1// SPDX-License-Identifier: GPL-2.0+
2//
3// Copyright 2013 Freescale Semiconductor, Inc.
4// Copyright 2020 NXP
5//
6// Freescale DSPI driver
7// This file contains a driver for the Freescale DSPI
8
9#include <linux/clk.h>
10#include <linux/delay.h>
11#include <linux/dmaengine.h>
12#include <linux/dma-mapping.h>
13#include <linux/interrupt.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/of.h>
17#include <linux/platform_device.h>
18#include <linux/pinctrl/consumer.h>
19#include <linux/regmap.h>
20#include <linux/spi/spi.h>
21#include <linux/spi/spi-fsl-dspi.h>
22
23#define DRIVER_NAME			"fsl-dspi"
24
25#define SPI_MCR				0x00
26#define SPI_MCR_HOST			BIT(31)
27#define SPI_MCR_PCSIS(x)		((x) << 16)
28#define SPI_MCR_CLR_TXF			BIT(11)
29#define SPI_MCR_CLR_RXF			BIT(10)
30#define SPI_MCR_XSPI			BIT(3)
31#define SPI_MCR_DIS_TXF			BIT(13)
32#define SPI_MCR_DIS_RXF			BIT(12)
33#define SPI_MCR_HALT			BIT(0)
34
35#define SPI_TCR				0x08
36#define SPI_TCR_GET_TCNT(x)		(((x) & GENMASK(31, 16)) >> 16)
37
38#define SPI_CTAR(x)			(0x0c + (((x) & GENMASK(1, 0)) * 4))
39#define SPI_CTAR_FMSZ(x)		(((x) << 27) & GENMASK(30, 27))
40#define SPI_CTAR_CPOL			BIT(26)
41#define SPI_CTAR_CPHA			BIT(25)
42#define SPI_CTAR_LSBFE			BIT(24)
43#define SPI_CTAR_PCSSCK(x)		(((x) << 22) & GENMASK(23, 22))
44#define SPI_CTAR_PASC(x)		(((x) << 20) & GENMASK(21, 20))
45#define SPI_CTAR_PDT(x)			(((x) << 18) & GENMASK(19, 18))
46#define SPI_CTAR_PBR(x)			(((x) << 16) & GENMASK(17, 16))
47#define SPI_CTAR_CSSCK(x)		(((x) << 12) & GENMASK(15, 12))
48#define SPI_CTAR_ASC(x)			(((x) << 8) & GENMASK(11, 8))
49#define SPI_CTAR_DT(x)			(((x) << 4) & GENMASK(7, 4))
50#define SPI_CTAR_BR(x)			((x) & GENMASK(3, 0))
51#define SPI_CTAR_SCALE_BITS		0xf
52
53#define SPI_CTAR0_SLAVE			0x0c
54
55#define SPI_SR				0x2c
56#define SPI_SR_TCFQF			BIT(31)
57#define SPI_SR_TFUF			BIT(27)
58#define SPI_SR_TFFF			BIT(25)
59#define SPI_SR_CMDTCF			BIT(23)
60#define SPI_SR_SPEF			BIT(21)
61#define SPI_SR_RFOF			BIT(19)
62#define SPI_SR_TFIWF			BIT(18)
63#define SPI_SR_RFDF			BIT(17)
64#define SPI_SR_CMDFFF			BIT(16)
65#define SPI_SR_CLEAR			(SPI_SR_TCFQF | \
66					SPI_SR_TFUF | SPI_SR_TFFF | \
67					SPI_SR_CMDTCF | SPI_SR_SPEF | \
68					SPI_SR_RFOF | SPI_SR_TFIWF | \
69					SPI_SR_RFDF | SPI_SR_CMDFFF)
70
71#define SPI_RSER_TFFFE			BIT(25)
72#define SPI_RSER_TFFFD			BIT(24)
73#define SPI_RSER_RFDFE			BIT(17)
74#define SPI_RSER_RFDFD			BIT(16)
75
76#define SPI_RSER			0x30
77#define SPI_RSER_TCFQE			BIT(31)
78#define SPI_RSER_CMDTCFE		BIT(23)
79
80#define SPI_PUSHR			0x34
81#define SPI_PUSHR_CMD_CONT		BIT(15)
82#define SPI_PUSHR_CMD_CTAS(x)		(((x) << 12 & GENMASK(14, 12)))
83#define SPI_PUSHR_CMD_EOQ		BIT(11)
84#define SPI_PUSHR_CMD_CTCNT		BIT(10)
85#define SPI_PUSHR_CMD_PCS(x)		(BIT(x) & GENMASK(5, 0))
86
87#define SPI_PUSHR_SLAVE			0x34
88
89#define SPI_POPR			0x38
90
91#define SPI_TXFR0			0x3c
92#define SPI_TXFR1			0x40
93#define SPI_TXFR2			0x44
94#define SPI_TXFR3			0x48
95#define SPI_RXFR0			0x7c
96#define SPI_RXFR1			0x80
97#define SPI_RXFR2			0x84
98#define SPI_RXFR3			0x88
99
100#define SPI_CTARE(x)			(0x11c + (((x) & GENMASK(1, 0)) * 4))
101#define SPI_CTARE_FMSZE(x)		(((x) & 0x1) << 16)
102#define SPI_CTARE_DTCP(x)		((x) & 0x7ff)
103
104#define SPI_SREX			0x13c
105
106#define SPI_FRAME_BITS(bits)		SPI_CTAR_FMSZ((bits) - 1)
107#define SPI_FRAME_EBITS(bits)		SPI_CTARE_FMSZE(((bits) - 1) >> 4)
108
109#define DMA_COMPLETION_TIMEOUT		msecs_to_jiffies(3000)
110
111struct chip_data {
112	u32			ctar_val;
113};
114
115enum dspi_trans_mode {
116	DSPI_XSPI_MODE,
117	DSPI_DMA_MODE,
118};
119
120struct fsl_dspi_devtype_data {
121	enum dspi_trans_mode	trans_mode;
122	u8			max_clock_factor;
123	int			fifo_size;
124};
125
126enum {
127	LS1021A,
128	LS1012A,
129	LS1028A,
130	LS1043A,
131	LS1046A,
132	LS2080A,
133	LS2085A,
134	LX2160A,
135	MCF5441X,
136	VF610,
137};
138
139static const struct fsl_dspi_devtype_data devtype_data[] = {
140	[VF610] = {
141		.trans_mode		= DSPI_DMA_MODE,
142		.max_clock_factor	= 2,
143		.fifo_size		= 4,
144	},
145	[LS1021A] = {
146		/* Has A-011218 DMA erratum */
147		.trans_mode		= DSPI_XSPI_MODE,
148		.max_clock_factor	= 8,
149		.fifo_size		= 4,
150	},
151	[LS1012A] = {
152		/* Has A-011218 DMA erratum */
153		.trans_mode		= DSPI_XSPI_MODE,
154		.max_clock_factor	= 8,
155		.fifo_size		= 16,
156	},
157	[LS1028A] = {
158		.trans_mode		= DSPI_XSPI_MODE,
159		.max_clock_factor	= 8,
160		.fifo_size		= 4,
161	},
162	[LS1043A] = {
163		/* Has A-011218 DMA erratum */
164		.trans_mode		= DSPI_XSPI_MODE,
165		.max_clock_factor	= 8,
166		.fifo_size		= 16,
167	},
168	[LS1046A] = {
169		/* Has A-011218 DMA erratum */
170		.trans_mode		= DSPI_XSPI_MODE,
171		.max_clock_factor	= 8,
172		.fifo_size		= 16,
173	},
174	[LS2080A] = {
175		.trans_mode		= DSPI_XSPI_MODE,
176		.max_clock_factor	= 8,
177		.fifo_size		= 4,
178	},
179	[LS2085A] = {
180		.trans_mode		= DSPI_XSPI_MODE,
181		.max_clock_factor	= 8,
182		.fifo_size		= 4,
183	},
184	[LX2160A] = {
185		.trans_mode		= DSPI_XSPI_MODE,
186		.max_clock_factor	= 8,
187		.fifo_size		= 4,
188	},
189	[MCF5441X] = {
190		.trans_mode		= DSPI_DMA_MODE,
191		.max_clock_factor	= 8,
192		.fifo_size		= 16,
193	},
194};
195
196struct fsl_dspi_dma {
197	u32					*tx_dma_buf;
198	struct dma_chan				*chan_tx;
199	dma_addr_t				tx_dma_phys;
200	struct completion			cmd_tx_complete;
201	struct dma_async_tx_descriptor		*tx_desc;
202
203	u32					*rx_dma_buf;
204	struct dma_chan				*chan_rx;
205	dma_addr_t				rx_dma_phys;
206	struct completion			cmd_rx_complete;
207	struct dma_async_tx_descriptor		*rx_desc;
208};
209
210struct fsl_dspi {
211	struct spi_controller			*ctlr;
212	struct platform_device			*pdev;
213
214	struct regmap				*regmap;
215	struct regmap				*regmap_pushr;
216	int					irq;
217	struct clk				*clk;
218
219	struct spi_transfer			*cur_transfer;
220	struct spi_message			*cur_msg;
221	struct chip_data			*cur_chip;
222	size_t					progress;
223	size_t					len;
224	const void				*tx;
225	void					*rx;
226	u16					tx_cmd;
227	const struct fsl_dspi_devtype_data	*devtype_data;
228
229	struct completion			xfer_done;
230
231	struct fsl_dspi_dma			*dma;
232
233	int					oper_word_size;
234	int					oper_bits_per_word;
235
236	int					words_in_flight;
237
238	/*
239	 * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
240	 * individually (in XSPI mode)
241	 */
242	int					pushr_cmd;
243	int					pushr_tx;
244
245	void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
246	void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
247};
248
249static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
250{
251	switch (dspi->oper_word_size) {
252	case 1:
253		*txdata = *(u8 *)dspi->tx;
254		break;
255	case 2:
256		*txdata = *(u16 *)dspi->tx;
257		break;
258	case 4:
259		*txdata = *(u32 *)dspi->tx;
260		break;
261	}
262	dspi->tx += dspi->oper_word_size;
263}
264
265static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
266{
267	switch (dspi->oper_word_size) {
268	case 1:
269		*(u8 *)dspi->rx = rxdata;
270		break;
271	case 2:
272		*(u16 *)dspi->rx = rxdata;
273		break;
274	case 4:
275		*(u32 *)dspi->rx = rxdata;
276		break;
277	}
278	dspi->rx += dspi->oper_word_size;
279}
280
281static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
282{
283	*txdata = cpu_to_be32(*(u32 *)dspi->tx);
284	dspi->tx += sizeof(u32);
285}
286
287static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
288{
289	*(u32 *)dspi->rx = be32_to_cpu(rxdata);
290	dspi->rx += sizeof(u32);
291}
292
293static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
294{
295	*txdata = cpu_to_be16(*(u16 *)dspi->tx);
296	dspi->tx += sizeof(u16);
297}
298
299static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
300{
301	*(u16 *)dspi->rx = be16_to_cpu(rxdata);
302	dspi->rx += sizeof(u16);
303}
304
305static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
306{
307	u16 hi = *(u16 *)dspi->tx;
308	u16 lo = *(u16 *)(dspi->tx + 2);
309
310	*txdata = (u32)hi << 16 | lo;
311	dspi->tx += sizeof(u32);
312}
313
314static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
315{
316	u16 hi = rxdata & 0xffff;
317	u16 lo = rxdata >> 16;
318
319	*(u16 *)dspi->rx = lo;
320	*(u16 *)(dspi->rx + 2) = hi;
321	dspi->rx += sizeof(u32);
322}
323
324/*
325 * Pop one word from the TX buffer for pushing into the
326 * PUSHR register (TX FIFO)
327 */
328static u32 dspi_pop_tx(struct fsl_dspi *dspi)
329{
330	u32 txdata = 0;
331
332	if (dspi->tx)
333		dspi->host_to_dev(dspi, &txdata);
334	dspi->len -= dspi->oper_word_size;
335	return txdata;
336}
337
338/* Prepare one TX FIFO entry (txdata plus cmd) */
339static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
340{
341	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
342
343	if (spi_controller_is_target(dspi->ctlr))
344		return data;
345
346	if (dspi->len > 0)
347		cmd |= SPI_PUSHR_CMD_CONT;
348	return cmd << 16 | data;
349}
350
351/* Push one word to the RX buffer from the POPR register (RX FIFO) */
352static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
353{
354	if (!dspi->rx)
355		return;
356	dspi->dev_to_host(dspi, rxdata);
357}
358
359static void dspi_tx_dma_callback(void *arg)
360{
361	struct fsl_dspi *dspi = arg;
362	struct fsl_dspi_dma *dma = dspi->dma;
363
364	complete(&dma->cmd_tx_complete);
365}
366
367static void dspi_rx_dma_callback(void *arg)
368{
369	struct fsl_dspi *dspi = arg;
370	struct fsl_dspi_dma *dma = dspi->dma;
371	int i;
372
373	if (dspi->rx) {
374		for (i = 0; i < dspi->words_in_flight; i++)
375			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
376	}
377
378	complete(&dma->cmd_rx_complete);
379}
380
381static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
382{
383	struct device *dev = &dspi->pdev->dev;
384	struct fsl_dspi_dma *dma = dspi->dma;
385	int time_left;
386	int i;
387
388	for (i = 0; i < dspi->words_in_flight; i++)
389		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
390
391	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
392					dma->tx_dma_phys,
393					dspi->words_in_flight *
394					DMA_SLAVE_BUSWIDTH_4_BYTES,
395					DMA_MEM_TO_DEV,
396					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
397	if (!dma->tx_desc) {
398		dev_err(dev, "Not able to get desc for DMA xfer\n");
399		return -EIO;
400	}
401
402	dma->tx_desc->callback = dspi_tx_dma_callback;
403	dma->tx_desc->callback_param = dspi;
404	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
405		dev_err(dev, "DMA submit failed\n");
406		return -EINVAL;
407	}
408
409	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
410					dma->rx_dma_phys,
411					dspi->words_in_flight *
412					DMA_SLAVE_BUSWIDTH_4_BYTES,
413					DMA_DEV_TO_MEM,
414					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
415	if (!dma->rx_desc) {
416		dev_err(dev, "Not able to get desc for DMA xfer\n");
417		return -EIO;
418	}
419
420	dma->rx_desc->callback = dspi_rx_dma_callback;
421	dma->rx_desc->callback_param = dspi;
422	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
423		dev_err(dev, "DMA submit failed\n");
424		return -EINVAL;
425	}
426
427	reinit_completion(&dspi->dma->cmd_rx_complete);
428	reinit_completion(&dspi->dma->cmd_tx_complete);
429
430	dma_async_issue_pending(dma->chan_rx);
431	dma_async_issue_pending(dma->chan_tx);
432
433	if (spi_controller_is_target(dspi->ctlr)) {
434		wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
435		return 0;
436	}
437
438	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
439						DMA_COMPLETION_TIMEOUT);
440	if (time_left == 0) {
441		dev_err(dev, "DMA tx timeout\n");
442		dmaengine_terminate_all(dma->chan_tx);
443		dmaengine_terminate_all(dma->chan_rx);
444		return -ETIMEDOUT;
445	}
446
447	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
448						DMA_COMPLETION_TIMEOUT);
449	if (time_left == 0) {
450		dev_err(dev, "DMA rx timeout\n");
451		dmaengine_terminate_all(dma->chan_tx);
452		dmaengine_terminate_all(dma->chan_rx);
453		return -ETIMEDOUT;
454	}
455
456	return 0;
457}
458
459static void dspi_setup_accel(struct fsl_dspi *dspi);
460
461static int dspi_dma_xfer(struct fsl_dspi *dspi)
462{
463	struct spi_message *message = dspi->cur_msg;
464	struct device *dev = &dspi->pdev->dev;
465	int ret = 0;
466
467	/*
468	 * dspi->len gets decremented by dspi_pop_tx_pushr in
469	 * dspi_next_xfer_dma_submit
470	 */
471	while (dspi->len) {
472		/* Figure out operational bits-per-word for this chunk */
473		dspi_setup_accel(dspi);
474
475		dspi->words_in_flight = dspi->len / dspi->oper_word_size;
476		if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
477			dspi->words_in_flight = dspi->devtype_data->fifo_size;
478
479		message->actual_length += dspi->words_in_flight *
480					  dspi->oper_word_size;
481
482		ret = dspi_next_xfer_dma_submit(dspi);
483		if (ret) {
484			dev_err(dev, "DMA transfer failed\n");
485			break;
486		}
487	}
488
489	return ret;
490}
491
492static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
493{
494	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
495	struct device *dev = &dspi->pdev->dev;
496	struct dma_slave_config cfg;
497	struct fsl_dspi_dma *dma;
498	int ret;
499
500	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
501	if (!dma)
502		return -ENOMEM;
503
504	dma->chan_rx = dma_request_chan(dev, "rx");
505	if (IS_ERR(dma->chan_rx))
506		return dev_err_probe(dev, PTR_ERR(dma->chan_rx), "rx dma channel not available\n");
507
508	dma->chan_tx = dma_request_chan(dev, "tx");
509	if (IS_ERR(dma->chan_tx)) {
510		ret = dev_err_probe(dev, PTR_ERR(dma->chan_tx), "tx dma channel not available\n");
511		goto err_tx_channel;
512	}
513
514	dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
515					     dma_bufsize, &dma->tx_dma_phys,
516					     GFP_KERNEL);
517	if (!dma->tx_dma_buf) {
518		ret = -ENOMEM;
519		goto err_tx_dma_buf;
520	}
521
522	dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
523					     dma_bufsize, &dma->rx_dma_phys,
524					     GFP_KERNEL);
525	if (!dma->rx_dma_buf) {
526		ret = -ENOMEM;
527		goto err_rx_dma_buf;
528	}
529
530	memset(&cfg, 0, sizeof(cfg));
531	cfg.src_addr = phy_addr + SPI_POPR;
532	cfg.dst_addr = phy_addr + SPI_PUSHR;
533	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
534	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
535	cfg.src_maxburst = 1;
536	cfg.dst_maxburst = 1;
537
538	cfg.direction = DMA_DEV_TO_MEM;
539	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
540	if (ret) {
541		dev_err_probe(dev, ret, "can't configure rx dma channel\n");
542		goto err_slave_config;
543	}
544
545	cfg.direction = DMA_MEM_TO_DEV;
546	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
547	if (ret) {
548		dev_err_probe(dev, ret, "can't configure tx dma channel\n");
549		goto err_slave_config;
550	}
551
552	dspi->dma = dma;
553	init_completion(&dma->cmd_tx_complete);
554	init_completion(&dma->cmd_rx_complete);
555
556	return 0;
557
558err_slave_config:
559	dma_free_coherent(dma->chan_rx->device->dev,
560			  dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
561err_rx_dma_buf:
562	dma_free_coherent(dma->chan_tx->device->dev,
563			  dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
564err_tx_dma_buf:
565	dma_release_channel(dma->chan_tx);
566err_tx_channel:
567	dma_release_channel(dma->chan_rx);
568
569	devm_kfree(dev, dma);
570	dspi->dma = NULL;
571
572	return ret;
573}
574
575static void dspi_release_dma(struct fsl_dspi *dspi)
576{
577	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
578	struct fsl_dspi_dma *dma = dspi->dma;
579
580	if (!dma)
581		return;
582
583	if (dma->chan_tx) {
584		dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
585				  dma->tx_dma_buf, dma->tx_dma_phys);
586		dma_release_channel(dma->chan_tx);
587	}
588
589	if (dma->chan_rx) {
590		dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
591				  dma->rx_dma_buf, dma->rx_dma_phys);
592		dma_release_channel(dma->chan_rx);
593	}
594}
595
596static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
597			   unsigned long clkrate)
598{
599	/* Valid baud rate pre-scaler values */
600	int pbr_tbl[4] = {2, 3, 5, 7};
601	int brs[16] = {	2,	4,	6,	8,
602			16,	32,	64,	128,
603			256,	512,	1024,	2048,
604			4096,	8192,	16384,	32768 };
605	int scale_needed, scale, minscale = INT_MAX;
606	int i, j;
607
608	scale_needed = clkrate / speed_hz;
609	if (clkrate % speed_hz)
610		scale_needed++;
611
612	for (i = 0; i < ARRAY_SIZE(brs); i++)
613		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
614			scale = brs[i] * pbr_tbl[j];
615			if (scale >= scale_needed) {
616				if (scale < minscale) {
617					minscale = scale;
618					*br = i;
619					*pbr = j;
620				}
621				break;
622			}
623		}
624
625	if (minscale == INT_MAX) {
626		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
627			speed_hz, clkrate);
628		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
629		*br =  ARRAY_SIZE(brs) - 1;
630	}
631}
632
633static void ns_delay_scale(char *psc, char *sc, int delay_ns,
634			   unsigned long clkrate)
635{
636	int scale_needed, scale, minscale = INT_MAX;
637	int pscale_tbl[4] = {1, 3, 5, 7};
638	u32 remainder;
639	int i, j;
640
641	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
642				   &remainder);
643	if (remainder)
644		scale_needed++;
645
646	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
647		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
648			scale = pscale_tbl[i] * (2 << j);
649			if (scale >= scale_needed) {
650				if (scale < minscale) {
651					minscale = scale;
652					*psc = i;
653					*sc = j;
654				}
655				break;
656			}
657		}
658
659	if (minscale == INT_MAX) {
660		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
661			delay_ns, clkrate);
662		*psc = ARRAY_SIZE(pscale_tbl) - 1;
663		*sc = SPI_CTAR_SCALE_BITS;
664	}
665}
666
667static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
668{
669	/*
670	 * The only time when the PCS doesn't need continuation after this word
671	 * is when it's last. We need to look ahead, because we actually call
672	 * dspi_pop_tx (the function that decrements dspi->len) _after_
673	 * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
674	 * word is enough. If there's more to transmit than that,
675	 * dspi_xspi_write will know to split the FIFO writes in 2, and
676	 * generate a new PUSHR command with the final word that will have PCS
677	 * deasserted (not continued) here.
678	 */
679	if (dspi->len > dspi->oper_word_size)
680		cmd |= SPI_PUSHR_CMD_CONT;
681	regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
682}
683
684static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
685{
686	regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
687}
688
689static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
690{
691	int num_bytes = num_words * dspi->oper_word_size;
692	u16 tx_cmd = dspi->tx_cmd;
693
694	/*
695	 * If the PCS needs to de-assert (i.e. we're at the end of the buffer
696	 * and cs_change does not want the PCS to stay on), then we need a new
697	 * PUSHR command, since this one (for the body of the buffer)
698	 * necessarily has the CONT bit set.
699	 * So send one word less during this go, to force a split and a command
700	 * with a single word next time, when CONT will be unset.
701	 */
702	if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
703		tx_cmd |= SPI_PUSHR_CMD_EOQ;
704
705	/* Update CTARE */
706	regmap_write(dspi->regmap, SPI_CTARE(0),
707		     SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
708		     SPI_CTARE_DTCP(num_words));
709
710	/*
711	 * Write the CMD FIFO entry first, and then the two
712	 * corresponding TX FIFO entries (or one...).
713	 */
714	dspi_pushr_cmd_write(dspi, tx_cmd);
715
716	/* Fill TX FIFO with as many transfers as possible */
717	while (num_words--) {
718		u32 data = dspi_pop_tx(dspi);
719
720		dspi_pushr_txdata_write(dspi, data & 0xFFFF);
721		if (dspi->oper_bits_per_word > 16)
722			dspi_pushr_txdata_write(dspi, data >> 16);
723	}
724}
725
726static u32 dspi_popr_read(struct fsl_dspi *dspi)
727{
728	u32 rxdata = 0;
729
730	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
731	return rxdata;
732}
733
734static void dspi_fifo_read(struct fsl_dspi *dspi)
735{
736	int num_fifo_entries = dspi->words_in_flight;
737
738	/* Read one FIFO entry and push to rx buffer */
739	while (num_fifo_entries--)
740		dspi_push_rx(dspi, dspi_popr_read(dspi));
741}
742
743static void dspi_setup_accel(struct fsl_dspi *dspi)
744{
745	struct spi_transfer *xfer = dspi->cur_transfer;
746	bool odd = !!(dspi->len & 1);
747
748	/* No accel for frames not multiple of 8 bits at the moment */
749	if (xfer->bits_per_word % 8)
750		goto no_accel;
751
752	if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
753		dspi->oper_bits_per_word = 16;
754	} else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
755		dspi->oper_bits_per_word = 8;
756	} else {
757		/* Start off with maximum supported by hardware */
758		if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
759			dspi->oper_bits_per_word = 32;
760		else
761			dspi->oper_bits_per_word = 16;
762
763		/*
764		 * And go down only if the buffer can't be sent with
765		 * words this big
766		 */
767		do {
768			if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
769				break;
770
771			dspi->oper_bits_per_word /= 2;
772		} while (dspi->oper_bits_per_word > 8);
773	}
774
775	if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
776		dspi->dev_to_host = dspi_8on32_dev_to_host;
777		dspi->host_to_dev = dspi_8on32_host_to_dev;
778	} else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
779		dspi->dev_to_host = dspi_8on16_dev_to_host;
780		dspi->host_to_dev = dspi_8on16_host_to_dev;
781	} else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
782		dspi->dev_to_host = dspi_16on32_dev_to_host;
783		dspi->host_to_dev = dspi_16on32_host_to_dev;
784	} else {
785no_accel:
786		dspi->dev_to_host = dspi_native_dev_to_host;
787		dspi->host_to_dev = dspi_native_host_to_dev;
788		dspi->oper_bits_per_word = xfer->bits_per_word;
789	}
790
791	dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
792
793	/*
794	 * Update CTAR here (code is common for XSPI and DMA modes).
795	 * We will update CTARE in the portion specific to XSPI, when we
796	 * also know the preload value (DTCP).
797	 */
798	regmap_write(dspi->regmap, SPI_CTAR(0),
799		     dspi->cur_chip->ctar_val |
800		     SPI_FRAME_BITS(dspi->oper_bits_per_word));
801}
802
803static void dspi_fifo_write(struct fsl_dspi *dspi)
804{
805	int num_fifo_entries = dspi->devtype_data->fifo_size;
806	struct spi_transfer *xfer = dspi->cur_transfer;
807	struct spi_message *msg = dspi->cur_msg;
808	int num_words, num_bytes;
809
810	dspi_setup_accel(dspi);
811
812	/* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
813	if (dspi->oper_word_size == 4)
814		num_fifo_entries /= 2;
815
816	/*
817	 * Integer division intentionally trims off odd (or non-multiple of 4)
818	 * numbers of bytes at the end of the buffer, which will be sent next
819	 * time using a smaller oper_word_size.
820	 */
821	num_words = dspi->len / dspi->oper_word_size;
822	if (num_words > num_fifo_entries)
823		num_words = num_fifo_entries;
824
825	/* Update total number of bytes that were transferred */
826	num_bytes = num_words * dspi->oper_word_size;
827	msg->actual_length += num_bytes;
828	dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
829
830	/*
831	 * Update shared variable for use in the next interrupt (both in
832	 * dspi_fifo_read and in dspi_fifo_write).
833	 */
834	dspi->words_in_flight = num_words;
835
836	spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
837
838	dspi_xspi_fifo_write(dspi, num_words);
839	/*
840	 * Everything after this point is in a potential race with the next
841	 * interrupt, so we must never use dspi->words_in_flight again since it
842	 * might already be modified by the next dspi_fifo_write.
843	 */
844
845	spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
846				dspi->progress, !dspi->irq);
847}
848
849static int dspi_rxtx(struct fsl_dspi *dspi)
850{
851	dspi_fifo_read(dspi);
852
853	if (!dspi->len)
854		/* Success! */
855		return 0;
856
857	dspi_fifo_write(dspi);
858
859	return -EINPROGRESS;
860}
861
862static int dspi_poll(struct fsl_dspi *dspi)
863{
864	int tries = 1000;
865	u32 spi_sr;
866
867	do {
868		regmap_read(dspi->regmap, SPI_SR, &spi_sr);
869		regmap_write(dspi->regmap, SPI_SR, spi_sr);
870
871		if (spi_sr & SPI_SR_CMDTCF)
872			break;
873	} while (--tries);
874
875	if (!tries)
876		return -ETIMEDOUT;
877
878	return dspi_rxtx(dspi);
879}
880
881static irqreturn_t dspi_interrupt(int irq, void *dev_id)
882{
883	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
884	u32 spi_sr;
885
886	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
887	regmap_write(dspi->regmap, SPI_SR, spi_sr);
888
889	if (!(spi_sr & SPI_SR_CMDTCF))
890		return IRQ_NONE;
891
892	if (dspi_rxtx(dspi) == 0)
893		complete(&dspi->xfer_done);
894
895	return IRQ_HANDLED;
896}
897
898static void dspi_assert_cs(struct spi_device *spi, bool *cs)
899{
900	if (!spi_get_csgpiod(spi, 0) || *cs)
901		return;
902
903	gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), true);
904	*cs = true;
905}
906
907static void dspi_deassert_cs(struct spi_device *spi, bool *cs)
908{
909	if (!spi_get_csgpiod(spi, 0) || !*cs)
910		return;
911
912	gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), false);
913	*cs = false;
914}
915
916static int dspi_transfer_one_message(struct spi_controller *ctlr,
917				     struct spi_message *message)
918{
919	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
920	struct spi_device *spi = message->spi;
921	struct spi_transfer *transfer;
922	bool cs = false;
923	int status = 0;
924
925	message->actual_length = 0;
926
927	list_for_each_entry(transfer, &message->transfers, transfer_list) {
928		dspi->cur_transfer = transfer;
929		dspi->cur_msg = message;
930		dspi->cur_chip = spi_get_ctldata(spi);
931
932		dspi_assert_cs(spi, &cs);
933
934		/* Prepare command word for CMD FIFO */
935		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0);
936		if (!spi_get_csgpiod(spi, 0))
937			dspi->tx_cmd |= SPI_PUSHR_CMD_PCS(spi_get_chipselect(spi, 0));
938
939		if (list_is_last(&dspi->cur_transfer->transfer_list,
940				 &dspi->cur_msg->transfers)) {
941			/* Leave PCS activated after last transfer when
942			 * cs_change is set.
943			 */
944			if (transfer->cs_change)
945				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
946		} else {
947			/* Keep PCS active between transfers in same message
948			 * when cs_change is not set, and de-activate PCS
949			 * between transfers in the same message when
950			 * cs_change is set.
951			 */
952			if (!transfer->cs_change)
953				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
954		}
955
956		dspi->tx = transfer->tx_buf;
957		dspi->rx = transfer->rx_buf;
958		dspi->len = transfer->len;
959		dspi->progress = 0;
960
961		regmap_update_bits(dspi->regmap, SPI_MCR,
962				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
963				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
964
965		spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
966				       dspi->progress, !dspi->irq);
967
968		if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
969			status = dspi_dma_xfer(dspi);
970		} else {
971			dspi_fifo_write(dspi);
972
973			if (dspi->irq) {
974				wait_for_completion(&dspi->xfer_done);
975				reinit_completion(&dspi->xfer_done);
976			} else {
977				do {
978					status = dspi_poll(dspi);
979				} while (status == -EINPROGRESS);
980			}
981		}
982		if (status)
983			break;
984
985		spi_transfer_delay_exec(transfer);
986
987		if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT))
988			dspi_deassert_cs(spi, &cs);
989	}
990
991	message->status = status;
992	spi_finalize_current_message(ctlr);
993
994	return status;
995}
996
997static int dspi_setup(struct spi_device *spi)
998{
999	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
1000	u32 period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->max_speed_hz);
1001	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
1002	u32 quarter_period_ns = DIV_ROUND_UP(period_ns, 4);
1003	u32 cs_sck_delay = 0, sck_cs_delay = 0;
1004	struct fsl_dspi_platform_data *pdata;
1005	unsigned char pasc = 0, asc = 0;
1006	struct chip_data *chip;
1007	unsigned long clkrate;
1008	bool cs = true;
1009
1010	/* Only alloc on first setup */
1011	chip = spi_get_ctldata(spi);
1012	if (chip == NULL) {
1013		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1014		if (!chip)
1015			return -ENOMEM;
1016	}
1017
1018	pdata = dev_get_platdata(&dspi->pdev->dev);
1019
1020	if (!pdata) {
1021		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
1022				     &cs_sck_delay);
1023
1024		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
1025				     &sck_cs_delay);
1026	} else {
1027		cs_sck_delay = pdata->cs_sck_delay;
1028		sck_cs_delay = pdata->sck_cs_delay;
1029	}
1030
1031	/* Since tCSC and tASC apply to continuous transfers too, avoid SCK
1032	 * glitches of half a cycle by never allowing tCSC + tASC to go below
1033	 * half a SCK period.
1034	 */
1035	if (cs_sck_delay < quarter_period_ns)
1036		cs_sck_delay = quarter_period_ns;
1037	if (sck_cs_delay < quarter_period_ns)
1038		sck_cs_delay = quarter_period_ns;
1039
1040	dev_dbg(&spi->dev,
1041		"DSPI controller timing params: CS-to-SCK delay %u ns, SCK-to-CS delay %u ns\n",
1042		cs_sck_delay, sck_cs_delay);
1043
1044	clkrate = clk_get_rate(dspi->clk);
1045	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1046
1047	/* Set PCS to SCK delay scale values */
1048	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1049
1050	/* Set After SCK delay scale values */
1051	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1052
1053	chip->ctar_val = 0;
1054	if (spi->mode & SPI_CPOL)
1055		chip->ctar_val |= SPI_CTAR_CPOL;
1056	if (spi->mode & SPI_CPHA)
1057		chip->ctar_val |= SPI_CTAR_CPHA;
1058
1059	if (!spi_controller_is_target(dspi->ctlr)) {
1060		chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1061				  SPI_CTAR_CSSCK(cssck) |
1062				  SPI_CTAR_PASC(pasc) |
1063				  SPI_CTAR_ASC(asc) |
1064				  SPI_CTAR_PBR(pbr) |
1065				  SPI_CTAR_BR(br);
1066
1067		if (spi->mode & SPI_LSB_FIRST)
1068			chip->ctar_val |= SPI_CTAR_LSBFE;
1069	}
1070
1071	gpiod_direction_output(spi_get_csgpiod(spi, 0), false);
1072	dspi_deassert_cs(spi, &cs);
1073
1074	spi_set_ctldata(spi, chip);
1075
1076	return 0;
1077}
1078
1079static void dspi_cleanup(struct spi_device *spi)
1080{
1081	struct chip_data *chip = spi_get_ctldata(spi);
1082
1083	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1084		spi->controller->bus_num, spi_get_chipselect(spi, 0));
1085
1086	kfree(chip);
1087}
1088
1089static const struct of_device_id fsl_dspi_dt_ids[] = {
1090	{
1091		.compatible = "fsl,vf610-dspi",
1092		.data = &devtype_data[VF610],
1093	}, {
1094		.compatible = "fsl,ls1021a-v1.0-dspi",
1095		.data = &devtype_data[LS1021A],
1096	}, {
1097		.compatible = "fsl,ls1012a-dspi",
1098		.data = &devtype_data[LS1012A],
1099	}, {
1100		.compatible = "fsl,ls1028a-dspi",
1101		.data = &devtype_data[LS1028A],
1102	}, {
1103		.compatible = "fsl,ls1043a-dspi",
1104		.data = &devtype_data[LS1043A],
1105	}, {
1106		.compatible = "fsl,ls1046a-dspi",
1107		.data = &devtype_data[LS1046A],
1108	}, {
1109		.compatible = "fsl,ls2080a-dspi",
1110		.data = &devtype_data[LS2080A],
1111	}, {
1112		.compatible = "fsl,ls2085a-dspi",
1113		.data = &devtype_data[LS2085A],
1114	}, {
1115		.compatible = "fsl,lx2160a-dspi",
1116		.data = &devtype_data[LX2160A],
1117	},
1118	{ /* sentinel */ }
1119};
1120MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1121
1122#ifdef CONFIG_PM_SLEEP
1123static int dspi_suspend(struct device *dev)
1124{
1125	struct fsl_dspi *dspi = dev_get_drvdata(dev);
1126
1127	if (dspi->irq)
1128		disable_irq(dspi->irq);
1129	spi_controller_suspend(dspi->ctlr);
1130	clk_disable_unprepare(dspi->clk);
1131
1132	pinctrl_pm_select_sleep_state(dev);
1133
1134	return 0;
1135}
1136
1137static int dspi_resume(struct device *dev)
1138{
1139	struct fsl_dspi *dspi = dev_get_drvdata(dev);
1140	int ret;
1141
1142	pinctrl_pm_select_default_state(dev);
1143
1144	ret = clk_prepare_enable(dspi->clk);
1145	if (ret)
1146		return ret;
1147	spi_controller_resume(dspi->ctlr);
1148	if (dspi->irq)
1149		enable_irq(dspi->irq);
1150
1151	return 0;
1152}
1153#endif /* CONFIG_PM_SLEEP */
1154
1155static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1156
1157static const struct regmap_range dspi_volatile_ranges[] = {
1158	regmap_reg_range(SPI_MCR, SPI_TCR),
1159	regmap_reg_range(SPI_SR, SPI_SR),
1160	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1161};
1162
1163static const struct regmap_access_table dspi_volatile_table = {
1164	.yes_ranges	= dspi_volatile_ranges,
1165	.n_yes_ranges	= ARRAY_SIZE(dspi_volatile_ranges),
1166};
1167
1168static const struct regmap_config dspi_regmap_config = {
1169	.reg_bits	= 32,
1170	.val_bits	= 32,
1171	.reg_stride	= 4,
1172	.max_register	= 0x88,
1173	.volatile_table	= &dspi_volatile_table,
1174};
1175
1176static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1177	regmap_reg_range(SPI_MCR, SPI_TCR),
1178	regmap_reg_range(SPI_SR, SPI_SR),
1179	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1180	regmap_reg_range(SPI_SREX, SPI_SREX),
1181};
1182
1183static const struct regmap_access_table dspi_xspi_volatile_table = {
1184	.yes_ranges	= dspi_xspi_volatile_ranges,
1185	.n_yes_ranges	= ARRAY_SIZE(dspi_xspi_volatile_ranges),
1186};
1187
1188static const struct regmap_config dspi_xspi_regmap_config[] = {
1189	{
1190		.reg_bits	= 32,
1191		.val_bits	= 32,
1192		.reg_stride	= 4,
1193		.max_register	= 0x13c,
1194		.volatile_table	= &dspi_xspi_volatile_table,
1195	},
1196	{
1197		.name		= "pushr",
1198		.reg_bits	= 16,
1199		.val_bits	= 16,
1200		.reg_stride	= 2,
1201		.max_register	= 0x2,
1202	},
1203};
1204
1205static int dspi_init(struct fsl_dspi *dspi)
1206{
1207	unsigned int mcr;
1208
1209	/* Set idle states for all chip select signals to high */
1210	mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0));
1211
1212	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1213		mcr |= SPI_MCR_XSPI;
1214	if (!spi_controller_is_target(dspi->ctlr))
1215		mcr |= SPI_MCR_HOST;
1216
1217	regmap_write(dspi->regmap, SPI_MCR, mcr);
1218	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1219
1220	switch (dspi->devtype_data->trans_mode) {
1221	case DSPI_XSPI_MODE:
1222		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1223		break;
1224	case DSPI_DMA_MODE:
1225		regmap_write(dspi->regmap, SPI_RSER,
1226			     SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1227			     SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1228		break;
1229	default:
1230		dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1231			dspi->devtype_data->trans_mode);
1232		return -EINVAL;
1233	}
1234
1235	return 0;
1236}
1237
1238static int dspi_target_abort(struct spi_controller *host)
1239{
1240	struct fsl_dspi *dspi = spi_controller_get_devdata(host);
1241
1242	/*
1243	 * Terminate all pending DMA transactions for the SPI working
1244	 * in TARGET mode.
1245	 */
1246	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1247		dmaengine_terminate_sync(dspi->dma->chan_rx);
1248		dmaengine_terminate_sync(dspi->dma->chan_tx);
1249	}
1250
1251	/* Clear the internal DSPI RX and TX FIFO buffers */
1252	regmap_update_bits(dspi->regmap, SPI_MCR,
1253			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1254			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1255
1256	return 0;
1257}
1258
1259static int dspi_probe(struct platform_device *pdev)
1260{
1261	struct device_node *np = pdev->dev.of_node;
1262	const struct regmap_config *regmap_config;
1263	struct fsl_dspi_platform_data *pdata;
1264	struct spi_controller *ctlr;
1265	int ret, cs_num, bus_num = -1;
1266	struct fsl_dspi *dspi;
1267	struct resource *res;
1268	void __iomem *base;
1269	bool big_endian;
1270
1271	dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
1272	if (!dspi)
1273		return -ENOMEM;
1274
1275	ctlr = spi_alloc_host(&pdev->dev, 0);
1276	if (!ctlr)
1277		return -ENOMEM;
1278
1279	spi_controller_set_devdata(ctlr, dspi);
1280	platform_set_drvdata(pdev, dspi);
1281
1282	dspi->pdev = pdev;
1283	dspi->ctlr = ctlr;
1284
1285	ctlr->setup = dspi_setup;
1286	ctlr->transfer_one_message = dspi_transfer_one_message;
1287	ctlr->dev.of_node = pdev->dev.of_node;
1288
1289	ctlr->cleanup = dspi_cleanup;
1290	ctlr->target_abort = dspi_target_abort;
1291	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1292	ctlr->use_gpio_descriptors = true;
1293
1294	pdata = dev_get_platdata(&pdev->dev);
1295	if (pdata) {
1296		ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num;
1297		ctlr->bus_num = pdata->bus_num;
1298
1299		/* Only Coldfire uses platform data */
1300		dspi->devtype_data = &devtype_data[MCF5441X];
1301		big_endian = true;
1302	} else {
1303
1304		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1305		if (ret < 0) {
1306			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1307			goto out_ctlr_put;
1308		}
1309		ctlr->num_chipselect = ctlr->max_native_cs = cs_num;
1310
1311		of_property_read_u32(np, "bus-num", &bus_num);
1312		ctlr->bus_num = bus_num;
1313
1314		if (of_property_read_bool(np, "spi-slave"))
1315			ctlr->target = true;
1316
1317		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1318		if (!dspi->devtype_data) {
1319			dev_err(&pdev->dev, "can't get devtype_data\n");
1320			ret = -EFAULT;
1321			goto out_ctlr_put;
1322		}
1323
1324		big_endian = of_device_is_big_endian(np);
1325	}
1326	if (big_endian) {
1327		dspi->pushr_cmd = 0;
1328		dspi->pushr_tx = 2;
1329	} else {
1330		dspi->pushr_cmd = 2;
1331		dspi->pushr_tx = 0;
1332	}
1333
1334	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1335		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1336	else
1337		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1338
1339	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1340	if (IS_ERR(base)) {
1341		ret = PTR_ERR(base);
1342		goto out_ctlr_put;
1343	}
1344
1345	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1346		regmap_config = &dspi_xspi_regmap_config[0];
1347	else
1348		regmap_config = &dspi_regmap_config;
1349	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1350	if (IS_ERR(dspi->regmap)) {
1351		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1352				PTR_ERR(dspi->regmap));
1353		ret = PTR_ERR(dspi->regmap);
1354		goto out_ctlr_put;
1355	}
1356
1357	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1358		dspi->regmap_pushr = devm_regmap_init_mmio(
1359			&pdev->dev, base + SPI_PUSHR,
1360			&dspi_xspi_regmap_config[1]);
1361		if (IS_ERR(dspi->regmap_pushr)) {
1362			dev_err(&pdev->dev,
1363				"failed to init pushr regmap: %ld\n",
1364				PTR_ERR(dspi->regmap_pushr));
1365			ret = PTR_ERR(dspi->regmap_pushr);
1366			goto out_ctlr_put;
1367		}
1368	}
1369
1370	dspi->clk = devm_clk_get_enabled(&pdev->dev, "dspi");
1371	if (IS_ERR(dspi->clk)) {
1372		ret = PTR_ERR(dspi->clk);
1373		dev_err(&pdev->dev, "unable to get clock\n");
1374		goto out_ctlr_put;
1375	}
1376
1377	ret = dspi_init(dspi);
1378	if (ret)
1379		goto out_ctlr_put;
1380
1381	dspi->irq = platform_get_irq(pdev, 0);
1382	if (dspi->irq <= 0) {
1383		dev_info(&pdev->dev,
1384			 "can't get platform irq, using poll mode\n");
1385		dspi->irq = 0;
1386		goto poll_mode;
1387	}
1388
1389	init_completion(&dspi->xfer_done);
1390
1391	ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
1392				   IRQF_SHARED, pdev->name, dspi);
1393	if (ret < 0) {
1394		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1395		goto out_ctlr_put;
1396	}
1397
1398poll_mode:
1399
1400	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1401		ret = dspi_request_dma(dspi, res->start);
1402		if (ret < 0) {
1403			dev_err(&pdev->dev, "can't get dma channels\n");
1404			goto out_free_irq;
1405		}
1406	}
1407
1408	ctlr->max_speed_hz =
1409		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1410
1411	if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1412		ctlr->ptp_sts_supported = true;
1413
1414	ret = spi_register_controller(ctlr);
1415	if (ret != 0) {
1416		dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1417		goto out_release_dma;
1418	}
1419
1420	return ret;
1421
1422out_release_dma:
1423	dspi_release_dma(dspi);
1424out_free_irq:
1425	if (dspi->irq)
1426		free_irq(dspi->irq, dspi);
1427out_ctlr_put:
1428	spi_controller_put(ctlr);
1429
1430	return ret;
1431}
1432
1433static void dspi_remove(struct platform_device *pdev)
1434{
1435	struct fsl_dspi *dspi = platform_get_drvdata(pdev);
1436
1437	/* Disconnect from the SPI framework */
1438	spi_unregister_controller(dspi->ctlr);
1439
1440	/* Disable RX and TX */
1441	regmap_update_bits(dspi->regmap, SPI_MCR,
1442			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
1443			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
1444
1445	/* Stop Running */
1446	regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
1447
1448	dspi_release_dma(dspi);
1449	if (dspi->irq)
1450		free_irq(dspi->irq, dspi);
1451}
1452
1453static void dspi_shutdown(struct platform_device *pdev)
1454{
1455	dspi_remove(pdev);
1456}
1457
1458static struct platform_driver fsl_dspi_driver = {
1459	.driver.name		= DRIVER_NAME,
1460	.driver.of_match_table	= fsl_dspi_dt_ids,
1461	.driver.owner		= THIS_MODULE,
1462	.driver.pm		= &dspi_pm,
1463	.probe			= dspi_probe,
1464	.remove_new		= dspi_remove,
1465	.shutdown		= dspi_shutdown,
1466};
1467module_platform_driver(fsl_dspi_driver);
1468
1469MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1470MODULE_LICENSE("GPL");
1471MODULE_ALIAS("platform:" DRIVER_NAME);
1472