1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Intel IXP4xx Network Processor Engine driver for Linux
4 *
5 * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
6 *
7 * The code is based on publicly available information:
8 * - Intel IXP4xx Developer's Manual and other e-papers
9 * - Intel IXP400 Access Library Software (BSD license)
10 * - previous works by Christian Hohnstaedt <chohnstaedt@innominate.com>
11 *   Thanks, Christian.
12 */
13
14#include <linux/delay.h>
15#include <linux/dma-mapping.h>
16#include <linux/firmware.h>
17#include <linux/io.h>
18#include <linux/kernel.h>
19#include <linux/mfd/syscon.h>
20#include <linux/module.h>
21#include <linux/of.h>
22#include <linux/of_platform.h>
23#include <linux/platform_device.h>
24#include <linux/soc/ixp4xx/npe.h>
25#include <linux/soc/ixp4xx/cpu.h>
26
27#define DEBUG_MSG			0
28#define DEBUG_FW			0
29
30#define NPE_COUNT			3
31#define MAX_RETRIES			1000	/* microseconds */
32#define NPE_42X_DATA_SIZE		0x800	/* in dwords */
33#define NPE_46X_DATA_SIZE		0x1000
34#define NPE_A_42X_INSTR_SIZE		0x1000
35#define NPE_B_AND_C_42X_INSTR_SIZE	0x800
36#define NPE_46X_INSTR_SIZE		0x1000
37#define REGS_SIZE			0x1000
38
39#define NPE_PHYS_REG			32
40
41#define FW_MAGIC			0xFEEDF00D
42#define FW_BLOCK_TYPE_INSTR		0x0
43#define FW_BLOCK_TYPE_DATA		0x1
44#define FW_BLOCK_TYPE_EOF		0xF
45
46/* NPE exec status (read) and command (write) */
47#define CMD_NPE_STEP			0x01
48#define CMD_NPE_START			0x02
49#define CMD_NPE_STOP			0x03
50#define CMD_NPE_CLR_PIPE		0x04
51#define CMD_CLR_PROFILE_CNT		0x0C
52#define CMD_RD_INS_MEM			0x10 /* instruction memory */
53#define CMD_WR_INS_MEM			0x11
54#define CMD_RD_DATA_MEM			0x12 /* data memory */
55#define CMD_WR_DATA_MEM			0x13
56#define CMD_RD_ECS_REG			0x14 /* exec access register */
57#define CMD_WR_ECS_REG			0x15
58
59#define STAT_RUN			0x80000000
60#define STAT_STOP			0x40000000
61#define STAT_CLEAR			0x20000000
62#define STAT_ECS_K			0x00800000 /* pipeline clean */
63
64#define NPE_STEVT			0x1B
65#define NPE_STARTPC			0x1C
66#define NPE_REGMAP			0x1E
67#define NPE_CINDEX			0x1F
68
69#define INSTR_WR_REG_SHORT		0x0000C000
70#define INSTR_WR_REG_BYTE		0x00004000
71#define INSTR_RD_FIFO			0x0F888220
72#define INSTR_RESET_MBOX		0x0FAC8210
73
74#define ECS_BG_CTXT_REG_0		0x00 /* Background Executing Context */
75#define ECS_BG_CTXT_REG_1		0x01 /*		Stack level */
76#define ECS_BG_CTXT_REG_2		0x02
77#define ECS_PRI_1_CTXT_REG_0		0x04 /* Priority 1 Executing Context */
78#define ECS_PRI_1_CTXT_REG_1		0x05 /*		Stack level */
79#define ECS_PRI_1_CTXT_REG_2		0x06
80#define ECS_PRI_2_CTXT_REG_0		0x08 /* Priority 2 Executing Context */
81#define ECS_PRI_2_CTXT_REG_1		0x09 /*		Stack level */
82#define ECS_PRI_2_CTXT_REG_2		0x0A
83#define ECS_DBG_CTXT_REG_0		0x0C /* Debug Executing Context */
84#define ECS_DBG_CTXT_REG_1		0x0D /*		Stack level */
85#define ECS_DBG_CTXT_REG_2		0x0E
86#define ECS_INSTRUCT_REG		0x11 /* NPE Instruction Register */
87
88#define ECS_REG_0_ACTIVE		0x80000000 /* all levels */
89#define ECS_REG_0_NEXTPC_MASK		0x1FFF0000 /* BG/PRI1/PRI2 levels */
90#define ECS_REG_0_LDUR_BITS		8
91#define ECS_REG_0_LDUR_MASK		0x00000700 /* all levels */
92#define ECS_REG_1_CCTXT_BITS		16
93#define ECS_REG_1_CCTXT_MASK		0x000F0000 /* all levels */
94#define ECS_REG_1_SELCTXT_BITS		0
95#define ECS_REG_1_SELCTXT_MASK		0x0000000F /* all levels */
96#define ECS_DBG_REG_2_IF		0x00100000 /* debug level */
97#define ECS_DBG_REG_2_IE		0x00080000 /* debug level */
98
99/* NPE watchpoint_fifo register bit */
100#define WFIFO_VALID			0x80000000
101
102/* NPE messaging_status register bit definitions */
103#define MSGSTAT_OFNE	0x00010000 /* OutFifoNotEmpty */
104#define MSGSTAT_IFNF	0x00020000 /* InFifoNotFull */
105#define MSGSTAT_OFNF	0x00040000 /* OutFifoNotFull */
106#define MSGSTAT_IFNE	0x00080000 /* InFifoNotEmpty */
107#define MSGSTAT_MBINT	0x00100000 /* Mailbox interrupt */
108#define MSGSTAT_IFINT	0x00200000 /* InFifo interrupt */
109#define MSGSTAT_OFINT	0x00400000 /* OutFifo interrupt */
110#define MSGSTAT_WFINT	0x00800000 /* WatchFifo interrupt */
111
112/* NPE messaging_control register bit definitions */
113#define MSGCTL_OUT_FIFO			0x00010000 /* enable output FIFO */
114#define MSGCTL_IN_FIFO			0x00020000 /* enable input FIFO */
115#define MSGCTL_OUT_FIFO_WRITE		0x01000000 /* enable FIFO + WRITE */
116#define MSGCTL_IN_FIFO_WRITE		0x02000000
117
118/* NPE mailbox_status value for reset */
119#define RESET_MBOX_STAT			0x0000F0F0
120
121#define NPE_A_FIRMWARE "NPE-A"
122#define NPE_B_FIRMWARE "NPE-B"
123#define NPE_C_FIRMWARE "NPE-C"
124
125const char *npe_names[] = { NPE_A_FIRMWARE, NPE_B_FIRMWARE, NPE_C_FIRMWARE };
126
127#define print_npe(pri, npe, fmt, ...)					\
128	printk(pri "%s: " fmt, npe_name(npe), ## __VA_ARGS__)
129
130#if DEBUG_MSG
131#define debug_msg(npe, fmt, ...)					\
132	print_npe(KERN_DEBUG, npe, fmt, ## __VA_ARGS__)
133#else
134#define debug_msg(npe, fmt, ...)
135#endif
136
137static struct {
138	u32 reg, val;
139} ecs_reset[] = {
140	{ ECS_BG_CTXT_REG_0,	0xA0000000 },
141	{ ECS_BG_CTXT_REG_1,	0x01000000 },
142	{ ECS_BG_CTXT_REG_2,	0x00008000 },
143	{ ECS_PRI_1_CTXT_REG_0,	0x20000080 },
144	{ ECS_PRI_1_CTXT_REG_1,	0x01000000 },
145	{ ECS_PRI_1_CTXT_REG_2,	0x00008000 },
146	{ ECS_PRI_2_CTXT_REG_0,	0x20000080 },
147	{ ECS_PRI_2_CTXT_REG_1,	0x01000000 },
148	{ ECS_PRI_2_CTXT_REG_2,	0x00008000 },
149	{ ECS_DBG_CTXT_REG_0,	0x20000000 },
150	{ ECS_DBG_CTXT_REG_1,	0x00000000 },
151	{ ECS_DBG_CTXT_REG_2,	0x001E0000 },
152	{ ECS_INSTRUCT_REG,	0x1003C00F },
153};
154
155static struct npe npe_tab[NPE_COUNT] = {
156	{
157		.id	= 0,
158	}, {
159		.id	= 1,
160	}, {
161		.id	= 2,
162	}
163};
164
165int npe_running(struct npe *npe)
166{
167	return (__raw_readl(&npe->regs->exec_status_cmd) & STAT_RUN) != 0;
168}
169
170static void npe_cmd_write(struct npe *npe, u32 addr, int cmd, u32 data)
171{
172	__raw_writel(data, &npe->regs->exec_data);
173	__raw_writel(addr, &npe->regs->exec_addr);
174	__raw_writel(cmd, &npe->regs->exec_status_cmd);
175}
176
177static u32 npe_cmd_read(struct npe *npe, u32 addr, int cmd)
178{
179	__raw_writel(addr, &npe->regs->exec_addr);
180	__raw_writel(cmd, &npe->regs->exec_status_cmd);
181	/* Iintroduce extra read cycles after issuing read command to NPE
182	   so that we read the register after the NPE has updated it.
183	   This is to overcome race condition between XScale and NPE */
184	__raw_readl(&npe->regs->exec_data);
185	__raw_readl(&npe->regs->exec_data);
186	return __raw_readl(&npe->regs->exec_data);
187}
188
189static void npe_clear_active(struct npe *npe, u32 reg)
190{
191	u32 val = npe_cmd_read(npe, reg, CMD_RD_ECS_REG);
192	npe_cmd_write(npe, reg, CMD_WR_ECS_REG, val & ~ECS_REG_0_ACTIVE);
193}
194
195static void npe_start(struct npe *npe)
196{
197	/* ensure only Background Context Stack Level is active */
198	npe_clear_active(npe, ECS_PRI_1_CTXT_REG_0);
199	npe_clear_active(npe, ECS_PRI_2_CTXT_REG_0);
200	npe_clear_active(npe, ECS_DBG_CTXT_REG_0);
201
202	__raw_writel(CMD_NPE_CLR_PIPE, &npe->regs->exec_status_cmd);
203	__raw_writel(CMD_NPE_START, &npe->regs->exec_status_cmd);
204}
205
206static void npe_stop(struct npe *npe)
207{
208	__raw_writel(CMD_NPE_STOP, &npe->regs->exec_status_cmd);
209	__raw_writel(CMD_NPE_CLR_PIPE, &npe->regs->exec_status_cmd); /*FIXME?*/
210}
211
212static int __must_check npe_debug_instr(struct npe *npe, u32 instr, u32 ctx,
213					u32 ldur)
214{
215	u32 wc;
216	int i;
217
218	/* set the Active bit, and the LDUR, in the debug level */
219	npe_cmd_write(npe, ECS_DBG_CTXT_REG_0, CMD_WR_ECS_REG,
220		      ECS_REG_0_ACTIVE | (ldur << ECS_REG_0_LDUR_BITS));
221
222	/* set CCTXT at ECS DEBUG L3 to specify in which context to execute
223	   the instruction, and set SELCTXT at ECS DEBUG Level to specify
224	   which context store to access.
225	   Debug ECS Level Reg 1 has form 0x000n000n, where n = context number
226	*/
227	npe_cmd_write(npe, ECS_DBG_CTXT_REG_1, CMD_WR_ECS_REG,
228		      (ctx << ECS_REG_1_CCTXT_BITS) |
229		      (ctx << ECS_REG_1_SELCTXT_BITS));
230
231	/* clear the pipeline */
232	__raw_writel(CMD_NPE_CLR_PIPE, &npe->regs->exec_status_cmd);
233
234	/* load NPE instruction into the instruction register */
235	npe_cmd_write(npe, ECS_INSTRUCT_REG, CMD_WR_ECS_REG, instr);
236
237	/* we need this value later to wait for completion of NPE execution
238	   step */
239	wc = __raw_readl(&npe->regs->watch_count);
240
241	/* issue a Step One command via the Execution Control register */
242	__raw_writel(CMD_NPE_STEP, &npe->regs->exec_status_cmd);
243
244	/* Watch Count register increments when NPE completes an instruction */
245	for (i = 0; i < MAX_RETRIES; i++) {
246		if (wc != __raw_readl(&npe->regs->watch_count))
247			return 0;
248		udelay(1);
249	}
250
251	print_npe(KERN_ERR, npe, "reset: npe_debug_instr(): timeout\n");
252	return -ETIMEDOUT;
253}
254
255static int __must_check npe_logical_reg_write8(struct npe *npe, u32 addr,
256					       u8 val, u32 ctx)
257{
258	/* here we build the NPE assembler instruction: mov8 d0, #0 */
259	u32 instr = INSTR_WR_REG_BYTE |	/* OpCode */
260		addr << 9 |		/* base Operand */
261		(val & 0x1F) << 4 |	/* lower 5 bits to immediate data */
262		(val & ~0x1F) << (18 - 5);/* higher 3 bits to CoProc instr. */
263	return npe_debug_instr(npe, instr, ctx, 1); /* execute it */
264}
265
266static int __must_check npe_logical_reg_write16(struct npe *npe, u32 addr,
267						u16 val, u32 ctx)
268{
269	/* here we build the NPE assembler instruction: mov16 d0, #0 */
270	u32 instr = INSTR_WR_REG_SHORT | /* OpCode */
271		addr << 9 |		/* base Operand */
272		(val & 0x1F) << 4 |	/* lower 5 bits to immediate data */
273		(val & ~0x1F) << (18 - 5);/* higher 11 bits to CoProc instr. */
274	return npe_debug_instr(npe, instr, ctx, 1); /* execute it */
275}
276
277static int __must_check npe_logical_reg_write32(struct npe *npe, u32 addr,
278						u32 val, u32 ctx)
279{
280	/* write in 16 bit steps first the high and then the low value */
281	if (npe_logical_reg_write16(npe, addr, val >> 16, ctx))
282		return -ETIMEDOUT;
283	return npe_logical_reg_write16(npe, addr + 2, val & 0xFFFF, ctx);
284}
285
286static int npe_reset(struct npe *npe)
287{
288	u32 reset_bit = (IXP4XX_FEATURE_RESET_NPEA << npe->id);
289	u32 val, ctl, exec_count, ctx_reg2;
290	int i;
291
292	ctl = (__raw_readl(&npe->regs->messaging_control) | 0x3F000000) &
293		0x3F3FFFFF;
294
295	/* disable parity interrupt */
296	__raw_writel(ctl & 0x3F00FFFF, &npe->regs->messaging_control);
297
298	/* pre exec - debug instruction */
299	/* turn off the halt bit by clearing Execution Count register. */
300	exec_count = __raw_readl(&npe->regs->exec_count);
301	__raw_writel(0, &npe->regs->exec_count);
302	/* ensure that IF and IE are on (temporarily), so that we don't end up
303	   stepping forever */
304	ctx_reg2 = npe_cmd_read(npe, ECS_DBG_CTXT_REG_2, CMD_RD_ECS_REG);
305	npe_cmd_write(npe, ECS_DBG_CTXT_REG_2, CMD_WR_ECS_REG, ctx_reg2 |
306		      ECS_DBG_REG_2_IF | ECS_DBG_REG_2_IE);
307
308	/* clear the FIFOs */
309	while (__raw_readl(&npe->regs->watchpoint_fifo) & WFIFO_VALID)
310		;
311	while (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_OFNE)
312		/* read from the outFIFO until empty */
313		print_npe(KERN_DEBUG, npe, "npe_reset: read FIFO = 0x%X\n",
314			  __raw_readl(&npe->regs->in_out_fifo));
315
316	while (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_IFNE)
317		/* step execution of the NPE intruction to read inFIFO using
318		   the Debug Executing Context stack */
319		if (npe_debug_instr(npe, INSTR_RD_FIFO, 0, 0))
320			return -ETIMEDOUT;
321
322	/* reset the mailbox reg from the XScale side */
323	__raw_writel(RESET_MBOX_STAT, &npe->regs->mailbox_status);
324	/* from NPE side */
325	if (npe_debug_instr(npe, INSTR_RESET_MBOX, 0, 0))
326		return -ETIMEDOUT;
327
328	/* Reset the physical registers in the NPE register file */
329	for (val = 0; val < NPE_PHYS_REG; val++) {
330		if (npe_logical_reg_write16(npe, NPE_REGMAP, val >> 1, 0))
331			return -ETIMEDOUT;
332		/* address is either 0 or 4 */
333		if (npe_logical_reg_write32(npe, (val & 1) * 4, 0, 0))
334			return -ETIMEDOUT;
335	}
336
337	/* Reset the context store = each context's Context Store registers */
338
339	/* Context 0 has no STARTPC. Instead, this value is used to set NextPC
340	   for Background ECS, to set where NPE starts executing code */
341	val = npe_cmd_read(npe, ECS_BG_CTXT_REG_0, CMD_RD_ECS_REG);
342	val &= ~ECS_REG_0_NEXTPC_MASK;
343	val |= (0 /* NextPC */ << 16) & ECS_REG_0_NEXTPC_MASK;
344	npe_cmd_write(npe, ECS_BG_CTXT_REG_0, CMD_WR_ECS_REG, val);
345
346	for (i = 0; i < 16; i++) {
347		if (i) {	/* Context 0 has no STEVT nor STARTPC */
348			/* STEVT = off, 0x80 */
349			if (npe_logical_reg_write8(npe, NPE_STEVT, 0x80, i))
350				return -ETIMEDOUT;
351			if (npe_logical_reg_write16(npe, NPE_STARTPC, 0, i))
352				return -ETIMEDOUT;
353		}
354		/* REGMAP = d0->p0, d8->p2, d16->p4 */
355		if (npe_logical_reg_write16(npe, NPE_REGMAP, 0x820, i))
356			return -ETIMEDOUT;
357		if (npe_logical_reg_write8(npe, NPE_CINDEX, 0, i))
358			return -ETIMEDOUT;
359	}
360
361	/* post exec */
362	/* clear active bit in debug level */
363	npe_cmd_write(npe, ECS_DBG_CTXT_REG_0, CMD_WR_ECS_REG, 0);
364	/* clear the pipeline */
365	__raw_writel(CMD_NPE_CLR_PIPE, &npe->regs->exec_status_cmd);
366	/* restore previous values */
367	__raw_writel(exec_count, &npe->regs->exec_count);
368	npe_cmd_write(npe, ECS_DBG_CTXT_REG_2, CMD_WR_ECS_REG, ctx_reg2);
369
370	/* write reset values to Execution Context Stack registers */
371	for (val = 0; val < ARRAY_SIZE(ecs_reset); val++)
372		npe_cmd_write(npe, ecs_reset[val].reg, CMD_WR_ECS_REG,
373			      ecs_reset[val].val);
374
375	/* clear the profile counter */
376	__raw_writel(CMD_CLR_PROFILE_CNT, &npe->regs->exec_status_cmd);
377
378	__raw_writel(0, &npe->regs->exec_count);
379	__raw_writel(0, &npe->regs->action_points[0]);
380	__raw_writel(0, &npe->regs->action_points[1]);
381	__raw_writel(0, &npe->regs->action_points[2]);
382	__raw_writel(0, &npe->regs->action_points[3]);
383	__raw_writel(0, &npe->regs->watch_count);
384
385	/*
386	 * We need to work on cached values here because the register
387	 * will read inverted but needs to be written non-inverted.
388	 */
389	val = cpu_ixp4xx_features(npe->rmap);
390	/* reset the NPE */
391	regmap_write(npe->rmap, IXP4XX_EXP_CNFG2, val & ~reset_bit);
392	/* deassert reset */
393	regmap_write(npe->rmap, IXP4XX_EXP_CNFG2, val | reset_bit);
394
395	for (i = 0; i < MAX_RETRIES; i++) {
396		val = cpu_ixp4xx_features(npe->rmap);
397		if (val & reset_bit)
398			break;	/* NPE is back alive */
399		udelay(1);
400	}
401	if (i == MAX_RETRIES)
402		return -ETIMEDOUT;
403
404	npe_stop(npe);
405
406	/* restore NPE configuration bus Control Register - parity settings */
407	__raw_writel(ctl, &npe->regs->messaging_control);
408	return 0;
409}
410
411
412int npe_send_message(struct npe *npe, const void *msg, const char *what)
413{
414	const u32 *send = msg;
415	int cycles = 0;
416
417	debug_msg(npe, "Trying to send message %s [%08X:%08X]\n",
418		  what, send[0], send[1]);
419
420	if (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_IFNE) {
421		debug_msg(npe, "NPE input FIFO not empty\n");
422		return -EIO;
423	}
424
425	__raw_writel(send[0], &npe->regs->in_out_fifo);
426
427	if (!(__raw_readl(&npe->regs->messaging_status) & MSGSTAT_IFNF)) {
428		debug_msg(npe, "NPE input FIFO full\n");
429		return -EIO;
430	}
431
432	__raw_writel(send[1], &npe->regs->in_out_fifo);
433
434	while ((cycles < MAX_RETRIES) &&
435	       (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_IFNE)) {
436		udelay(1);
437		cycles++;
438	}
439
440	if (cycles == MAX_RETRIES) {
441		debug_msg(npe, "Timeout sending message\n");
442		return -ETIMEDOUT;
443	}
444
445#if DEBUG_MSG > 1
446	debug_msg(npe, "Sending a message took %i cycles\n", cycles);
447#endif
448	return 0;
449}
450
451int npe_recv_message(struct npe *npe, void *msg, const char *what)
452{
453	u32 *recv = msg;
454	int cycles = 0, cnt = 0;
455
456	debug_msg(npe, "Trying to receive message %s\n", what);
457
458	while (cycles < MAX_RETRIES) {
459		if (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_OFNE) {
460			recv[cnt++] = __raw_readl(&npe->regs->in_out_fifo);
461			if (cnt == 2)
462				break;
463		} else {
464			udelay(1);
465			cycles++;
466		}
467	}
468
469	switch(cnt) {
470	case 1:
471		debug_msg(npe, "Received [%08X]\n", recv[0]);
472		break;
473	case 2:
474		debug_msg(npe, "Received [%08X:%08X]\n", recv[0], recv[1]);
475		break;
476	}
477
478	if (cycles == MAX_RETRIES) {
479		debug_msg(npe, "Timeout waiting for message\n");
480		return -ETIMEDOUT;
481	}
482
483#if DEBUG_MSG > 1
484	debug_msg(npe, "Receiving a message took %i cycles\n", cycles);
485#endif
486	return 0;
487}
488
489int npe_send_recv_message(struct npe *npe, void *msg, const char *what)
490{
491	int result;
492	u32 *send = msg, recv[2];
493
494	if ((result = npe_send_message(npe, msg, what)) != 0)
495		return result;
496	if ((result = npe_recv_message(npe, recv, what)) != 0)
497		return result;
498
499	if ((recv[0] != send[0]) || (recv[1] != send[1])) {
500		debug_msg(npe, "Message %s: unexpected message received\n",
501			  what);
502		return -EIO;
503	}
504	return 0;
505}
506
507
508int npe_load_firmware(struct npe *npe, const char *name, struct device *dev)
509{
510	const struct firmware *fw_entry;
511
512	struct dl_block {
513		u32 type;
514		u32 offset;
515	} *blk;
516
517	struct dl_image {
518		u32 magic;
519		u32 id;
520		u32 size;
521		union {
522			DECLARE_FLEX_ARRAY(u32, data);
523			DECLARE_FLEX_ARRAY(struct dl_block, blocks);
524		};
525	} *image;
526
527	struct dl_codeblock {
528		u32 npe_addr;
529		u32 size;
530		u32 data[];
531	} *cb;
532
533	int i, j, err, data_size, instr_size, blocks, table_end;
534	u32 cmd;
535
536	if ((err = request_firmware(&fw_entry, name, dev)) != 0)
537		return err;
538
539	err = -EINVAL;
540	if (fw_entry->size < sizeof(struct dl_image)) {
541		print_npe(KERN_ERR, npe, "incomplete firmware file\n");
542		goto err;
543	}
544	image = (struct dl_image*)fw_entry->data;
545
546#if DEBUG_FW
547	print_npe(KERN_DEBUG, npe, "firmware: %08X %08X %08X (0x%X bytes)\n",
548		  image->magic, image->id, image->size, image->size * 4);
549#endif
550
551	if (image->magic == swab32(FW_MAGIC)) { /* swapped file */
552		image->id = swab32(image->id);
553		image->size = swab32(image->size);
554	} else if (image->magic != FW_MAGIC) {
555		print_npe(KERN_ERR, npe, "bad firmware file magic: 0x%X\n",
556			  image->magic);
557		goto err;
558	}
559	if ((image->size * 4 + sizeof(struct dl_image)) != fw_entry->size) {
560		print_npe(KERN_ERR, npe,
561			  "inconsistent size of firmware file\n");
562		goto err;
563	}
564	if (((image->id >> 24) & 0xF /* NPE ID */) != npe->id) {
565		print_npe(KERN_ERR, npe, "firmware file NPE ID mismatch\n");
566		goto err;
567	}
568	if (image->magic == swab32(FW_MAGIC))
569		for (i = 0; i < image->size; i++)
570			image->data[i] = swab32(image->data[i]);
571
572	if (cpu_is_ixp42x() && ((image->id >> 28) & 0xF /* device ID */)) {
573		print_npe(KERN_INFO, npe, "IXP43x/IXP46x firmware ignored on "
574			  "IXP42x\n");
575		goto err;
576	}
577
578	if (npe_running(npe)) {
579		print_npe(KERN_INFO, npe, "unable to load firmware, NPE is "
580			  "already running\n");
581		err = -EBUSY;
582		goto err;
583	}
584#if 0
585	npe_stop(npe);
586	npe_reset(npe);
587#endif
588
589	print_npe(KERN_INFO, npe, "firmware functionality 0x%X, "
590		  "revision 0x%X:%X\n", (image->id >> 16) & 0xFF,
591		  (image->id >> 8) & 0xFF, image->id & 0xFF);
592
593	if (cpu_is_ixp42x()) {
594		if (!npe->id)
595			instr_size = NPE_A_42X_INSTR_SIZE;
596		else
597			instr_size = NPE_B_AND_C_42X_INSTR_SIZE;
598		data_size = NPE_42X_DATA_SIZE;
599	} else {
600		instr_size = NPE_46X_INSTR_SIZE;
601		data_size = NPE_46X_DATA_SIZE;
602	}
603
604	for (blocks = 0; blocks * sizeof(struct dl_block) / 4 < image->size;
605	     blocks++)
606		if (image->blocks[blocks].type == FW_BLOCK_TYPE_EOF)
607			break;
608	if (blocks * sizeof(struct dl_block) / 4 >= image->size) {
609		print_npe(KERN_INFO, npe, "firmware EOF block marker not "
610			  "found\n");
611		goto err;
612	}
613
614#if DEBUG_FW
615	print_npe(KERN_DEBUG, npe, "%i firmware blocks found\n", blocks);
616#endif
617
618	table_end = blocks * sizeof(struct dl_block) / 4 + 1 /* EOF marker */;
619	for (i = 0, blk = image->blocks; i < blocks; i++, blk++) {
620		if (blk->offset > image->size - sizeof(struct dl_codeblock) / 4
621		    || blk->offset < table_end) {
622			print_npe(KERN_INFO, npe, "invalid offset 0x%X of "
623				  "firmware block #%i\n", blk->offset, i);
624			goto err;
625		}
626
627		cb = (struct dl_codeblock*)&image->data[blk->offset];
628		if (blk->type == FW_BLOCK_TYPE_INSTR) {
629			if (cb->npe_addr + cb->size > instr_size)
630				goto too_big;
631			cmd = CMD_WR_INS_MEM;
632		} else if (blk->type == FW_BLOCK_TYPE_DATA) {
633			if (cb->npe_addr + cb->size > data_size)
634				goto too_big;
635			cmd = CMD_WR_DATA_MEM;
636		} else {
637			print_npe(KERN_INFO, npe, "invalid firmware block #%i "
638				  "type 0x%X\n", i, blk->type);
639			goto err;
640		}
641		if (blk->offset + sizeof(*cb) / 4 + cb->size > image->size) {
642			print_npe(KERN_INFO, npe, "firmware block #%i doesn't "
643				  "fit in firmware image: type %c, start 0x%X,"
644				  " length 0x%X\n", i,
645				  blk->type == FW_BLOCK_TYPE_INSTR ? 'I' : 'D',
646				  cb->npe_addr, cb->size);
647			goto err;
648		}
649
650		for (j = 0; j < cb->size; j++)
651			npe_cmd_write(npe, cb->npe_addr + j, cmd, cb->data[j]);
652	}
653
654	npe_start(npe);
655	if (!npe_running(npe))
656		print_npe(KERN_ERR, npe, "unable to start\n");
657	release_firmware(fw_entry);
658	return 0;
659
660too_big:
661	print_npe(KERN_INFO, npe, "firmware block #%i doesn't fit in NPE "
662		  "memory: type %c, start 0x%X, length 0x%X\n", i,
663		  blk->type == FW_BLOCK_TYPE_INSTR ? 'I' : 'D',
664		  cb->npe_addr, cb->size);
665err:
666	release_firmware(fw_entry);
667	return err;
668}
669
670
671struct npe *npe_request(unsigned id)
672{
673	if (id < NPE_COUNT)
674		if (npe_tab[id].valid)
675			if (try_module_get(THIS_MODULE))
676				return &npe_tab[id];
677	return NULL;
678}
679
680void npe_release(struct npe *npe)
681{
682	module_put(THIS_MODULE);
683}
684
685static int ixp4xx_npe_probe(struct platform_device *pdev)
686{
687	int i, found = 0;
688	struct device *dev = &pdev->dev;
689	struct device_node *np = dev->of_node;
690	struct resource *res;
691	struct regmap *rmap;
692	u32 val;
693
694	/* This system has only one syscon, so fetch it */
695	rmap = syscon_regmap_lookup_by_compatible("syscon");
696	if (IS_ERR(rmap))
697		return dev_err_probe(dev, PTR_ERR(rmap),
698				     "failed to look up syscon\n");
699
700	for (i = 0; i < NPE_COUNT; i++) {
701		struct npe *npe = &npe_tab[i];
702
703		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
704		if (!res)
705			return -ENODEV;
706
707		val = cpu_ixp4xx_features(rmap);
708
709		if (!(val & (IXP4XX_FEATURE_RESET_NPEA << i))) {
710			dev_info(dev, "NPE%d at %pR not available\n",
711				 i, res);
712			continue; /* NPE already disabled or not present */
713		}
714		npe->regs = devm_ioremap_resource(dev, res);
715		if (IS_ERR(npe->regs))
716			return PTR_ERR(npe->regs);
717		npe->rmap = rmap;
718
719		if (npe_reset(npe)) {
720			dev_info(dev, "NPE%d at %pR does not reset\n",
721				 i, res);
722			continue;
723		}
724		npe->valid = 1;
725		dev_info(dev, "NPE%d at %pR registered\n", i, res);
726		found++;
727	}
728
729	if (!found)
730		return -ENODEV;
731
732	/* Spawn crypto subdevice if using device tree */
733	if (IS_ENABLED(CONFIG_OF) && np)
734		devm_of_platform_populate(dev);
735
736	return 0;
737}
738
739static void ixp4xx_npe_remove(struct platform_device *pdev)
740{
741	int i;
742
743	for (i = 0; i < NPE_COUNT; i++)
744		if (npe_tab[i].regs) {
745			npe_reset(&npe_tab[i]);
746		}
747}
748
749static const struct of_device_id ixp4xx_npe_of_match[] = {
750	{
751		.compatible = "intel,ixp4xx-network-processing-engine",
752        },
753	{},
754};
755
756static struct platform_driver ixp4xx_npe_driver = {
757	.driver = {
758		.name           = "ixp4xx-npe",
759		.of_match_table = ixp4xx_npe_of_match,
760	},
761	.probe = ixp4xx_npe_probe,
762	.remove_new = ixp4xx_npe_remove,
763};
764module_platform_driver(ixp4xx_npe_driver);
765
766MODULE_AUTHOR("Krzysztof Halasa");
767MODULE_LICENSE("GPL v2");
768MODULE_FIRMWARE(NPE_A_FIRMWARE);
769MODULE_FIRMWARE(NPE_B_FIRMWARE);
770MODULE_FIRMWARE(NPE_C_FIRMWARE);
771
772EXPORT_SYMBOL(npe_names);
773EXPORT_SYMBOL(npe_running);
774EXPORT_SYMBOL(npe_request);
775EXPORT_SYMBOL(npe_release);
776EXPORT_SYMBOL(npe_load_firmware);
777EXPORT_SYMBOL(npe_send_message);
778EXPORT_SYMBOL(npe_recv_message);
779EXPORT_SYMBOL(npe_send_recv_message);
780