1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Intel PCH/PCU SPI flash driver.
4 *
5 * Copyright (C) 2016 - 2022, Intel Corporation
6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7 */
8
9#include <linux/iopoll.h>
10#include <linux/module.h>
11
12#include <linux/mtd/partitions.h>
13#include <linux/mtd/spi-nor.h>
14
15#include <linux/spi/flash.h>
16#include <linux/spi/spi.h>
17#include <linux/spi/spi-mem.h>
18
19#include "spi-intel.h"
20
21/* Offsets are from @ispi->base */
22#define BFPREG				0x00
23
24#define HSFSTS_CTL			0x04
25#define HSFSTS_CTL_FSMIE		BIT(31)
26#define HSFSTS_CTL_FDBC_SHIFT		24
27#define HSFSTS_CTL_FDBC_MASK		(0x3f << HSFSTS_CTL_FDBC_SHIFT)
28
29#define HSFSTS_CTL_FCYCLE_SHIFT		17
30#define HSFSTS_CTL_FCYCLE_MASK		(0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
31/* HW sequencer opcodes */
32#define HSFSTS_CTL_FCYCLE_READ		(0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
33#define HSFSTS_CTL_FCYCLE_WRITE		(0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
34#define HSFSTS_CTL_FCYCLE_ERASE		(0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
35#define HSFSTS_CTL_FCYCLE_ERASE_64K	(0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
36#define HSFSTS_CTL_FCYCLE_RDSFDP	(0x05 << HSFSTS_CTL_FCYCLE_SHIFT)
37#define HSFSTS_CTL_FCYCLE_RDID		(0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
38#define HSFSTS_CTL_FCYCLE_WRSR		(0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
39#define HSFSTS_CTL_FCYCLE_RDSR		(0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
40
41#define HSFSTS_CTL_FGO			BIT(16)
42#define HSFSTS_CTL_FLOCKDN		BIT(15)
43#define HSFSTS_CTL_FDV			BIT(14)
44#define HSFSTS_CTL_SCIP			BIT(5)
45#define HSFSTS_CTL_AEL			BIT(2)
46#define HSFSTS_CTL_FCERR		BIT(1)
47#define HSFSTS_CTL_FDONE		BIT(0)
48
49#define FADDR				0x08
50#define DLOCK				0x0c
51#define FDATA(n)			(0x10 + ((n) * 4))
52
53#define FRACC				0x50
54
55#define FREG(n)				(0x54 + ((n) * 4))
56#define FREG_BASE_MASK			GENMASK(14, 0)
57#define FREG_LIMIT_SHIFT		16
58#define FREG_LIMIT_MASK			GENMASK(30, 16)
59
60/* Offset is from @ispi->pregs */
61#define PR(n)				((n) * 4)
62#define PR_WPE				BIT(31)
63#define PR_LIMIT_SHIFT			16
64#define PR_LIMIT_MASK			GENMASK(30, 16)
65#define PR_RPE				BIT(15)
66#define PR_BASE_MASK			GENMASK(14, 0)
67
68/* Offsets are from @ispi->sregs */
69#define SSFSTS_CTL			0x00
70#define SSFSTS_CTL_FSMIE		BIT(23)
71#define SSFSTS_CTL_DS			BIT(22)
72#define SSFSTS_CTL_DBC_SHIFT		16
73#define SSFSTS_CTL_SPOP			BIT(11)
74#define SSFSTS_CTL_ACS			BIT(10)
75#define SSFSTS_CTL_SCGO			BIT(9)
76#define SSFSTS_CTL_COP_SHIFT		12
77#define SSFSTS_CTL_FRS			BIT(7)
78#define SSFSTS_CTL_DOFRS		BIT(6)
79#define SSFSTS_CTL_AEL			BIT(4)
80#define SSFSTS_CTL_FCERR		BIT(3)
81#define SSFSTS_CTL_FDONE		BIT(2)
82#define SSFSTS_CTL_SCIP			BIT(0)
83
84#define PREOP_OPTYPE			0x04
85#define OPMENU0				0x08
86#define OPMENU1				0x0c
87
88#define OPTYPE_READ_NO_ADDR		0
89#define OPTYPE_WRITE_NO_ADDR		1
90#define OPTYPE_READ_WITH_ADDR		2
91#define OPTYPE_WRITE_WITH_ADDR		3
92
93/* CPU specifics */
94#define BYT_PR				0x74
95#define BYT_SSFSTS_CTL			0x90
96#define BYT_FREG_NUM			5
97#define BYT_PR_NUM			5
98
99#define LPT_PR				0x74
100#define LPT_SSFSTS_CTL			0x90
101#define LPT_FREG_NUM			5
102#define LPT_PR_NUM			5
103
104#define BXT_PR				0x84
105#define BXT_SSFSTS_CTL			0xa0
106#define BXT_FREG_NUM			12
107#define BXT_PR_NUM			5
108
109#define CNL_PR				0x84
110#define CNL_FREG_NUM			6
111#define CNL_PR_NUM			5
112
113#define LVSCC				0xc4
114#define UVSCC				0xc8
115#define ERASE_OPCODE_SHIFT		8
116#define ERASE_OPCODE_MASK		(0xff << ERASE_OPCODE_SHIFT)
117#define ERASE_64K_OPCODE_SHIFT		16
118#define ERASE_64K_OPCODE_MASK		(0xff << ERASE_64K_OPCODE_SHIFT)
119
120/* Flash descriptor fields */
121#define FLVALSIG_MAGIC			0x0ff0a55a
122#define FLMAP0_NC_MASK			GENMASK(9, 8)
123#define FLMAP0_NC_SHIFT			8
124#define FLMAP0_FCBA_MASK		GENMASK(7, 0)
125
126#define FLCOMP_C0DEN_MASK		GENMASK(3, 0)
127#define FLCOMP_C0DEN_512K		0x00
128#define FLCOMP_C0DEN_1M			0x01
129#define FLCOMP_C0DEN_2M			0x02
130#define FLCOMP_C0DEN_4M			0x03
131#define FLCOMP_C0DEN_8M			0x04
132#define FLCOMP_C0DEN_16M		0x05
133#define FLCOMP_C0DEN_32M		0x06
134#define FLCOMP_C0DEN_64M		0x07
135
136#define INTEL_SPI_TIMEOUT		5000 /* ms */
137#define INTEL_SPI_FIFO_SZ		64
138
139/**
140 * struct intel_spi - Driver private data
141 * @dev: Device pointer
142 * @info: Pointer to board specific info
143 * @base: Beginning of MMIO space
144 * @pregs: Start of protection registers
145 * @sregs: Start of software sequencer registers
146 * @host: Pointer to the SPI controller structure
147 * @nregions: Maximum number of regions
148 * @pr_num: Maximum number of protected range registers
149 * @chip0_size: Size of the first flash chip in bytes
150 * @locked: Is SPI setting locked
151 * @swseq_reg: Use SW sequencer in register reads/writes
152 * @swseq_erase: Use SW sequencer in erase operation
153 * @atomic_preopcode: Holds preopcode when atomic sequence is requested
154 * @opcodes: Opcodes which are supported. This are programmed by BIOS
155 *           before it locks down the controller.
156 * @mem_ops: Pointer to SPI MEM ops supported by the controller
157 */
158struct intel_spi {
159	struct device *dev;
160	const struct intel_spi_boardinfo *info;
161	void __iomem *base;
162	void __iomem *pregs;
163	void __iomem *sregs;
164	struct spi_controller *host;
165	size_t nregions;
166	size_t pr_num;
167	size_t chip0_size;
168	bool locked;
169	bool swseq_reg;
170	bool swseq_erase;
171	u8 atomic_preopcode;
172	u8 opcodes[8];
173	const struct intel_spi_mem_op *mem_ops;
174};
175
176struct intel_spi_mem_op {
177	struct spi_mem_op mem_op;
178	u32 replacement_op;
179	int (*exec_op)(struct intel_spi *ispi,
180		       const struct spi_mem *mem,
181		       const struct intel_spi_mem_op *iop,
182		       const struct spi_mem_op *op);
183};
184
185static bool writeable;
186module_param(writeable, bool, 0);
187MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
188
189static void intel_spi_dump_regs(struct intel_spi *ispi)
190{
191	u32 value;
192	int i;
193
194	dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
195
196	value = readl(ispi->base + HSFSTS_CTL);
197	dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
198	if (value & HSFSTS_CTL_FLOCKDN)
199		dev_dbg(ispi->dev, "-> Locked\n");
200
201	dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
202	dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
203
204	for (i = 0; i < 16; i++)
205		dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
206			i, readl(ispi->base + FDATA(i)));
207
208	dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
209
210	for (i = 0; i < ispi->nregions; i++)
211		dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
212			readl(ispi->base + FREG(i)));
213	for (i = 0; i < ispi->pr_num; i++)
214		dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
215			readl(ispi->pregs + PR(i)));
216
217	if (ispi->sregs) {
218		value = readl(ispi->sregs + SSFSTS_CTL);
219		dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
220		dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
221			readl(ispi->sregs + PREOP_OPTYPE));
222		dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
223			readl(ispi->sregs + OPMENU0));
224		dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
225			readl(ispi->sregs + OPMENU1));
226	}
227
228	dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
229	dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
230
231	dev_dbg(ispi->dev, "Protected regions:\n");
232	for (i = 0; i < ispi->pr_num; i++) {
233		u32 base, limit;
234
235		value = readl(ispi->pregs + PR(i));
236		if (!(value & (PR_WPE | PR_RPE)))
237			continue;
238
239		limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
240		base = value & PR_BASE_MASK;
241
242		dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
243			i, base << 12, (limit << 12) | 0xfff,
244			value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.');
245	}
246
247	dev_dbg(ispi->dev, "Flash regions:\n");
248	for (i = 0; i < ispi->nregions; i++) {
249		u32 region, base, limit;
250
251		region = readl(ispi->base + FREG(i));
252		base = region & FREG_BASE_MASK;
253		limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
254
255		if (base >= limit || (i > 0 && limit == 0))
256			dev_dbg(ispi->dev, " %02d disabled\n", i);
257		else
258			dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
259				i, base << 12, (limit << 12) | 0xfff);
260	}
261
262	dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
263		ispi->swseq_reg ? 'S' : 'H');
264	dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
265		ispi->swseq_erase ? 'S' : 'H');
266}
267
268/* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
269static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
270{
271	size_t bytes;
272	int i = 0;
273
274	if (size > INTEL_SPI_FIFO_SZ)
275		return -EINVAL;
276
277	while (size > 0) {
278		bytes = min_t(size_t, size, 4);
279		memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
280		size -= bytes;
281		buf += bytes;
282		i++;
283	}
284
285	return 0;
286}
287
288/* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
289static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
290				 size_t size)
291{
292	size_t bytes;
293	int i = 0;
294
295	if (size > INTEL_SPI_FIFO_SZ)
296		return -EINVAL;
297
298	while (size > 0) {
299		bytes = min_t(size_t, size, 4);
300		memcpy_toio(ispi->base + FDATA(i), buf, bytes);
301		size -= bytes;
302		buf += bytes;
303		i++;
304	}
305
306	return 0;
307}
308
309static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
310{
311	u32 val;
312
313	return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
314				  !(val & HSFSTS_CTL_SCIP), 0,
315				  INTEL_SPI_TIMEOUT * 1000);
316}
317
318static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
319{
320	u32 val;
321
322	return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
323				  !(val & SSFSTS_CTL_SCIP), 0,
324				  INTEL_SPI_TIMEOUT * 1000);
325}
326
327static bool intel_spi_set_writeable(struct intel_spi *ispi)
328{
329	if (!ispi->info->set_writeable)
330		return false;
331
332	return ispi->info->set_writeable(ispi->base, ispi->info->data);
333}
334
335static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
336{
337	int i;
338	int preop;
339
340	if (ispi->locked) {
341		for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
342			if (ispi->opcodes[i] == opcode)
343				return i;
344
345		return -EINVAL;
346	}
347
348	/* The lock is off, so just use index 0 */
349	writel(opcode, ispi->sregs + OPMENU0);
350	preop = readw(ispi->sregs + PREOP_OPTYPE);
351	writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
352
353	return 0;
354}
355
356static int intel_spi_hw_cycle(struct intel_spi *ispi,
357			      const struct intel_spi_mem_op *iop, size_t len)
358{
359	u32 val, status;
360	int ret;
361
362	if (!iop->replacement_op)
363		return -EINVAL;
364
365	val = readl(ispi->base + HSFSTS_CTL);
366	val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
367	val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
368	val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
369	val |= HSFSTS_CTL_FGO;
370	val |= iop->replacement_op;
371	writel(val, ispi->base + HSFSTS_CTL);
372
373	ret = intel_spi_wait_hw_busy(ispi);
374	if (ret)
375		return ret;
376
377	status = readl(ispi->base + HSFSTS_CTL);
378	if (status & HSFSTS_CTL_FCERR)
379		return -EIO;
380	else if (status & HSFSTS_CTL_AEL)
381		return -EACCES;
382
383	return 0;
384}
385
386static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
387			      int optype)
388{
389	u32 val = 0, status;
390	u8 atomic_preopcode;
391	int ret;
392
393	ret = intel_spi_opcode_index(ispi, opcode, optype);
394	if (ret < 0)
395		return ret;
396
397	/*
398	 * Always clear it after each SW sequencer operation regardless
399	 * of whether it is successful or not.
400	 */
401	atomic_preopcode = ispi->atomic_preopcode;
402	ispi->atomic_preopcode = 0;
403
404	/* Only mark 'Data Cycle' bit when there is data to be transferred */
405	if (len > 0)
406		val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
407	val |= ret << SSFSTS_CTL_COP_SHIFT;
408	val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
409	val |= SSFSTS_CTL_SCGO;
410	if (atomic_preopcode) {
411		u16 preop;
412
413		switch (optype) {
414		case OPTYPE_WRITE_NO_ADDR:
415		case OPTYPE_WRITE_WITH_ADDR:
416			/* Pick matching preopcode for the atomic sequence */
417			preop = readw(ispi->sregs + PREOP_OPTYPE);
418			if ((preop & 0xff) == atomic_preopcode)
419				; /* Do nothing */
420			else if ((preop >> 8) == atomic_preopcode)
421				val |= SSFSTS_CTL_SPOP;
422			else
423				return -EINVAL;
424
425			/* Enable atomic sequence */
426			val |= SSFSTS_CTL_ACS;
427			break;
428
429		default:
430			return -EINVAL;
431		}
432	}
433	writel(val, ispi->sregs + SSFSTS_CTL);
434
435	ret = intel_spi_wait_sw_busy(ispi);
436	if (ret)
437		return ret;
438
439	status = readl(ispi->sregs + SSFSTS_CTL);
440	if (status & SSFSTS_CTL_FCERR)
441		return -EIO;
442	else if (status & SSFSTS_CTL_AEL)
443		return -EACCES;
444
445	return 0;
446}
447
448static u32 intel_spi_chip_addr(const struct intel_spi *ispi,
449			       const struct spi_mem *mem)
450{
451	/* Pick up the correct start address */
452	if (!mem)
453		return 0;
454	return (spi_get_chipselect(mem->spi, 0) == 1) ? ispi->chip0_size : 0;
455}
456
457static int intel_spi_read_reg(struct intel_spi *ispi, const struct spi_mem *mem,
458			      const struct intel_spi_mem_op *iop,
459			      const struct spi_mem_op *op)
460{
461	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
462	size_t nbytes = op->data.nbytes;
463	u8 opcode = op->cmd.opcode;
464	int ret;
465
466	writel(addr, ispi->base + FADDR);
467
468	if (ispi->swseq_reg)
469		ret = intel_spi_sw_cycle(ispi, opcode, nbytes,
470					 OPTYPE_READ_NO_ADDR);
471	else
472		ret = intel_spi_hw_cycle(ispi, iop, nbytes);
473
474	if (ret)
475		return ret;
476
477	return intel_spi_read_block(ispi, op->data.buf.in, nbytes);
478}
479
480static int intel_spi_write_reg(struct intel_spi *ispi, const struct spi_mem *mem,
481			       const struct intel_spi_mem_op *iop,
482			       const struct spi_mem_op *op)
483{
484	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
485	size_t nbytes = op->data.nbytes;
486	u8 opcode = op->cmd.opcode;
487	int ret;
488
489	/*
490	 * This is handled with atomic operation and preop code in Intel
491	 * controller so we only verify that it is available. If the
492	 * controller is not locked, program the opcode to the PREOP
493	 * register for later use.
494	 *
495	 * When hardware sequencer is used there is no need to program
496	 * any opcodes (it handles them automatically as part of a command).
497	 */
498	if (opcode == SPINOR_OP_WREN) {
499		u16 preop;
500
501		if (!ispi->swseq_reg)
502			return 0;
503
504		preop = readw(ispi->sregs + PREOP_OPTYPE);
505		if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
506			if (ispi->locked)
507				return -EINVAL;
508			writel(opcode, ispi->sregs + PREOP_OPTYPE);
509		}
510
511		/*
512		 * This enables atomic sequence on next SW sycle. Will
513		 * be cleared after next operation.
514		 */
515		ispi->atomic_preopcode = opcode;
516		return 0;
517	}
518
519	/*
520	 * We hope that HW sequencer will do the right thing automatically and
521	 * with the SW sequencer we cannot use preopcode anyway, so just ignore
522	 * the Write Disable operation and pretend it was completed
523	 * successfully.
524	 */
525	if (opcode == SPINOR_OP_WRDI)
526		return 0;
527
528	writel(addr, ispi->base + FADDR);
529
530	/* Write the value beforehand */
531	ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes);
532	if (ret)
533		return ret;
534
535	if (ispi->swseq_reg)
536		return intel_spi_sw_cycle(ispi, opcode, nbytes,
537					  OPTYPE_WRITE_NO_ADDR);
538	return intel_spi_hw_cycle(ispi, iop, nbytes);
539}
540
541static int intel_spi_read(struct intel_spi *ispi, const struct spi_mem *mem,
542			  const struct intel_spi_mem_op *iop,
543			  const struct spi_mem_op *op)
544{
545	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
546	size_t block_size, nbytes = op->data.nbytes;
547	void *read_buf = op->data.buf.in;
548	u32 val, status;
549	int ret;
550
551	/*
552	 * Atomic sequence is not expected with HW sequencer reads. Make
553	 * sure it is cleared regardless.
554	 */
555	if (WARN_ON_ONCE(ispi->atomic_preopcode))
556		ispi->atomic_preopcode = 0;
557
558	while (nbytes > 0) {
559		block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
560
561		/* Read cannot cross 4K boundary */
562		block_size = min_t(loff_t, addr + block_size,
563				   round_up(addr + 1, SZ_4K)) - addr;
564
565		writel(addr, ispi->base + FADDR);
566
567		val = readl(ispi->base + HSFSTS_CTL);
568		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
569		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
570		val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
571		val |= HSFSTS_CTL_FCYCLE_READ;
572		val |= HSFSTS_CTL_FGO;
573		writel(val, ispi->base + HSFSTS_CTL);
574
575		ret = intel_spi_wait_hw_busy(ispi);
576		if (ret)
577			return ret;
578
579		status = readl(ispi->base + HSFSTS_CTL);
580		if (status & HSFSTS_CTL_FCERR)
581			ret = -EIO;
582		else if (status & HSFSTS_CTL_AEL)
583			ret = -EACCES;
584
585		if (ret < 0) {
586			dev_err(ispi->dev, "read error: %x: %#x\n", addr, status);
587			return ret;
588		}
589
590		ret = intel_spi_read_block(ispi, read_buf, block_size);
591		if (ret)
592			return ret;
593
594		nbytes -= block_size;
595		addr += block_size;
596		read_buf += block_size;
597	}
598
599	return 0;
600}
601
602static int intel_spi_write(struct intel_spi *ispi, const struct spi_mem *mem,
603			   const struct intel_spi_mem_op *iop,
604			   const struct spi_mem_op *op)
605{
606	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
607	size_t block_size, nbytes = op->data.nbytes;
608	const void *write_buf = op->data.buf.out;
609	u32 val, status;
610	int ret;
611
612	/* Not needed with HW sequencer write, make sure it is cleared */
613	ispi->atomic_preopcode = 0;
614
615	while (nbytes > 0) {
616		block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
617
618		/* Write cannot cross 4K boundary */
619		block_size = min_t(loff_t, addr + block_size,
620				   round_up(addr + 1, SZ_4K)) - addr;
621
622		writel(addr, ispi->base + FADDR);
623
624		val = readl(ispi->base + HSFSTS_CTL);
625		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
626		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
627		val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
628		val |= HSFSTS_CTL_FCYCLE_WRITE;
629
630		ret = intel_spi_write_block(ispi, write_buf, block_size);
631		if (ret) {
632			dev_err(ispi->dev, "failed to write block\n");
633			return ret;
634		}
635
636		/* Start the write now */
637		val |= HSFSTS_CTL_FGO;
638		writel(val, ispi->base + HSFSTS_CTL);
639
640		ret = intel_spi_wait_hw_busy(ispi);
641		if (ret) {
642			dev_err(ispi->dev, "timeout\n");
643			return ret;
644		}
645
646		status = readl(ispi->base + HSFSTS_CTL);
647		if (status & HSFSTS_CTL_FCERR)
648			ret = -EIO;
649		else if (status & HSFSTS_CTL_AEL)
650			ret = -EACCES;
651
652		if (ret < 0) {
653			dev_err(ispi->dev, "write error: %x: %#x\n", addr, status);
654			return ret;
655		}
656
657		nbytes -= block_size;
658		addr += block_size;
659		write_buf += block_size;
660	}
661
662	return 0;
663}
664
665static int intel_spi_erase(struct intel_spi *ispi, const struct spi_mem *mem,
666			   const struct intel_spi_mem_op *iop,
667			   const struct spi_mem_op *op)
668{
669	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
670	u8 opcode = op->cmd.opcode;
671	u32 val, status;
672	int ret;
673
674	writel(addr, ispi->base + FADDR);
675
676	if (ispi->swseq_erase)
677		return intel_spi_sw_cycle(ispi, opcode, 0,
678					  OPTYPE_WRITE_WITH_ADDR);
679
680	/* Not needed with HW sequencer erase, make sure it is cleared */
681	ispi->atomic_preopcode = 0;
682
683	val = readl(ispi->base + HSFSTS_CTL);
684	val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
685	val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
686	val |= HSFSTS_CTL_FGO;
687	val |= iop->replacement_op;
688	writel(val, ispi->base + HSFSTS_CTL);
689
690	ret = intel_spi_wait_hw_busy(ispi);
691	if (ret)
692		return ret;
693
694	status = readl(ispi->base + HSFSTS_CTL);
695	if (status & HSFSTS_CTL_FCERR)
696		return -EIO;
697	if (status & HSFSTS_CTL_AEL)
698		return -EACCES;
699
700	return 0;
701}
702
703static int intel_spi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
704{
705	op->data.nbytes = clamp_val(op->data.nbytes, 0, INTEL_SPI_FIFO_SZ);
706	return 0;
707}
708
709static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop,
710				 const struct spi_mem_op *op)
711{
712	if (iop->mem_op.cmd.nbytes != op->cmd.nbytes ||
713	    iop->mem_op.cmd.buswidth != op->cmd.buswidth ||
714	    iop->mem_op.cmd.dtr != op->cmd.dtr)
715		return false;
716
717	if (iop->mem_op.addr.nbytes != op->addr.nbytes ||
718	    iop->mem_op.addr.dtr != op->addr.dtr)
719		return false;
720
721	if (iop->mem_op.data.dir != op->data.dir ||
722	    iop->mem_op.data.dtr != op->data.dtr)
723		return false;
724
725	if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) {
726		if (iop->mem_op.data.buswidth != op->data.buswidth)
727			return false;
728	}
729
730	return true;
731}
732
733static const struct intel_spi_mem_op *
734intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op)
735{
736	const struct intel_spi_mem_op *iop;
737
738	for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) {
739		if (iop->mem_op.cmd.opcode == op->cmd.opcode &&
740		    intel_spi_cmp_mem_op(iop, op))
741			return iop;
742	}
743
744	return NULL;
745}
746
747static bool intel_spi_supports_mem_op(struct spi_mem *mem,
748				      const struct spi_mem_op *op)
749{
750	struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller);
751	const struct intel_spi_mem_op *iop;
752
753	iop = intel_spi_match_mem_op(ispi, op);
754	if (!iop) {
755		dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
756		return false;
757	}
758
759	/*
760	 * For software sequencer check that the opcode is actually
761	 * present in the opmenu if it is locked.
762	 */
763	if (ispi->swseq_reg && ispi->locked) {
764		int i;
765
766		/* Check if it is in the locked opcodes list */
767		for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) {
768			if (ispi->opcodes[i] == op->cmd.opcode)
769				return true;
770		}
771
772		dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
773		return false;
774	}
775
776	return true;
777}
778
779static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
780{
781	struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller);
782	const struct intel_spi_mem_op *iop;
783
784	iop = intel_spi_match_mem_op(ispi, op);
785	if (!iop)
786		return -EOPNOTSUPP;
787
788	return iop->exec_op(ispi, mem, iop, op);
789}
790
791static const char *intel_spi_get_name(struct spi_mem *mem)
792{
793	const struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller);
794
795	/*
796	 * Return name of the flash controller device to be compatible
797	 * with the MTD version.
798	 */
799	return dev_name(ispi->dev);
800}
801
802static int intel_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
803{
804	struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller);
805	const struct intel_spi_mem_op *iop;
806
807	iop = intel_spi_match_mem_op(ispi, &desc->info.op_tmpl);
808	if (!iop)
809		return -EOPNOTSUPP;
810
811	desc->priv = (void *)iop;
812	return 0;
813}
814
815static ssize_t intel_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs,
816				     size_t len, void *buf)
817{
818	struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller);
819	const struct intel_spi_mem_op *iop = desc->priv;
820	struct spi_mem_op op = desc->info.op_tmpl;
821	int ret;
822
823	/* Fill in the gaps */
824	op.addr.val = offs;
825	op.data.nbytes = len;
826	op.data.buf.in = buf;
827
828	ret = iop->exec_op(ispi, desc->mem, iop, &op);
829	return ret ? ret : len;
830}
831
832static ssize_t intel_spi_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs,
833				      size_t len, const void *buf)
834{
835	struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller);
836	const struct intel_spi_mem_op *iop = desc->priv;
837	struct spi_mem_op op = desc->info.op_tmpl;
838	int ret;
839
840	op.addr.val = offs;
841	op.data.nbytes = len;
842	op.data.buf.out = buf;
843
844	ret = iop->exec_op(ispi, desc->mem, iop, &op);
845	return ret ? ret : len;
846}
847
848static const struct spi_controller_mem_ops intel_spi_mem_ops = {
849	.adjust_op_size = intel_spi_adjust_op_size,
850	.supports_op = intel_spi_supports_mem_op,
851	.exec_op = intel_spi_exec_mem_op,
852	.get_name = intel_spi_get_name,
853	.dirmap_create = intel_spi_dirmap_create,
854	.dirmap_read = intel_spi_dirmap_read,
855	.dirmap_write = intel_spi_dirmap_write,
856};
857
858#define INTEL_SPI_OP_ADDR(__nbytes)					\
859	{								\
860		.nbytes = __nbytes,					\
861	}
862
863#define INTEL_SPI_OP_NO_DATA						\
864	{								\
865		.dir = SPI_MEM_NO_DATA,					\
866	}
867
868#define INTEL_SPI_OP_DATA_IN(__buswidth)				\
869	{								\
870		.dir = SPI_MEM_DATA_IN,					\
871		.buswidth = __buswidth,					\
872	}
873
874#define INTEL_SPI_OP_DATA_OUT(__buswidth)				\
875	{								\
876		.dir = SPI_MEM_DATA_OUT,				\
877		.buswidth = __buswidth,					\
878	}
879
880#define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op)		\
881	{								\
882		.mem_op = {						\
883			.cmd = __cmd,					\
884			.addr = __addr,					\
885			.data = __data,					\
886		},							\
887		.exec_op = __exec_op,					\
888	}
889
890#define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl)	\
891	{								\
892		.mem_op = {						\
893			.cmd = __cmd,					\
894			.addr = __addr,					\
895			.data = __data,					\
896		},							\
897		.exec_op = __exec_op,					\
898		.replacement_op = __repl,				\
899	}
900
901/*
902 * The controller handles pretty much everything internally based on the
903 * SFDP data but we want to make sure we only support the operations
904 * actually possible. Only check buswidth and transfer direction, the
905 * core validates data.
906 */
907#define INTEL_SPI_GENERIC_OPS						\
908	/* Status register operations */				\
909	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),	\
910			      SPI_MEM_OP_NO_ADDR,			\
911			      INTEL_SPI_OP_DATA_IN(1),			\
912			      intel_spi_read_reg,			\
913			      HSFSTS_CTL_FCYCLE_RDID),			\
914	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),	\
915			      SPI_MEM_OP_NO_ADDR,			\
916			      INTEL_SPI_OP_DATA_IN(1),			\
917			      intel_spi_read_reg,			\
918			      HSFSTS_CTL_FCYCLE_RDSR),			\
919	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),	\
920			      SPI_MEM_OP_NO_ADDR,			\
921			      INTEL_SPI_OP_DATA_OUT(1),			\
922			      intel_spi_write_reg,			\
923			      HSFSTS_CTL_FCYCLE_WRSR),			\
924	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSFDP, 1),	\
925			      INTEL_SPI_OP_ADDR(3),			\
926			      INTEL_SPI_OP_DATA_IN(1),			\
927			      intel_spi_read_reg,			\
928			      HSFSTS_CTL_FCYCLE_RDSFDP),		\
929	/* Normal read */						\
930	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
931			 INTEL_SPI_OP_ADDR(3),				\
932			 INTEL_SPI_OP_DATA_IN(1),			\
933			 intel_spi_read),				\
934	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
935			 INTEL_SPI_OP_ADDR(3),				\
936			 INTEL_SPI_OP_DATA_IN(2),			\
937			 intel_spi_read),				\
938	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
939			 INTEL_SPI_OP_ADDR(3),				\
940			 INTEL_SPI_OP_DATA_IN(4),			\
941			 intel_spi_read),				\
942	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
943			 INTEL_SPI_OP_ADDR(4),				\
944			 INTEL_SPI_OP_DATA_IN(1),			\
945			 intel_spi_read),				\
946	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
947			 INTEL_SPI_OP_ADDR(4),				\
948			 INTEL_SPI_OP_DATA_IN(2),			\
949			 intel_spi_read),				\
950	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
951			 INTEL_SPI_OP_ADDR(4),				\
952			 INTEL_SPI_OP_DATA_IN(4),			\
953			 intel_spi_read),				\
954	/* Fast read */							\
955	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
956			 INTEL_SPI_OP_ADDR(3),				\
957			 INTEL_SPI_OP_DATA_IN(1),			\
958			 intel_spi_read),				\
959	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
960			 INTEL_SPI_OP_ADDR(3),				\
961			 INTEL_SPI_OP_DATA_IN(2),			\
962			 intel_spi_read),				\
963	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
964			 INTEL_SPI_OP_ADDR(3),				\
965			 INTEL_SPI_OP_DATA_IN(4),			\
966			 intel_spi_read),				\
967	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
968			 INTEL_SPI_OP_ADDR(4),				\
969			 INTEL_SPI_OP_DATA_IN(1),			\
970			 intel_spi_read),				\
971	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
972			 INTEL_SPI_OP_ADDR(4),				\
973			 INTEL_SPI_OP_DATA_IN(2),			\
974			 intel_spi_read),				\
975	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
976			 INTEL_SPI_OP_ADDR(4),				\
977			 INTEL_SPI_OP_DATA_IN(4),			\
978			 intel_spi_read),				\
979	/* Read with 4-byte address opcode */				\
980	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\
981			 INTEL_SPI_OP_ADDR(4),				\
982			 INTEL_SPI_OP_DATA_IN(1),			\
983			 intel_spi_read),				\
984	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\
985			 INTEL_SPI_OP_ADDR(4),				\
986			 INTEL_SPI_OP_DATA_IN(2),			\
987			 intel_spi_read),				\
988	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\
989			 INTEL_SPI_OP_ADDR(4),				\
990			 INTEL_SPI_OP_DATA_IN(4),			\
991			 intel_spi_read),				\
992	/* Fast read with 4-byte address opcode */			\
993	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\
994			 INTEL_SPI_OP_ADDR(4),				\
995			 INTEL_SPI_OP_DATA_IN(1),			\
996			 intel_spi_read),				\
997	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\
998			 INTEL_SPI_OP_ADDR(4),				\
999			 INTEL_SPI_OP_DATA_IN(2),			\
1000			 intel_spi_read),				\
1001	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\
1002			 INTEL_SPI_OP_ADDR(4),				\
1003			 INTEL_SPI_OP_DATA_IN(4),			\
1004			 intel_spi_read),				\
1005	/* Write operations */						\
1006	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1),		\
1007			 INTEL_SPI_OP_ADDR(3),				\
1008			 INTEL_SPI_OP_DATA_OUT(1),			\
1009			 intel_spi_write),				\
1010	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1),		\
1011			 INTEL_SPI_OP_ADDR(4),				\
1012			 INTEL_SPI_OP_DATA_OUT(1),			\
1013			 intel_spi_write),				\
1014	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1),		\
1015			 INTEL_SPI_OP_ADDR(4),				\
1016			 INTEL_SPI_OP_DATA_OUT(1),			\
1017			 intel_spi_write),				\
1018	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),		\
1019			 SPI_MEM_OP_NO_ADDR,				\
1020			 SPI_MEM_OP_NO_DATA,				\
1021			 intel_spi_write_reg),				\
1022	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),		\
1023			 SPI_MEM_OP_NO_ADDR,				\
1024			 SPI_MEM_OP_NO_DATA,				\
1025			 intel_spi_write_reg),				\
1026	/* Erase operations */						\
1027	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1),	\
1028			      INTEL_SPI_OP_ADDR(3),			\
1029			      SPI_MEM_OP_NO_DATA,			\
1030			      intel_spi_erase,				\
1031			      HSFSTS_CTL_FCYCLE_ERASE),			\
1032	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1),	\
1033			      INTEL_SPI_OP_ADDR(4),			\
1034			      SPI_MEM_OP_NO_DATA,			\
1035			      intel_spi_erase,				\
1036			      HSFSTS_CTL_FCYCLE_ERASE),			\
1037	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1),	\
1038			      INTEL_SPI_OP_ADDR(4),			\
1039			      SPI_MEM_OP_NO_DATA,			\
1040			      intel_spi_erase,				\
1041			      HSFSTS_CTL_FCYCLE_ERASE)			\
1042
1043static const struct intel_spi_mem_op generic_mem_ops[] = {
1044	INTEL_SPI_GENERIC_OPS,
1045	{ },
1046};
1047
1048static const struct intel_spi_mem_op erase_64k_mem_ops[] = {
1049	INTEL_SPI_GENERIC_OPS,
1050	/* 64k sector erase operations */
1051	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
1052			      INTEL_SPI_OP_ADDR(3),
1053			      SPI_MEM_OP_NO_DATA,
1054			      intel_spi_erase,
1055			      HSFSTS_CTL_FCYCLE_ERASE_64K),
1056	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
1057			      INTEL_SPI_OP_ADDR(4),
1058			      SPI_MEM_OP_NO_DATA,
1059			      intel_spi_erase,
1060			      HSFSTS_CTL_FCYCLE_ERASE_64K),
1061	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1),
1062			      INTEL_SPI_OP_ADDR(4),
1063			      SPI_MEM_OP_NO_DATA,
1064			      intel_spi_erase,
1065			      HSFSTS_CTL_FCYCLE_ERASE_64K),
1066	{ },
1067};
1068
1069static int intel_spi_init(struct intel_spi *ispi)
1070{
1071	u32 opmenu0, opmenu1, lvscc, uvscc, val;
1072	bool erase_64k = false;
1073	int i;
1074
1075	switch (ispi->info->type) {
1076	case INTEL_SPI_BYT:
1077		ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
1078		ispi->pregs = ispi->base + BYT_PR;
1079		ispi->nregions = BYT_FREG_NUM;
1080		ispi->pr_num = BYT_PR_NUM;
1081		ispi->swseq_reg = true;
1082		break;
1083
1084	case INTEL_SPI_LPT:
1085		ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
1086		ispi->pregs = ispi->base + LPT_PR;
1087		ispi->nregions = LPT_FREG_NUM;
1088		ispi->pr_num = LPT_PR_NUM;
1089		ispi->swseq_reg = true;
1090		break;
1091
1092	case INTEL_SPI_BXT:
1093		ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
1094		ispi->pregs = ispi->base + BXT_PR;
1095		ispi->nregions = BXT_FREG_NUM;
1096		ispi->pr_num = BXT_PR_NUM;
1097		erase_64k = true;
1098		break;
1099
1100	case INTEL_SPI_CNL:
1101		ispi->sregs = NULL;
1102		ispi->pregs = ispi->base + CNL_PR;
1103		ispi->nregions = CNL_FREG_NUM;
1104		ispi->pr_num = CNL_PR_NUM;
1105		erase_64k = true;
1106		break;
1107
1108	default:
1109		return -EINVAL;
1110	}
1111
1112	/* Try to disable write protection if user asked to do so */
1113	if (writeable && !intel_spi_set_writeable(ispi)) {
1114		dev_warn(ispi->dev, "can't disable chip write protection\n");
1115		writeable = false;
1116	}
1117
1118	/* Disable #SMI generation from HW sequencer */
1119	val = readl(ispi->base + HSFSTS_CTL);
1120	val &= ~HSFSTS_CTL_FSMIE;
1121	writel(val, ispi->base + HSFSTS_CTL);
1122
1123	/*
1124	 * Determine whether erase operation should use HW or SW sequencer.
1125	 *
1126	 * The HW sequencer has a predefined list of opcodes, with only the
1127	 * erase opcode being programmable in LVSCC and UVSCC registers.
1128	 * If these registers don't contain a valid erase opcode, erase
1129	 * cannot be done using HW sequencer.
1130	 */
1131	lvscc = readl(ispi->base + LVSCC);
1132	uvscc = readl(ispi->base + UVSCC);
1133	if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
1134		ispi->swseq_erase = true;
1135	/* SPI controller on Intel BXT supports 64K erase opcode */
1136	if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
1137		if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
1138		    !(uvscc & ERASE_64K_OPCODE_MASK))
1139			erase_64k = false;
1140
1141	if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) {
1142		dev_err(ispi->dev, "software sequencer not supported, but required\n");
1143		return -EINVAL;
1144	}
1145
1146	/*
1147	 * Some controllers can only do basic operations using hardware
1148	 * sequencer. All other operations are supposed to be carried out
1149	 * using software sequencer.
1150	 */
1151	if (ispi->swseq_reg) {
1152		/* Disable #SMI generation from SW sequencer */
1153		val = readl(ispi->sregs + SSFSTS_CTL);
1154		val &= ~SSFSTS_CTL_FSMIE;
1155		writel(val, ispi->sregs + SSFSTS_CTL);
1156	}
1157
1158	/* Check controller's lock status */
1159	val = readl(ispi->base + HSFSTS_CTL);
1160	ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
1161
1162	if (ispi->locked && ispi->sregs) {
1163		/*
1164		 * BIOS programs allowed opcodes and then locks down the
1165		 * register. So read back what opcodes it decided to support.
1166		 * That's the set we are going to support as well.
1167		 */
1168		opmenu0 = readl(ispi->sregs + OPMENU0);
1169		opmenu1 = readl(ispi->sregs + OPMENU1);
1170
1171		if (opmenu0 && opmenu1) {
1172			for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
1173				ispi->opcodes[i] = opmenu0 >> i * 8;
1174				ispi->opcodes[i + 4] = opmenu1 >> i * 8;
1175			}
1176		}
1177	}
1178
1179	if (erase_64k) {
1180		dev_dbg(ispi->dev, "Using erase_64k memory operations");
1181		ispi->mem_ops = erase_64k_mem_ops;
1182	} else {
1183		dev_dbg(ispi->dev, "Using generic memory operations");
1184		ispi->mem_ops = generic_mem_ops;
1185	}
1186
1187	intel_spi_dump_regs(ispi);
1188	return 0;
1189}
1190
1191static bool intel_spi_is_protected(const struct intel_spi *ispi,
1192				   unsigned int base, unsigned int limit)
1193{
1194	int i;
1195
1196	for (i = 0; i < ispi->pr_num; i++) {
1197		u32 pr_base, pr_limit, pr_value;
1198
1199		pr_value = readl(ispi->pregs + PR(i));
1200		if (!(pr_value & (PR_WPE | PR_RPE)))
1201			continue;
1202
1203		pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
1204		pr_base = pr_value & PR_BASE_MASK;
1205
1206		if (pr_base >= base && pr_limit <= limit)
1207			return true;
1208	}
1209
1210	return false;
1211}
1212
1213/*
1214 * There will be a single partition holding all enabled flash regions. We
1215 * call this "BIOS".
1216 */
1217static void intel_spi_fill_partition(struct intel_spi *ispi,
1218				     struct mtd_partition *part)
1219{
1220	u64 end;
1221	int i;
1222
1223	memset(part, 0, sizeof(*part));
1224
1225	/* Start from the mandatory descriptor region */
1226	part->size = 4096;
1227	part->name = "BIOS";
1228
1229	/*
1230	 * Now try to find where this partition ends based on the flash
1231	 * region registers.
1232	 */
1233	for (i = 1; i < ispi->nregions; i++) {
1234		u32 region, base, limit;
1235
1236		region = readl(ispi->base + FREG(i));
1237		base = region & FREG_BASE_MASK;
1238		limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
1239
1240		if (base >= limit || limit == 0)
1241			continue;
1242
1243		/*
1244		 * If any of the regions have protection bits set, make the
1245		 * whole partition read-only to be on the safe side.
1246		 *
1247		 * Also if the user did not ask the chip to be writeable
1248		 * mask the bit too.
1249		 */
1250		if (!writeable || intel_spi_is_protected(ispi, base, limit))
1251			part->mask_flags |= MTD_WRITEABLE;
1252
1253		end = (limit << 12) + 4096;
1254		if (end > part->size)
1255			part->size = end;
1256	}
1257
1258	/*
1259	 * Regions can refer to the second chip too so in this case we
1260	 * just make the BIOS partition to occupy the whole chip.
1261	 */
1262	if (ispi->chip0_size && part->size > ispi->chip0_size)
1263		part->size = MTDPART_SIZ_FULL;
1264}
1265
1266static int intel_spi_read_desc(struct intel_spi *ispi)
1267{
1268	struct spi_mem_op op =
1269		SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 0),
1270			   SPI_MEM_OP_ADDR(3, 0, 0),
1271			   SPI_MEM_OP_NO_DUMMY,
1272			   SPI_MEM_OP_DATA_IN(0, NULL, 0));
1273	u32 buf[2], nc, fcba, flcomp;
1274	ssize_t ret;
1275
1276	op.addr.val = 0x10;
1277	op.data.buf.in = buf;
1278	op.data.nbytes = sizeof(buf);
1279
1280	ret = intel_spi_read(ispi, NULL, NULL, &op);
1281	if (ret) {
1282		dev_warn(ispi->dev, "failed to read descriptor\n");
1283		return ret;
1284	}
1285
1286	dev_dbg(ispi->dev, "FLVALSIG=0x%08x\n", buf[0]);
1287	dev_dbg(ispi->dev, "FLMAP0=0x%08x\n", buf[1]);
1288
1289	if (buf[0] != FLVALSIG_MAGIC) {
1290		dev_warn(ispi->dev, "descriptor signature not valid\n");
1291		return -ENODEV;
1292	}
1293
1294	fcba = (buf[1] & FLMAP0_FCBA_MASK) << 4;
1295	dev_dbg(ispi->dev, "FCBA=%#x\n", fcba);
1296
1297	op.addr.val = fcba;
1298	op.data.buf.in = &flcomp;
1299	op.data.nbytes = sizeof(flcomp);
1300
1301	ret = intel_spi_read(ispi, NULL, NULL, &op);
1302	if (ret) {
1303		dev_warn(ispi->dev, "failed to read FLCOMP\n");
1304		return -ENODEV;
1305	}
1306
1307	dev_dbg(ispi->dev, "FLCOMP=0x%08x\n", flcomp);
1308
1309	switch (flcomp & FLCOMP_C0DEN_MASK) {
1310	case FLCOMP_C0DEN_512K:
1311		ispi->chip0_size = SZ_512K;
1312		break;
1313	case FLCOMP_C0DEN_1M:
1314		ispi->chip0_size = SZ_1M;
1315		break;
1316	case FLCOMP_C0DEN_2M:
1317		ispi->chip0_size = SZ_2M;
1318		break;
1319	case FLCOMP_C0DEN_4M:
1320		ispi->chip0_size = SZ_4M;
1321		break;
1322	case FLCOMP_C0DEN_8M:
1323		ispi->chip0_size = SZ_8M;
1324		break;
1325	case FLCOMP_C0DEN_16M:
1326		ispi->chip0_size = SZ_16M;
1327		break;
1328	case FLCOMP_C0DEN_32M:
1329		ispi->chip0_size = SZ_32M;
1330		break;
1331	case FLCOMP_C0DEN_64M:
1332		ispi->chip0_size = SZ_64M;
1333		break;
1334	default:
1335		return -EINVAL;
1336	}
1337
1338	dev_dbg(ispi->dev, "chip0 size %zd KB\n", ispi->chip0_size / SZ_1K);
1339
1340	nc = (buf[1] & FLMAP0_NC_MASK) >> FLMAP0_NC_SHIFT;
1341	if (!nc)
1342		ispi->host->num_chipselect = 1;
1343	else if (nc == 1)
1344		ispi->host->num_chipselect = 2;
1345	else
1346		return -EINVAL;
1347
1348	dev_dbg(ispi->dev, "%u flash components found\n",
1349		ispi->host->num_chipselect);
1350	return 0;
1351}
1352
1353static int intel_spi_populate_chip(struct intel_spi *ispi)
1354{
1355	struct flash_platform_data *pdata;
1356	struct mtd_partition *parts;
1357	struct spi_board_info chip;
1358	int ret;
1359
1360	ret = intel_spi_read_desc(ispi);
1361	if (ret)
1362		return ret;
1363
1364	pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
1365	if (!pdata)
1366		return -ENOMEM;
1367
1368	pdata->nr_parts = 1;
1369	pdata->parts = devm_kcalloc(ispi->dev, pdata->nr_parts,
1370				    sizeof(*pdata->parts), GFP_KERNEL);
1371	if (!pdata->parts)
1372		return -ENOMEM;
1373
1374	intel_spi_fill_partition(ispi, pdata->parts);
1375
1376	memset(&chip, 0, sizeof(chip));
1377	snprintf(chip.modalias, 8, "spi-nor");
1378	chip.platform_data = pdata;
1379
1380	if (!spi_new_device(ispi->host, &chip))
1381		return -ENODEV;
1382
1383	/* Add the second chip if present */
1384	if (ispi->host->num_chipselect < 2)
1385		return 0;
1386
1387	pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
1388	if (!pdata)
1389		return -ENOMEM;
1390
1391	pdata->name = devm_kasprintf(ispi->dev, GFP_KERNEL, "%s-chip1",
1392				     dev_name(ispi->dev));
1393	pdata->nr_parts = 1;
1394	parts = devm_kcalloc(ispi->dev, pdata->nr_parts, sizeof(*parts),
1395			     GFP_KERNEL);
1396	if (!parts)
1397		return -ENOMEM;
1398
1399	parts[0].size = MTDPART_SIZ_FULL;
1400	parts[0].name = "BIOS1";
1401	pdata->parts = parts;
1402
1403	chip.platform_data = pdata;
1404	chip.chip_select = 1;
1405
1406	if (!spi_new_device(ispi->host, &chip))
1407		return -ENODEV;
1408	return 0;
1409}
1410
1411/**
1412 * intel_spi_probe() - Probe the Intel SPI flash controller
1413 * @dev: Pointer to the parent device
1414 * @mem: MMIO resource
1415 * @info: Platform specific information
1416 *
1417 * Probes Intel SPI flash controller and creates the flash chip device.
1418 * Returns %0 on success and negative errno in case of failure.
1419 */
1420int intel_spi_probe(struct device *dev, struct resource *mem,
1421		    const struct intel_spi_boardinfo *info)
1422{
1423	struct spi_controller *host;
1424	struct intel_spi *ispi;
1425	int ret;
1426
1427	host = devm_spi_alloc_host(dev, sizeof(*ispi));
1428	if (!host)
1429		return -ENOMEM;
1430
1431	host->mem_ops = &intel_spi_mem_ops;
1432
1433	ispi = spi_controller_get_devdata(host);
1434
1435	ispi->base = devm_ioremap_resource(dev, mem);
1436	if (IS_ERR(ispi->base))
1437		return PTR_ERR(ispi->base);
1438
1439	ispi->dev = dev;
1440	ispi->host = host;
1441	ispi->info = info;
1442
1443	ret = intel_spi_init(ispi);
1444	if (ret)
1445		return ret;
1446
1447	ret = devm_spi_register_controller(dev, host);
1448	if (ret)
1449		return ret;
1450
1451	return intel_spi_populate_chip(ispi);
1452}
1453EXPORT_SYMBOL_GPL(intel_spi_probe);
1454
1455MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
1456MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
1457MODULE_LICENSE("GPL v2");
1458