 *
276	 *                 f_SPI
277	 * baudrate = --------------
278	 *             2 * (BR + 1)
279	 */
280	spi_clk = clk_get_rate(spi->fpi_clk) / 2;
281
282	if (max_speed_hz > spi_clk)
283		brt = 0;
284	else
285		brt = spi_clk / max_speed_hz - 1;
286
287	if (brt > 0xFFFF)
288		brt = 0xFFFF;
289
290	dev_dbg(spi->dev, "spi_clk %u, max_speed_hz %u, brt %u\n",
291		spi_clk, max_speed_hz, brt);
292
293	lantiq_ssc_writel(spi, brt, LTQ_SPI_BRT);
294}
295
296static void hw_setup_bits_per_word(const struct lantiq_ssc_spi *spi,
297				   unsigned int bits_per_word)
298{
299	u32 bm;
300
301	/* CON.BM value = bits_per_word - 1 */
302	bm = (bits_per_word - 1) << LTQ_SPI_CON_BM_S;
303
304	lantiq_ssc_maskl(spi, LTQ_SPI_CON_BM_M, bm, LTQ_SPI_CON);
305}
306
307static void hw_setup_clock_mode(const struct lantiq_ssc_spi *spi,
308				unsigned int mode)
309{
310	u32 con_set = 0, con_clr = 0;
311
312	/*
313	 * SPI mode mapping in CON register:
314	 * Mode CPOL CPHA CON.PO CON.PH
315	 *  0    0    0      0      1
316	 *  1    0    1      0      0
317	 *  2    1    0      1      1
318	 *  3    1    1      1      0
319	 */
320	if (mode & SPI_CPHA)
321		con_clr |= LTQ_SPI_CON_PH;
322	else
323		con_set |= LTQ_SPI_CON_PH;
324
325	if (mode & SPI_CPOL)
326		con_set |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
327	else
328		con_clr |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
329
330	/* Set heading control */
331	if (mode & SPI_LSB_FIRST)
332		con_clr |= LTQ_SPI_CON_HB;
333	else
334		con_set |= LTQ_SPI_CON_HB;
335
336	/* Set loopback mode */
337	if (mode & SPI_LOOP)
338		con_set |= LTQ_SPI_CON_LB;
339	else
340		con_clr |= LTQ_SPI_CON_LB;
341
342	lantiq_ssc_maskl(spi, con_clr, con_set, LTQ_SPI_CON);
343}
344
345static void lantiq_ssc_hw_init(const struct lantiq_ssc_spi *spi)
346{
347	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
348
349	/*
350	 * Set clock divider for run mode to 1 to
351	 * run at same frequency as FPI bus
352	 */
353	lantiq_ssc_writel(spi, 1 << LTQ_SPI_CLC_RMC_S, LTQ_SPI_CLC);
354
355	/* Put controller into config mode */
356	hw_enter_config_mode(spi);
357
358	/* Clear error flags */
359	lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
360
361	/* Enable error checking, disable TX/RX */
362	lantiq_ssc_writel(spi, LTQ_SPI_CON_RUEN | LTQ_SPI_CON_AEN |
363		LTQ_SPI_CON_TEN | LTQ_SPI_CON_REN | LTQ_SPI_CON_TXOFF |
364		LTQ_SPI_CON_RXOFF, LTQ_SPI_CON);
365
366	/* Setup default SPI mode */
367	hw_setup_bits_per_word(spi, spi->bits_per_word);
368	hw_setup_clock_mode(spi, SPI_MODE_0);
369
370	/* Enable host mode and clear error flags */
371	lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETMS |
372			       LTQ_SPI_WHBSTATE_CLR_ERRORS,
373			       LTQ_SPI_WHBSTATE);
374
375	/* Reset GPIO/CS registers */
376	lantiq_ssc_writel(spi, 0, LTQ_SPI_GPOCON);
377	lantiq_ssc_writel(spi, 0xFF00, LTQ_SPI_FPGO);
378
379	/* Enable and flush FIFOs */
380	rx_fifo_reset(spi);
381	tx_fifo_reset(spi);
382
383	/* Enable interrupts */
384	lantiq_ssc_writel(spi, hwcfg->irnen_t | hwcfg->irnen_r |
385			  LTQ_SPI_IRNEN_E, LTQ_SPI_IRNEN);
386}
387
388static int lantiq_ssc_setup(struct spi_device *spidev)
389{
390	struct spi_controller *host = spidev->controller;
391	struct lantiq_ssc_spi *spi = spi_controller_get_devdata(host);
392	unsigned int cs = spi_get_chipselect(spidev, 0);
393	u32 gpocon;
394
395	/* GPIOs are used for CS */
396	if (spi_get_csgpiod(spidev, 0))
397		return 0;
398
399	dev_dbg(spi->dev, "using internal chipselect %u\n", cs);
400
401	if (cs < spi->base_cs) {
402		dev_err(spi->dev,
403			"chipselect %i too small (min %i)\n", cs, spi->base_cs);
404		return -EINVAL;
405	}
406
407	/* set GPO pin to CS mode */
408	gpocon = 1 << ((cs - spi->base_cs) + LTQ_SPI_GPOCON_ISCSBN_S);
409
410	/* invert GPO pin */
411	if (spidev->mode & SPI_CS_HIGH)
412		gpocon |= 1 << (cs - spi->base_cs);
413
414	lantiq_ssc_maskl(spi, 0, gpocon, LTQ_SPI_GPOCON);
415
416	return 0;
417}
418
419static int lantiq_ssc_prepare_message(struct spi_controller *host,
420				      struct spi_message *message)
421{
422	struct lantiq_ssc_spi *spi = spi_controller_get_devdata(host);
423
424	hw_enter_config_mode(spi);
425	hw_setup_clock_mode(spi, message->spi->mode);
426	hw_enter_active_mode(spi);
427
428	return 0;
429}
430
431static void hw_setup_transfer(struct lantiq_ssc_spi *spi,
432			      struct spi_device *spidev, struct spi_transfer *t)
433{
434	unsigned int speed_hz = t->speed_hz;
435	unsigned int bits_per_word = t->bits_per_word;
436	u32 con;
437
438	if (bits_per_word != spi->bits_per_word ||
439		speed_hz != spi->speed_hz) {
440		hw_enter_config_mode(spi);
441		hw_setup_speed_hz(spi, speed_hz);
442		hw_setup_bits_per_word(spi, bits_per_word);
443		hw_enter_active_mode(spi);
444
445		spi->speed_hz = speed_hz;
446		spi->bits_per_word = bits_per_word;
447	}
448
449	/* Configure transmitter and receiver */
450	con = lantiq_ssc_readl(spi, LTQ_SPI_CON);
451	if (t->tx_buf)
452		con &= ~LTQ_SPI_CON_TXOFF;
453	else
454		con |= LTQ_SPI_CON_TXOFF;
455
456	if (t->rx_buf)
457		con &= ~LTQ_SPI_CON_RXOFF;
458	else
459		con |= LTQ_SPI_CON_RXOFF;
460
461	lantiq_ssc_writel(spi, con, LTQ_SPI_CON);
462}
463
464static int lantiq_ssc_unprepare_message(struct spi_controller *host,
465					struct spi_message *message)
466{
467	struct lantiq_ssc_spi *spi = spi_controller_get_devdata(host);
468
469	flush_workqueue(spi->wq);
470
471	/* Disable transmitter and receiver while idle */
472	lantiq_ssc_maskl(spi, 0, LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF,
473			 LTQ_SPI_CON);
474
475	return 0;
476}
477
478static void tx_fifo_write(struct lantiq_ssc_spi *spi)
479{
480	const u8 *tx8;
481	const u16 *tx16;
482	const u32 *tx32;
483	u32 data;
484	unsigned int tx_free = tx_fifo_free(spi);
485
486	spi->fdx_tx_level = 0;
487	while (spi->tx_todo && tx_free) {
488		switch (spi->bits_per_word) {
489		case 2 ... 8:
490			tx8 = spi->tx;
491			data = *tx8;
492			spi->tx_todo--;
493			spi->tx++;
494			break;
495		case 16:
496			tx16 = (u16 *) spi->tx;
497			data = *tx16;
498			spi->tx_todo -= 2;
499			spi->tx += 2;
500			break;
501		case 32:
502			tx32 = (u32 *) spi->tx;
503			data = *tx32;
504			spi->tx_todo -= 4;
505			spi->tx += 4;
506			break;
507		default:
508			WARN_ON(1);
509			data = 0;
510			break;
511		}
512
513		lantiq_ssc_writel(spi, data, LTQ_SPI_TB);
514		tx_free--;
515		spi->fdx_tx_level++;
516	}
517}
518
519static void rx_fifo_read_full_duplex(struct lantiq_ssc_spi *spi)
520{
521	u8 *rx8;
522	u16 *rx16;
523	u32 *rx32;
524	u32 data;
525	unsigned int rx_fill = rx_fifo_level(spi);
526
527	/*
528	 * Wait until all expected data to be shifted in.
529	 * Otherwise, rx overrun may occur.
530	 */
531	while (rx_fill != spi->fdx_tx_level)
532		rx_fill = rx_fifo_level(spi);
533
534	while (rx_fill) {
535		data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
536
537		switch (spi->bits_per_word) {
538		case 2 ... 8:
539			rx8 = spi->rx;
540			*rx8 = data;
541			spi->rx_todo--;
542			spi->rx++;
543			break;
544		case 16:
545			rx16 = (u16 *) spi->rx;
546			*rx16 = data;
547			spi->rx_todo -= 2;
548			spi->rx += 2;
549			break;
550		case 32:
551			rx32 = (u32 *) spi->rx;
552			*rx32 = data;
553			spi->rx_todo -= 4;
554			spi->rx += 4;
555			break;
556		default:
557			WARN_ON(1);
558			break;
559		}
560
561		rx_fill--;
562	}
563}
564
565static void rx_fifo_read_half_duplex(struct lantiq_ssc_spi *spi)
566{
567	u32 data, *rx32;
568	u8 *rx8;
569	unsigned int rxbv, shift;
570	unsigned int rx_fill = rx_fifo_level(spi);
571
572	/*
573	 * In RX-only mode the bits per word value is ignored by HW. A value
574	 * of 32 is used instead. Thus all 4 bytes per FIFO must be read.
575	 * If remaining RX bytes are less than 4, the FIFO must be read
576	 * differently. The amount of received and valid bytes is indicated
577	 * by STAT.RXBV register value.
578	 */
579	while (rx_fill) {
580		if (spi->rx_todo < 4)  {
581			rxbv = (lantiq_ssc_readl(spi, LTQ_SPI_STAT) &
582				LTQ_SPI_STAT_RXBV_M) >> LTQ_SPI_STAT_RXBV_S;
583			data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
584
585			shift = (rxbv - 1) * 8;
586			rx8 = spi->rx;
587
588			while (rxbv) {
589				*rx8++ = (data >> shift) & 0xFF;
590				rxbv--;
591				shift -= 8;
592				spi->rx_todo--;
593				spi->rx++;
594			}
595		} else {
596			data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
597			rx32 = (u32 *) spi->rx;
598
599			*rx32++ = data;
600			spi->rx_todo -= 4;
601			spi->rx += 4;
602		}
603		rx_fill--;
604	}
605}
606
607static void rx_request(struct lantiq_ssc_spi *spi)
608{
609	unsigned int rxreq, rxreq_max;
610
611	/*
612	 * To avoid receive overflows at high clocks it is better to request
613	 * only the amount of bytes that fits into all FIFOs. This value
614	 * depends on the FIFO size implemented in hardware.
615	 */
616	rxreq = spi->rx_todo;
617	rxreq_max = spi->rx_fifo_size * 4;
618	if (rxreq > rxreq_max)
619		rxreq = rxreq_max;
620
621	lantiq_ssc_writel(spi, rxreq, LTQ_SPI_RXREQ);
622}
623
624static irqreturn_t lantiq_ssc_xmit_interrupt(int irq, void *data)
625{
626	struct lantiq_ssc_spi *spi = data;
627	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
628	u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
629
630	spin_lock(&spi->lock);
631	if (hwcfg->irq_ack)
632		lantiq_ssc_writel(spi, val, hwcfg->irncr);
633
634	if (spi->tx) {
635		if (spi->rx && spi->rx_todo)
636			rx_fifo_read_full_duplex(spi);
637
638		if (spi->tx_todo)
639			tx_fifo_write(spi);
640		else if (!tx_fifo_level(spi))
641			goto completed;
642	} else if (spi->rx) {
643		if (spi->rx_todo) {
644			rx_fifo_read_half_duplex(spi);
645
646			if (spi->rx_todo)
647				rx_request(spi);
648			else
649				goto completed;
650		} else {
651			goto completed;
652		}
653	}
654
655	spin_unlock(&spi->lock);
656	return IRQ_HANDLED;
657
658completed:
659	queue_work(spi->wq, &spi->work);
660	spin_unlock(&spi->lock);
661
662	return IRQ_HANDLED;
663}
664
665static irqreturn_t lantiq_ssc_err_interrupt(int irq, void *data)
666{
667	struct lantiq_ssc_spi *spi = data;
668	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
669	u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
670	u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
671
672	if (!(stat & LTQ_SPI_STAT_ERRORS))
673		return IRQ_NONE;
674
675	spin_lock(&spi->lock);
676	if (hwcfg->irq_ack)
677		lantiq_ssc_writel(spi, val, hwcfg->irncr);
678
679	if (stat & LTQ_SPI_STAT_RUE)
680		dev_err(spi->dev, "receive underflow error\n");
681	if (stat & LTQ_SPI_STAT_TUE)
682		dev_err(spi->dev, "transmit underflow error\n");
683	if (stat & LTQ_SPI_STAT_AE)
684		dev_err(spi->dev, "abort error\n");
685	if (stat & LTQ_SPI_STAT_RE)
686		dev_err(spi->dev, "receive overflow error\n");
687	if (stat & LTQ_SPI_STAT_TE)
688		dev_err(spi->dev, "transmit overflow error\n");
689	if (stat & LTQ_SPI_STAT_ME)
690		dev_err(spi->dev, "mode error\n");
691
692	/* Clear error flags */
693	lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
694
695	/* set bad status so it can be retried */
696	if (spi->host->cur_msg)
697		spi->host->cur_msg->status = -EIO;
698	queue_work(spi->wq, &spi->work);
699	spin_unlock(&spi->lock);
700
701	return IRQ_HANDLED;
702}
703
704static irqreturn_t intel_lgm_ssc_isr(int irq, void *data)
705{
706	struct lantiq_ssc_spi *spi = data;
707	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
708	u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
709
710	if (!(val & LTQ_SPI_IRNEN_ALL))
711		return IRQ_NONE;
712
713	if (val & LTQ_SPI_IRNEN_E)
714		return lantiq_ssc_err_interrupt(irq, data);
715
716	if ((val & hwcfg->irnen_t) || (val & hwcfg->irnen_r))
717		return lantiq_ssc_xmit_interrupt(irq, data);
718
719	return IRQ_HANDLED;
720}
721
722static int transfer_start(struct lantiq_ssc_spi *spi, struct spi_device *spidev,
723			  struct spi_transfer *t)
724{
725	unsigned long flags;
726
727	spin_lock_irqsave(&spi->lock, flags);
728
729	spi->tx = t->tx_buf;
730	spi->rx = t->rx_buf;
731
732	if (t->tx_buf) {
733		spi->tx_todo = t->len;
734
735		/* initially fill TX FIFO */
736		tx_fifo_write(spi);
737	}
738
739	if (spi->rx) {
740		spi->rx_todo = t->len;
741
742		/* start shift clock in RX-only mode */
743		if (!spi->tx)
744			rx_request(spi);
745	}
746
747	spin_unlock_irqrestore(&spi->lock, flags);
748
749	return t->len;
750}
751
752/*
753 * The driver only gets an interrupt when the FIFO is empty, but there
754 * is an additional shift register from which the data is written to
755 * the wire. We get the last interrupt when the controller starts to
756 * write the last word to the wire, not when it is finished. Do busy
757 * waiting till it finishes.
758 */
759static void lantiq_ssc_bussy_work(struct work_struct *work)
760{
761	struct lantiq_ssc_spi *spi;
762	unsigned long long timeout = 8LL * 1000LL;
763	unsigned long end;
764
765	spi = container_of(work, typeof(*spi), work);
766
767	do_div(timeout, spi->speed_hz);
768	timeout += timeout + 100; /* some tolerance */
769
770	end = jiffies + msecs_to_jiffies(timeout);
771	do {
772		u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
773
774		if (!(stat & LTQ_SPI_STAT_BSY)) {
775			spi_finalize_current_transfer(spi->host);
776			return;
777		}
778
779		cond_resched();
780	} while (!time_after_eq(jiffies, end));
781
782	if (spi->host->cur_msg)
783		spi->host->cur_msg->status = -EIO;
784	spi_finalize_current_transfer(spi->host);
785}
786
787static void lantiq_ssc_handle_err(struct spi_controller *host,
788				  struct spi_message *message)
789{
790	struct lantiq_ssc_spi *spi = spi_controller_get_devdata(host);
791
792	/* flush FIFOs on timeout */
793	rx_fifo_flush(spi);
794	tx_fifo_flush(spi);
795}
796
797static void lantiq_ssc_set_cs(struct spi_device *spidev, bool enable)
798{
799	struct lantiq_ssc_spi *spi = spi_controller_get_devdata(spidev->controller);
800	unsigned int cs = spi_get_chipselect(spidev, 0);
801	u32 fgpo;
802
803	if (!!(spidev->mode & SPI_CS_HIGH) == enable)
804		fgpo = (1 << (cs - spi->base_cs));
805	else
806		fgpo = (1 << (cs - spi->base_cs + LTQ_SPI_FGPO_SETOUTN_S));
807
808	lantiq_ssc_writel(spi, fgpo, LTQ_SPI_FPGO);
809}
810
811static int lantiq_ssc_transfer_one(struct spi_controller *host,
812				   struct spi_device *spidev,
813				   struct spi_transfer *t)
814{
815	struct lantiq_ssc_spi *spi = spi_controller_get_devdata(host);
816
817	hw_setup_transfer(spi, spidev, t);
818
819	return transfer_start(spi, spidev, t);
820}
821
822static int intel_lgm_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
823{
824	int irq;
825
826	irq = platform_get_irq(pdev, 0);
827	if (irq < 0)
828		return irq;
829
830	return devm_request_irq(&pdev->dev, irq, intel_lgm_ssc_isr, 0, "spi", spi);
831}
832
833static int lantiq_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
834{
835	int irq, err;
836
837	irq = platform_get_irq_byname(pdev, LTQ_SPI_RX_IRQ_NAME);
838	if (irq < 0)
839		return irq;
840
841	err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
842			       0, LTQ_SPI_RX_IRQ_NAME, spi);
843	if (err)
844		return err;
845
846	irq = platform_get_irq_byname(pdev, LTQ_SPI_TX_IRQ_NAME);
847	if (irq < 0)
848		return irq;
849
850	err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
851			       0, LTQ_SPI_TX_IRQ_NAME, spi);
852
853	if (err)
854		return err;
855
856	irq = platform_get_irq_byname(pdev, LTQ_SPI_ERR_IRQ_NAME);
857	if (irq < 0)
858		return irq;
859
860	err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_err_interrupt,
861			       0, LTQ_SPI_ERR_IRQ_NAME, spi);
862	return err;
863}
864
865static const struct lantiq_ssc_hwcfg lantiq_ssc_xway = {
866	.cfg_irq	= lantiq_cfg_irq,
867	.irnen_r	= LTQ_SPI_IRNEN_R_XWAY,
868	.irnen_t	= LTQ_SPI_IRNEN_T_XWAY,
869	.irnicr		= 0xF8,
870	.irncr		= 0xFC,
871	.fifo_size_mask	= GENMASK(5, 0),
872	.irq_ack	= false,
873};
874
875static const struct lantiq_ssc_hwcfg lantiq_ssc_xrx = {
876	.cfg_irq	= lantiq_cfg_irq,
877	.irnen_r	= LTQ_SPI_IRNEN_R_XRX,
878	.irnen_t	= LTQ_SPI_IRNEN_T_XRX,
879	.irnicr		= 0xF8,
880	.irncr		= 0xFC,
881	.fifo_size_mask	= GENMASK(5, 0),
882	.irq_ack	= false,
883};
884
885static const struct lantiq_ssc_hwcfg intel_ssc_lgm = {
886	.cfg_irq	= intel_lgm_cfg_irq,
887	.irnen_r	= LTQ_SPI_IRNEN_R_XRX,
888	.irnen_t	= LTQ_SPI_IRNEN_T_XRX,
889	.irnicr		= 0xFC,
890	.irncr		= 0xF8,
891	.fifo_size_mask	= GENMASK(7, 0),
892	.irq_ack	= true,
893};
894
895static const struct of_device_id lantiq_ssc_match[] = {
896	{ .compatible = "lantiq,ase-spi", .data = &lantiq_ssc_xway, },
897	{ .compatible = "lantiq,falcon-spi", .data = &lantiq_ssc_xrx, },
898	{ .compatible = "lantiq,xrx100-spi", .data = &lantiq_ssc_xrx, },
899	{ .compatible = "intel,lgm-spi", .data = &intel_ssc_lgm, },
900	{},
901};
902MODULE_DEVICE_TABLE(of, lantiq_ssc_match);
903
904static int lantiq_ssc_probe(struct platform_device *pdev)
905{
906	struct device *dev = &pdev->dev;
907	struct spi_controller *host;
908	struct lantiq_ssc_spi *spi;
909	const struct lantiq_ssc_hwcfg *hwcfg;
910	u32 id, supports_dma, revision;
911	unsigned int num_cs;
912	int err;
913
914	hwcfg = of_device_get_match_data(dev);
915
916	host = spi_alloc_host(dev, sizeof(struct lantiq_ssc_spi));
917	if (!host)
918		return -ENOMEM;
919
920	spi = spi_controller_get_devdata(host);
921	spi->host = host;
922	spi->dev = dev;
923	spi->hwcfg = hwcfg;
924	platform_set_drvdata(pdev, spi);
925	spi->regbase = devm_platform_ioremap_resource(pdev, 0);
926	if (IS_ERR(spi->regbase)) {
927		err = PTR_ERR(spi->regbase);
928		goto err_host_put;
929	}
930
931	err = hwcfg->cfg_irq(pdev, spi);
932	if (err)
933		goto err_host_put;
934
935	spi->spi_clk = devm_clk_get_enabled(dev, "gate");
936	if (IS_ERR(spi->spi_clk)) {
937		err = PTR_ERR(spi->spi_clk);
938		goto err_host_put;
939	}
940
941	/*
942	 * Use the old clk_get_fpi() function on Lantiq platform, till it
943	 * supports common clk.
944	 */
945#if defined(CONFIG_LANTIQ) && !defined(CONFIG_COMMON_CLK)
946	spi->fpi_clk = clk_get_fpi();
947#else
948	spi->fpi_clk = clk_get(dev, "freq");
949#endif
950	if (IS_ERR(spi->fpi_clk)) {
951		err = PTR_ERR(spi->fpi_clk);
952		goto err_host_put;
953	}
954
955	num_cs = 8;
956	of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs);
957
958	spi->base_cs = 1;
959	of_property_read_u32(pdev->dev.of_node, "base-cs", &spi->base_cs);
960
961	spin_lock_init(&spi->lock);
962	spi->bits_per_word = 8;
963	spi->speed_hz = 0;
964
965	host->dev.of_node = pdev->dev.of_node;
966	host->num_chipselect = num_cs;
967	host->use_gpio_descriptors = true;
968	host->setup = lantiq_ssc_setup;
969	host->set_cs = lantiq_ssc_set_cs;
970	host->handle_err = lantiq_ssc_handle_err;
971	host->prepare_message = lantiq_ssc_prepare_message;
972	host->unprepare_message = lantiq_ssc_unprepare_message;
973	host->transfer_one = lantiq_ssc_transfer_one;
974	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH |
975			  SPI_LOOP;
976	host->bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 8) |
977				   SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
978
979	spi->wq = alloc_ordered_workqueue(dev_name(dev), WQ_MEM_RECLAIM);
980	if (!spi->wq) {
981		err = -ENOMEM;
982		goto err_clk_put;
983	}
984	INIT_WORK(&spi->work, lantiq_ssc_bussy_work);
985
986	id = lantiq_ssc_readl(spi, LTQ_SPI_ID);
987	spi->tx_fifo_size = (id >> LTQ_SPI_ID_TXFS_S) & hwcfg->fifo_size_mask;
988	spi->rx_fifo_size = (id >> LTQ_SPI_ID_RXFS_S) & hwcfg->fifo_size_mask;
989	supports_dma = (id & LTQ_SPI_ID_CFG_M) >> LTQ_SPI_ID_CFG_S;
990	revision = id & LTQ_SPI_ID_REV_M;
991
992	lantiq_ssc_hw_init(spi);
993
994	dev_info(dev,
995		"Lantiq SSC SPI controller (Rev %i, TXFS %u, RXFS %u, DMA %u)\n",
996		revision, spi->tx_fifo_size, spi->rx_fifo_size, supports_dma);
997
998	err = devm_spi_register_controller(dev, host);
999	if (err) {
1000		dev_err(dev, "failed to register spi host\n");
1001		goto err_wq_destroy;
1002	}
1003
1004	return 0;
1005
1006err_wq_destroy:
1007	destroy_workqueue(spi->wq);
1008err_clk_put:
1009	clk_put(spi->fpi_clk);
1010err_host_put:
1011	spi_controller_put(host);
1012
1013	return err;
1014}
1015
1016static void lantiq_ssc_remove(struct platform_device *pdev)
1017{
1018	struct lantiq_ssc_spi *spi = platform_get_drvdata(pdev);
1019
1020	lantiq_ssc_writel(spi, 0, LTQ_SPI_IRNEN);
1021	lantiq_ssc_writel(spi, 0, LTQ_SPI_CLC);
1022	rx_fifo_flush(spi);
1023	tx_fifo_flush(spi);
1024	hw_enter_config_mode(spi);
1025
1026	destroy_workqueue(spi->wq);
1027	clk_put(spi->fpi_clk);
1028}
1029
1030static struct platform_driver lantiq_ssc_driver = {
1031	.probe = lantiq_ssc_probe,
1032	.remove_new = lantiq_ssc_remove,
1033	.driver = {
1034		.name = "spi-lantiq-ssc",
1035		.of_match_table = lantiq_ssc_match,
1036	},
1037};
1038module_platform_driver(lantiq_ssc_driver);
1039
1040MODULE_DESCRIPTION("Lantiq SSC SPI controller driver");
1041MODULE_AUTHOR("Daniel Schwierzeck <daniel.schwierzeck@gmail.com>");
1042MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
1043MODULE_LICENSE("GPL");
1044MODULE_ALIAS("platform:spi-lantiq-ssc");
1045