1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Freescale eSPI controller driver.
4 *
5 * Copyright 2010 Freescale Semiconductor, Inc.
6 */
7#include <linux/delay.h>
8#include <linux/err.h>
9#include <linux/fsl_devices.h>
10#include <linux/interrupt.h>
11#include <linux/module.h>
12#include <linux/mm.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_irq.h>
16#include <linux/of_platform.h>
17#include <linux/platform_device.h>
18#include <linux/spi/spi.h>
19#include <linux/pm_runtime.h>
20#include <sysdev/fsl_soc.h>
21
22/* eSPI Controller registers */
23#define ESPI_SPMODE	0x00	/* eSPI mode register */
24#define ESPI_SPIE	0x04	/* eSPI event register */
25#define ESPI_SPIM	0x08	/* eSPI mask register */
26#define ESPI_SPCOM	0x0c	/* eSPI command register */
27#define ESPI_SPITF	0x10	/* eSPI transmit FIFO access register*/
28#define ESPI_SPIRF	0x14	/* eSPI receive FIFO access register*/
29#define ESPI_SPMODE0	0x20	/* eSPI cs0 mode register */
30
31#define ESPI_SPMODEx(x)	(ESPI_SPMODE0 + (x) * 4)
32
33/* eSPI Controller mode register definitions */
34#define SPMODE_ENABLE		BIT(31)
35#define SPMODE_LOOP		BIT(30)
36#define SPMODE_TXTHR(x)		((x) << 8)
37#define SPMODE_RXTHR(x)		((x) << 0)
38
39/* eSPI Controller CS mode register definitions */
40#define CSMODE_CI_INACTIVEHIGH	BIT(31)
41#define CSMODE_CP_BEGIN_EDGECLK	BIT(30)
42#define CSMODE_REV		BIT(29)
43#define CSMODE_DIV16		BIT(28)
44#define CSMODE_PM(x)		((x) << 24)
45#define CSMODE_POL_1		BIT(20)
46#define CSMODE_LEN(x)		((x) << 16)
47#define CSMODE_BEF(x)		((x) << 12)
48#define CSMODE_AFT(x)		((x) << 8)
49#define CSMODE_CG(x)		((x) << 3)
50
51#define FSL_ESPI_FIFO_SIZE	32
52#define FSL_ESPI_RXTHR		15
53
54/* Default mode/csmode for eSPI controller */
55#define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR))
56#define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
57		| CSMODE_AFT(0) | CSMODE_CG(1))
58
59/* SPIE register values */
60#define SPIE_RXCNT(reg)     ((reg >> 24) & 0x3F)
61#define SPIE_TXCNT(reg)     ((reg >> 16) & 0x3F)
62#define	SPIE_TXE		BIT(15)	/* TX FIFO empty */
63#define	SPIE_DON		BIT(14)	/* TX done */
64#define	SPIE_RXT		BIT(13)	/* RX FIFO threshold */
65#define	SPIE_RXF		BIT(12)	/* RX FIFO full */
66#define	SPIE_TXT		BIT(11)	/* TX FIFO threshold*/
67#define	SPIE_RNE		BIT(9)	/* RX FIFO not empty */
68#define	SPIE_TNF		BIT(8)	/* TX FIFO not full */
69
70/* SPIM register values */
71#define	SPIM_TXE		BIT(15)	/* TX FIFO empty */
72#define	SPIM_DON		BIT(14)	/* TX done */
73#define	SPIM_RXT		BIT(13)	/* RX FIFO threshold */
74#define	SPIM_RXF		BIT(12)	/* RX FIFO full */
75#define	SPIM_TXT		BIT(11)	/* TX FIFO threshold*/
76#define	SPIM_RNE		BIT(9)	/* RX FIFO not empty */
77#define	SPIM_TNF		BIT(8)	/* TX FIFO not full */
78
79/* SPCOM register values */
80#define SPCOM_CS(x)		((x) << 30)
81#define SPCOM_DO		BIT(28) /* Dual output */
82#define SPCOM_TO		BIT(27) /* TX only */
83#define SPCOM_RXSKIP(x)		((x) << 16)
84#define SPCOM_TRANLEN(x)	((x) << 0)
85
86#define	SPCOM_TRANLEN_MAX	0x10000	/* Max transaction length */
87
88#define AUTOSUSPEND_TIMEOUT 2000
89
90struct fsl_espi {
91	struct device *dev;
92	void __iomem *reg_base;
93
94	struct list_head *m_transfers;
95	struct spi_transfer *tx_t;
96	unsigned int tx_pos;
97	bool tx_done;
98	struct spi_transfer *rx_t;
99	unsigned int rx_pos;
100	bool rx_done;
101
102	bool swab;
103	unsigned int rxskip;
104
105	spinlock_t lock;
106
107	u32 spibrg;             /* SPIBRG input clock */
108
109	struct completion done;
110};
111
112struct fsl_espi_cs {
113	u32 hw_mode;
114};
115
116static inline u32 fsl_espi_read_reg(struct fsl_espi *espi, int offset)
117{
118	return ioread32be(espi->reg_base + offset);
119}
120
121static inline u16 fsl_espi_read_reg16(struct fsl_espi *espi, int offset)
122{
123	return ioread16be(espi->reg_base + offset);
124}
125
126static inline u8 fsl_espi_read_reg8(struct fsl_espi *espi, int offset)
127{
128	return ioread8(espi->reg_base + offset);
129}
130
131static inline void fsl_espi_write_reg(struct fsl_espi *espi, int offset,
132				      u32 val)
133{
134	iowrite32be(val, espi->reg_base + offset);
135}
136
137static inline void fsl_espi_write_reg16(struct fsl_espi *espi, int offset,
138					u16 val)
139{
140	iowrite16be(val, espi->reg_base + offset);
141}
142
143static inline void fsl_espi_write_reg8(struct fsl_espi *espi, int offset,
144				       u8 val)
145{
146	iowrite8(val, espi->reg_base + offset);
147}
148
149static int fsl_espi_check_message(struct spi_message *m)
150{
151	struct fsl_espi *espi = spi_controller_get_devdata(m->spi->controller);
152	struct spi_transfer *t, *first;
153
154	if (m->frame_length > SPCOM_TRANLEN_MAX) {
155		dev_err(espi->dev, "message too long, size is %u bytes\n",
156			m->frame_length);
157		return -EMSGSIZE;
158	}
159
160	first = list_first_entry(&m->transfers, struct spi_transfer,
161				 transfer_list);
162
163	list_for_each_entry(t, &m->transfers, transfer_list) {
164		if (first->bits_per_word != t->bits_per_word ||
165		    first->speed_hz != t->speed_hz) {
166			dev_err(espi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
167			return -EINVAL;
168		}
169	}
170
171	/* ESPI supports MSB-first transfers for word size 8 / 16 only */
172	if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 &&
173	    first->bits_per_word != 16) {
174		dev_err(espi->dev,
175			"MSB-first transfer not supported for wordsize %u\n",
176			first->bits_per_word);
177		return -EINVAL;
178	}
179
180	return 0;
181}
182
183static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m)
184{
185	struct spi_transfer *t;
186	unsigned int i = 0, rxskip = 0;
187
188	/*
189	 * prerequisites for ESPI rxskip mode:
190	 * - message has two transfers
191	 * - first transfer is a write and second is a read
192	 *
193	 * In addition the current low-level transfer mechanism requires
194	 * that the rxskip bytes fit into the TX FIFO. Else the transfer
195	 * would hang because after the first FSL_ESPI_FIFO_SIZE bytes
196	 * the TX FIFO isn't re-filled.
197	 */
198	list_for_each_entry(t, &m->transfers, transfer_list) {
199		if (i == 0) {
200			if (!t->tx_buf || t->rx_buf ||
201			    t->len > FSL_ESPI_FIFO_SIZE)
202				return 0;
203			rxskip = t->len;
204		} else if (i == 1) {
205			if (t->tx_buf || !t->rx_buf)
206				return 0;
207		}
208		i++;
209	}
210
211	return i == 2 ? rxskip : 0;
212}
213
214static void fsl_espi_fill_tx_fifo(struct fsl_espi *espi, u32 events)
215{
216	u32 tx_fifo_avail;
217	unsigned int tx_left;
218	const void *tx_buf;
219
220	/* if events is zero transfer has not started and tx fifo is empty */
221	tx_fifo_avail = events ? SPIE_TXCNT(events) :  FSL_ESPI_FIFO_SIZE;
222start:
223	tx_left = espi->tx_t->len - espi->tx_pos;
224	tx_buf = espi->tx_t->tx_buf;
225	while (tx_fifo_avail >= min(4U, tx_left) && tx_left) {
226		if (tx_left >= 4) {
227			if (!tx_buf)
228				fsl_espi_write_reg(espi, ESPI_SPITF, 0);
229			else if (espi->swab)
230				fsl_espi_write_reg(espi, ESPI_SPITF,
231					swahb32p(tx_buf + espi->tx_pos));
232			else
233				fsl_espi_write_reg(espi, ESPI_SPITF,
234					*(u32 *)(tx_buf + espi->tx_pos));
235			espi->tx_pos += 4;
236			tx_left -= 4;
237			tx_fifo_avail -= 4;
238		} else if (tx_left >= 2 && tx_buf && espi->swab) {
239			fsl_espi_write_reg16(espi, ESPI_SPITF,
240					swab16p(tx_buf + espi->tx_pos));
241			espi->tx_pos += 2;
242			tx_left -= 2;
243			tx_fifo_avail -= 2;
244		} else {
245			if (!tx_buf)
246				fsl_espi_write_reg8(espi, ESPI_SPITF, 0);
247			else
248				fsl_espi_write_reg8(espi, ESPI_SPITF,
249					*(u8 *)(tx_buf + espi->tx_pos));
250			espi->tx_pos += 1;
251			tx_left -= 1;
252			tx_fifo_avail -= 1;
253		}
254	}
255
256	if (!tx_left) {
257		/* Last transfer finished, in rxskip mode only one is needed */
258		if (list_is_last(&espi->tx_t->transfer_list,
259		    espi->m_transfers) || espi->rxskip) {
260			espi->tx_done = true;
261			return;
262		}
263		espi->tx_t = list_next_entry(espi->tx_t, transfer_list);
264		espi->tx_pos = 0;
265		/* continue with next transfer if tx fifo is not full */
266		if (tx_fifo_avail)
267			goto start;
268	}
269}
270
271static void fsl_espi_read_rx_fifo(struct fsl_espi *espi, u32 events)
272{
273	u32 rx_fifo_avail = SPIE_RXCNT(events);
274	unsigned int rx_left;
275	void *rx_buf;
276
277start:
278	rx_left = espi->rx_t->len - espi->rx_pos;
279	rx_buf = espi->rx_t->rx_buf;
280	while (rx_fifo_avail >= min(4U, rx_left) && rx_left) {
281		if (rx_left >= 4) {
282			u32 val = fsl_espi_read_reg(espi, ESPI_SPIRF);
283
284			if (rx_buf && espi->swab)
285				*(u32 *)(rx_buf + espi->rx_pos) = swahb32(val);
286			else if (rx_buf)
287				*(u32 *)(rx_buf + espi->rx_pos) = val;
288			espi->rx_pos += 4;
289			rx_left -= 4;
290			rx_fifo_avail -= 4;
291		} else if (rx_left >= 2 && rx_buf && espi->swab) {
292			u16 val = fsl_espi_read_reg16(espi, ESPI_SPIRF);
293
294			*(u16 *)(rx_buf + espi->rx_pos) = swab16(val);
295			espi->rx_pos += 2;
296			rx_left -= 2;
297			rx_fifo_avail -= 2;
298		} else {
299			u8 val = fsl_espi_read_reg8(espi, ESPI_SPIRF);
300
301			if (rx_buf)
302				*(u8 *)(rx_buf + espi->rx_pos) = val;
303			espi->rx_pos += 1;
304			rx_left -= 1;
305			rx_fifo_avail -= 1;
306		}
307	}
308
309	if (!rx_left) {
310		if (list_is_last(&espi->rx_t->transfer_list,
311		    espi->m_transfers)) {
312			espi->rx_done = true;
313			return;
314		}
315		espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
316		espi->rx_pos = 0;
317		/* continue with next transfer if rx fifo is not empty */
318		if (rx_fifo_avail)
319			goto start;
320	}
321}
322
323static void fsl_espi_setup_transfer(struct spi_device *spi,
324					struct spi_transfer *t)
325{
326	struct fsl_espi *espi = spi_controller_get_devdata(spi->controller);
327	int bits_per_word = t ? t->bits_per_word : spi->bits_per_word;
328	u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz;
329	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
330	u32 hw_mode_old = cs->hw_mode;
331
332	/* mask out bits we are going to set */
333	cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
334
335	cs->hw_mode |= CSMODE_LEN(bits_per_word - 1);
336
337	pm = DIV_ROUND_UP(espi->spibrg, hz * 4) - 1;
338
339	if (pm > 15) {
340		cs->hw_mode |= CSMODE_DIV16;
341		pm = DIV_ROUND_UP(espi->spibrg, hz * 16 * 4) - 1;
342	}
343
344	cs->hw_mode |= CSMODE_PM(pm);
345
346	/* don't write the mode register if the mode doesn't change */
347	if (cs->hw_mode != hw_mode_old)
348		fsl_espi_write_reg(espi, ESPI_SPMODEx(spi_get_chipselect(spi, 0)),
349				   cs->hw_mode);
350}
351
352static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
353{
354	struct fsl_espi *espi = spi_controller_get_devdata(spi->controller);
355	unsigned int rx_len = t->len;
356	u32 mask, spcom;
357	int ret;
358
359	reinit_completion(&espi->done);
360
361	/* Set SPCOM[CS] and SPCOM[TRANLEN] field */
362	spcom = SPCOM_CS(spi_get_chipselect(spi, 0));
363	spcom |= SPCOM_TRANLEN(t->len - 1);
364
365	/* configure RXSKIP mode */
366	if (espi->rxskip) {
367		spcom |= SPCOM_RXSKIP(espi->rxskip);
368		rx_len = t->len - espi->rxskip;
369		if (t->rx_nbits == SPI_NBITS_DUAL)
370			spcom |= SPCOM_DO;
371	}
372
373	fsl_espi_write_reg(espi, ESPI_SPCOM, spcom);
374
375	/* enable interrupts */
376	mask = SPIM_DON;
377	if (rx_len > FSL_ESPI_FIFO_SIZE)
378		mask |= SPIM_RXT;
379	fsl_espi_write_reg(espi, ESPI_SPIM, mask);
380
381	/* Prevent filling the fifo from getting interrupted */
382	spin_lock_irq(&espi->lock);
383	fsl_espi_fill_tx_fifo(espi, 0);
384	spin_unlock_irq(&espi->lock);
385
386	/* Won't hang up forever, SPI bus sometimes got lost interrupts... */
387	ret = wait_for_completion_timeout(&espi->done, 2 * HZ);
388	if (ret == 0)
389		dev_err(espi->dev, "Transfer timed out!\n");
390
391	/* disable rx ints */
392	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
393
394	return ret == 0 ? -ETIMEDOUT : 0;
395}
396
397static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
398{
399	struct fsl_espi *espi = spi_controller_get_devdata(m->spi->controller);
400	struct spi_device *spi = m->spi;
401	int ret;
402
403	/* In case of LSB-first and bits_per_word > 8 byte-swap all words */
404	espi->swab = spi->mode & SPI_LSB_FIRST && trans->bits_per_word > 8;
405
406	espi->m_transfers = &m->transfers;
407	espi->tx_t = list_first_entry(&m->transfers, struct spi_transfer,
408				      transfer_list);
409	espi->tx_pos = 0;
410	espi->tx_done = false;
411	espi->rx_t = list_first_entry(&m->transfers, struct spi_transfer,
412				      transfer_list);
413	espi->rx_pos = 0;
414	espi->rx_done = false;
415
416	espi->rxskip = fsl_espi_check_rxskip_mode(m);
417	if (trans->rx_nbits == SPI_NBITS_DUAL && !espi->rxskip) {
418		dev_err(espi->dev, "Dual output mode requires RXSKIP mode!\n");
419		return -EINVAL;
420	}
421
422	/* In RXSKIP mode skip first transfer for reads */
423	if (espi->rxskip)
424		espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
425
426	fsl_espi_setup_transfer(spi, trans);
427
428	ret = fsl_espi_bufs(spi, trans);
429
430	spi_transfer_delay_exec(trans);
431
432	return ret;
433}
434
435static int fsl_espi_do_one_msg(struct spi_controller *host,
436			       struct spi_message *m)
437{
438	unsigned int rx_nbits = 0, delay_nsecs = 0;
439	struct spi_transfer *t, trans = {};
440	int ret;
441
442	ret = fsl_espi_check_message(m);
443	if (ret)
444		goto out;
445
446	list_for_each_entry(t, &m->transfers, transfer_list) {
447		unsigned int delay = spi_delay_to_ns(&t->delay, t);
448
449		if (delay > delay_nsecs)
450			delay_nsecs = delay;
451		if (t->rx_nbits > rx_nbits)
452			rx_nbits = t->rx_nbits;
453	}
454
455	t = list_first_entry(&m->transfers, struct spi_transfer,
456			     transfer_list);
457
458	trans.len = m->frame_length;
459	trans.speed_hz = t->speed_hz;
460	trans.bits_per_word = t->bits_per_word;
461	trans.delay.value = delay_nsecs;
462	trans.delay.unit = SPI_DELAY_UNIT_NSECS;
463	trans.rx_nbits = rx_nbits;
464
465	if (trans.len)
466		ret = fsl_espi_trans(m, &trans);
467
468	m->actual_length = ret ? 0 : trans.len;
469out:
470	if (m->status == -EINPROGRESS)
471		m->status = ret;
472
473	spi_finalize_current_message(host);
474
475	return ret;
476}
477
478static int fsl_espi_setup(struct spi_device *spi)
479{
480	struct fsl_espi *espi;
481	u32 loop_mode;
482	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
483
484	if (!cs) {
485		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
486		if (!cs)
487			return -ENOMEM;
488		spi_set_ctldata(spi, cs);
489	}
490
491	espi = spi_controller_get_devdata(spi->controller);
492
493	pm_runtime_get_sync(espi->dev);
494
495	cs->hw_mode = fsl_espi_read_reg(espi, ESPI_SPMODEx(spi_get_chipselect(spi, 0)));
496	/* mask out bits we are going to set */
497	cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
498			 | CSMODE_REV);
499
500	if (spi->mode & SPI_CPHA)
501		cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
502	if (spi->mode & SPI_CPOL)
503		cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
504	if (!(spi->mode & SPI_LSB_FIRST))
505		cs->hw_mode |= CSMODE_REV;
506
507	/* Handle the loop mode */
508	loop_mode = fsl_espi_read_reg(espi, ESPI_SPMODE);
509	loop_mode &= ~SPMODE_LOOP;
510	if (spi->mode & SPI_LOOP)
511		loop_mode |= SPMODE_LOOP;
512	fsl_espi_write_reg(espi, ESPI_SPMODE, loop_mode);
513
514	fsl_espi_setup_transfer(spi, NULL);
515
516	pm_runtime_mark_last_busy(espi->dev);
517	pm_runtime_put_autosuspend(espi->dev);
518
519	return 0;
520}
521
522static void fsl_espi_cleanup(struct spi_device *spi)
523{
524	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
525
526	kfree(cs);
527	spi_set_ctldata(spi, NULL);
528}
529
530static void fsl_espi_cpu_irq(struct fsl_espi *espi, u32 events)
531{
532	if (!espi->rx_done)
533		fsl_espi_read_rx_fifo(espi, events);
534
535	if (!espi->tx_done)
536		fsl_espi_fill_tx_fifo(espi, events);
537
538	if (!espi->tx_done || !espi->rx_done)
539		return;
540
541	/* we're done, but check for errors before returning */
542	events = fsl_espi_read_reg(espi, ESPI_SPIE);
543
544	if (!(events & SPIE_DON))
545		dev_err(espi->dev,
546			"Transfer done but SPIE_DON isn't set!\n");
547
548	if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE) {
549		dev_err(espi->dev, "Transfer done but rx/tx fifo's aren't empty!\n");
550		dev_err(espi->dev, "SPIE_RXCNT = %d, SPIE_TXCNT = %d\n",
551			SPIE_RXCNT(events), SPIE_TXCNT(events));
552	}
553
554	complete(&espi->done);
555}
556
557static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
558{
559	struct fsl_espi *espi = context_data;
560	u32 events, mask;
561
562	spin_lock(&espi->lock);
563
564	/* Get interrupt events(tx/rx) */
565	events = fsl_espi_read_reg(espi, ESPI_SPIE);
566	mask = fsl_espi_read_reg(espi, ESPI_SPIM);
567	if (!(events & mask)) {
568		spin_unlock(&espi->lock);
569		return IRQ_NONE;
570	}
571
572	dev_vdbg(espi->dev, "%s: events %x\n", __func__, events);
573
574	fsl_espi_cpu_irq(espi, events);
575
576	/* Clear the events */
577	fsl_espi_write_reg(espi, ESPI_SPIE, events);
578
579	spin_unlock(&espi->lock);
580
581	return IRQ_HANDLED;
582}
583
584#ifdef CONFIG_PM
585static int fsl_espi_runtime_suspend(struct device *dev)
586{
587	struct spi_controller *host = dev_get_drvdata(dev);
588	struct fsl_espi *espi = spi_controller_get_devdata(host);
589	u32 regval;
590
591	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
592	regval &= ~SPMODE_ENABLE;
593	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
594
595	return 0;
596}
597
598static int fsl_espi_runtime_resume(struct device *dev)
599{
600	struct spi_controller *host = dev_get_drvdata(dev);
601	struct fsl_espi *espi = spi_controller_get_devdata(host);
602	u32 regval;
603
604	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
605	regval |= SPMODE_ENABLE;
606	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
607
608	return 0;
609}
610#endif
611
612static size_t fsl_espi_max_message_size(struct spi_device *spi)
613{
614	return SPCOM_TRANLEN_MAX;
615}
616
617static void fsl_espi_init_regs(struct device *dev, bool initial)
618{
619	struct spi_controller *host = dev_get_drvdata(dev);
620	struct fsl_espi *espi = spi_controller_get_devdata(host);
621	struct device_node *nc;
622	u32 csmode, cs, prop;
623	int ret;
624
625	/* SPI controller initializations */
626	fsl_espi_write_reg(espi, ESPI_SPMODE, 0);
627	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
628	fsl_espi_write_reg(espi, ESPI_SPCOM, 0);
629	fsl_espi_write_reg(espi, ESPI_SPIE, 0xffffffff);
630
631	/* Init eSPI CS mode register */
632	for_each_available_child_of_node(host->dev.of_node, nc) {
633		/* get chip select */
634		ret = of_property_read_u32(nc, "reg", &cs);
635		if (ret || cs >= host->num_chipselect)
636			continue;
637
638		csmode = CSMODE_INIT_VAL;
639
640		/* check if CSBEF is set in device tree */
641		ret = of_property_read_u32(nc, "fsl,csbef", &prop);
642		if (!ret) {
643			csmode &= ~(CSMODE_BEF(0xf));
644			csmode |= CSMODE_BEF(prop);
645		}
646
647		/* check if CSAFT is set in device tree */
648		ret = of_property_read_u32(nc, "fsl,csaft", &prop);
649		if (!ret) {
650			csmode &= ~(CSMODE_AFT(0xf));
651			csmode |= CSMODE_AFT(prop);
652		}
653
654		fsl_espi_write_reg(espi, ESPI_SPMODEx(cs), csmode);
655
656		if (initial)
657			dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode);
658	}
659
660	/* Enable SPI interface */
661	fsl_espi_write_reg(espi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE);
662}
663
664static int fsl_espi_probe(struct device *dev, struct resource *mem,
665			  unsigned int irq, unsigned int num_cs)
666{
667	struct spi_controller *host;
668	struct fsl_espi *espi;
669	int ret;
670
671	host = spi_alloc_host(dev, sizeof(struct fsl_espi));
672	if (!host)
673		return -ENOMEM;
674
675	dev_set_drvdata(dev, host);
676
677	host->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
678			  SPI_LSB_FIRST | SPI_LOOP;
679	host->dev.of_node = dev->of_node;
680	host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
681	host->setup = fsl_espi_setup;
682	host->cleanup = fsl_espi_cleanup;
683	host->transfer_one_message = fsl_espi_do_one_msg;
684	host->auto_runtime_pm = true;
685	host->max_message_size = fsl_espi_max_message_size;
686	host->num_chipselect = num_cs;
687
688	espi = spi_controller_get_devdata(host);
689	spin_lock_init(&espi->lock);
690
691	espi->dev = dev;
692	espi->spibrg = fsl_get_sys_freq();
693	if (espi->spibrg == -1) {
694		dev_err(dev, "Can't get sys frequency!\n");
695		ret = -EINVAL;
696		goto err_probe;
697	}
698	/* determined by clock divider fields DIV16/PM in register SPMODEx */
699	host->min_speed_hz = DIV_ROUND_UP(espi->spibrg, 4 * 16 * 16);
700	host->max_speed_hz = DIV_ROUND_UP(espi->spibrg, 4);
701
702	init_completion(&espi->done);
703
704	espi->reg_base = devm_ioremap_resource(dev, mem);
705	if (IS_ERR(espi->reg_base)) {
706		ret = PTR_ERR(espi->reg_base);
707		goto err_probe;
708	}
709
710	/* Register for SPI Interrupt */
711	ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi", espi);
712	if (ret)
713		goto err_probe;
714
715	fsl_espi_init_regs(dev, true);
716
717	pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
718	pm_runtime_use_autosuspend(dev);
719	pm_runtime_set_active(dev);
720	pm_runtime_enable(dev);
721	pm_runtime_get_sync(dev);
722
723	ret = devm_spi_register_controller(dev, host);
724	if (ret < 0)
725		goto err_pm;
726
727	dev_info(dev, "irq = %u\n", irq);
728
729	pm_runtime_mark_last_busy(dev);
730	pm_runtime_put_autosuspend(dev);
731
732	return 0;
733
734err_pm:
735	pm_runtime_put_noidle(dev);
736	pm_runtime_disable(dev);
737	pm_runtime_set_suspended(dev);
738err_probe:
739	spi_controller_put(host);
740	return ret;
741}
742
743static int of_fsl_espi_get_chipselects(struct device *dev)
744{
745	struct device_node *np = dev->of_node;
746	u32 num_cs;
747	int ret;
748
749	ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs);
750	if (ret) {
751		dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
752		return 0;
753	}
754
755	return num_cs;
756}
757
758static int of_fsl_espi_probe(struct platform_device *ofdev)
759{
760	struct device *dev = &ofdev->dev;
761	struct device_node *np = ofdev->dev.of_node;
762	struct resource mem;
763	unsigned int irq, num_cs;
764	int ret;
765
766	if (of_property_read_bool(np, "mode")) {
767		dev_err(dev, "mode property is not supported on ESPI!\n");
768		return -EINVAL;
769	}
770
771	num_cs = of_fsl_espi_get_chipselects(dev);
772	if (!num_cs)
773		return -EINVAL;
774
775	ret = of_address_to_resource(np, 0, &mem);
776	if (ret)
777		return ret;
778
779	irq = irq_of_parse_and_map(np, 0);
780	if (!irq)
781		return -EINVAL;
782
783	return fsl_espi_probe(dev, &mem, irq, num_cs);
784}
785
786static void of_fsl_espi_remove(struct platform_device *dev)
787{
788	pm_runtime_disable(&dev->dev);
789}
790
791#ifdef CONFIG_PM_SLEEP
792static int of_fsl_espi_suspend(struct device *dev)
793{
794	struct spi_controller *host = dev_get_drvdata(dev);
795	int ret;
796
797	ret = spi_controller_suspend(host);
798	if (ret)
799		return ret;
800
801	return pm_runtime_force_suspend(dev);
802}
803
804static int of_fsl_espi_resume(struct device *dev)
805{
806	struct spi_controller *host = dev_get_drvdata(dev);
807	int ret;
808
809	fsl_espi_init_regs(dev, false);
810
811	ret = pm_runtime_force_resume(dev);
812	if (ret < 0)
813		return ret;
814
815	return spi_controller_resume(host);
816}
817#endif /* CONFIG_PM_SLEEP */
818
819static const struct dev_pm_ops espi_pm = {
820	SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
821			   fsl_espi_runtime_resume, NULL)
822	SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
823};
824
825static const struct of_device_id of_fsl_espi_match[] = {
826	{ .compatible = "fsl,mpc8536-espi" },
827	{}
828};
829MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
830
831static struct platform_driver fsl_espi_driver = {
832	.driver = {
833		.name = "fsl_espi",
834		.of_match_table = of_fsl_espi_match,
835		.pm = &espi_pm,
836	},
837	.probe		= of_fsl_espi_probe,
838	.remove_new	= of_fsl_espi_remove,
839};
840module_platform_driver(fsl_espi_driver);
841
842MODULE_AUTHOR("Mingkai Hu");
843MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
844MODULE_LICENSE("GPL");
845