1/*
2 * This file is provided under a dual BSD/GPLv2 license.  When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 *   * Redistributions of source code must retain the above copyright
34 *     notice, this list of conditions and the following disclaimer.
35 *   * Redistributions in binary form must reproduce the above copyright
36 *     notice, this list of conditions and the following disclaimer in
37 *     the documentation and/or other materials provided with the
38 *     distribution.
39 *   * Neither the name of Intel Corporation nor the names of its
40 *     contributors may be used to endorse or promote products derived
41 *     from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56#include <scsi/scsi_cmnd.h>
57#include "isci.h"
58#include "task.h"
59#include "request.h"
60#include "scu_completion_codes.h"
61#include "scu_event_codes.h"
62#include "sas.h"
63
64#undef C
65#define C(a) (#a)
66const char *req_state_name(enum sci_base_request_states state)
67{
68	static const char * const strings[] = REQUEST_STATES;
69
70	return strings[state];
71}
72#undef C
73
74static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
75							int idx)
76{
77	if (idx == 0)
78		return &ireq->tc->sgl_pair_ab;
79	else if (idx == 1)
80		return &ireq->tc->sgl_pair_cd;
81	else if (idx < 0)
82		return NULL;
83	else
84		return &ireq->sg_table[idx - 2];
85}
86
87static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
88					  struct isci_request *ireq, u32 idx)
89{
90	u32 offset;
91
92	if (idx == 0) {
93		offset = (void *) &ireq->tc->sgl_pair_ab -
94			 (void *) &ihost->task_context_table[0];
95		return ihost->tc_dma + offset;
96	} else if (idx == 1) {
97		offset = (void *) &ireq->tc->sgl_pair_cd -
98			 (void *) &ihost->task_context_table[0];
99		return ihost->tc_dma + offset;
100	}
101
102	return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
103}
104
105static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
106{
107	e->length = sg_dma_len(sg);
108	e->address_upper = upper_32_bits(sg_dma_address(sg));
109	e->address_lower = lower_32_bits(sg_dma_address(sg));
110	e->address_modifier = 0;
111}
112
113static void sci_request_build_sgl(struct isci_request *ireq)
114{
115	struct isci_host *ihost = ireq->isci_host;
116	struct sas_task *task = isci_request_access_task(ireq);
117	struct scatterlist *sg = NULL;
118	dma_addr_t dma_addr;
119	u32 sg_idx = 0;
120	struct scu_sgl_element_pair *scu_sg   = NULL;
121	struct scu_sgl_element_pair *prev_sg  = NULL;
122
123	if (task->num_scatter > 0) {
124		sg = task->scatter;
125
126		while (sg) {
127			scu_sg = to_sgl_element_pair(ireq, sg_idx);
128			init_sgl_element(&scu_sg->A, sg);
129			sg = sg_next(sg);
130			if (sg) {
131				init_sgl_element(&scu_sg->B, sg);
132				sg = sg_next(sg);
133			} else
134				memset(&scu_sg->B, 0, sizeof(scu_sg->B));
135
136			if (prev_sg) {
137				dma_addr = to_sgl_element_pair_dma(ihost,
138								   ireq,
139								   sg_idx);
140
141				prev_sg->next_pair_upper =
142					upper_32_bits(dma_addr);
143				prev_sg->next_pair_lower =
144					lower_32_bits(dma_addr);
145			}
146
147			prev_sg = scu_sg;
148			sg_idx++;
149		}
150	} else {	/* handle when no sg */
151		scu_sg = to_sgl_element_pair(ireq, sg_idx);
152
153		dma_addr = dma_map_single(&ihost->pdev->dev,
154					  task->scatter,
155					  task->total_xfer_len,
156					  task->data_dir);
157
158		ireq->zero_scatter_daddr = dma_addr;
159
160		scu_sg->A.length = task->total_xfer_len;
161		scu_sg->A.address_upper = upper_32_bits(dma_addr);
162		scu_sg->A.address_lower = lower_32_bits(dma_addr);
163	}
164
165	if (scu_sg) {
166		scu_sg->next_pair_upper = 0;
167		scu_sg->next_pair_lower = 0;
168	}
169}
170
171static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
172{
173	struct ssp_cmd_iu *cmd_iu;
174	struct sas_task *task = isci_request_access_task(ireq);
175
176	cmd_iu = &ireq->ssp.cmd;
177
178	memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
179	cmd_iu->add_cdb_len = 0;
180	cmd_iu->_r_a = 0;
181	cmd_iu->_r_b = 0;
182	cmd_iu->en_fburst = 0; /* unsupported */
183	cmd_iu->task_prio = 0;
184	cmd_iu->task_attr = task->ssp_task.task_attr;
185	cmd_iu->_r_c = 0;
186
187	sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cmd->cmnd,
188		       (task->ssp_task.cmd->cmd_len+3) / sizeof(u32));
189}
190
191static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
192{
193	struct ssp_task_iu *task_iu;
194	struct sas_task *task = isci_request_access_task(ireq);
195	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
196
197	task_iu = &ireq->ssp.tmf;
198
199	memset(task_iu, 0, sizeof(struct ssp_task_iu));
200
201	memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
202
203	task_iu->task_func = isci_tmf->tmf_code;
204	task_iu->task_tag =
205		(test_bit(IREQ_TMF, &ireq->flags)) ?
206		isci_tmf->io_tag :
207		SCI_CONTROLLER_INVALID_IO_TAG;
208}
209
210/*
211 * This method is will fill in the SCU Task Context for any type of SSP request.
212 */
213static void scu_ssp_request_construct_task_context(
214	struct isci_request *ireq,
215	struct scu_task_context *task_context)
216{
217	dma_addr_t dma_addr;
218	struct isci_remote_device *idev;
219	struct isci_port *iport;
220
221	idev = ireq->target_device;
222	iport = idev->owning_port;
223
224	/* Fill in the TC with its required data */
225	task_context->abort = 0;
226	task_context->priority = 0;
227	task_context->initiator_request = 1;
228	task_context->connection_rate = idev->connection_rate;
229	task_context->protocol_engine_index = ISCI_PEG;
230	task_context->logical_port_index = iport->physical_port_index;
231	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
232	task_context->valid = SCU_TASK_CONTEXT_VALID;
233	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
234
235	task_context->remote_node_index = idev->rnc.remote_node_index;
236	task_context->command_code = 0;
237
238	task_context->link_layer_control = 0;
239	task_context->do_not_dma_ssp_good_response = 1;
240	task_context->strict_ordering = 0;
241	task_context->control_frame = 0;
242	task_context->timeout_enable = 0;
243	task_context->block_guard_enable = 0;
244
245	task_context->address_modifier = 0;
246
247	/* task_context->type.ssp.tag = ireq->io_tag; */
248	task_context->task_phase = 0x01;
249
250	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
251			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
252			      (iport->physical_port_index <<
253			       SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
254			      ISCI_TAG_TCI(ireq->io_tag));
255
256	/*
257	 * Copy the physical address for the command buffer to the
258	 * SCU Task Context
259	 */
260	dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
261
262	task_context->command_iu_upper = upper_32_bits(dma_addr);
263	task_context->command_iu_lower = lower_32_bits(dma_addr);
264
265	/*
266	 * Copy the physical address for the response buffer to the
267	 * SCU Task Context
268	 */
269	dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
270
271	task_context->response_iu_upper = upper_32_bits(dma_addr);
272	task_context->response_iu_lower = lower_32_bits(dma_addr);
273}
274
275static u8 scu_bg_blk_size(struct scsi_device *sdp)
276{
277	switch (sdp->sector_size) {
278	case 512:
279		return 0;
280	case 1024:
281		return 1;
282	case 4096:
283		return 3;
284	default:
285		return 0xff;
286	}
287}
288
289static u32 scu_dif_bytes(u32 len, u32 sector_size)
290{
291	return (len >> ilog2(sector_size)) * 8;
292}
293
294static void scu_ssp_ireq_dif_insert(struct isci_request *ireq, u8 type, u8 op)
295{
296	struct scu_task_context *tc = ireq->tc;
297	struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
298	u8 blk_sz = scu_bg_blk_size(scmd->device);
299
300	tc->block_guard_enable = 1;
301	tc->blk_prot_en = 1;
302	tc->blk_sz = blk_sz;
303	/* DIF write insert */
304	tc->blk_prot_func = 0x2;
305
306	tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
307						   scmd->device->sector_size);
308
309	/* always init to 0, used by hw */
310	tc->interm_crc_val = 0;
311
312	tc->init_crc_seed = 0;
313	tc->app_tag_verify = 0;
314	tc->app_tag_gen = 0;
315	tc->ref_tag_seed_verify = 0;
316
317	/* always init to same as bg_blk_sz */
318	tc->UD_bytes_immed_val = scmd->device->sector_size;
319
320	tc->reserved_DC_0 = 0;
321
322	/* always init to 8 */
323	tc->DIF_bytes_immed_val = 8;
324
325	tc->reserved_DC_1 = 0;
326	tc->bgc_blk_sz = scmd->device->sector_size;
327	tc->reserved_E0_0 = 0;
328	tc->app_tag_gen_mask = 0;
329
330	/** setup block guard control **/
331	tc->bgctl = 0;
332
333	/* DIF write insert */
334	tc->bgctl_f.op = 0x2;
335
336	tc->app_tag_verify_mask = 0;
337
338	/* must init to 0 for hw */
339	tc->blk_guard_err = 0;
340
341	tc->reserved_E8_0 = 0;
342
343	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
344		tc->ref_tag_seed_gen = scsi_prot_ref_tag(scmd);
345	else if (type & SCSI_PROT_DIF_TYPE3)
346		tc->ref_tag_seed_gen = 0;
347}
348
349static void scu_ssp_ireq_dif_strip(struct isci_request *ireq, u8 type, u8 op)
350{
351	struct scu_task_context *tc = ireq->tc;
352	struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
353	u8 blk_sz = scu_bg_blk_size(scmd->device);
354
355	tc->block_guard_enable = 1;
356	tc->blk_prot_en = 1;
357	tc->blk_sz = blk_sz;
358	/* DIF read strip */
359	tc->blk_prot_func = 0x1;
360
361	tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
362						   scmd->device->sector_size);
363
364	/* always init to 0, used by hw */
365	tc->interm_crc_val = 0;
366
367	tc->init_crc_seed = 0;
368	tc->app_tag_verify = 0;
369	tc->app_tag_gen = 0;
370
371	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
372		tc->ref_tag_seed_verify = scsi_prot_ref_tag(scmd);
373	else if (type & SCSI_PROT_DIF_TYPE3)
374		tc->ref_tag_seed_verify = 0;
375
376	/* always init to same as bg_blk_sz */
377	tc->UD_bytes_immed_val = scmd->device->sector_size;
378
379	tc->reserved_DC_0 = 0;
380
381	/* always init to 8 */
382	tc->DIF_bytes_immed_val = 8;
383
384	tc->reserved_DC_1 = 0;
385	tc->bgc_blk_sz = scmd->device->sector_size;
386	tc->reserved_E0_0 = 0;
387	tc->app_tag_gen_mask = 0;
388
389	/** setup block guard control **/
390	tc->bgctl = 0;
391
392	/* DIF read strip */
393	tc->bgctl_f.crc_verify = 1;
394	tc->bgctl_f.op = 0x1;
395	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) {
396		tc->bgctl_f.ref_tag_chk = 1;
397		tc->bgctl_f.app_f_detect = 1;
398	} else if (type & SCSI_PROT_DIF_TYPE3)
399		tc->bgctl_f.app_ref_f_detect = 1;
400
401	tc->app_tag_verify_mask = 0;
402
403	/* must init to 0 for hw */
404	tc->blk_guard_err = 0;
405
406	tc->reserved_E8_0 = 0;
407	tc->ref_tag_seed_gen = 0;
408}
409
410/*
411 * This method is will fill in the SCU Task Context for a SSP IO request.
412 */
413static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
414						      enum dma_data_direction dir,
415						      u32 len)
416{
417	struct scu_task_context *task_context = ireq->tc;
418	struct sas_task *sas_task = ireq->ttype_ptr.io_task_ptr;
419	struct scsi_cmnd *scmd = sas_task->uldd_task;
420	u8 prot_type = scsi_get_prot_type(scmd);
421	u8 prot_op = scsi_get_prot_op(scmd);
422
423	scu_ssp_request_construct_task_context(ireq, task_context);
424
425	task_context->ssp_command_iu_length =
426		sizeof(struct ssp_cmd_iu) / sizeof(u32);
427	task_context->type.ssp.frame_type = SSP_COMMAND;
428
429	switch (dir) {
430	case DMA_FROM_DEVICE:
431	case DMA_NONE:
432	default:
433		task_context->task_type = SCU_TASK_TYPE_IOREAD;
434		break;
435	case DMA_TO_DEVICE:
436		task_context->task_type = SCU_TASK_TYPE_IOWRITE;
437		break;
438	}
439
440	task_context->transfer_length_bytes = len;
441
442	if (task_context->transfer_length_bytes > 0)
443		sci_request_build_sgl(ireq);
444
445	if (prot_type != SCSI_PROT_DIF_TYPE0) {
446		if (prot_op == SCSI_PROT_READ_STRIP)
447			scu_ssp_ireq_dif_strip(ireq, prot_type, prot_op);
448		else if (prot_op == SCSI_PROT_WRITE_INSERT)
449			scu_ssp_ireq_dif_insert(ireq, prot_type, prot_op);
450	}
451}
452
453/**
454 * scu_ssp_task_request_construct_task_context() - This method will fill in
455 *    the SCU Task Context for a SSP Task request.  The following important
456 *    settings are utilized: -# priority == SCU_TASK_PRIORITY_HIGH.  This
457 *    ensures that the task request is issued ahead of other task destined
458 *    for the same Remote Node. -# task_type == SCU_TASK_TYPE_IOREAD.  This
459 *    simply indicates that a normal request type (i.e. non-raw frame) is
460 *    being utilized to perform task management. -#control_frame == 1.  This
461 *    ensures that the proper endianness is set so that the bytes are
462 *    transmitted in the right order for a task frame.
463 * @ireq: This parameter specifies the task request object being constructed.
464 */
465static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
466{
467	struct scu_task_context *task_context = ireq->tc;
468
469	scu_ssp_request_construct_task_context(ireq, task_context);
470
471	task_context->control_frame                = 1;
472	task_context->priority                     = SCU_TASK_PRIORITY_HIGH;
473	task_context->task_type                    = SCU_TASK_TYPE_RAW_FRAME;
474	task_context->transfer_length_bytes        = 0;
475	task_context->type.ssp.frame_type          = SSP_TASK;
476	task_context->ssp_command_iu_length =
477		sizeof(struct ssp_task_iu) / sizeof(u32);
478}
479
480/**
481 * scu_sata_request_construct_task_context()
482 * This method is will fill in the SCU Task Context for any type of SATA
483 *    request.  This is called from the various SATA constructors.
484 * @ireq: The general IO request object which is to be used in
485 *    constructing the SCU task context.
486 * @task_context: The buffer pointer for the SCU task context which is being
487 *    constructed.
488 *
489 * The general io request construction is complete. The buffer assignment for
490 * the command buffer is complete. none Revisit task context construction to
491 * determine what is common for SSP/SMP/STP task context structures.
492 */
493static void scu_sata_request_construct_task_context(
494	struct isci_request *ireq,
495	struct scu_task_context *task_context)
496{
497	dma_addr_t dma_addr;
498	struct isci_remote_device *idev;
499	struct isci_port *iport;
500
501	idev = ireq->target_device;
502	iport = idev->owning_port;
503
504	/* Fill in the TC with its required data */
505	task_context->abort = 0;
506	task_context->priority = SCU_TASK_PRIORITY_NORMAL;
507	task_context->initiator_request = 1;
508	task_context->connection_rate = idev->connection_rate;
509	task_context->protocol_engine_index = ISCI_PEG;
510	task_context->logical_port_index = iport->physical_port_index;
511	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
512	task_context->valid = SCU_TASK_CONTEXT_VALID;
513	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
514
515	task_context->remote_node_index = idev->rnc.remote_node_index;
516	task_context->command_code = 0;
517
518	task_context->link_layer_control = 0;
519	task_context->do_not_dma_ssp_good_response = 1;
520	task_context->strict_ordering = 0;
521	task_context->control_frame = 0;
522	task_context->timeout_enable = 0;
523	task_context->block_guard_enable = 0;
524
525	task_context->address_modifier = 0;
526	task_context->task_phase = 0x01;
527
528	task_context->ssp_command_iu_length =
529		(sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
530
531	/* Set the first word of the H2D REG FIS */
532	task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
533
534	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
535			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
536			      (iport->physical_port_index <<
537			       SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
538			      ISCI_TAG_TCI(ireq->io_tag));
539	/*
540	 * Copy the physical address for the command buffer to the SCU Task
541	 * Context. We must offset the command buffer by 4 bytes because the
542	 * first 4 bytes are transfered in the body of the TC.
543	 */
544	dma_addr = sci_io_request_get_dma_addr(ireq,
545						((char *) &ireq->stp.cmd) +
546						sizeof(u32));
547
548	task_context->command_iu_upper = upper_32_bits(dma_addr);
549	task_context->command_iu_lower = lower_32_bits(dma_addr);
550
551	/* SATA Requests do not have a response buffer */
552	task_context->response_iu_upper = 0;
553	task_context->response_iu_lower = 0;
554}
555
556static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
557{
558	struct scu_task_context *task_context = ireq->tc;
559
560	scu_sata_request_construct_task_context(ireq, task_context);
561
562	task_context->control_frame         = 0;
563	task_context->priority              = SCU_TASK_PRIORITY_NORMAL;
564	task_context->task_type             = SCU_TASK_TYPE_SATA_RAW_FRAME;
565	task_context->type.stp.fis_type     = FIS_REGH2D;
566	task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
567}
568
569static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
570							  bool copy_rx_frame)
571{
572	struct isci_stp_request *stp_req = &ireq->stp.req;
573
574	scu_stp_raw_request_construct_task_context(ireq);
575
576	stp_req->status = 0;
577	stp_req->sgl.offset = 0;
578	stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
579
580	if (copy_rx_frame) {
581		sci_request_build_sgl(ireq);
582		stp_req->sgl.index = 0;
583	} else {
584		/* The user does not want the data copied to the SGL buffer location */
585		stp_req->sgl.index = -1;
586	}
587
588	return SCI_SUCCESS;
589}
590
591/*
592 * sci_stp_optimized_request_construct()
593 * @ireq: This parameter specifies the request to be constructed as an
594 *    optimized request.
595 * @optimized_task_type: This parameter specifies whether the request is to be
596 *    an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
597 *    value of 1 indicates NCQ.
598 *
599 * This method will perform request construction common to all types of STP
600 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
601 * returns an indication as to whether the construction was successful.
602 */
603static void sci_stp_optimized_request_construct(struct isci_request *ireq,
604						     u8 optimized_task_type,
605						     u32 len,
606						     enum dma_data_direction dir)
607{
608	struct scu_task_context *task_context = ireq->tc;
609
610	/* Build the STP task context structure */
611	scu_sata_request_construct_task_context(ireq, task_context);
612
613	/* Copy over the SGL elements */
614	sci_request_build_sgl(ireq);
615
616	/* Copy over the number of bytes to be transfered */
617	task_context->transfer_length_bytes = len;
618
619	if (dir == DMA_TO_DEVICE) {
620		/*
621		 * The difference between the DMA IN and DMA OUT request task type
622		 * values are consistent with the difference between FPDMA READ
623		 * and FPDMA WRITE values.  Add the supplied task type parameter
624		 * to this difference to set the task type properly for this
625		 * DATA OUT (WRITE) case. */
626		task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
627								 - SCU_TASK_TYPE_DMA_IN);
628	} else {
629		/*
630		 * For the DATA IN (READ) case, simply save the supplied
631		 * optimized task type. */
632		task_context->task_type = optimized_task_type;
633	}
634}
635
636static void sci_atapi_construct(struct isci_request *ireq)
637{
638	struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd;
639	struct sas_task *task;
640
641	/* To simplify the implementation we take advantage of the
642	 * silicon's partial acceleration of atapi protocol (dma data
643	 * transfers), so we promote all commands to dma protocol.  This
644	 * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives.
645	 */
646	h2d_fis->features |= ATAPI_PKT_DMA;
647
648	scu_stp_raw_request_construct_task_context(ireq);
649
650	task = isci_request_access_task(ireq);
651	if (task->data_dir == DMA_NONE)
652		task->total_xfer_len = 0;
653
654	/* clear the response so we can detect arrivial of an
655	 * unsolicited h2d fis
656	 */
657	ireq->stp.rsp.fis_type = 0;
658}
659
660static enum sci_status
661sci_io_request_construct_sata(struct isci_request *ireq,
662			       u32 len,
663			       enum dma_data_direction dir,
664			       bool copy)
665{
666	enum sci_status status = SCI_SUCCESS;
667	struct sas_task *task = isci_request_access_task(ireq);
668	struct domain_device *dev = ireq->target_device->domain_dev;
669
670	/* check for management protocols */
671	if (test_bit(IREQ_TMF, &ireq->flags)) {
672		struct isci_tmf *tmf = isci_request_access_tmf(ireq);
673
674		dev_err(&ireq->owning_controller->pdev->dev,
675			"%s: Request 0x%p received un-handled SAT "
676			"management protocol 0x%x.\n",
677			__func__, ireq, tmf->tmf_code);
678
679		return SCI_FAILURE;
680	}
681
682	if (!sas_protocol_ata(task->task_proto)) {
683		dev_err(&ireq->owning_controller->pdev->dev,
684			"%s: Non-ATA protocol in SATA path: 0x%x\n",
685			__func__,
686			task->task_proto);
687		return SCI_FAILURE;
688
689	}
690
691	/* ATAPI */
692	if (dev->sata_dev.class == ATA_DEV_ATAPI &&
693	    task->ata_task.fis.command == ATA_CMD_PACKET) {
694		sci_atapi_construct(ireq);
695		return SCI_SUCCESS;
696	}
697
698	/* non data */
699	if (task->data_dir == DMA_NONE) {
700		scu_stp_raw_request_construct_task_context(ireq);
701		return SCI_SUCCESS;
702	}
703
704	/* NCQ */
705	if (task->ata_task.use_ncq) {
706		sci_stp_optimized_request_construct(ireq,
707							 SCU_TASK_TYPE_FPDMAQ_READ,
708							 len, dir);
709		return SCI_SUCCESS;
710	}
711
712	/* DMA */
713	if (task->ata_task.dma_xfer) {
714		sci_stp_optimized_request_construct(ireq,
715							 SCU_TASK_TYPE_DMA_IN,
716							 len, dir);
717		return SCI_SUCCESS;
718	} else /* PIO */
719		return sci_stp_pio_request_construct(ireq, copy);
720
721	return status;
722}
723
724static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
725{
726	struct sas_task *task = isci_request_access_task(ireq);
727
728	ireq->protocol = SAS_PROTOCOL_SSP;
729
730	scu_ssp_io_request_construct_task_context(ireq,
731						  task->data_dir,
732						  task->total_xfer_len);
733
734	sci_io_request_build_ssp_command_iu(ireq);
735
736	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
737
738	return SCI_SUCCESS;
739}
740
741void sci_task_request_construct_ssp(struct isci_request *ireq)
742{
743	/* Construct the SSP Task SCU Task Context */
744	scu_ssp_task_request_construct_task_context(ireq);
745
746	/* Fill in the SSP Task IU */
747	sci_task_request_build_ssp_task_iu(ireq);
748
749	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
750}
751
752static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
753{
754	enum sci_status status;
755	bool copy = false;
756	struct sas_task *task = isci_request_access_task(ireq);
757
758	ireq->protocol = SAS_PROTOCOL_STP;
759
760	copy = (task->data_dir == DMA_NONE) ? false : true;
761
762	status = sci_io_request_construct_sata(ireq,
763						task->total_xfer_len,
764						task->data_dir,
765						copy);
766
767	if (status == SCI_SUCCESS)
768		sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
769
770	return status;
771}
772
773#define SCU_TASK_CONTEXT_SRAM 0x200000
774/**
775 * sci_req_tx_bytes - bytes transferred when reply underruns request
776 * @ireq: request that was terminated early
777 */
778static u32 sci_req_tx_bytes(struct isci_request *ireq)
779{
780	struct isci_host *ihost = ireq->owning_controller;
781	u32 ret_val = 0;
782
783	if (readl(&ihost->smu_registers->address_modifier) == 0) {
784		void __iomem *scu_reg_base = ihost->scu_registers;
785
786		/* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
787		 *   BAR1 is the scu_registers
788		 *   0x20002C = 0x200000 + 0x2c
789		 *            = start of task context SRAM + offset of (type.ssp.data_offset)
790		 *   TCi is the io_tag of struct sci_request
791		 */
792		ret_val = readl(scu_reg_base +
793				(SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
794				((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
795	}
796
797	return ret_val;
798}
799
800enum sci_status sci_request_start(struct isci_request *ireq)
801{
802	enum sci_base_request_states state;
803	struct scu_task_context *tc = ireq->tc;
804	struct isci_host *ihost = ireq->owning_controller;
805
806	state = ireq->sm.current_state_id;
807	if (state != SCI_REQ_CONSTRUCTED) {
808		dev_warn(&ihost->pdev->dev,
809			"%s: SCIC IO Request requested to start while in wrong "
810			 "state %d\n", __func__, state);
811		return SCI_FAILURE_INVALID_STATE;
812	}
813
814	tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
815
816	switch (tc->protocol_type) {
817	case SCU_TASK_CONTEXT_PROTOCOL_SMP:
818	case SCU_TASK_CONTEXT_PROTOCOL_SSP:
819		/* SSP/SMP Frame */
820		tc->type.ssp.tag = ireq->io_tag;
821		tc->type.ssp.target_port_transfer_tag = 0xFFFF;
822		break;
823
824	case SCU_TASK_CONTEXT_PROTOCOL_STP:
825		/* STP/SATA Frame
826		 * tc->type.stp.ncq_tag = ireq->ncq_tag;
827		 */
828		break;
829
830	case SCU_TASK_CONTEXT_PROTOCOL_NONE:
831		/* / @todo When do we set no protocol type? */
832		break;
833
834	default:
835		/* This should never happen since we build the IO
836		 * requests */
837		break;
838	}
839
840	/* Add to the post_context the io tag value */
841	ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
842
843	/* Everything is good go ahead and change state */
844	sci_change_state(&ireq->sm, SCI_REQ_STARTED);
845
846	return SCI_SUCCESS;
847}
848
849enum sci_status
850sci_io_request_terminate(struct isci_request *ireq)
851{
852	enum sci_base_request_states state;
853
854	state = ireq->sm.current_state_id;
855
856	switch (state) {
857	case SCI_REQ_CONSTRUCTED:
858		/* Set to make sure no HW terminate posting is done: */
859		set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags);
860		ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
861		ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
862		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
863		return SCI_SUCCESS;
864	case SCI_REQ_STARTED:
865	case SCI_REQ_TASK_WAIT_TC_COMP:
866	case SCI_REQ_SMP_WAIT_RESP:
867	case SCI_REQ_SMP_WAIT_TC_COMP:
868	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
869	case SCI_REQ_STP_UDMA_WAIT_D2H:
870	case SCI_REQ_STP_NON_DATA_WAIT_H2D:
871	case SCI_REQ_STP_NON_DATA_WAIT_D2H:
872	case SCI_REQ_STP_PIO_WAIT_H2D:
873	case SCI_REQ_STP_PIO_WAIT_FRAME:
874	case SCI_REQ_STP_PIO_DATA_IN:
875	case SCI_REQ_STP_PIO_DATA_OUT:
876	case SCI_REQ_ATAPI_WAIT_H2D:
877	case SCI_REQ_ATAPI_WAIT_PIO_SETUP:
878	case SCI_REQ_ATAPI_WAIT_D2H:
879	case SCI_REQ_ATAPI_WAIT_TC_COMP:
880		/* Fall through and change state to ABORTING... */
881	case SCI_REQ_TASK_WAIT_TC_RESP:
882		/* The task frame was already confirmed to have been
883		 * sent by the SCU HW.  Since the state machine is
884		 * now only waiting for the task response itself,
885		 * abort the request and complete it immediately
886		 * and don't wait for the task response.
887		 */
888		sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
889		fallthrough;	/* and handle like ABORTING */
890	case SCI_REQ_ABORTING:
891		if (!isci_remote_device_is_safe_to_abort(ireq->target_device))
892			set_bit(IREQ_PENDING_ABORT, &ireq->flags);
893		else
894			clear_bit(IREQ_PENDING_ABORT, &ireq->flags);
895		/* If the request is only waiting on the remote device
896		 * suspension, return SUCCESS so the caller will wait too.
897		 */
898		return SCI_SUCCESS;
899	case SCI_REQ_COMPLETED:
900	default:
901		dev_warn(&ireq->owning_controller->pdev->dev,
902			 "%s: SCIC IO Request requested to abort while in wrong "
903			 "state %d\n", __func__, ireq->sm.current_state_id);
904		break;
905	}
906
907	return SCI_FAILURE_INVALID_STATE;
908}
909
910enum sci_status sci_request_complete(struct isci_request *ireq)
911{
912	enum sci_base_request_states state;
913	struct isci_host *ihost = ireq->owning_controller;
914
915	state = ireq->sm.current_state_id;
916	if (WARN_ONCE(state != SCI_REQ_COMPLETED,
917		      "isci: request completion from wrong state (%s)\n",
918		      req_state_name(state)))
919		return SCI_FAILURE_INVALID_STATE;
920
921	if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
922		sci_controller_release_frame(ihost,
923						  ireq->saved_rx_frame_index);
924
925	/* XXX can we just stop the machine and remove the 'final' state? */
926	sci_change_state(&ireq->sm, SCI_REQ_FINAL);
927	return SCI_SUCCESS;
928}
929
930enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
931						  u32 event_code)
932{
933	enum sci_base_request_states state;
934	struct isci_host *ihost = ireq->owning_controller;
935
936	state = ireq->sm.current_state_id;
937
938	if (state != SCI_REQ_STP_PIO_DATA_IN) {
939		dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %s\n",
940			 __func__, event_code, req_state_name(state));
941
942		return SCI_FAILURE_INVALID_STATE;
943	}
944
945	switch (scu_get_event_specifier(event_code)) {
946	case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
947		/* We are waiting for data and the SCU has R_ERR the data frame.
948		 * Go back to waiting for the D2H Register FIS
949		 */
950		sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
951		return SCI_SUCCESS;
952	default:
953		dev_err(&ihost->pdev->dev,
954			"%s: pio request unexpected event %#x\n",
955			__func__, event_code);
956
957		/* TODO Should we fail the PIO request when we get an
958		 * unexpected event?
959		 */
960		return SCI_FAILURE;
961	}
962}
963
964/*
965 * This function copies response data for requests returning response data
966 *    instead of sense data.
967 * @sci_req: This parameter specifies the request object for which to copy
968 *    the response data.
969 */
970static void sci_io_request_copy_response(struct isci_request *ireq)
971{
972	void *resp_buf;
973	u32 len;
974	struct ssp_response_iu *ssp_response;
975	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
976
977	ssp_response = &ireq->ssp.rsp;
978
979	resp_buf = &isci_tmf->resp.resp_iu;
980
981	len = min_t(u32,
982		    SSP_RESP_IU_MAX_SIZE,
983		    be32_to_cpu(ssp_response->response_data_len));
984
985	memcpy(resp_buf, ssp_response->resp_data, len);
986}
987
988static enum sci_status
989request_started_state_tc_event(struct isci_request *ireq,
990			       u32 completion_code)
991{
992	struct ssp_response_iu *resp_iu;
993	u8 datapres;
994
995	/* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
996	 * to determine SDMA status
997	 */
998	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
999	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1000		ireq->scu_status = SCU_TASK_DONE_GOOD;
1001		ireq->sci_status = SCI_SUCCESS;
1002		break;
1003	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
1004		/* There are times when the SCU hardware will return an early
1005		 * response because the io request specified more data than is
1006		 * returned by the target device (mode pages, inquiry data,
1007		 * etc.).  We must check the response stats to see if this is
1008		 * truly a failed request or a good request that just got
1009		 * completed early.
1010		 */
1011		struct ssp_response_iu *resp = &ireq->ssp.rsp;
1012		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1013
1014		sci_swab32_cpy(&ireq->ssp.rsp,
1015			       &ireq->ssp.rsp,
1016			       word_cnt);
1017
1018		if (resp->status == 0) {
1019			ireq->scu_status = SCU_TASK_DONE_GOOD;
1020			ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
1021		} else {
1022			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1023			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1024		}
1025		break;
1026	}
1027	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
1028		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1029
1030		sci_swab32_cpy(&ireq->ssp.rsp,
1031			       &ireq->ssp.rsp,
1032			       word_cnt);
1033
1034		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1035		ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1036		break;
1037	}
1038
1039	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
1040		/* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
1041		 * guaranteed to be received before this completion status is
1042		 * posted?
1043		 */
1044		resp_iu = &ireq->ssp.rsp;
1045		datapres = resp_iu->datapres;
1046
1047		if (datapres == SAS_DATAPRES_RESPONSE_DATA ||
1048		    datapres == SAS_DATAPRES_SENSE_DATA) {
1049			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1050			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1051		} else {
1052			ireq->scu_status = SCU_TASK_DONE_GOOD;
1053			ireq->sci_status = SCI_SUCCESS;
1054		}
1055		break;
1056	/* only stp device gets suspended. */
1057	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1058	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
1059	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
1060	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
1061	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
1062	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
1063	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1064	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
1065	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
1066	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1067	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
1068		if (ireq->protocol == SAS_PROTOCOL_STP) {
1069			ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1070					   SCU_COMPLETION_TL_STATUS_SHIFT;
1071			ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1072		} else {
1073			ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1074					   SCU_COMPLETION_TL_STATUS_SHIFT;
1075			ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1076		}
1077		break;
1078
1079	/* both stp/ssp device gets suspended */
1080	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
1081	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
1082	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
1083	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
1084	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
1085	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
1086	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
1087	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
1088	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
1089	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
1090		ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1091				   SCU_COMPLETION_TL_STATUS_SHIFT;
1092		ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1093		break;
1094
1095	/* neither ssp nor stp gets suspended. */
1096	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
1097	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
1098	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
1099	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
1100	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
1101	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
1102	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1103	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1104	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1105	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1106	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
1107	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
1108	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
1109	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
1110	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
1111	default:
1112		ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1113				   SCU_COMPLETION_TL_STATUS_SHIFT;
1114		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1115		break;
1116	}
1117
1118	/*
1119	 * TODO: This is probably wrong for ACK/NAK timeout conditions
1120	 */
1121
1122	/* In all cases we will treat this as the completion of the IO req. */
1123	sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1124	return SCI_SUCCESS;
1125}
1126
1127static enum sci_status
1128request_aborting_state_tc_event(struct isci_request *ireq,
1129				u32 completion_code)
1130{
1131	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1132	case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
1133	case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
1134		ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
1135		ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
1136		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1137		break;
1138
1139	default:
1140		/* Unless we get some strange error wait for the task abort to complete
1141		 * TODO: Should there be a state change for this completion?
1142		 */
1143		break;
1144	}
1145
1146	return SCI_SUCCESS;
1147}
1148
1149static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1150						       u32 completion_code)
1151{
1152	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1153	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1154		ireq->scu_status = SCU_TASK_DONE_GOOD;
1155		ireq->sci_status = SCI_SUCCESS;
1156		sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1157		break;
1158	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1159		/* Currently, the decision is to simply allow the task request
1160		 * to timeout if the task IU wasn't received successfully.
1161		 * There is a potential for receiving multiple task responses if
1162		 * we decide to send the task IU again.
1163		 */
1164		dev_warn(&ireq->owning_controller->pdev->dev,
1165			 "%s: TaskRequest:0x%p CompletionCode:%x - "
1166			 "ACK/NAK timeout\n", __func__, ireq,
1167			 completion_code);
1168
1169		sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1170		break;
1171	default:
1172		/*
1173		 * All other completion status cause the IO to be complete.
1174		 * If a NAK was received, then it is up to the user to retry
1175		 * the request.
1176		 */
1177		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1178		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1179		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1180		break;
1181	}
1182
1183	return SCI_SUCCESS;
1184}
1185
1186static enum sci_status
1187smp_request_await_response_tc_event(struct isci_request *ireq,
1188				    u32 completion_code)
1189{
1190	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1191	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1192		/* In the AWAIT RESPONSE state, any TC completion is
1193		 * unexpected.  but if the TC has success status, we
1194		 * complete the IO anyway.
1195		 */
1196		ireq->scu_status = SCU_TASK_DONE_GOOD;
1197		ireq->sci_status = SCI_SUCCESS;
1198		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1199		break;
1200	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1201	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1202	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1203	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1204		/* These status has been seen in a specific LSI
1205		 * expander, which sometimes is not able to send smp
1206		 * response within 2 ms. This causes our hardware break
1207		 * the connection and set TC completion with one of
1208		 * these SMP_XXX_XX_ERR status. For these type of error,
1209		 * we ask ihost user to retry the request.
1210		 */
1211		ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1212		ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1213		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1214		break;
1215	default:
1216		/* All other completion status cause the IO to be complete.  If a NAK
1217		 * was received, then it is up to the user to retry the request
1218		 */
1219		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1220		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1221		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1222		break;
1223	}
1224
1225	return SCI_SUCCESS;
1226}
1227
1228static enum sci_status
1229smp_request_await_tc_event(struct isci_request *ireq,
1230			   u32 completion_code)
1231{
1232	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1233	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1234		ireq->scu_status = SCU_TASK_DONE_GOOD;
1235		ireq->sci_status = SCI_SUCCESS;
1236		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1237		break;
1238	default:
1239		/* All other completion status cause the IO to be
1240		 * complete.  If a NAK was received, then it is up to
1241		 * the user to retry the request.
1242		 */
1243		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1244		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1245		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1246		break;
1247	}
1248
1249	return SCI_SUCCESS;
1250}
1251
1252static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1253{
1254	struct scu_sgl_element *sgl;
1255	struct scu_sgl_element_pair *sgl_pair;
1256	struct isci_request *ireq = to_ireq(stp_req);
1257	struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1258
1259	sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1260	if (!sgl_pair)
1261		sgl = NULL;
1262	else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1263		if (sgl_pair->B.address_lower == 0 &&
1264		    sgl_pair->B.address_upper == 0) {
1265			sgl = NULL;
1266		} else {
1267			pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1268			sgl = &sgl_pair->B;
1269		}
1270	} else {
1271		if (sgl_pair->next_pair_lower == 0 &&
1272		    sgl_pair->next_pair_upper == 0) {
1273			sgl = NULL;
1274		} else {
1275			pio_sgl->index++;
1276			pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1277			sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1278			sgl = &sgl_pair->A;
1279		}
1280	}
1281
1282	return sgl;
1283}
1284
1285static enum sci_status
1286stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1287					u32 completion_code)
1288{
1289	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1290	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1291		ireq->scu_status = SCU_TASK_DONE_GOOD;
1292		ireq->sci_status = SCI_SUCCESS;
1293		sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1294		break;
1295
1296	default:
1297		/* All other completion status cause the IO to be
1298		 * complete.  If a NAK was received, then it is up to
1299		 * the user to retry the request.
1300		 */
1301		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1302		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1303		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1304		break;
1305	}
1306
1307	return SCI_SUCCESS;
1308}
1309
1310#define SCU_MAX_FRAME_BUFFER_SIZE  0x400  /* 1K is the maximum SCU frame data payload */
1311
1312/* transmit DATA_FIS from (current sgl + offset) for input
1313 * parameter length. current sgl and offset is alreay stored in the IO request
1314 */
1315static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1316	struct isci_request *ireq,
1317	u32 length)
1318{
1319	struct isci_stp_request *stp_req = &ireq->stp.req;
1320	struct scu_task_context *task_context = ireq->tc;
1321	struct scu_sgl_element_pair *sgl_pair;
1322	struct scu_sgl_element *current_sgl;
1323
1324	/* Recycle the TC and reconstruct it for sending out DATA FIS containing
1325	 * for the data from current_sgl+offset for the input length
1326	 */
1327	sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1328	if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1329		current_sgl = &sgl_pair->A;
1330	else
1331		current_sgl = &sgl_pair->B;
1332
1333	/* update the TC */
1334	task_context->command_iu_upper = current_sgl->address_upper;
1335	task_context->command_iu_lower = current_sgl->address_lower;
1336	task_context->transfer_length_bytes = length;
1337	task_context->type.stp.fis_type = FIS_DATA;
1338
1339	/* send the new TC out. */
1340	return sci_controller_continue_io(ireq);
1341}
1342
1343static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1344{
1345	struct isci_stp_request *stp_req = &ireq->stp.req;
1346	struct scu_sgl_element_pair *sgl_pair;
1347	enum sci_status status = SCI_SUCCESS;
1348	struct scu_sgl_element *sgl;
1349	u32 offset;
1350	u32 len = 0;
1351
1352	offset = stp_req->sgl.offset;
1353	sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1354	if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1355		return SCI_FAILURE;
1356
1357	if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1358		sgl = &sgl_pair->A;
1359		len = sgl_pair->A.length - offset;
1360	} else {
1361		sgl = &sgl_pair->B;
1362		len = sgl_pair->B.length - offset;
1363	}
1364
1365	if (stp_req->pio_len == 0)
1366		return SCI_SUCCESS;
1367
1368	if (stp_req->pio_len >= len) {
1369		status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1370		if (status != SCI_SUCCESS)
1371			return status;
1372		stp_req->pio_len -= len;
1373
1374		/* update the current sgl, offset and save for future */
1375		sgl = pio_sgl_next(stp_req);
1376		offset = 0;
1377	} else if (stp_req->pio_len < len) {
1378		sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1379
1380		/* Sgl offset will be adjusted and saved for future */
1381		offset += stp_req->pio_len;
1382		sgl->address_lower += stp_req->pio_len;
1383		stp_req->pio_len = 0;
1384	}
1385
1386	stp_req->sgl.offset = offset;
1387
1388	return status;
1389}
1390
1391/**
1392 * sci_stp_request_pio_data_in_copy_data_buffer()
1393 * @stp_req: The request that is used for the SGL processing.
1394 * @data_buf: The buffer of data to be copied.
1395 * @len: The length of the data transfer.
1396 *
1397 * Copy the data from the buffer for the length specified to the IO request SGL
1398 * specified data region. enum sci_status
1399 */
1400static enum sci_status
1401sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1402					     u8 *data_buf, u32 len)
1403{
1404	struct isci_request *ireq;
1405	u8 *src_addr;
1406	int copy_len;
1407	struct sas_task *task;
1408	struct scatterlist *sg;
1409	void *kaddr;
1410	int total_len = len;
1411
1412	ireq = to_ireq(stp_req);
1413	task = isci_request_access_task(ireq);
1414	src_addr = data_buf;
1415
1416	if (task->num_scatter > 0) {
1417		sg = task->scatter;
1418
1419		while (total_len > 0) {
1420			struct page *page = sg_page(sg);
1421
1422			copy_len = min_t(int, total_len, sg_dma_len(sg));
1423			kaddr = kmap_atomic(page);
1424			memcpy(kaddr + sg->offset, src_addr, copy_len);
1425			kunmap_atomic(kaddr);
1426			total_len -= copy_len;
1427			src_addr += copy_len;
1428			sg = sg_next(sg);
1429		}
1430	} else {
1431		BUG_ON(task->total_xfer_len < total_len);
1432		memcpy(task->scatter, src_addr, total_len);
1433	}
1434
1435	return SCI_SUCCESS;
1436}
1437
1438/**
1439 * sci_stp_request_pio_data_in_copy_data()
1440 * @stp_req: The PIO DATA IN request that is to receive the data.
1441 * @data_buffer: The buffer to copy from.
1442 *
1443 * Copy the data buffer to the io request data region. enum sci_status
1444 */
1445static enum sci_status sci_stp_request_pio_data_in_copy_data(
1446	struct isci_stp_request *stp_req,
1447	u8 *data_buffer)
1448{
1449	enum sci_status status;
1450
1451	/*
1452	 * If there is less than 1K remaining in the transfer request
1453	 * copy just the data for the transfer */
1454	if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1455		status = sci_stp_request_pio_data_in_copy_data_buffer(
1456			stp_req, data_buffer, stp_req->pio_len);
1457
1458		if (status == SCI_SUCCESS)
1459			stp_req->pio_len = 0;
1460	} else {
1461		/* We are transfering the whole frame so copy */
1462		status = sci_stp_request_pio_data_in_copy_data_buffer(
1463			stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1464
1465		if (status == SCI_SUCCESS)
1466			stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1467	}
1468
1469	return status;
1470}
1471
1472static enum sci_status
1473stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1474					      u32 completion_code)
1475{
1476	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1477	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1478		ireq->scu_status = SCU_TASK_DONE_GOOD;
1479		ireq->sci_status = SCI_SUCCESS;
1480		sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1481		break;
1482
1483	default:
1484		/* All other completion status cause the IO to be
1485		 * complete.  If a NAK was received, then it is up to
1486		 * the user to retry the request.
1487		 */
1488		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1489		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1490		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1491		break;
1492	}
1493
1494	return SCI_SUCCESS;
1495}
1496
1497static enum sci_status
1498pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1499			      u32 completion_code)
1500{
1501	enum sci_status status = SCI_SUCCESS;
1502	bool all_frames_transferred = false;
1503	struct isci_stp_request *stp_req = &ireq->stp.req;
1504
1505	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1506	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1507		/* Transmit data */
1508		if (stp_req->pio_len != 0) {
1509			status = sci_stp_request_pio_data_out_transmit_data(ireq);
1510			if (status == SCI_SUCCESS) {
1511				if (stp_req->pio_len == 0)
1512					all_frames_transferred = true;
1513			}
1514		} else if (stp_req->pio_len == 0) {
1515			/*
1516			 * this will happen if the all data is written at the
1517			 * first time after the pio setup fis is received
1518			 */
1519			all_frames_transferred  = true;
1520		}
1521
1522		/* all data transferred. */
1523		if (all_frames_transferred) {
1524			/*
1525			 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1526			 * and wait for PIO_SETUP fis / or D2H REg fis. */
1527			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1528		}
1529		break;
1530
1531	default:
1532		/*
1533		 * All other completion status cause the IO to be complete.
1534		 * If a NAK was received, then it is up to the user to retry
1535		 * the request.
1536		 */
1537		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1538		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1539		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1540		break;
1541	}
1542
1543	return status;
1544}
1545
1546static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1547								       u32 frame_index)
1548{
1549	struct isci_host *ihost = ireq->owning_controller;
1550	struct dev_to_host_fis *frame_header;
1551	enum sci_status status;
1552	u32 *frame_buffer;
1553
1554	status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1555							       frame_index,
1556							       (void **)&frame_header);
1557
1558	if ((status == SCI_SUCCESS) &&
1559	    (frame_header->fis_type == FIS_REGD2H)) {
1560		sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1561							      frame_index,
1562							      (void **)&frame_buffer);
1563
1564		sci_controller_copy_sata_response(&ireq->stp.rsp,
1565						       frame_header,
1566						       frame_buffer);
1567	}
1568
1569	sci_controller_release_frame(ihost, frame_index);
1570
1571	return status;
1572}
1573
1574static enum sci_status process_unsolicited_fis(struct isci_request *ireq,
1575					       u32 frame_index)
1576{
1577	struct isci_host *ihost = ireq->owning_controller;
1578	enum sci_status status;
1579	struct dev_to_host_fis *frame_header;
1580	u32 *frame_buffer;
1581
1582	status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1583							  frame_index,
1584							  (void **)&frame_header);
1585
1586	if (status != SCI_SUCCESS)
1587		return status;
1588
1589	if (frame_header->fis_type != FIS_REGD2H) {
1590		dev_err(&ireq->isci_host->pdev->dev,
1591			"%s ERROR: invalid fis type 0x%X\n",
1592			__func__, frame_header->fis_type);
1593		return SCI_FAILURE;
1594	}
1595
1596	sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1597						 frame_index,
1598						 (void **)&frame_buffer);
1599
1600	sci_controller_copy_sata_response(&ireq->stp.rsp,
1601					  (u32 *)frame_header,
1602					  frame_buffer);
1603
1604	/* Frame has been decoded return it to the controller */
1605	sci_controller_release_frame(ihost, frame_index);
1606
1607	return status;
1608}
1609
1610static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq,
1611						   u32 frame_index)
1612{
1613	struct sas_task *task = isci_request_access_task(ireq);
1614	enum sci_status status;
1615
1616	status = process_unsolicited_fis(ireq, frame_index);
1617
1618	if (status == SCI_SUCCESS) {
1619		if (ireq->stp.rsp.status & ATA_ERR)
1620			status = SCI_FAILURE_IO_RESPONSE_VALID;
1621	} else {
1622		status = SCI_FAILURE_IO_RESPONSE_VALID;
1623	}
1624
1625	if (status != SCI_SUCCESS) {
1626		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1627		ireq->sci_status = status;
1628	} else {
1629		ireq->scu_status = SCU_TASK_DONE_GOOD;
1630		ireq->sci_status = SCI_SUCCESS;
1631	}
1632
1633	/* the d2h ufi is the end of non-data commands */
1634	if (task->data_dir == DMA_NONE)
1635		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1636
1637	return status;
1638}
1639
1640static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq)
1641{
1642	struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1643	void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet;
1644	struct scu_task_context *task_context = ireq->tc;
1645
1646	/* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame
1647	 * type. The TC for previous Packet fis was already there, we only need to
1648	 * change the H2D fis content.
1649	 */
1650	memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis));
1651	memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN);
1652	memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context));
1653	task_context->type.stp.fis_type = FIS_DATA;
1654	task_context->transfer_length_bytes = dev->cdb_len;
1655}
1656
1657static void scu_atapi_construct_task_context(struct isci_request *ireq)
1658{
1659	struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1660	struct sas_task *task = isci_request_access_task(ireq);
1661	struct scu_task_context *task_context = ireq->tc;
1662	int cdb_len = dev->cdb_len;
1663
1664	/* reference: SSTL 1.13.4.2
1665	 * task_type, sata_direction
1666	 */
1667	if (task->data_dir == DMA_TO_DEVICE) {
1668		task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT;
1669		task_context->sata_direction = 0;
1670	} else {
1671		/* todo: for NO_DATA command, we need to send out raw frame. */
1672		task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN;
1673		task_context->sata_direction = 1;
1674	}
1675
1676	memset(&task_context->type.stp, 0, sizeof(task_context->type.stp));
1677	task_context->type.stp.fis_type = FIS_DATA;
1678
1679	memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
1680	memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len);
1681	task_context->ssp_command_iu_length = cdb_len / sizeof(u32);
1682
1683	/* task phase is set to TX_CMD */
1684	task_context->task_phase = 0x1;
1685
1686	/* retry counter */
1687	task_context->stp_retry_count = 0;
1688
1689	/* data transfer size. */
1690	task_context->transfer_length_bytes = task->total_xfer_len;
1691
1692	/* setup sgl */
1693	sci_request_build_sgl(ireq);
1694}
1695
1696enum sci_status
1697sci_io_request_frame_handler(struct isci_request *ireq,
1698				  u32 frame_index)
1699{
1700	struct isci_host *ihost = ireq->owning_controller;
1701	struct isci_stp_request *stp_req = &ireq->stp.req;
1702	enum sci_base_request_states state;
1703	enum sci_status status;
1704	ssize_t word_cnt;
1705
1706	state = ireq->sm.current_state_id;
1707	switch (state)  {
1708	case SCI_REQ_STARTED: {
1709		struct ssp_frame_hdr ssp_hdr;
1710		void *frame_header;
1711
1712		sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1713							      frame_index,
1714							      &frame_header);
1715
1716		word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1717		sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1718
1719		if (ssp_hdr.frame_type == SSP_RESPONSE) {
1720			struct ssp_response_iu *resp_iu;
1721			ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1722
1723			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1724								      frame_index,
1725								      (void **)&resp_iu);
1726
1727			sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1728
1729			resp_iu = &ireq->ssp.rsp;
1730
1731			if (resp_iu->datapres == SAS_DATAPRES_RESPONSE_DATA ||
1732			    resp_iu->datapres == SAS_DATAPRES_SENSE_DATA) {
1733				ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1734				ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1735			} else {
1736				ireq->scu_status = SCU_TASK_DONE_GOOD;
1737				ireq->sci_status = SCI_SUCCESS;
1738			}
1739		} else {
1740			/* not a response frame, why did it get forwarded? */
1741			dev_err(&ihost->pdev->dev,
1742				"%s: SCIC IO Request 0x%p received unexpected "
1743				"frame %d type 0x%02x\n", __func__, ireq,
1744				frame_index, ssp_hdr.frame_type);
1745		}
1746
1747		/*
1748		 * In any case we are done with this frame buffer return it to
1749		 * the controller
1750		 */
1751		sci_controller_release_frame(ihost, frame_index);
1752
1753		return SCI_SUCCESS;
1754	}
1755
1756	case SCI_REQ_TASK_WAIT_TC_RESP:
1757		sci_io_request_copy_response(ireq);
1758		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1759		sci_controller_release_frame(ihost, frame_index);
1760		return SCI_SUCCESS;
1761
1762	case SCI_REQ_SMP_WAIT_RESP: {
1763		struct sas_task *task = isci_request_access_task(ireq);
1764		struct scatterlist *sg = &task->smp_task.smp_resp;
1765		void *frame_header, *kaddr;
1766		u8 *rsp;
1767
1768		sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1769							 frame_index,
1770							 &frame_header);
1771		kaddr = kmap_atomic(sg_page(sg));
1772		rsp = kaddr + sg->offset;
1773		sci_swab32_cpy(rsp, frame_header, 1);
1774
1775		if (rsp[0] == SMP_RESPONSE) {
1776			void *smp_resp;
1777
1778			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1779								 frame_index,
1780								 &smp_resp);
1781
1782			word_cnt = (sg->length/4)-1;
1783			if (word_cnt > 0)
1784				word_cnt = min_t(unsigned int, word_cnt,
1785						 SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4);
1786			sci_swab32_cpy(rsp + 4, smp_resp, word_cnt);
1787
1788			ireq->scu_status = SCU_TASK_DONE_GOOD;
1789			ireq->sci_status = SCI_SUCCESS;
1790			sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1791		} else {
1792			/*
1793			 * This was not a response frame why did it get
1794			 * forwarded?
1795			 */
1796			dev_err(&ihost->pdev->dev,
1797				"%s: SCIC SMP Request 0x%p received unexpected "
1798				"frame %d type 0x%02x\n",
1799				__func__,
1800				ireq,
1801				frame_index,
1802				rsp[0]);
1803
1804			ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1805			ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1806			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1807		}
1808		kunmap_atomic(kaddr);
1809
1810		sci_controller_release_frame(ihost, frame_index);
1811
1812		return SCI_SUCCESS;
1813	}
1814
1815	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1816		return sci_stp_request_udma_general_frame_handler(ireq,
1817								       frame_index);
1818
1819	case SCI_REQ_STP_UDMA_WAIT_D2H:
1820		/* Use the general frame handler to copy the resposne data */
1821		status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1822
1823		if (status != SCI_SUCCESS)
1824			return status;
1825
1826		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1827		ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1828		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1829		return SCI_SUCCESS;
1830
1831	case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1832		struct dev_to_host_fis *frame_header;
1833		u32 *frame_buffer;
1834
1835		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1836								       frame_index,
1837								       (void **)&frame_header);
1838
1839		if (status != SCI_SUCCESS) {
1840			dev_err(&ihost->pdev->dev,
1841				"%s: SCIC IO Request 0x%p could not get frame "
1842				"header for frame index %d, status %x\n",
1843				__func__,
1844				stp_req,
1845				frame_index,
1846				status);
1847
1848			return status;
1849		}
1850
1851		switch (frame_header->fis_type) {
1852		case FIS_REGD2H:
1853			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1854								      frame_index,
1855								      (void **)&frame_buffer);
1856
1857			sci_controller_copy_sata_response(&ireq->stp.rsp,
1858							       frame_header,
1859							       frame_buffer);
1860
1861			/* The command has completed with error */
1862			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1863			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1864			break;
1865
1866		default:
1867			dev_warn(&ihost->pdev->dev,
1868				 "%s: IO Request:0x%p Frame Id:%d protocol "
1869				  "violation occurred\n", __func__, stp_req,
1870				  frame_index);
1871
1872			ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1873			ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1874			break;
1875		}
1876
1877		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1878
1879		/* Frame has been decoded return it to the controller */
1880		sci_controller_release_frame(ihost, frame_index);
1881
1882		return status;
1883	}
1884
1885	case SCI_REQ_STP_PIO_WAIT_FRAME: {
1886		struct sas_task *task = isci_request_access_task(ireq);
1887		struct dev_to_host_fis *frame_header;
1888		u32 *frame_buffer;
1889
1890		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1891								       frame_index,
1892								       (void **)&frame_header);
1893
1894		if (status != SCI_SUCCESS) {
1895			dev_err(&ihost->pdev->dev,
1896				"%s: SCIC IO Request 0x%p could not get frame "
1897				"header for frame index %d, status %x\n",
1898				__func__, stp_req, frame_index, status);
1899			return status;
1900		}
1901
1902		switch (frame_header->fis_type) {
1903		case FIS_PIO_SETUP:
1904			/* Get from the frame buffer the PIO Setup Data */
1905			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1906								      frame_index,
1907								      (void **)&frame_buffer);
1908
1909			/* Get the data from the PIO Setup The SCU Hardware
1910			 * returns first word in the frame_header and the rest
1911			 * of the data is in the frame buffer so we need to
1912			 * back up one dword
1913			 */
1914
1915			/* transfer_count: first 16bits in the 4th dword */
1916			stp_req->pio_len = frame_buffer[3] & 0xffff;
1917
1918			/* status: 4th byte in the 3rd dword */
1919			stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1920
1921			sci_controller_copy_sata_response(&ireq->stp.rsp,
1922							       frame_header,
1923							       frame_buffer);
1924
1925			ireq->stp.rsp.status = stp_req->status;
1926
1927			/* The next state is dependent on whether the
1928			 * request was PIO Data-in or Data out
1929			 */
1930			if (task->data_dir == DMA_FROM_DEVICE) {
1931				sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1932			} else if (task->data_dir == DMA_TO_DEVICE) {
1933				/* Transmit data */
1934				status = sci_stp_request_pio_data_out_transmit_data(ireq);
1935				if (status != SCI_SUCCESS)
1936					break;
1937				sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1938			}
1939			break;
1940
1941		case FIS_SETDEVBITS:
1942			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1943			break;
1944
1945		case FIS_REGD2H:
1946			if (frame_header->status & ATA_BUSY) {
1947				/*
1948				 * Now why is the drive sending a D2H Register
1949				 * FIS when it is still busy?  Do nothing since
1950				 * we are still in the right state.
1951				 */
1952				dev_dbg(&ihost->pdev->dev,
1953					"%s: SCIC PIO Request 0x%p received "
1954					"D2H Register FIS with BSY status "
1955					"0x%x\n",
1956					__func__,
1957					stp_req,
1958					frame_header->status);
1959				break;
1960			}
1961
1962			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1963								      frame_index,
1964								      (void **)&frame_buffer);
1965
1966			sci_controller_copy_sata_response(&ireq->stp.rsp,
1967							       frame_header,
1968							       frame_buffer);
1969
1970			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1971			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1972			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1973			break;
1974
1975		default:
1976			/* FIXME: what do we do here? */
1977			break;
1978		}
1979
1980		/* Frame is decoded return it to the controller */
1981		sci_controller_release_frame(ihost, frame_index);
1982
1983		return status;
1984	}
1985
1986	case SCI_REQ_STP_PIO_DATA_IN: {
1987		struct dev_to_host_fis *frame_header;
1988		struct sata_fis_data *frame_buffer;
1989
1990		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1991								       frame_index,
1992								       (void **)&frame_header);
1993
1994		if (status != SCI_SUCCESS) {
1995			dev_err(&ihost->pdev->dev,
1996				"%s: SCIC IO Request 0x%p could not get frame "
1997				"header for frame index %d, status %x\n",
1998				__func__,
1999				stp_req,
2000				frame_index,
2001				status);
2002			return status;
2003		}
2004
2005		if (frame_header->fis_type != FIS_DATA) {
2006			dev_err(&ihost->pdev->dev,
2007				"%s: SCIC PIO Request 0x%p received frame %d "
2008				"with fis type 0x%02x when expecting a data "
2009				"fis.\n",
2010				__func__,
2011				stp_req,
2012				frame_index,
2013				frame_header->fis_type);
2014
2015			ireq->scu_status = SCU_TASK_DONE_GOOD;
2016			ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
2017			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2018
2019			/* Frame is decoded return it to the controller */
2020			sci_controller_release_frame(ihost, frame_index);
2021			return status;
2022		}
2023
2024		if (stp_req->sgl.index < 0) {
2025			ireq->saved_rx_frame_index = frame_index;
2026			stp_req->pio_len = 0;
2027		} else {
2028			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
2029								      frame_index,
2030								      (void **)&frame_buffer);
2031
2032			status = sci_stp_request_pio_data_in_copy_data(stp_req,
2033									    (u8 *)frame_buffer);
2034
2035			/* Frame is decoded return it to the controller */
2036			sci_controller_release_frame(ihost, frame_index);
2037		}
2038
2039		/* Check for the end of the transfer, are there more
2040		 * bytes remaining for this data transfer
2041		 */
2042		if (status != SCI_SUCCESS || stp_req->pio_len != 0)
2043			return status;
2044
2045		if ((stp_req->status & ATA_BUSY) == 0) {
2046			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2047			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2048			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2049		} else {
2050			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
2051		}
2052		return status;
2053	}
2054
2055	case SCI_REQ_ATAPI_WAIT_PIO_SETUP: {
2056		struct sas_task *task = isci_request_access_task(ireq);
2057
2058		sci_controller_release_frame(ihost, frame_index);
2059		ireq->target_device->working_request = ireq;
2060		if (task->data_dir == DMA_NONE) {
2061			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP);
2062			scu_atapi_reconstruct_raw_frame_task_context(ireq);
2063		} else {
2064			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2065			scu_atapi_construct_task_context(ireq);
2066		}
2067
2068		sci_controller_continue_io(ireq);
2069		return SCI_SUCCESS;
2070	}
2071	case SCI_REQ_ATAPI_WAIT_D2H:
2072		return atapi_d2h_reg_frame_handler(ireq, frame_index);
2073	case SCI_REQ_ABORTING:
2074		/*
2075		 * TODO: Is it even possible to get an unsolicited frame in the
2076		 * aborting state?
2077		 */
2078		sci_controller_release_frame(ihost, frame_index);
2079		return SCI_SUCCESS;
2080
2081	default:
2082		dev_warn(&ihost->pdev->dev,
2083			 "%s: SCIC IO Request given unexpected frame %x while "
2084			 "in state %d\n",
2085			 __func__,
2086			 frame_index,
2087			 state);
2088
2089		sci_controller_release_frame(ihost, frame_index);
2090		return SCI_FAILURE_INVALID_STATE;
2091	}
2092}
2093
2094static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
2095						       u32 completion_code)
2096{
2097	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2098	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2099		ireq->scu_status = SCU_TASK_DONE_GOOD;
2100		ireq->sci_status = SCI_SUCCESS;
2101		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2102		break;
2103	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
2104	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
2105		/* We must check ther response buffer to see if the D2H
2106		 * Register FIS was received before we got the TC
2107		 * completion.
2108		 */
2109		if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
2110			sci_remote_device_suspend(ireq->target_device,
2111						  SCI_SW_SUSPEND_NORMAL);
2112
2113			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2114			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2115			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2116		} else {
2117			/* If we have an error completion status for the
2118			 * TC then we can expect a D2H register FIS from
2119			 * the device so we must change state to wait
2120			 * for it
2121			 */
2122			sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
2123		}
2124		break;
2125
2126	/* TODO Check to see if any of these completion status need to
2127	 * wait for the device to host register fis.
2128	 */
2129	/* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
2130	 * - this comes only for B0
2131	 */
2132	default:
2133		/* All other completion status cause the IO to be complete. */
2134		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2135		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2136		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2137		break;
2138	}
2139
2140	return SCI_SUCCESS;
2141}
2142
2143static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code,
2144						  enum sci_base_request_states next)
2145{
2146	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2147	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2148		ireq->scu_status = SCU_TASK_DONE_GOOD;
2149		ireq->sci_status = SCI_SUCCESS;
2150		sci_change_state(&ireq->sm, next);
2151		break;
2152	default:
2153		/* All other completion status cause the IO to be complete.
2154		 * If a NAK was received, then it is up to the user to retry
2155		 * the request.
2156		 */
2157		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2158		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2159
2160		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2161		break;
2162	}
2163
2164	return SCI_SUCCESS;
2165}
2166
2167static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq,
2168							u32 completion_code)
2169{
2170	struct isci_remote_device *idev = ireq->target_device;
2171	struct dev_to_host_fis *d2h = &ireq->stp.rsp;
2172	enum sci_status status = SCI_SUCCESS;
2173
2174	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2175	case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
2176		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2177		break;
2178
2179	case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): {
2180		u16 len = sci_req_tx_bytes(ireq);
2181
2182		/* likely non-error data underrun, workaround missing
2183		 * d2h frame from the controller
2184		 */
2185		if (d2h->fis_type != FIS_REGD2H) {
2186			d2h->fis_type = FIS_REGD2H;
2187			d2h->flags = (1 << 6);
2188			d2h->status = 0x50;
2189			d2h->error = 0;
2190			d2h->lbal = 0;
2191			d2h->byte_count_low = len & 0xff;
2192			d2h->byte_count_high = len >> 8;
2193			d2h->device = 0xa0;
2194			d2h->lbal_exp = 0;
2195			d2h->lbam_exp = 0;
2196			d2h->lbah_exp = 0;
2197			d2h->_r_a = 0;
2198			d2h->sector_count = 0x3;
2199			d2h->sector_count_exp = 0;
2200			d2h->_r_b = 0;
2201			d2h->_r_c = 0;
2202			d2h->_r_d = 0;
2203		}
2204
2205		ireq->scu_status = SCU_TASK_DONE_GOOD;
2206		ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
2207		status = ireq->sci_status;
2208
2209		/* the hw will have suspended the rnc, so complete the
2210		 * request upon pending resume
2211		 */
2212		sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2213		break;
2214	}
2215	case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT):
2216		/* In this case, there is no UF coming after.
2217		 * compelte the IO now.
2218		 */
2219		ireq->scu_status = SCU_TASK_DONE_GOOD;
2220		ireq->sci_status = SCI_SUCCESS;
2221		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2222		break;
2223
2224	default:
2225		if (d2h->fis_type == FIS_REGD2H) {
2226			/* UF received change the device state to ATAPI_ERROR */
2227			status = ireq->sci_status;
2228			sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2229		} else {
2230			/* If receiving any non-success TC status, no UF
2231			 * received yet, then an UF for the status fis
2232			 * is coming after (XXX: suspect this is
2233			 * actually a protocol error or a bug like the
2234			 * DONE_UNEXP_FIS case)
2235			 */
2236			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2237			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2238
2239			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2240		}
2241		break;
2242	}
2243
2244	return status;
2245}
2246
2247static int sci_request_smp_completion_status_is_tx_suspend(
2248	unsigned int completion_status)
2249{
2250	switch (completion_status) {
2251	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2252	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2253	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2254	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2255	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2256	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2257		return 1;
2258	}
2259	return 0;
2260}
2261
2262static int sci_request_smp_completion_status_is_tx_rx_suspend(
2263	unsigned int completion_status)
2264{
2265	return 0; /* There are no Tx/Rx SMP suspend conditions. */
2266}
2267
2268static int sci_request_ssp_completion_status_is_tx_suspend(
2269	unsigned int completion_status)
2270{
2271	switch (completion_status) {
2272	case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2273	case SCU_TASK_DONE_LF_ERR:
2274	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2275	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2276	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2277	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2278	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2279	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2280	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2281	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2282	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2283		return 1;
2284	}
2285	return 0;
2286}
2287
2288static int sci_request_ssp_completion_status_is_tx_rx_suspend(
2289	unsigned int completion_status)
2290{
2291	return 0; /* There are no Tx/Rx SSP suspend conditions. */
2292}
2293
2294static int sci_request_stpsata_completion_status_is_tx_suspend(
2295	unsigned int completion_status)
2296{
2297	switch (completion_status) {
2298	case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2299	case SCU_TASK_DONE_LL_R_ERR:
2300	case SCU_TASK_DONE_LL_PERR:
2301	case SCU_TASK_DONE_REG_ERR:
2302	case SCU_TASK_DONE_SDB_ERR:
2303	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2304	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2305	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2306	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2307	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2308	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2309	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2310	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2311	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2312		return 1;
2313	}
2314	return 0;
2315}
2316
2317
2318static int sci_request_stpsata_completion_status_is_tx_rx_suspend(
2319	unsigned int completion_status)
2320{
2321	switch (completion_status) {
2322	case SCU_TASK_DONE_LF_ERR:
2323	case SCU_TASK_DONE_LL_SY_TERM:
2324	case SCU_TASK_DONE_LL_LF_TERM:
2325	case SCU_TASK_DONE_BREAK_RCVD:
2326	case SCU_TASK_DONE_INV_FIS_LEN:
2327	case SCU_TASK_DONE_UNEXP_FIS:
2328	case SCU_TASK_DONE_UNEXP_SDBFIS:
2329	case SCU_TASK_DONE_MAX_PLD_ERR:
2330		return 1;
2331	}
2332	return 0;
2333}
2334
2335static void sci_request_handle_suspending_completions(
2336	struct isci_request *ireq,
2337	u32 completion_code)
2338{
2339	int is_tx = 0;
2340	int is_tx_rx = 0;
2341
2342	switch (ireq->protocol) {
2343	case SAS_PROTOCOL_SMP:
2344		is_tx = sci_request_smp_completion_status_is_tx_suspend(
2345			completion_code);
2346		is_tx_rx = sci_request_smp_completion_status_is_tx_rx_suspend(
2347			completion_code);
2348		break;
2349	case SAS_PROTOCOL_SSP:
2350		is_tx = sci_request_ssp_completion_status_is_tx_suspend(
2351			completion_code);
2352		is_tx_rx = sci_request_ssp_completion_status_is_tx_rx_suspend(
2353			completion_code);
2354		break;
2355	case SAS_PROTOCOL_STP:
2356		is_tx = sci_request_stpsata_completion_status_is_tx_suspend(
2357			completion_code);
2358		is_tx_rx =
2359			sci_request_stpsata_completion_status_is_tx_rx_suspend(
2360				completion_code);
2361		break;
2362	default:
2363		dev_warn(&ireq->isci_host->pdev->dev,
2364			 "%s: request %p has no valid protocol\n",
2365			 __func__, ireq);
2366		break;
2367	}
2368	if (is_tx || is_tx_rx) {
2369		BUG_ON(is_tx && is_tx_rx);
2370
2371		sci_remote_node_context_suspend(
2372			&ireq->target_device->rnc,
2373			SCI_HW_SUSPEND,
2374			(is_tx_rx) ? SCU_EVENT_TL_RNC_SUSPEND_TX_RX
2375				   : SCU_EVENT_TL_RNC_SUSPEND_TX);
2376	}
2377}
2378
2379enum sci_status
2380sci_io_request_tc_completion(struct isci_request *ireq,
2381			     u32 completion_code)
2382{
2383	enum sci_base_request_states state;
2384	struct isci_host *ihost = ireq->owning_controller;
2385
2386	state = ireq->sm.current_state_id;
2387
2388	/* Decode those completions that signal upcoming suspension events. */
2389	sci_request_handle_suspending_completions(
2390		ireq, SCU_GET_COMPLETION_TL_STATUS(completion_code));
2391
2392	switch (state) {
2393	case SCI_REQ_STARTED:
2394		return request_started_state_tc_event(ireq, completion_code);
2395
2396	case SCI_REQ_TASK_WAIT_TC_COMP:
2397		return ssp_task_request_await_tc_event(ireq,
2398						       completion_code);
2399
2400	case SCI_REQ_SMP_WAIT_RESP:
2401		return smp_request_await_response_tc_event(ireq,
2402							   completion_code);
2403
2404	case SCI_REQ_SMP_WAIT_TC_COMP:
2405		return smp_request_await_tc_event(ireq, completion_code);
2406
2407	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
2408		return stp_request_udma_await_tc_event(ireq,
2409						       completion_code);
2410
2411	case SCI_REQ_STP_NON_DATA_WAIT_H2D:
2412		return stp_request_non_data_await_h2d_tc_event(ireq,
2413							       completion_code);
2414
2415	case SCI_REQ_STP_PIO_WAIT_H2D:
2416		return stp_request_pio_await_h2d_completion_tc_event(ireq,
2417								     completion_code);
2418
2419	case SCI_REQ_STP_PIO_DATA_OUT:
2420		return pio_data_out_tx_done_tc_event(ireq, completion_code);
2421
2422	case SCI_REQ_ABORTING:
2423		return request_aborting_state_tc_event(ireq,
2424						       completion_code);
2425
2426	case SCI_REQ_ATAPI_WAIT_H2D:
2427		return atapi_raw_completion(ireq, completion_code,
2428					    SCI_REQ_ATAPI_WAIT_PIO_SETUP);
2429
2430	case SCI_REQ_ATAPI_WAIT_TC_COMP:
2431		return atapi_raw_completion(ireq, completion_code,
2432					    SCI_REQ_ATAPI_WAIT_D2H);
2433
2434	case SCI_REQ_ATAPI_WAIT_D2H:
2435		return atapi_data_tc_completion_handler(ireq, completion_code);
2436
2437	default:
2438		dev_warn(&ihost->pdev->dev, "%s: %x in wrong state %s\n",
2439			 __func__, completion_code, req_state_name(state));
2440		return SCI_FAILURE_INVALID_STATE;
2441	}
2442}
2443
2444/**
2445 * isci_request_process_response_iu() - This function sets the status and
2446 *    response iu, in the task struct, from the request object for the upper
2447 *    layer driver.
2448 * @task: This parameter is the task struct from the upper layer driver.
2449 * @resp_iu: This parameter points to the response iu of the completed request.
2450 * @dev: This parameter specifies the linux device struct.
2451 *
2452 * none.
2453 */
2454static void isci_request_process_response_iu(
2455	struct sas_task *task,
2456	struct ssp_response_iu *resp_iu,
2457	struct device *dev)
2458{
2459	dev_dbg(dev,
2460		"%s: resp_iu = %p "
2461		"resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2462		"resp_iu->response_data_len = %x, "
2463		"resp_iu->sense_data_len = %x\nresponse data: ",
2464		__func__,
2465		resp_iu,
2466		resp_iu->status,
2467		resp_iu->datapres,
2468		resp_iu->response_data_len,
2469		resp_iu->sense_data_len);
2470
2471	task->task_status.stat = resp_iu->status;
2472
2473	/* libsas updates the task status fields based on the response iu. */
2474	sas_ssp_task_response(dev, task, resp_iu);
2475}
2476
2477/**
2478 * isci_request_set_open_reject_status() - This function prepares the I/O
2479 *    completion for OPEN_REJECT conditions.
2480 * @request: This parameter is the completed isci_request object.
2481 * @task: This parameter is the task struct from the upper layer driver.
2482 * @response_ptr: This parameter specifies the service response for the I/O.
2483 * @status_ptr: This parameter specifies the exec status for the I/O.
2484 * @open_rej_reason: This parameter specifies the encoded reason for the
2485 *    abandon-class reject.
2486 *
2487 * none.
2488 */
2489static void isci_request_set_open_reject_status(
2490	struct isci_request *request,
2491	struct sas_task *task,
2492	enum service_response *response_ptr,
2493	enum exec_status *status_ptr,
2494	enum sas_open_rej_reason open_rej_reason)
2495{
2496	/* Task in the target is done. */
2497	set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2498	*response_ptr                     = SAS_TASK_UNDELIVERED;
2499	*status_ptr                       = SAS_OPEN_REJECT;
2500	task->task_status.open_rej_reason = open_rej_reason;
2501}
2502
2503/**
2504 * isci_request_handle_controller_specific_errors() - This function decodes
2505 *    controller-specific I/O completion error conditions.
2506 * @idev: Remote device
2507 * @request: This parameter is the completed isci_request object.
2508 * @task: This parameter is the task struct from the upper layer driver.
2509 * @response_ptr: This parameter specifies the service response for the I/O.
2510 * @status_ptr: This parameter specifies the exec status for the I/O.
2511 *
2512 * none.
2513 */
2514static void isci_request_handle_controller_specific_errors(
2515	struct isci_remote_device *idev,
2516	struct isci_request *request,
2517	struct sas_task *task,
2518	enum service_response *response_ptr,
2519	enum exec_status *status_ptr)
2520{
2521	unsigned int cstatus;
2522
2523	cstatus = request->scu_status;
2524
2525	dev_dbg(&request->isci_host->pdev->dev,
2526		"%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2527		"- controller status = 0x%x\n",
2528		__func__, request, cstatus);
2529
2530	/* Decode the controller-specific errors; most
2531	 * important is to recognize those conditions in which
2532	 * the target may still have a task outstanding that
2533	 * must be aborted.
2534	 *
2535	 * Note that there are SCU completion codes being
2536	 * named in the decode below for which SCIC has already
2537	 * done work to handle them in a way other than as
2538	 * a controller-specific completion code; these are left
2539	 * in the decode below for completeness sake.
2540	 */
2541	switch (cstatus) {
2542	case SCU_TASK_DONE_DMASETUP_DIRERR:
2543	/* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2544	case SCU_TASK_DONE_XFERCNT_ERR:
2545		/* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2546		if (task->task_proto == SAS_PROTOCOL_SMP) {
2547			/* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2548			*response_ptr = SAS_TASK_COMPLETE;
2549
2550			/* See if the device has been/is being stopped. Note
2551			 * that we ignore the quiesce state, since we are
2552			 * concerned about the actual device state.
2553			 */
2554			if (!idev)
2555				*status_ptr = SAS_DEVICE_UNKNOWN;
2556			else
2557				*status_ptr = SAS_ABORTED_TASK;
2558
2559			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2560		} else {
2561			/* Task in the target is not done. */
2562			*response_ptr = SAS_TASK_UNDELIVERED;
2563
2564			if (!idev)
2565				*status_ptr = SAS_DEVICE_UNKNOWN;
2566			else
2567				*status_ptr = SAS_SAM_STAT_TASK_ABORTED;
2568
2569			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2570		}
2571
2572		break;
2573
2574	case SCU_TASK_DONE_CRC_ERR:
2575	case SCU_TASK_DONE_NAK_CMD_ERR:
2576	case SCU_TASK_DONE_EXCESS_DATA:
2577	case SCU_TASK_DONE_UNEXP_FIS:
2578	/* Also SCU_TASK_DONE_UNEXP_RESP: */
2579	case SCU_TASK_DONE_VIIT_ENTRY_NV:       /* TODO - conditions? */
2580	case SCU_TASK_DONE_IIT_ENTRY_NV:        /* TODO - conditions? */
2581	case SCU_TASK_DONE_RNCNV_OUTBOUND:      /* TODO - conditions? */
2582		/* These are conditions in which the target
2583		 * has completed the task, so that no cleanup
2584		 * is necessary.
2585		 */
2586		*response_ptr = SAS_TASK_COMPLETE;
2587
2588		/* See if the device has been/is being stopped. Note
2589		 * that we ignore the quiesce state, since we are
2590		 * concerned about the actual device state.
2591		 */
2592		if (!idev)
2593			*status_ptr = SAS_DEVICE_UNKNOWN;
2594		else
2595			*status_ptr = SAS_ABORTED_TASK;
2596
2597		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2598		break;
2599
2600
2601	/* Note that the only open reject completion codes seen here will be
2602	 * abandon-class codes; all others are automatically retried in the SCU.
2603	 */
2604	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2605
2606		isci_request_set_open_reject_status(
2607			request, task, response_ptr, status_ptr,
2608			SAS_OREJ_WRONG_DEST);
2609		break;
2610
2611	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2612
2613		/* Note - the return of AB0 will change when
2614		 * libsas implements detection of zone violations.
2615		 */
2616		isci_request_set_open_reject_status(
2617			request, task, response_ptr, status_ptr,
2618			SAS_OREJ_RESV_AB0);
2619		break;
2620
2621	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2622
2623		isci_request_set_open_reject_status(
2624			request, task, response_ptr, status_ptr,
2625			SAS_OREJ_RESV_AB1);
2626		break;
2627
2628	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2629
2630		isci_request_set_open_reject_status(
2631			request, task, response_ptr, status_ptr,
2632			SAS_OREJ_RESV_AB2);
2633		break;
2634
2635	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2636
2637		isci_request_set_open_reject_status(
2638			request, task, response_ptr, status_ptr,
2639			SAS_OREJ_RESV_AB3);
2640		break;
2641
2642	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2643
2644		isci_request_set_open_reject_status(
2645			request, task, response_ptr, status_ptr,
2646			SAS_OREJ_BAD_DEST);
2647		break;
2648
2649	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2650
2651		isci_request_set_open_reject_status(
2652			request, task, response_ptr, status_ptr,
2653			SAS_OREJ_STP_NORES);
2654		break;
2655
2656	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2657
2658		isci_request_set_open_reject_status(
2659			request, task, response_ptr, status_ptr,
2660			SAS_OREJ_EPROTO);
2661		break;
2662
2663	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2664
2665		isci_request_set_open_reject_status(
2666			request, task, response_ptr, status_ptr,
2667			SAS_OREJ_CONN_RATE);
2668		break;
2669
2670	case SCU_TASK_DONE_LL_R_ERR:
2671	/* Also SCU_TASK_DONE_ACK_NAK_TO: */
2672	case SCU_TASK_DONE_LL_PERR:
2673	case SCU_TASK_DONE_LL_SY_TERM:
2674	/* Also SCU_TASK_DONE_NAK_ERR:*/
2675	case SCU_TASK_DONE_LL_LF_TERM:
2676	/* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2677	case SCU_TASK_DONE_LL_ABORT_ERR:
2678	case SCU_TASK_DONE_SEQ_INV_TYPE:
2679	/* Also SCU_TASK_DONE_UNEXP_XR: */
2680	case SCU_TASK_DONE_XR_IU_LEN_ERR:
2681	case SCU_TASK_DONE_INV_FIS_LEN:
2682	/* Also SCU_TASK_DONE_XR_WD_LEN: */
2683	case SCU_TASK_DONE_SDMA_ERR:
2684	case SCU_TASK_DONE_OFFSET_ERR:
2685	case SCU_TASK_DONE_MAX_PLD_ERR:
2686	case SCU_TASK_DONE_LF_ERR:
2687	case SCU_TASK_DONE_SMP_RESP_TO_ERR:  /* Escalate to dev reset? */
2688	case SCU_TASK_DONE_SMP_LL_RX_ERR:
2689	case SCU_TASK_DONE_UNEXP_DATA:
2690	case SCU_TASK_DONE_UNEXP_SDBFIS:
2691	case SCU_TASK_DONE_REG_ERR:
2692	case SCU_TASK_DONE_SDB_ERR:
2693	case SCU_TASK_DONE_TASK_ABORT:
2694	default:
2695		/* Task in the target is not done. */
2696		*response_ptr = SAS_TASK_UNDELIVERED;
2697		*status_ptr = SAS_SAM_STAT_TASK_ABORTED;
2698
2699		if (task->task_proto == SAS_PROTOCOL_SMP)
2700			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2701		else
2702			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2703		break;
2704	}
2705}
2706
2707static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2708{
2709	struct task_status_struct *ts = &task->task_status;
2710	struct ata_task_resp *resp = (void *)&ts->buf[0];
2711
2712	resp->frame_len = sizeof(*fis);
2713	memcpy(resp->ending_fis, fis, sizeof(*fis));
2714	ts->buf_valid_size = sizeof(*resp);
2715
2716	/* If an error is flagged let libata decode the fis */
2717	if (ac_err_mask(fis->status))
2718		ts->stat = SAS_PROTO_RESPONSE;
2719	else
2720		ts->stat = SAS_SAM_STAT_GOOD;
2721
2722	ts->resp = SAS_TASK_COMPLETE;
2723}
2724
2725static void isci_request_io_request_complete(struct isci_host *ihost,
2726					     struct isci_request *request,
2727					     enum sci_io_status completion_status)
2728{
2729	struct sas_task *task = isci_request_access_task(request);
2730	struct ssp_response_iu *resp_iu;
2731	unsigned long task_flags;
2732	struct isci_remote_device *idev = request->target_device;
2733	enum service_response response = SAS_TASK_UNDELIVERED;
2734	enum exec_status status = SAS_ABORTED_TASK;
2735
2736	dev_dbg(&ihost->pdev->dev,
2737		"%s: request = %p, task = %p, "
2738		"task->data_dir = %d completion_status = 0x%x\n",
2739		__func__, request, task, task->data_dir, completion_status);
2740
2741	/* The request is done from an SCU HW perspective. */
2742
2743	/* This is an active request being completed from the core. */
2744	switch (completion_status) {
2745
2746	case SCI_IO_FAILURE_RESPONSE_VALID:
2747		dev_dbg(&ihost->pdev->dev,
2748			"%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2749			__func__, request, task);
2750
2751		if (sas_protocol_ata(task->task_proto)) {
2752			isci_process_stp_response(task, &request->stp.rsp);
2753		} else if (SAS_PROTOCOL_SSP == task->task_proto) {
2754
2755			/* crack the iu response buffer. */
2756			resp_iu = &request->ssp.rsp;
2757			isci_request_process_response_iu(task, resp_iu,
2758							 &ihost->pdev->dev);
2759
2760		} else if (SAS_PROTOCOL_SMP == task->task_proto) {
2761
2762			dev_err(&ihost->pdev->dev,
2763				"%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2764					"SAS_PROTOCOL_SMP protocol\n",
2765				__func__);
2766
2767		} else
2768			dev_err(&ihost->pdev->dev,
2769				"%s: unknown protocol\n", __func__);
2770
2771		/* use the task status set in the task struct by the
2772		* isci_request_process_response_iu call.
2773		*/
2774		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2775		response = task->task_status.resp;
2776		status = task->task_status.stat;
2777		break;
2778
2779	case SCI_IO_SUCCESS:
2780	case SCI_IO_SUCCESS_IO_DONE_EARLY:
2781
2782		response = SAS_TASK_COMPLETE;
2783		status   = SAS_SAM_STAT_GOOD;
2784		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2785
2786		if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2787
2788			/* This was an SSP / STP / SATA transfer.
2789			* There is a possibility that less data than
2790			* the maximum was transferred.
2791			*/
2792			u32 transferred_length = sci_req_tx_bytes(request);
2793
2794			task->task_status.residual
2795				= task->total_xfer_len - transferred_length;
2796
2797			/* If there were residual bytes, call this an
2798			* underrun.
2799			*/
2800			if (task->task_status.residual != 0)
2801				status = SAS_DATA_UNDERRUN;
2802
2803			dev_dbg(&ihost->pdev->dev,
2804				"%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2805				__func__, status);
2806
2807		} else
2808			dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_SUCCESS\n",
2809				__func__);
2810		break;
2811
2812	case SCI_IO_FAILURE_TERMINATED:
2813
2814		dev_dbg(&ihost->pdev->dev,
2815			"%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2816			__func__, request, task);
2817
2818		/* The request was terminated explicitly. */
2819		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2820		response = SAS_TASK_UNDELIVERED;
2821
2822		/* See if the device has been/is being stopped. Note
2823		* that we ignore the quiesce state, since we are
2824		* concerned about the actual device state.
2825		*/
2826		if (!idev)
2827			status = SAS_DEVICE_UNKNOWN;
2828		else
2829			status = SAS_ABORTED_TASK;
2830		break;
2831
2832	case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2833
2834		isci_request_handle_controller_specific_errors(idev, request,
2835							       task, &response,
2836							       &status);
2837		break;
2838
2839	case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2840		/* This is a special case, in that the I/O completion
2841		* is telling us that the device needs a reset.
2842		* In order for the device reset condition to be
2843		* noticed, the I/O has to be handled in the error
2844		* handler.  Set the reset flag and cause the
2845		* SCSI error thread to be scheduled.
2846		*/
2847		spin_lock_irqsave(&task->task_state_lock, task_flags);
2848		task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2849		spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2850
2851		/* Fail the I/O. */
2852		response = SAS_TASK_UNDELIVERED;
2853		status = SAS_SAM_STAT_TASK_ABORTED;
2854
2855		clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2856		break;
2857
2858	case SCI_FAILURE_RETRY_REQUIRED:
2859
2860		/* Fail the I/O so it can be retried. */
2861		response = SAS_TASK_UNDELIVERED;
2862		if (!idev)
2863			status = SAS_DEVICE_UNKNOWN;
2864		else
2865			status = SAS_ABORTED_TASK;
2866
2867		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2868		break;
2869
2870
2871	default:
2872		/* Catch any otherwise unhandled error codes here. */
2873		dev_dbg(&ihost->pdev->dev,
2874			"%s: invalid completion code: 0x%x - "
2875				"isci_request = %p\n",
2876			__func__, completion_status, request);
2877
2878		response = SAS_TASK_UNDELIVERED;
2879
2880		/* See if the device has been/is being stopped. Note
2881		* that we ignore the quiesce state, since we are
2882		* concerned about the actual device state.
2883		*/
2884		if (!idev)
2885			status = SAS_DEVICE_UNKNOWN;
2886		else
2887			status = SAS_ABORTED_TASK;
2888
2889		if (SAS_PROTOCOL_SMP == task->task_proto)
2890			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2891		else
2892			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2893		break;
2894	}
2895
2896	switch (task->task_proto) {
2897	case SAS_PROTOCOL_SSP:
2898		if (task->data_dir == DMA_NONE)
2899			break;
2900		if (task->num_scatter == 0)
2901			/* 0 indicates a single dma address */
2902			dma_unmap_single(&ihost->pdev->dev,
2903					 request->zero_scatter_daddr,
2904					 task->total_xfer_len, task->data_dir);
2905		else  /* unmap the sgl dma addresses */
2906			dma_unmap_sg(&ihost->pdev->dev, task->scatter,
2907				     request->num_sg_entries, task->data_dir);
2908		break;
2909	case SAS_PROTOCOL_SMP: {
2910		struct scatterlist *sg = &task->smp_task.smp_req;
2911		struct smp_req *smp_req;
2912		void *kaddr;
2913
2914		dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
2915
2916		/* need to swab it back in case the command buffer is re-used */
2917		kaddr = kmap_atomic(sg_page(sg));
2918		smp_req = kaddr + sg->offset;
2919		sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
2920		kunmap_atomic(kaddr);
2921		break;
2922	}
2923	default:
2924		break;
2925	}
2926
2927	spin_lock_irqsave(&task->task_state_lock, task_flags);
2928
2929	task->task_status.resp = response;
2930	task->task_status.stat = status;
2931
2932	if (test_bit(IREQ_COMPLETE_IN_TARGET, &request->flags)) {
2933		/* Normal notification (task_done) */
2934		task->task_state_flags |= SAS_TASK_STATE_DONE;
2935		task->task_state_flags &= ~SAS_TASK_STATE_PENDING;
2936	}
2937	spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2938
2939	/* complete the io request to the core. */
2940	sci_controller_complete_io(ihost, request->target_device, request);
2941
2942	/* set terminated handle so it cannot be completed or
2943	 * terminated again, and to cause any calls into abort
2944	 * task to recognize the already completed case.
2945	 */
2946	set_bit(IREQ_TERMINATED, &request->flags);
2947
2948	ireq_done(ihost, request, task);
2949}
2950
2951static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
2952{
2953	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2954	struct domain_device *dev = ireq->target_device->domain_dev;
2955	enum sci_base_request_states state;
2956	struct sas_task *task;
2957
2958	/* XXX as hch said always creating an internal sas_task for tmf
2959	 * requests would simplify the driver
2960	 */
2961	task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq);
2962
2963	/* all unaccelerated request types (non ssp or ncq) handled with
2964	 * substates
2965	 */
2966	if (!task && dev->dev_type == SAS_END_DEVICE) {
2967		state = SCI_REQ_TASK_WAIT_TC_COMP;
2968	} else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2969		state = SCI_REQ_SMP_WAIT_RESP;
2970	} else if (task && sas_protocol_ata(task->task_proto) &&
2971		   !task->ata_task.use_ncq) {
2972		if (dev->sata_dev.class == ATA_DEV_ATAPI &&
2973			task->ata_task.fis.command == ATA_CMD_PACKET) {
2974			state = SCI_REQ_ATAPI_WAIT_H2D;
2975		} else if (task->data_dir == DMA_NONE) {
2976			state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
2977		} else if (task->ata_task.dma_xfer) {
2978			state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
2979		} else /* PIO */ {
2980			state = SCI_REQ_STP_PIO_WAIT_H2D;
2981		}
2982	} else {
2983		/* SSP or NCQ are fully accelerated, no substates */
2984		return;
2985	}
2986	sci_change_state(sm, state);
2987}
2988
2989static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
2990{
2991	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2992	struct isci_host *ihost = ireq->owning_controller;
2993
2994	/* Tell the SCI_USER that the IO request is complete */
2995	if (!test_bit(IREQ_TMF, &ireq->flags))
2996		isci_request_io_request_complete(ihost, ireq,
2997						 ireq->sci_status);
2998	else
2999		isci_task_request_complete(ihost, ireq, ireq->sci_status);
3000}
3001
3002static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
3003{
3004	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3005
3006	/* Setting the abort bit in the Task Context is required by the silicon. */
3007	ireq->tc->abort = 1;
3008}
3009
3010static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3011{
3012	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3013
3014	ireq->target_device->working_request = ireq;
3015}
3016
3017static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3018{
3019	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3020
3021	ireq->target_device->working_request = ireq;
3022}
3023
3024static const struct sci_base_state sci_request_state_table[] = {
3025	[SCI_REQ_INIT] = { },
3026	[SCI_REQ_CONSTRUCTED] = { },
3027	[SCI_REQ_STARTED] = {
3028		.enter_state = sci_request_started_state_enter,
3029	},
3030	[SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
3031		.enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
3032	},
3033	[SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
3034	[SCI_REQ_STP_PIO_WAIT_H2D] = {
3035		.enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
3036	},
3037	[SCI_REQ_STP_PIO_WAIT_FRAME] = { },
3038	[SCI_REQ_STP_PIO_DATA_IN] = { },
3039	[SCI_REQ_STP_PIO_DATA_OUT] = { },
3040	[SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
3041	[SCI_REQ_STP_UDMA_WAIT_D2H] = { },
3042	[SCI_REQ_TASK_WAIT_TC_COMP] = { },
3043	[SCI_REQ_TASK_WAIT_TC_RESP] = { },
3044	[SCI_REQ_SMP_WAIT_RESP] = { },
3045	[SCI_REQ_SMP_WAIT_TC_COMP] = { },
3046	[SCI_REQ_ATAPI_WAIT_H2D] = { },
3047	[SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { },
3048	[SCI_REQ_ATAPI_WAIT_D2H] = { },
3049	[SCI_REQ_ATAPI_WAIT_TC_COMP] = { },
3050	[SCI_REQ_COMPLETED] = {
3051		.enter_state = sci_request_completed_state_enter,
3052	},
3053	[SCI_REQ_ABORTING] = {
3054		.enter_state = sci_request_aborting_state_enter,
3055	},
3056	[SCI_REQ_FINAL] = { },
3057};
3058
3059static void
3060sci_general_request_construct(struct isci_host *ihost,
3061				   struct isci_remote_device *idev,
3062				   struct isci_request *ireq)
3063{
3064	sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
3065
3066	ireq->target_device = idev;
3067	ireq->protocol = SAS_PROTOCOL_NONE;
3068	ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
3069
3070	ireq->sci_status   = SCI_SUCCESS;
3071	ireq->scu_status   = 0;
3072	ireq->post_context = 0xFFFFFFFF;
3073}
3074
3075static enum sci_status
3076sci_io_request_construct(struct isci_host *ihost,
3077			  struct isci_remote_device *idev,
3078			  struct isci_request *ireq)
3079{
3080	struct domain_device *dev = idev->domain_dev;
3081	enum sci_status status = SCI_SUCCESS;
3082
3083	/* Build the common part of the request */
3084	sci_general_request_construct(ihost, idev, ireq);
3085
3086	if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
3087		return SCI_FAILURE_INVALID_REMOTE_DEVICE;
3088
3089	if (dev->dev_type == SAS_END_DEVICE)
3090		/* pass */;
3091	else if (dev_is_sata(dev))
3092		memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
3093	else if (dev_is_expander(dev->dev_type))
3094		/* pass */;
3095	else
3096		return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3097
3098	memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
3099
3100	return status;
3101}
3102
3103enum sci_status sci_task_request_construct(struct isci_host *ihost,
3104					    struct isci_remote_device *idev,
3105					    u16 io_tag, struct isci_request *ireq)
3106{
3107	struct domain_device *dev = idev->domain_dev;
3108	enum sci_status status = SCI_SUCCESS;
3109
3110	/* Build the common part of the request */
3111	sci_general_request_construct(ihost, idev, ireq);
3112
3113	if (dev->dev_type == SAS_END_DEVICE || dev_is_sata(dev)) {
3114		set_bit(IREQ_TMF, &ireq->flags);
3115		memset(ireq->tc, 0, sizeof(struct scu_task_context));
3116
3117		/* Set the protocol indicator. */
3118		if (dev_is_sata(dev))
3119			ireq->protocol = SAS_PROTOCOL_STP;
3120		else
3121			ireq->protocol = SAS_PROTOCOL_SSP;
3122	} else
3123		status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3124
3125	return status;
3126}
3127
3128static enum sci_status isci_request_ssp_request_construct(
3129	struct isci_request *request)
3130{
3131	enum sci_status status;
3132
3133	dev_dbg(&request->isci_host->pdev->dev,
3134		"%s: request = %p\n",
3135		__func__,
3136		request);
3137	status = sci_io_request_construct_basic_ssp(request);
3138	return status;
3139}
3140
3141static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3142{
3143	struct sas_task *task = isci_request_access_task(ireq);
3144	struct host_to_dev_fis *fis = &ireq->stp.cmd;
3145	struct ata_queued_cmd *qc = task->uldd_task;
3146	enum sci_status status;
3147
3148	dev_dbg(&ireq->isci_host->pdev->dev,
3149		"%s: ireq = %p\n",
3150		__func__,
3151		ireq);
3152
3153	memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3154	if (!task->ata_task.device_control_reg_update)
3155		fis->flags |= 0x80;
3156	fis->flags &= 0xF0;
3157
3158	status = sci_io_request_construct_basic_sata(ireq);
3159
3160	if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3161		   qc->tf.command == ATA_CMD_FPDMA_READ ||
3162		   qc->tf.command == ATA_CMD_FPDMA_RECV ||
3163		   qc->tf.command == ATA_CMD_FPDMA_SEND ||
3164		   qc->tf.command == ATA_CMD_NCQ_NON_DATA)) {
3165		fis->sector_count = qc->tag << 3;
3166		ireq->tc->type.stp.ncq_tag = qc->tag;
3167	}
3168
3169	return status;
3170}
3171
3172static enum sci_status
3173sci_io_request_construct_smp(struct device *dev,
3174			      struct isci_request *ireq,
3175			      struct sas_task *task)
3176{
3177	struct scatterlist *sg = &task->smp_task.smp_req;
3178	struct isci_remote_device *idev;
3179	struct scu_task_context *task_context;
3180	struct isci_port *iport;
3181	struct smp_req *smp_req;
3182	void *kaddr;
3183	u8 req_len;
3184	u32 cmd;
3185
3186	kaddr = kmap_atomic(sg_page(sg));
3187	smp_req = kaddr + sg->offset;
3188	/*
3189	 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3190	 * functions under SAS 2.0, a zero request length really indicates
3191	 * a non-zero default length.
3192	 */
3193	if (smp_req->req_len == 0) {
3194		switch (smp_req->func) {
3195		case SMP_DISCOVER:
3196		case SMP_REPORT_PHY_ERR_LOG:
3197		case SMP_REPORT_PHY_SATA:
3198		case SMP_REPORT_ROUTE_INFO:
3199			smp_req->req_len = 2;
3200			break;
3201		case SMP_CONF_ROUTE_INFO:
3202		case SMP_PHY_CONTROL:
3203		case SMP_PHY_TEST_FUNCTION:
3204			smp_req->req_len = 9;
3205			break;
3206			/* Default - zero is a valid default for 2.0. */
3207		}
3208	}
3209	req_len = smp_req->req_len;
3210	sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3211	cmd = *(u32 *) smp_req;
3212	kunmap_atomic(kaddr);
3213
3214	if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3215		return SCI_FAILURE;
3216
3217	ireq->protocol = SAS_PROTOCOL_SMP;
3218
3219	/* byte swap the smp request. */
3220
3221	task_context = ireq->tc;
3222
3223	idev = ireq->target_device;
3224	iport = idev->owning_port;
3225
3226	/*
3227	 * Fill in the TC with its required data
3228	 * 00h
3229	 */
3230	task_context->priority = 0;
3231	task_context->initiator_request = 1;
3232	task_context->connection_rate = idev->connection_rate;
3233	task_context->protocol_engine_index = ISCI_PEG;
3234	task_context->logical_port_index = iport->physical_port_index;
3235	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3236	task_context->abort = 0;
3237	task_context->valid = SCU_TASK_CONTEXT_VALID;
3238	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3239
3240	/* 04h */
3241	task_context->remote_node_index = idev->rnc.remote_node_index;
3242	task_context->command_code = 0;
3243	task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3244
3245	/* 08h */
3246	task_context->link_layer_control = 0;
3247	task_context->do_not_dma_ssp_good_response = 1;
3248	task_context->strict_ordering = 0;
3249	task_context->control_frame = 1;
3250	task_context->timeout_enable = 0;
3251	task_context->block_guard_enable = 0;
3252
3253	/* 0ch */
3254	task_context->address_modifier = 0;
3255
3256	/* 10h */
3257	task_context->ssp_command_iu_length = req_len;
3258
3259	/* 14h */
3260	task_context->transfer_length_bytes = 0;
3261
3262	/*
3263	 * 18h ~ 30h, protocol specific
3264	 * since commandIU has been build by framework at this point, we just
3265	 * copy the frist DWord from command IU to this location. */
3266	memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3267
3268	/*
3269	 * 40h
3270	 * "For SMP you could program it to zero. We would prefer that way
3271	 * so that done code will be consistent." - Venki
3272	 */
3273	task_context->task_phase = 0;
3274
3275	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3276			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3277			       (iport->physical_port_index <<
3278				SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3279			      ISCI_TAG_TCI(ireq->io_tag));
3280	/*
3281	 * Copy the physical address for the command buffer to the SCU Task
3282	 * Context command buffer should not contain command header.
3283	 */
3284	task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3285	task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3286
3287	/* SMP response comes as UF, so no need to set response IU address. */
3288	task_context->response_iu_upper = 0;
3289	task_context->response_iu_lower = 0;
3290
3291	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3292
3293	return SCI_SUCCESS;
3294}
3295
3296/*
3297 * isci_smp_request_build() - This function builds the smp request.
3298 * @ireq: This parameter points to the isci_request allocated in the
3299 *    request construct function.
3300 *
3301 * SCI_SUCCESS on successfull completion, or specific failure code.
3302 */
3303static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3304{
3305	struct sas_task *task = isci_request_access_task(ireq);
3306	struct device *dev = &ireq->isci_host->pdev->dev;
3307	enum sci_status status = SCI_FAILURE;
3308
3309	status = sci_io_request_construct_smp(dev, ireq, task);
3310	if (status != SCI_SUCCESS)
3311		dev_dbg(&ireq->isci_host->pdev->dev,
3312			 "%s: failed with status = %d\n",
3313			 __func__,
3314			 status);
3315
3316	return status;
3317}
3318
3319/**
3320 * isci_io_request_build() - This function builds the io request object.
3321 * @ihost: This parameter specifies the ISCI host object
3322 * @request: This parameter points to the isci_request object allocated in the
3323 *    request construct function.
3324 * @idev: This parameter is the handle for the sci core's remote device
3325 *    object that is the destination for this request.
3326 *
3327 * SCI_SUCCESS on successfull completion, or specific failure code.
3328 */
3329static enum sci_status isci_io_request_build(struct isci_host *ihost,
3330					     struct isci_request *request,
3331					     struct isci_remote_device *idev)
3332{
3333	enum sci_status status = SCI_SUCCESS;
3334	struct sas_task *task = isci_request_access_task(request);
3335
3336	dev_dbg(&ihost->pdev->dev,
3337		"%s: idev = 0x%p; request = %p, "
3338		"num_scatter = %d\n",
3339		__func__,
3340		idev,
3341		request,
3342		task->num_scatter);
3343
3344	/* map the sgl addresses, if present.
3345	 * libata does the mapping for sata devices
3346	 * before we get the request.
3347	 */
3348	if (task->num_scatter &&
3349	    !sas_protocol_ata(task->task_proto) &&
3350	    !(SAS_PROTOCOL_SMP & task->task_proto)) {
3351
3352		request->num_sg_entries = dma_map_sg(
3353			&ihost->pdev->dev,
3354			task->scatter,
3355			task->num_scatter,
3356			task->data_dir
3357			);
3358
3359		if (request->num_sg_entries == 0)
3360			return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3361	}
3362
3363	status = sci_io_request_construct(ihost, idev, request);
3364
3365	if (status != SCI_SUCCESS) {
3366		dev_dbg(&ihost->pdev->dev,
3367			 "%s: failed request construct\n",
3368			 __func__);
3369		return SCI_FAILURE;
3370	}
3371
3372	switch (task->task_proto) {
3373	case SAS_PROTOCOL_SMP:
3374		status = isci_smp_request_build(request);
3375		break;
3376	case SAS_PROTOCOL_SSP:
3377		status = isci_request_ssp_request_construct(request);
3378		break;
3379	case SAS_PROTOCOL_SATA:
3380	case SAS_PROTOCOL_STP:
3381	case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3382		status = isci_request_stp_request_construct(request);
3383		break;
3384	default:
3385		dev_dbg(&ihost->pdev->dev,
3386			 "%s: unknown protocol\n", __func__);
3387		return SCI_FAILURE;
3388	}
3389
3390	return status;
3391}
3392
3393static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3394{
3395	struct isci_request *ireq;
3396
3397	ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3398	ireq->io_tag = tag;
3399	ireq->io_request_completion = NULL;
3400	ireq->flags = 0;
3401	ireq->num_sg_entries = 0;
3402
3403	return ireq;
3404}
3405
3406struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3407					      struct sas_task *task,
3408					      u16 tag)
3409{
3410	struct isci_request *ireq;
3411
3412	ireq = isci_request_from_tag(ihost, tag);
3413	ireq->ttype_ptr.io_task_ptr = task;
3414	clear_bit(IREQ_TMF, &ireq->flags);
3415	task->lldd_task = ireq;
3416
3417	return ireq;
3418}
3419
3420struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3421					       struct isci_tmf *isci_tmf,
3422					       u16 tag)
3423{
3424	struct isci_request *ireq;
3425
3426	ireq = isci_request_from_tag(ihost, tag);
3427	ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3428	set_bit(IREQ_TMF, &ireq->flags);
3429
3430	return ireq;
3431}
3432
3433int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3434			 struct sas_task *task, struct isci_request *ireq)
3435{
3436	enum sci_status status;
3437	unsigned long flags;
3438	int ret = 0;
3439
3440	status = isci_io_request_build(ihost, ireq, idev);
3441	if (status != SCI_SUCCESS) {
3442		dev_dbg(&ihost->pdev->dev,
3443			 "%s: request_construct failed - status = 0x%x\n",
3444			 __func__,
3445			 status);
3446		return status;
3447	}
3448
3449	spin_lock_irqsave(&ihost->scic_lock, flags);
3450
3451	if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3452
3453		if (isci_task_is_ncq_recovery(task)) {
3454
3455			/* The device is in an NCQ recovery state.  Issue the
3456			 * request on the task side.  Note that it will
3457			 * complete on the I/O request side because the
3458			 * request was built that way (ie.
3459			 * ireq->is_task_management_request is false).
3460			 */
3461			status = sci_controller_start_task(ihost,
3462							    idev,
3463							    ireq);
3464		} else {
3465			status = SCI_FAILURE;
3466		}
3467	} else {
3468		/* send the request, let the core assign the IO TAG.	*/
3469		status = sci_controller_start_io(ihost, idev,
3470						  ireq);
3471	}
3472
3473	if (status != SCI_SUCCESS &&
3474	    status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3475		dev_dbg(&ihost->pdev->dev,
3476			 "%s: failed request start (0x%x)\n",
3477			 __func__, status);
3478		spin_unlock_irqrestore(&ihost->scic_lock, flags);
3479		return status;
3480	}
3481	/* Either I/O started OK, or the core has signaled that
3482	 * the device needs a target reset.
3483	 */
3484	if (status != SCI_SUCCESS) {
3485		/* The request did not really start in the
3486		 * hardware, so clear the request handle
3487		 * here so no terminations will be done.
3488		 */
3489		set_bit(IREQ_TERMINATED, &ireq->flags);
3490	}
3491	spin_unlock_irqrestore(&ihost->scic_lock, flags);
3492
3493	if (status ==
3494	    SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3495		/* Signal libsas that we need the SCSI error
3496		 * handler thread to work on this I/O and that
3497		 * we want a device reset.
3498		 */
3499		spin_lock_irqsave(&task->task_state_lock, flags);
3500		task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3501		spin_unlock_irqrestore(&task->task_state_lock, flags);
3502
3503		/* Cause this task to be scheduled in the SCSI error
3504		 * handler thread.
3505		 */
3506		sas_task_abort(task);
3507
3508		/* Change the status, since we are holding
3509		 * the I/O until it is managed by the SCSI
3510		 * error handler.
3511		 */
3512		status = SCI_SUCCESS;
3513	}
3514
3515	return ret;
3516}
3517