1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
4 *
5 * Copyright 2016 Broadcom
6 */
7
8#include <linux/clk.h>
9#include <linux/delay.h>
10#include <linux/device.h>
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/io.h>
14#include <linux/ioport.h>
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/of.h>
18#include <linux/of_irq.h>
19#include <linux/platform_device.h>
20#include <linux/slab.h>
21#include <linux/spi/spi.h>
22#include <linux/mtd/spi-nor.h>
23#include <linux/sysfs.h>
24#include <linux/types.h>
25#include "spi-bcm-qspi.h"
26
27#define DRIVER_NAME "bcm_qspi"
28
29
30/* BSPI register offsets */
31#define BSPI_REVISION_ID			0x000
32#define BSPI_SCRATCH				0x004
33#define BSPI_MAST_N_BOOT_CTRL			0x008
34#define BSPI_BUSY_STATUS			0x00c
35#define BSPI_INTR_STATUS			0x010
36#define BSPI_B0_STATUS				0x014
37#define BSPI_B0_CTRL				0x018
38#define BSPI_B1_STATUS				0x01c
39#define BSPI_B1_CTRL				0x020
40#define BSPI_STRAP_OVERRIDE_CTRL		0x024
41#define BSPI_FLEX_MODE_ENABLE			0x028
42#define BSPI_BITS_PER_CYCLE			0x02c
43#define BSPI_BITS_PER_PHASE			0x030
44#define BSPI_CMD_AND_MODE_BYTE			0x034
45#define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE	0x038
46#define BSPI_BSPI_XOR_VALUE			0x03c
47#define BSPI_BSPI_XOR_ENABLE			0x040
48#define BSPI_BSPI_PIO_MODE_ENABLE		0x044
49#define BSPI_BSPI_PIO_IODIR			0x048
50#define BSPI_BSPI_PIO_DATA			0x04c
51
52/* RAF register offsets */
53#define BSPI_RAF_START_ADDR			0x100
54#define BSPI_RAF_NUM_WORDS			0x104
55#define BSPI_RAF_CTRL				0x108
56#define BSPI_RAF_FULLNESS			0x10c
57#define BSPI_RAF_WATERMARK			0x110
58#define BSPI_RAF_STATUS			0x114
59#define BSPI_RAF_READ_DATA			0x118
60#define BSPI_RAF_WORD_CNT			0x11c
61#define BSPI_RAF_CURR_ADDR			0x120
62
63/* Override mode masks */
64#define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE	BIT(0)
65#define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL	BIT(1)
66#define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE	BIT(2)
67#define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD	BIT(3)
68#define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE	BIT(4)
69
70#define BSPI_ADDRLEN_3BYTES			3
71#define BSPI_ADDRLEN_4BYTES			4
72
73#define BSPI_RAF_STATUS_FIFO_EMPTY_MASK	BIT(1)
74
75#define BSPI_RAF_CTRL_START_MASK		BIT(0)
76#define BSPI_RAF_CTRL_CLEAR_MASK		BIT(1)
77
78#define BSPI_BPP_MODE_SELECT_MASK		BIT(8)
79#define BSPI_BPP_ADDR_SELECT_MASK		BIT(16)
80
81#define BSPI_READ_LENGTH			256
82
83/* MSPI register offsets */
84#define MSPI_SPCR0_LSB				0x000
85#define MSPI_SPCR0_MSB				0x004
86#define MSPI_SPCR0_MSB_CPHA			BIT(0)
87#define MSPI_SPCR0_MSB_CPOL			BIT(1)
88#define MSPI_SPCR0_MSB_BITS_SHIFT		0x2
89#define MSPI_SPCR1_LSB				0x008
90#define MSPI_SPCR1_MSB				0x00c
91#define MSPI_NEWQP				0x010
92#define MSPI_ENDQP				0x014
93#define MSPI_SPCR2				0x018
94#define MSPI_MSPI_STATUS			0x020
95#define MSPI_CPTQP				0x024
96#define MSPI_SPCR3				0x028
97#define MSPI_REV				0x02c
98#define MSPI_TXRAM				0x040
99#define MSPI_RXRAM				0x0c0
100#define MSPI_CDRAM				0x140
101#define MSPI_WRITE_LOCK			0x180
102
103#define MSPI_MASTER_BIT			BIT(7)
104
105#define MSPI_NUM_CDRAM				16
106#define MSPI_CDRAM_OUTP				BIT(8)
107#define MSPI_CDRAM_CONT_BIT			BIT(7)
108#define MSPI_CDRAM_BITSE_BIT			BIT(6)
109#define MSPI_CDRAM_DT_BIT			BIT(5)
110#define MSPI_CDRAM_PCS				0xf
111
112#define MSPI_SPCR2_SPE				BIT(6)
113#define MSPI_SPCR2_CONT_AFTER_CMD		BIT(7)
114
115#define MSPI_SPCR3_FASTBR			BIT(0)
116#define MSPI_SPCR3_FASTDT			BIT(1)
117#define MSPI_SPCR3_SYSCLKSEL_MASK		GENMASK(11, 10)
118#define MSPI_SPCR3_SYSCLKSEL_27			(MSPI_SPCR3_SYSCLKSEL_MASK & \
119						 ~(BIT(10) | BIT(11)))
120#define MSPI_SPCR3_SYSCLKSEL_108		(MSPI_SPCR3_SYSCLKSEL_MASK & \
121						 BIT(11))
122#define MSPI_SPCR3_TXRXDAM_MASK			GENMASK(4, 2)
123#define MSPI_SPCR3_DAM_8BYTE			0
124#define MSPI_SPCR3_DAM_16BYTE			(BIT(2) | BIT(4))
125#define MSPI_SPCR3_DAM_32BYTE			(BIT(3) | BIT(5))
126#define MSPI_SPCR3_HALFDUPLEX			BIT(6)
127#define MSPI_SPCR3_HDOUTTYPE			BIT(7)
128#define MSPI_SPCR3_DATA_REG_SZ			BIT(8)
129#define MSPI_SPCR3_CPHARX			BIT(9)
130
131#define MSPI_MSPI_STATUS_SPIF			BIT(0)
132
133#define INTR_BASE_BIT_SHIFT			0x02
134#define INTR_COUNT				0x07
135
136#define NUM_CHIPSELECT				4
137#define QSPI_SPBR_MAX				255U
138#define MSPI_BASE_FREQ				27000000UL
139
140#define OPCODE_DIOR				0xBB
141#define OPCODE_QIOR				0xEB
142#define OPCODE_DIOR_4B				0xBC
143#define OPCODE_QIOR_4B				0xEC
144
145#define MAX_CMD_SIZE				6
146
147#define ADDR_4MB_MASK				GENMASK(22, 0)
148
149/* stop at end of transfer, no other reason */
150#define TRANS_STATUS_BREAK_NONE		0
151/* stop at end of spi_message */
152#define TRANS_STATUS_BREAK_EOM			1
153/* stop at end of spi_transfer if delay */
154#define TRANS_STATUS_BREAK_DELAY		2
155/* stop at end of spi_transfer if cs_change */
156#define TRANS_STATUS_BREAK_CS_CHANGE		4
157/* stop if we run out of bytes */
158#define TRANS_STATUS_BREAK_NO_BYTES		8
159
160/* events that make us stop filling TX slots */
161#define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |		\
162			       TRANS_STATUS_BREAK_DELAY |		\
163			       TRANS_STATUS_BREAK_CS_CHANGE)
164
165/* events that make us deassert CS */
166#define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |		\
167				     TRANS_STATUS_BREAK_CS_CHANGE)
168
169/*
170 * Used for writing and reading data in the right order
171 * to TXRAM and RXRAM when used as 32-bit registers respectively
172 */
173#define swap4bytes(__val) \
174	((((__val) >> 24) & 0x000000FF) | (((__val) >>  8) & 0x0000FF00) | \
175	 (((__val) <<  8) & 0x00FF0000) | (((__val) << 24) & 0xFF000000))
176
177struct bcm_qspi_parms {
178	u32 speed_hz;
179	u8 mode;
180	u8 bits_per_word;
181};
182
183struct bcm_xfer_mode {
184	bool flex_mode;
185	unsigned int width;
186	unsigned int addrlen;
187	unsigned int hp;
188};
189
190enum base_type {
191	MSPI,
192	BSPI,
193	CHIP_SELECT,
194	BASEMAX,
195};
196
197enum irq_source {
198	SINGLE_L2,
199	MUXED_L1,
200};
201
202struct bcm_qspi_irq {
203	const char *irq_name;
204	const irq_handler_t irq_handler;
205	int irq_source;
206	u32 mask;
207};
208
209struct bcm_qspi_dev_id {
210	const struct bcm_qspi_irq *irqp;
211	void *dev;
212};
213
214
215struct qspi_trans {
216	struct spi_transfer *trans;
217	int byte;
218	bool mspi_last_trans;
219};
220
221struct bcm_qspi {
222	struct platform_device *pdev;
223	struct spi_controller *host;
224	struct clk *clk;
225	u32 base_clk;
226	u32 max_speed_hz;
227	void __iomem *base[BASEMAX];
228
229	/* Some SoCs provide custom interrupt status register(s) */
230	struct bcm_qspi_soc_intc	*soc_intc;
231
232	struct bcm_qspi_parms last_parms;
233	struct qspi_trans  trans_pos;
234	int curr_cs;
235	int bspi_maj_rev;
236	int bspi_min_rev;
237	int bspi_enabled;
238	const struct spi_mem_op *bspi_rf_op;
239	u32 bspi_rf_op_idx;
240	u32 bspi_rf_op_len;
241	u32 bspi_rf_op_status;
242	struct bcm_xfer_mode xfer_mode;
243	u32 s3_strap_override_ctrl;
244	bool bspi_mode;
245	bool big_endian;
246	int num_irqs;
247	struct bcm_qspi_dev_id *dev_ids;
248	struct completion mspi_done;
249	struct completion bspi_done;
250	u8 mspi_maj_rev;
251	u8 mspi_min_rev;
252	bool mspi_spcr3_sysclk;
253};
254
255static inline bool has_bspi(struct bcm_qspi *qspi)
256{
257	return qspi->bspi_mode;
258}
259
260/* hardware supports spcr3 and fast baud-rate  */
261static inline bool bcm_qspi_has_fastbr(struct bcm_qspi *qspi)
262{
263	if (!has_bspi(qspi) &&
264	    ((qspi->mspi_maj_rev >= 1) &&
265	     (qspi->mspi_min_rev >= 5)))
266		return true;
267
268	return false;
269}
270
271/* hardware supports sys clk 108Mhz  */
272static inline bool bcm_qspi_has_sysclk_108(struct bcm_qspi *qspi)
273{
274	if (!has_bspi(qspi) && (qspi->mspi_spcr3_sysclk ||
275	    ((qspi->mspi_maj_rev >= 1) &&
276	     (qspi->mspi_min_rev >= 6))))
277		return true;
278
279	return false;
280}
281
282static inline int bcm_qspi_spbr_min(struct bcm_qspi *qspi)
283{
284	if (bcm_qspi_has_fastbr(qspi))
285		return (bcm_qspi_has_sysclk_108(qspi) ? 4 : 1);
286	else
287		return 8;
288}
289
290static u32 bcm_qspi_calc_spbr(u32 clk_speed_hz,
291			      const struct bcm_qspi_parms *xp)
292{
293	u32 spbr = 0;
294
295	/* SPBR = System Clock/(2 * SCK Baud Rate) */
296	if (xp->speed_hz)
297		spbr = clk_speed_hz / (xp->speed_hz * 2);
298
299	return spbr;
300}
301
302/* Read qspi controller register*/
303static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
304				unsigned int offset)
305{
306	return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
307}
308
309/* Write qspi controller register*/
310static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
311				  unsigned int offset, unsigned int data)
312{
313	bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
314}
315
316/* BSPI helpers */
317static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
318{
319	int i;
320
321	/* this should normally finish within 10us */
322	for (i = 0; i < 1000; i++) {
323		if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
324			return 0;
325		udelay(1);
326	}
327	dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
328	return -EIO;
329}
330
331static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
332{
333	if (qspi->bspi_maj_rev < 4)
334		return true;
335	return false;
336}
337
338static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
339{
340	bcm_qspi_bspi_busy_poll(qspi);
341	/* Force rising edge for the b0/b1 'flush' field */
342	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
343	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
344	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
345	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
346}
347
348static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
349{
350	return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
351				BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
352}
353
354static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
355{
356	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
357
358	/* BSPI v3 LR is LE only, convert data to host endianness */
359	if (bcm_qspi_bspi_ver_three(qspi))
360		data = le32_to_cpu(data);
361
362	return data;
363}
364
365static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
366{
367	bcm_qspi_bspi_busy_poll(qspi);
368	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
369		       BSPI_RAF_CTRL_START_MASK);
370}
371
372static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
373{
374	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
375		       BSPI_RAF_CTRL_CLEAR_MASK);
376	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
377}
378
379static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
380{
381	u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
382	u32 data = 0;
383
384	dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
385		qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
386	while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
387		data = bcm_qspi_bspi_lr_read_fifo(qspi);
388		if (likely(qspi->bspi_rf_op_len >= 4) &&
389		    IS_ALIGNED((uintptr_t)buf, 4)) {
390			buf[qspi->bspi_rf_op_idx++] = data;
391			qspi->bspi_rf_op_len -= 4;
392		} else {
393			/* Read out remaining bytes, make sure*/
394			u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
395
396			data = cpu_to_le32(data);
397			while (qspi->bspi_rf_op_len) {
398				*cbuf++ = (u8)data;
399				data >>= 8;
400				qspi->bspi_rf_op_len--;
401			}
402		}
403	}
404}
405
406static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
407					  int bpp, int bpc, int flex_mode)
408{
409	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
410	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
411	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
412	bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
413	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
414}
415
416static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
417				       const struct spi_mem_op *op, int hp)
418{
419	int bpc = 0, bpp = 0;
420	u8 command = op->cmd.opcode;
421	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
422	int addrlen = op->addr.nbytes;
423	int flex_mode = 1;
424
425	dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
426		width, addrlen, hp);
427
428	if (addrlen == BSPI_ADDRLEN_4BYTES)
429		bpp = BSPI_BPP_ADDR_SELECT_MASK;
430
431	if (op->dummy.nbytes)
432		bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
433
434	switch (width) {
435	case SPI_NBITS_SINGLE:
436		if (addrlen == BSPI_ADDRLEN_3BYTES)
437			/* default mode, does not need flex_cmd */
438			flex_mode = 0;
439		break;
440	case SPI_NBITS_DUAL:
441		bpc = 0x00000001;
442		if (hp) {
443			bpc |= 0x00010100; /* address and mode are 2-bit */
444			bpp = BSPI_BPP_MODE_SELECT_MASK;
445		}
446		break;
447	case SPI_NBITS_QUAD:
448		bpc = 0x00000002;
449		if (hp) {
450			bpc |= 0x00020200; /* address and mode are 4-bit */
451			bpp |= BSPI_BPP_MODE_SELECT_MASK;
452		}
453		break;
454	default:
455		return -EINVAL;
456	}
457
458	bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
459
460	return 0;
461}
462
463static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
464				      const struct spi_mem_op *op, int hp)
465{
466	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
467	int addrlen = op->addr.nbytes;
468	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
469
470	dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
471		width, addrlen, hp);
472
473	switch (width) {
474	case SPI_NBITS_SINGLE:
475		/* clear quad/dual mode */
476		data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
477			  BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
478		break;
479	case SPI_NBITS_QUAD:
480		/* clear dual mode and set quad mode */
481		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
482		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
483		break;
484	case SPI_NBITS_DUAL:
485		/* clear quad mode set dual mode */
486		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
487		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
488		break;
489	default:
490		return -EINVAL;
491	}
492
493	if (addrlen == BSPI_ADDRLEN_4BYTES)
494		/* set 4byte mode*/
495		data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
496	else
497		/* clear 4 byte mode */
498		data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
499
500	/* set the override mode */
501	data |=	BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
502	bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
503	bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
504
505	return 0;
506}
507
508static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
509				  const struct spi_mem_op *op, int hp)
510{
511	int error = 0;
512	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
513	int addrlen = op->addr.nbytes;
514
515	/* default mode */
516	qspi->xfer_mode.flex_mode = true;
517
518	if (!bcm_qspi_bspi_ver_three(qspi)) {
519		u32 val, mask;
520
521		val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
522		mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
523		if (val & mask || qspi->s3_strap_override_ctrl & mask) {
524			qspi->xfer_mode.flex_mode = false;
525			bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
526			error = bcm_qspi_bspi_set_override(qspi, op, hp);
527		}
528	}
529
530	if (qspi->xfer_mode.flex_mode)
531		error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
532
533	if (error) {
534		dev_warn(&qspi->pdev->dev,
535			 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
536			 width, addrlen, hp);
537	} else if (qspi->xfer_mode.width != width ||
538		   qspi->xfer_mode.addrlen != addrlen ||
539		   qspi->xfer_mode.hp != hp) {
540		qspi->xfer_mode.width = width;
541		qspi->xfer_mode.addrlen = addrlen;
542		qspi->xfer_mode.hp = hp;
543		dev_dbg(&qspi->pdev->dev,
544			"cs:%d %d-lane output, %d-byte address%s\n",
545			qspi->curr_cs,
546			qspi->xfer_mode.width,
547			qspi->xfer_mode.addrlen,
548			qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
549	}
550
551	return error;
552}
553
554static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
555{
556	if (!has_bspi(qspi))
557		return;
558
559	qspi->bspi_enabled = 1;
560	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
561		return;
562
563	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
564	udelay(1);
565	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
566	udelay(1);
567}
568
569static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
570{
571	if (!has_bspi(qspi))
572		return;
573
574	qspi->bspi_enabled = 0;
575	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
576		return;
577
578	bcm_qspi_bspi_busy_poll(qspi);
579	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
580	udelay(1);
581}
582
583static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
584{
585	u32 rd = 0;
586	u32 wr = 0;
587
588	if (cs >= 0 && qspi->base[CHIP_SELECT]) {
589		rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
590		wr = (rd & ~0xff) | (1 << cs);
591		if (rd == wr)
592			return;
593		bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
594		usleep_range(10, 20);
595	}
596
597	dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
598	qspi->curr_cs = cs;
599}
600
601static bool bcmspi_parms_did_change(const struct bcm_qspi_parms * const cur,
602				    const struct bcm_qspi_parms * const prev)
603{
604	return (cur->speed_hz != prev->speed_hz) ||
605		(cur->mode != prev->mode) ||
606		(cur->bits_per_word != prev->bits_per_word);
607}
608
609
610/* MSPI helpers */
611static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
612				  const struct bcm_qspi_parms *xp)
613{
614	u32 spcr, spbr = 0;
615
616	if (!bcmspi_parms_did_change(xp, &qspi->last_parms))
617		return;
618
619	if (!qspi->mspi_maj_rev)
620		/* legacy controller */
621		spcr = MSPI_MASTER_BIT;
622	else
623		spcr = 0;
624
625	/*
626	 * Bits per transfer.  BITS determines the number of data bits
627	 * transferred if the command control bit (BITSE of a
628	 * CDRAM Register) is equal to 1.
629	 * If CDRAM BITSE is equal to 0, 8 data bits are transferred
630	 * regardless
631	 */
632	if (xp->bits_per_word != 16 && xp->bits_per_word != 64)
633		spcr |= xp->bits_per_word << MSPI_SPCR0_MSB_BITS_SHIFT;
634
635	spcr |= xp->mode & (MSPI_SPCR0_MSB_CPHA | MSPI_SPCR0_MSB_CPOL);
636	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
637
638	if (bcm_qspi_has_fastbr(qspi)) {
639		spcr = 0;
640
641		/* enable fastbr */
642		spcr |=	MSPI_SPCR3_FASTBR;
643
644		if (xp->mode & SPI_3WIRE)
645			spcr |= MSPI_SPCR3_HALFDUPLEX |  MSPI_SPCR3_HDOUTTYPE;
646
647		if (bcm_qspi_has_sysclk_108(qspi)) {
648			/* check requested baud rate before moving to 108Mhz */
649			spbr = bcm_qspi_calc_spbr(MSPI_BASE_FREQ * 4, xp);
650			if (spbr > QSPI_SPBR_MAX) {
651				/* use SYSCLK_27Mhz for slower baud rates */
652				spcr &= ~MSPI_SPCR3_SYSCLKSEL_MASK;
653				qspi->base_clk = MSPI_BASE_FREQ;
654			} else {
655				/* SYSCLK_108Mhz */
656				spcr |= MSPI_SPCR3_SYSCLKSEL_108;
657				qspi->base_clk = MSPI_BASE_FREQ * 4;
658			}
659		}
660
661		if (xp->bits_per_word > 16) {
662			/* data_reg_size 1 (64bit) */
663			spcr |=	MSPI_SPCR3_DATA_REG_SZ;
664			/* TxRx RAM data access mode 2 for 32B and set fastdt */
665			spcr |=	MSPI_SPCR3_DAM_32BYTE  | MSPI_SPCR3_FASTDT;
666			/*
667			 *  Set length of delay after transfer
668			 *  DTL from 0(256) to 1
669			 */
670			bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 1);
671		} else {
672			/* data_reg_size[8] = 0 */
673			spcr &=	~(MSPI_SPCR3_DATA_REG_SZ);
674
675			/*
676			 * TxRx RAM access mode 8B
677			 * and disable fastdt
678			 */
679			spcr &= ~(MSPI_SPCR3_DAM_32BYTE);
680		}
681		bcm_qspi_write(qspi, MSPI, MSPI_SPCR3, spcr);
682	}
683
684	/* SCK Baud Rate = System Clock/(2 * SPBR) */
685	qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
686	spbr = bcm_qspi_calc_spbr(qspi->base_clk, xp);
687	spbr = clamp_val(spbr, bcm_qspi_spbr_min(qspi), QSPI_SPBR_MAX);
688	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spbr);
689
690	qspi->last_parms = *xp;
691}
692
693static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
694				  struct spi_device *spi,
695				  struct spi_transfer *trans)
696{
697	struct bcm_qspi_parms xp;
698
699	xp.speed_hz = trans->speed_hz;
700	xp.bits_per_word = trans->bits_per_word;
701	xp.mode = spi->mode;
702
703	bcm_qspi_hw_set_parms(qspi, &xp);
704}
705
706static int bcm_qspi_setup(struct spi_device *spi)
707{
708	struct bcm_qspi_parms *xp;
709
710	if (spi->bits_per_word > 64)
711		return -EINVAL;
712
713	xp = spi_get_ctldata(spi);
714	if (!xp) {
715		xp = kzalloc(sizeof(*xp), GFP_KERNEL);
716		if (!xp)
717			return -ENOMEM;
718		spi_set_ctldata(spi, xp);
719	}
720	xp->speed_hz = spi->max_speed_hz;
721	xp->mode = spi->mode;
722
723	if (spi->bits_per_word)
724		xp->bits_per_word = spi->bits_per_word;
725	else
726		xp->bits_per_word = 8;
727
728	return 0;
729}
730
731static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
732					   struct qspi_trans *qt)
733{
734	if (qt->mspi_last_trans &&
735	    spi_transfer_is_last(qspi->host, qt->trans))
736		return true;
737	else
738		return false;
739}
740
741static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
742					struct qspi_trans *qt, int flags)
743{
744	int ret = TRANS_STATUS_BREAK_NONE;
745
746	/* count the last transferred bytes */
747	if (qt->trans->bits_per_word <= 8)
748		qt->byte++;
749	else if (qt->trans->bits_per_word <= 16)
750		qt->byte += 2;
751	else if (qt->trans->bits_per_word <= 32)
752		qt->byte += 4;
753	else if (qt->trans->bits_per_word <= 64)
754		qt->byte += 8;
755
756	if (qt->byte >= qt->trans->len) {
757		/* we're at the end of the spi_transfer */
758		/* in TX mode, need to pause for a delay or CS change */
759		if (qt->trans->delay.value &&
760		    (flags & TRANS_STATUS_BREAK_DELAY))
761			ret |= TRANS_STATUS_BREAK_DELAY;
762		if (qt->trans->cs_change &&
763		    (flags & TRANS_STATUS_BREAK_CS_CHANGE))
764			ret |= TRANS_STATUS_BREAK_CS_CHANGE;
765
766		if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
767			ret |= TRANS_STATUS_BREAK_EOM;
768		else
769			ret |= TRANS_STATUS_BREAK_NO_BYTES;
770
771		qt->trans = NULL;
772	}
773
774	dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
775		qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
776	return ret;
777}
778
779static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
780{
781	u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
782
783	/* mask out reserved bits */
784	return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
785}
786
787static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
788{
789	u32 reg_offset = MSPI_RXRAM;
790	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
791	u32 msb_offset = reg_offset + (slot << 3);
792
793	return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
794		((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
795}
796
797static inline u32 read_rxram_slot_u32(struct bcm_qspi *qspi, int slot)
798{
799	u32 reg_offset = MSPI_RXRAM;
800	u32 offset = reg_offset + (slot << 3);
801	u32 val;
802
803	val = bcm_qspi_read(qspi, MSPI, offset);
804	val = swap4bytes(val);
805
806	return val;
807}
808
809static inline u64 read_rxram_slot_u64(struct bcm_qspi *qspi, int slot)
810{
811	u32 reg_offset = MSPI_RXRAM;
812	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
813	u32 msb_offset = reg_offset + (slot << 3);
814	u32 msb, lsb;
815
816	msb = bcm_qspi_read(qspi, MSPI, msb_offset);
817	msb = swap4bytes(msb);
818	lsb = bcm_qspi_read(qspi, MSPI, lsb_offset);
819	lsb = swap4bytes(lsb);
820
821	return ((u64)msb << 32 | lsb);
822}
823
824static void read_from_hw(struct bcm_qspi *qspi, int slots)
825{
826	struct qspi_trans tp;
827	int slot;
828
829	bcm_qspi_disable_bspi(qspi);
830
831	if (slots > MSPI_NUM_CDRAM) {
832		/* should never happen */
833		dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
834		return;
835	}
836
837	tp = qspi->trans_pos;
838
839	for (slot = 0; slot < slots; slot++) {
840		if (tp.trans->bits_per_word <= 8) {
841			u8 *buf = tp.trans->rx_buf;
842
843			if (buf)
844				buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
845			dev_dbg(&qspi->pdev->dev, "RD %02x\n",
846				buf ? buf[tp.byte] : 0x0);
847		} else if (tp.trans->bits_per_word <= 16) {
848			u16 *buf = tp.trans->rx_buf;
849
850			if (buf)
851				buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
852								      slot);
853			dev_dbg(&qspi->pdev->dev, "RD %04x\n",
854				buf ? buf[tp.byte / 2] : 0x0);
855		} else if (tp.trans->bits_per_word <= 32) {
856			u32 *buf = tp.trans->rx_buf;
857
858			if (buf)
859				buf[tp.byte / 4] = read_rxram_slot_u32(qspi,
860								      slot);
861			dev_dbg(&qspi->pdev->dev, "RD %08x\n",
862				buf ? buf[tp.byte / 4] : 0x0);
863
864		} else if (tp.trans->bits_per_word <= 64) {
865			u64 *buf = tp.trans->rx_buf;
866
867			if (buf)
868				buf[tp.byte / 8] = read_rxram_slot_u64(qspi,
869								      slot);
870			dev_dbg(&qspi->pdev->dev, "RD %llx\n",
871				buf ? buf[tp.byte / 8] : 0x0);
872
873
874		}
875
876		update_qspi_trans_byte_count(qspi, &tp,
877					     TRANS_STATUS_BREAK_NONE);
878	}
879
880	qspi->trans_pos = tp;
881}
882
883static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
884				       u8 val)
885{
886	u32 reg_offset = MSPI_TXRAM + (slot << 3);
887
888	/* mask out reserved bits */
889	bcm_qspi_write(qspi, MSPI, reg_offset, val);
890}
891
892static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
893					u16 val)
894{
895	u32 reg_offset = MSPI_TXRAM;
896	u32 msb_offset = reg_offset + (slot << 3);
897	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
898
899	bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
900	bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
901}
902
903static inline void write_txram_slot_u32(struct bcm_qspi *qspi, int slot,
904					u32 val)
905{
906	u32 reg_offset = MSPI_TXRAM;
907	u32 msb_offset = reg_offset + (slot << 3);
908
909	bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(val));
910}
911
912static inline void write_txram_slot_u64(struct bcm_qspi *qspi, int slot,
913					u64 val)
914{
915	u32 reg_offset = MSPI_TXRAM;
916	u32 msb_offset = reg_offset + (slot << 3);
917	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
918	u32 msb = upper_32_bits(val);
919	u32 lsb = lower_32_bits(val);
920
921	bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(msb));
922	bcm_qspi_write(qspi, MSPI, lsb_offset, swap4bytes(lsb));
923}
924
925static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
926{
927	return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
928}
929
930static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
931{
932	bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
933}
934
935/* Return number of slots written */
936static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
937{
938	struct qspi_trans tp;
939	int slot = 0, tstatus = 0;
940	u32 mspi_cdram = 0;
941
942	bcm_qspi_disable_bspi(qspi);
943	tp = qspi->trans_pos;
944	bcm_qspi_update_parms(qspi, spi, tp.trans);
945
946	/* Run until end of transfer or reached the max data */
947	while (!tstatus && slot < MSPI_NUM_CDRAM) {
948		mspi_cdram = MSPI_CDRAM_CONT_BIT;
949		if (tp.trans->bits_per_word <= 8) {
950			const u8 *buf = tp.trans->tx_buf;
951			u8 val = buf ? buf[tp.byte] : 0x00;
952
953			write_txram_slot_u8(qspi, slot, val);
954			dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
955		} else if (tp.trans->bits_per_word <= 16) {
956			const u16 *buf = tp.trans->tx_buf;
957			u16 val = buf ? buf[tp.byte / 2] : 0x0000;
958
959			write_txram_slot_u16(qspi, slot, val);
960			dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
961		} else if (tp.trans->bits_per_word <= 32) {
962			const u32 *buf = tp.trans->tx_buf;
963			u32 val = buf ? buf[tp.byte/4] : 0x0;
964
965			write_txram_slot_u32(qspi, slot, val);
966			dev_dbg(&qspi->pdev->dev, "WR %08x\n", val);
967		} else if (tp.trans->bits_per_word <= 64) {
968			const u64 *buf = tp.trans->tx_buf;
969			u64 val = (buf ? buf[tp.byte/8] : 0x0);
970
971			/* use the length of delay from SPCR1_LSB */
972			if (bcm_qspi_has_fastbr(qspi))
973				mspi_cdram |= MSPI_CDRAM_DT_BIT;
974
975			write_txram_slot_u64(qspi, slot, val);
976			dev_dbg(&qspi->pdev->dev, "WR %llx\n", val);
977		}
978
979		mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
980			       MSPI_CDRAM_BITSE_BIT);
981
982		/* set 3wrire halfduplex mode data from host to target */
983		if ((spi->mode & SPI_3WIRE) && tp.trans->tx_buf)
984			mspi_cdram |= MSPI_CDRAM_OUTP;
985
986		if (has_bspi(qspi))
987			mspi_cdram &= ~1;
988		else
989			mspi_cdram |= (~(1 << spi_get_chipselect(spi, 0)) &
990				       MSPI_CDRAM_PCS);
991
992		write_cdram_slot(qspi, slot, mspi_cdram);
993
994		tstatus = update_qspi_trans_byte_count(qspi, &tp,
995						       TRANS_STATUS_BREAK_TX);
996		slot++;
997	}
998
999	if (!slot) {
1000		dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
1001		goto done;
1002	}
1003
1004	dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
1005	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1006	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
1007
1008	/*
1009	 *  case 1) EOM =1, cs_change =0: SSb inactive
1010	 *  case 2) EOM =1, cs_change =1: SSb stay active
1011	 *  case 3) EOM =0, cs_change =0: SSb stay active
1012	 *  case 4) EOM =0, cs_change =1: SSb inactive
1013	 */
1014	if (((tstatus & TRANS_STATUS_BREAK_DESELECT)
1015	     == TRANS_STATUS_BREAK_CS_CHANGE) ||
1016	    ((tstatus & TRANS_STATUS_BREAK_DESELECT)
1017	     == TRANS_STATUS_BREAK_EOM)) {
1018		mspi_cdram = read_cdram_slot(qspi, slot - 1) &
1019			~MSPI_CDRAM_CONT_BIT;
1020		write_cdram_slot(qspi, slot - 1, mspi_cdram);
1021	}
1022
1023	if (has_bspi(qspi))
1024		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
1025
1026	/* Must flush previous writes before starting MSPI operation */
1027	mb();
1028	/* Set cont | spe | spifie */
1029	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
1030
1031done:
1032	return slot;
1033}
1034
1035static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
1036				     const struct spi_mem_op *op)
1037{
1038	struct bcm_qspi *qspi = spi_controller_get_devdata(spi->controller);
1039	u32 addr = 0, len, rdlen, len_words, from = 0;
1040	int ret = 0;
1041	unsigned long timeo = msecs_to_jiffies(100);
1042	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1043
1044	if (bcm_qspi_bspi_ver_three(qspi))
1045		if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
1046			return -EIO;
1047
1048	from = op->addr.val;
1049	if (!spi_get_csgpiod(spi, 0))
1050		bcm_qspi_chip_select(qspi, spi_get_chipselect(spi, 0));
1051	bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1052
1053	/*
1054	 * when using flex mode we need to send
1055	 * the upper address byte to bspi
1056	 */
1057	if (!bcm_qspi_bspi_ver_three(qspi)) {
1058		addr = from & 0xff000000;
1059		bcm_qspi_write(qspi, BSPI,
1060			       BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
1061	}
1062
1063	if (!qspi->xfer_mode.flex_mode)
1064		addr = from;
1065	else
1066		addr = from & 0x00ffffff;
1067
1068	if (bcm_qspi_bspi_ver_three(qspi) == true)
1069		addr = (addr + 0xc00000) & 0xffffff;
1070
1071	/*
1072	 * read into the entire buffer by breaking the reads
1073	 * into RAF buffer read lengths
1074	 */
1075	len = op->data.nbytes;
1076	qspi->bspi_rf_op_idx = 0;
1077
1078	do {
1079		if (len > BSPI_READ_LENGTH)
1080			rdlen = BSPI_READ_LENGTH;
1081		else
1082			rdlen = len;
1083
1084		reinit_completion(&qspi->bspi_done);
1085		bcm_qspi_enable_bspi(qspi);
1086		len_words = (rdlen + 3) >> 2;
1087		qspi->bspi_rf_op = op;
1088		qspi->bspi_rf_op_status = 0;
1089		qspi->bspi_rf_op_len = rdlen;
1090		dev_dbg(&qspi->pdev->dev,
1091			"bspi xfr addr 0x%x len 0x%x", addr, rdlen);
1092		bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
1093		bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
1094		bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
1095		if (qspi->soc_intc) {
1096			/*
1097			 * clear soc MSPI and BSPI interrupts and enable
1098			 * BSPI interrupts.
1099			 */
1100			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
1101			soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
1102		}
1103
1104		/* Must flush previous writes before starting BSPI operation */
1105		mb();
1106		bcm_qspi_bspi_lr_start(qspi);
1107		if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
1108			dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
1109			ret = -ETIMEDOUT;
1110			break;
1111		}
1112
1113		/* set msg return length */
1114		addr += rdlen;
1115		len -= rdlen;
1116	} while (len);
1117
1118	return ret;
1119}
1120
1121static int bcm_qspi_transfer_one(struct spi_controller *host,
1122				 struct spi_device *spi,
1123				 struct spi_transfer *trans)
1124{
1125	struct bcm_qspi *qspi = spi_controller_get_devdata(host);
1126	int slots;
1127	unsigned long timeo = msecs_to_jiffies(100);
1128
1129	if (!spi_get_csgpiod(spi, 0))
1130		bcm_qspi_chip_select(qspi, spi_get_chipselect(spi, 0));
1131	qspi->trans_pos.trans = trans;
1132	qspi->trans_pos.byte = 0;
1133
1134	while (qspi->trans_pos.byte < trans->len) {
1135		reinit_completion(&qspi->mspi_done);
1136
1137		slots = write_to_hw(qspi, spi);
1138		if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
1139			dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
1140			return -ETIMEDOUT;
1141		}
1142
1143		read_from_hw(qspi, slots);
1144	}
1145	bcm_qspi_enable_bspi(qspi);
1146
1147	return 0;
1148}
1149
1150static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
1151				     const struct spi_mem_op *op)
1152{
1153	struct spi_controller *host = spi->controller;
1154	struct bcm_qspi *qspi = spi_controller_get_devdata(host);
1155	struct spi_transfer t[2];
1156	u8 cmd[6] = { };
1157	int ret, i;
1158
1159	memset(cmd, 0, sizeof(cmd));
1160	memset(t, 0, sizeof(t));
1161
1162	/* tx */
1163	/* opcode is in cmd[0] */
1164	cmd[0] = op->cmd.opcode;
1165	for (i = 0; i < op->addr.nbytes; i++)
1166		cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
1167
1168	t[0].tx_buf = cmd;
1169	t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
1170	t[0].bits_per_word = spi->bits_per_word;
1171	t[0].tx_nbits = op->cmd.buswidth;
1172	/* lets mspi know that this is not last transfer */
1173	qspi->trans_pos.mspi_last_trans = false;
1174	ret = bcm_qspi_transfer_one(host, spi, &t[0]);
1175
1176	/* rx */
1177	qspi->trans_pos.mspi_last_trans = true;
1178	if (!ret) {
1179		/* rx */
1180		t[1].rx_buf = op->data.buf.in;
1181		t[1].len = op->data.nbytes;
1182		t[1].rx_nbits =  op->data.buswidth;
1183		t[1].bits_per_word = spi->bits_per_word;
1184		ret = bcm_qspi_transfer_one(host, spi, &t[1]);
1185	}
1186
1187	return ret;
1188}
1189
1190static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
1191				const struct spi_mem_op *op)
1192{
1193	struct spi_device *spi = mem->spi;
1194	struct bcm_qspi *qspi = spi_controller_get_devdata(spi->controller);
1195	int ret = 0;
1196	bool mspi_read = false;
1197	u32 addr = 0, len;
1198	u_char *buf;
1199
1200	if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
1201	    op->data.dir != SPI_MEM_DATA_IN)
1202		return -EOPNOTSUPP;
1203
1204	buf = op->data.buf.in;
1205	addr = op->addr.val;
1206	len = op->data.nbytes;
1207
1208	if (has_bspi(qspi) && bcm_qspi_bspi_ver_three(qspi) == true) {
1209		/*
1210		 * The address coming into this function is a raw flash offset.
1211		 * But for BSPI <= V3, we need to convert it to a remapped BSPI
1212		 * address. If it crosses a 4MB boundary, just revert back to
1213		 * using MSPI.
1214		 */
1215		addr = (addr + 0xc00000) & 0xffffff;
1216
1217		if ((~ADDR_4MB_MASK & addr) ^
1218		    (~ADDR_4MB_MASK & (addr + len - 1)))
1219			mspi_read = true;
1220	}
1221
1222	/* non-aligned and very short transfers are handled by MSPI */
1223	if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
1224	    len < 4 || op->cmd.opcode == SPINOR_OP_RDSFDP)
1225		mspi_read = true;
1226
1227	if (!has_bspi(qspi) || mspi_read)
1228		return bcm_qspi_mspi_exec_mem_op(spi, op);
1229
1230	ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
1231
1232	if (!ret)
1233		ret = bcm_qspi_bspi_exec_mem_op(spi, op);
1234
1235	return ret;
1236}
1237
1238static void bcm_qspi_cleanup(struct spi_device *spi)
1239{
1240	struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
1241
1242	kfree(xp);
1243}
1244
1245static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1246{
1247	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1248	struct bcm_qspi *qspi = qspi_dev_id->dev;
1249	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1250
1251	if (status & MSPI_MSPI_STATUS_SPIF) {
1252		struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1253		/* clear interrupt */
1254		status &= ~MSPI_MSPI_STATUS_SPIF;
1255		bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1256		if (qspi->soc_intc)
1257			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1258		complete(&qspi->mspi_done);
1259		return IRQ_HANDLED;
1260	}
1261
1262	return IRQ_NONE;
1263}
1264
1265static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1266{
1267	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1268	struct bcm_qspi *qspi = qspi_dev_id->dev;
1269	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1270	u32 status = qspi_dev_id->irqp->mask;
1271
1272	if (qspi->bspi_enabled && qspi->bspi_rf_op) {
1273		bcm_qspi_bspi_lr_data_read(qspi);
1274		if (qspi->bspi_rf_op_len == 0) {
1275			qspi->bspi_rf_op = NULL;
1276			if (qspi->soc_intc) {
1277				/* disable soc BSPI interrupt */
1278				soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1279							   false);
1280				/* indicate done */
1281				status = INTR_BSPI_LR_SESSION_DONE_MASK;
1282			}
1283
1284			if (qspi->bspi_rf_op_status)
1285				bcm_qspi_bspi_lr_clear(qspi);
1286			else
1287				bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1288		}
1289
1290		if (qspi->soc_intc)
1291			/* clear soc BSPI interrupt */
1292			soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1293	}
1294
1295	status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1296	if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
1297		complete(&qspi->bspi_done);
1298
1299	return IRQ_HANDLED;
1300}
1301
1302static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1303{
1304	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1305	struct bcm_qspi *qspi = qspi_dev_id->dev;
1306	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1307
1308	dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1309	qspi->bspi_rf_op_status = -EIO;
1310	if (qspi->soc_intc)
1311		/* clear soc interrupt */
1312		soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1313
1314	complete(&qspi->bspi_done);
1315	return IRQ_HANDLED;
1316}
1317
1318static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1319{
1320	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1321	struct bcm_qspi *qspi = qspi_dev_id->dev;
1322	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1323	irqreturn_t ret = IRQ_NONE;
1324
1325	if (soc_intc) {
1326		u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1327
1328		if (status & MSPI_DONE)
1329			ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1330		else if (status & BSPI_DONE)
1331			ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1332		else if (status & BSPI_ERR)
1333			ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1334	}
1335
1336	return ret;
1337}
1338
1339static const struct bcm_qspi_irq qspi_irq_tab[] = {
1340	{
1341		.irq_name = "spi_lr_fullness_reached",
1342		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1343		.mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1344	},
1345	{
1346		.irq_name = "spi_lr_session_aborted",
1347		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1348		.mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1349	},
1350	{
1351		.irq_name = "spi_lr_impatient",
1352		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1353		.mask = INTR_BSPI_LR_IMPATIENT_MASK,
1354	},
1355	{
1356		.irq_name = "spi_lr_session_done",
1357		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1358		.mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1359	},
1360#ifdef QSPI_INT_DEBUG
1361	/* this interrupt is for debug purposes only, dont request irq */
1362	{
1363		.irq_name = "spi_lr_overread",
1364		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1365		.mask = INTR_BSPI_LR_OVERREAD_MASK,
1366	},
1367#endif
1368	{
1369		.irq_name = "mspi_done",
1370		.irq_handler = bcm_qspi_mspi_l2_isr,
1371		.mask = INTR_MSPI_DONE_MASK,
1372	},
1373	{
1374		.irq_name = "mspi_halted",
1375		.irq_handler = bcm_qspi_mspi_l2_isr,
1376		.mask = INTR_MSPI_HALTED_MASK,
1377	},
1378	{
1379		/* single muxed L1 interrupt source */
1380		.irq_name = "spi_l1_intr",
1381		.irq_handler = bcm_qspi_l1_isr,
1382		.irq_source = MUXED_L1,
1383		.mask = QSPI_INTERRUPTS_ALL,
1384	},
1385};
1386
1387static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1388{
1389	u32 val = 0;
1390
1391	val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1392	qspi->bspi_maj_rev = (val >> 8) & 0xff;
1393	qspi->bspi_min_rev = val & 0xff;
1394	if (!(bcm_qspi_bspi_ver_three(qspi))) {
1395		/* Force mapping of BSPI address -> flash offset */
1396		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1397		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1398	}
1399	qspi->bspi_enabled = 1;
1400	bcm_qspi_disable_bspi(qspi);
1401	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1402	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1403}
1404
1405static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1406{
1407	struct bcm_qspi_parms parms;
1408
1409	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1410	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1411	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1412	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1413	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1414
1415	parms.mode = SPI_MODE_3;
1416	parms.bits_per_word = 8;
1417	parms.speed_hz = qspi->max_speed_hz;
1418	bcm_qspi_hw_set_parms(qspi, &parms);
1419
1420	if (has_bspi(qspi))
1421		bcm_qspi_bspi_init(qspi);
1422}
1423
1424static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1425{
1426	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1427
1428	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1429	if (has_bspi(qspi))
1430		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1431
1432	/* clear interrupt */
1433	bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status & ~1);
1434}
1435
1436static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
1437	.exec_op = bcm_qspi_exec_mem_op,
1438};
1439
1440struct bcm_qspi_data {
1441	bool	has_mspi_rev;
1442	bool	has_spcr3_sysclk;
1443};
1444
1445static const struct bcm_qspi_data bcm_qspi_no_rev_data = {
1446	.has_mspi_rev	= false,
1447	.has_spcr3_sysclk = false,
1448};
1449
1450static const struct bcm_qspi_data bcm_qspi_rev_data = {
1451	.has_mspi_rev	= true,
1452	.has_spcr3_sysclk = false,
1453};
1454
1455static const struct bcm_qspi_data bcm_qspi_spcr3_data = {
1456	.has_mspi_rev	= true,
1457	.has_spcr3_sysclk = true,
1458};
1459
1460static const struct of_device_id bcm_qspi_of_match[] __maybe_unused = {
1461	{
1462		.compatible = "brcm,spi-bcm7445-qspi",
1463		.data = &bcm_qspi_rev_data,
1464
1465	},
1466	{
1467		.compatible = "brcm,spi-bcm-qspi",
1468		.data = &bcm_qspi_no_rev_data,
1469	},
1470	{
1471		.compatible = "brcm,spi-bcm7216-qspi",
1472		.data = &bcm_qspi_spcr3_data,
1473	},
1474	{
1475		.compatible = "brcm,spi-bcm7278-qspi",
1476		.data = &bcm_qspi_spcr3_data,
1477	},
1478	{},
1479};
1480MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1481
1482int bcm_qspi_probe(struct platform_device *pdev,
1483		   struct bcm_qspi_soc_intc *soc_intc)
1484{
1485	const struct of_device_id *of_id = NULL;
1486	const struct bcm_qspi_data *data;
1487	struct device *dev = &pdev->dev;
1488	struct bcm_qspi *qspi;
1489	struct spi_controller *host;
1490	struct resource *res;
1491	int irq, ret = 0, num_ints = 0;
1492	u32 val;
1493	u32 rev = 0;
1494	const char *name = NULL;
1495	int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1496
1497	/* We only support device-tree instantiation */
1498	if (!dev->of_node)
1499		return -ENODEV;
1500
1501	of_id = of_match_node(bcm_qspi_of_match, dev->of_node);
1502	if (!of_id)
1503		return -ENODEV;
1504
1505	data = of_id->data;
1506
1507	host = devm_spi_alloc_host(dev, sizeof(struct bcm_qspi));
1508	if (!host) {
1509		dev_err(dev, "error allocating spi_controller\n");
1510		return -ENOMEM;
1511	}
1512
1513	qspi = spi_controller_get_devdata(host);
1514
1515	qspi->clk = devm_clk_get_optional(&pdev->dev, NULL);
1516	if (IS_ERR(qspi->clk))
1517		return PTR_ERR(qspi->clk);
1518
1519	qspi->pdev = pdev;
1520	qspi->trans_pos.trans = NULL;
1521	qspi->trans_pos.byte = 0;
1522	qspi->trans_pos.mspi_last_trans = true;
1523	qspi->host = host;
1524
1525	host->bus_num = -1;
1526	host->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD |
1527				SPI_3WIRE;
1528	host->setup = bcm_qspi_setup;
1529	host->transfer_one = bcm_qspi_transfer_one;
1530	host->mem_ops = &bcm_qspi_mem_ops;
1531	host->cleanup = bcm_qspi_cleanup;
1532	host->dev.of_node = dev->of_node;
1533	host->num_chipselect = NUM_CHIPSELECT;
1534	host->use_gpio_descriptors = true;
1535
1536	qspi->big_endian = of_device_is_big_endian(dev->of_node);
1537
1538	if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1539		host->num_chipselect = val;
1540
1541	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1542	if (!res)
1543		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1544						   "mspi");
1545
1546	qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1547	if (IS_ERR(qspi->base[MSPI]))
1548		return PTR_ERR(qspi->base[MSPI]);
1549
1550	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1551	if (res) {
1552		qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1553		if (IS_ERR(qspi->base[BSPI]))
1554			return PTR_ERR(qspi->base[BSPI]);
1555		qspi->bspi_mode = true;
1556	} else {
1557		qspi->bspi_mode = false;
1558	}
1559
1560	dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1561
1562	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1563	if (res) {
1564		qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1565		if (IS_ERR(qspi->base[CHIP_SELECT]))
1566			return PTR_ERR(qspi->base[CHIP_SELECT]);
1567	}
1568
1569	qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1570				GFP_KERNEL);
1571	if (!qspi->dev_ids)
1572		return -ENOMEM;
1573
1574	/*
1575	 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1576	 * in specific ways
1577	 */
1578	if (soc_intc) {
1579		qspi->soc_intc = soc_intc;
1580		soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1581	} else {
1582		qspi->soc_intc = NULL;
1583	}
1584
1585	if (qspi->clk) {
1586		ret = clk_prepare_enable(qspi->clk);
1587		if (ret) {
1588			dev_err(dev, "failed to prepare clock\n");
1589			goto qspi_probe_err;
1590		}
1591		qspi->base_clk = clk_get_rate(qspi->clk);
1592	} else {
1593		qspi->base_clk = MSPI_BASE_FREQ;
1594	}
1595
1596	if (data->has_mspi_rev) {
1597		rev = bcm_qspi_read(qspi, MSPI, MSPI_REV);
1598		/* some older revs do not have a MSPI_REV register */
1599		if ((rev & 0xff) == 0xff)
1600			rev = 0;
1601	}
1602
1603	qspi->mspi_maj_rev = (rev >> 4) & 0xf;
1604	qspi->mspi_min_rev = rev & 0xf;
1605	qspi->mspi_spcr3_sysclk = data->has_spcr3_sysclk;
1606
1607	qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
1608
1609	/*
1610	 * On SW resets it is possible to have the mask still enabled
1611	 * Need to disable the mask and clear the status while we init
1612	 */
1613	bcm_qspi_hw_uninit(qspi);
1614
1615	for (val = 0; val < num_irqs; val++) {
1616		irq = -1;
1617		name = qspi_irq_tab[val].irq_name;
1618		if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1619			/* get the l2 interrupts */
1620			irq = platform_get_irq_byname_optional(pdev, name);
1621		} else if (!num_ints && soc_intc) {
1622			/* all mspi, bspi intrs muxed to one L1 intr */
1623			irq = platform_get_irq(pdev, 0);
1624		}
1625
1626		if (irq  >= 0) {
1627			ret = devm_request_irq(&pdev->dev, irq,
1628					       qspi_irq_tab[val].irq_handler, 0,
1629					       name,
1630					       &qspi->dev_ids[val]);
1631			if (ret < 0) {
1632				dev_err(&pdev->dev, "IRQ %s not found\n", name);
1633				goto qspi_unprepare_err;
1634			}
1635
1636			qspi->dev_ids[val].dev = qspi;
1637			qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1638			num_ints++;
1639			dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1640				qspi_irq_tab[val].irq_name,
1641				irq);
1642		}
1643	}
1644
1645	if (!num_ints) {
1646		dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1647		ret = -EINVAL;
1648		goto qspi_unprepare_err;
1649	}
1650
1651	bcm_qspi_hw_init(qspi);
1652	init_completion(&qspi->mspi_done);
1653	init_completion(&qspi->bspi_done);
1654	qspi->curr_cs = -1;
1655
1656	platform_set_drvdata(pdev, qspi);
1657
1658	qspi->xfer_mode.width = -1;
1659	qspi->xfer_mode.addrlen = -1;
1660	qspi->xfer_mode.hp = -1;
1661
1662	ret = spi_register_controller(host);
1663	if (ret < 0) {
1664		dev_err(dev, "can't register host\n");
1665		goto qspi_reg_err;
1666	}
1667
1668	return 0;
1669
1670qspi_reg_err:
1671	bcm_qspi_hw_uninit(qspi);
1672qspi_unprepare_err:
1673	clk_disable_unprepare(qspi->clk);
1674qspi_probe_err:
1675	kfree(qspi->dev_ids);
1676	return ret;
1677}
1678/* probe function to be called by SoC specific platform driver probe */
1679EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1680
1681void bcm_qspi_remove(struct platform_device *pdev)
1682{
1683	struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1684
1685	spi_unregister_controller(qspi->host);
1686	bcm_qspi_hw_uninit(qspi);
1687	clk_disable_unprepare(qspi->clk);
1688	kfree(qspi->dev_ids);
1689}
1690
1691/* function to be called by SoC specific platform driver remove() */
1692EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1693
1694static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1695{
1696	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1697
1698	/* store the override strap value */
1699	if (!bcm_qspi_bspi_ver_three(qspi))
1700		qspi->s3_strap_override_ctrl =
1701			bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1702
1703	spi_controller_suspend(qspi->host);
1704	clk_disable_unprepare(qspi->clk);
1705	bcm_qspi_hw_uninit(qspi);
1706
1707	return 0;
1708};
1709
1710static int __maybe_unused bcm_qspi_resume(struct device *dev)
1711{
1712	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1713	int ret = 0;
1714
1715	bcm_qspi_hw_init(qspi);
1716	bcm_qspi_chip_select(qspi, qspi->curr_cs);
1717	if (qspi->soc_intc)
1718		/* enable MSPI interrupt */
1719		qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1720						 true);
1721
1722	ret = clk_prepare_enable(qspi->clk);
1723	if (!ret)
1724		spi_controller_resume(qspi->host);
1725
1726	return ret;
1727}
1728
1729SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1730
1731/* pm_ops to be called by SoC specific platform driver */
1732EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1733
1734MODULE_AUTHOR("Kamal Dasu");
1735MODULE_DESCRIPTION("Broadcom QSPI driver");
1736MODULE_LICENSE("GPL v2");
1737MODULE_ALIAS("platform:" DRIVER_NAME);
1738