1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * CXL Flash Device Driver
4 *
5 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
6 *             Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
7 *
8 * Copyright (C) 2015 IBM Corporation
9 */
10
11#include <linux/delay.h>
12#include <linux/list.h>
13#include <linux/module.h>
14#include <linux/pci.h>
15
16#include <asm/unaligned.h>
17
18#include <scsi/scsi_cmnd.h>
19#include <scsi/scsi_host.h>
20#include <uapi/scsi/cxlflash_ioctl.h>
21
22#include "main.h"
23#include "sislite.h"
24#include "common.h"
25
26MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
27MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
28MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
29MODULE_LICENSE("GPL");
30
31static char *cxlflash_devnode(const struct device *dev, umode_t *mode);
32static const struct class cxlflash_class = {
33	.name = "cxlflash",
34	.devnode = cxlflash_devnode,
35};
36
37static u32 cxlflash_major;
38static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
39
40/**
41 * process_cmd_err() - command error handler
42 * @cmd:	AFU command that experienced the error.
43 * @scp:	SCSI command associated with the AFU command in error.
44 *
45 * Translates error bits from AFU command to SCSI command results.
46 */
47static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
48{
49	struct afu *afu = cmd->parent;
50	struct cxlflash_cfg *cfg = afu->parent;
51	struct device *dev = &cfg->dev->dev;
52	struct sisl_ioasa *ioasa;
53	u32 resid;
54
55	ioasa = &(cmd->sa);
56
57	if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
58		resid = ioasa->resid;
59		scsi_set_resid(scp, resid);
60		dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
61			__func__, cmd, scp, resid);
62	}
63
64	if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
65		dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
66			__func__, cmd, scp);
67		scp->result = (DID_ERROR << 16);
68	}
69
70	dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
71		"afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
72		ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
73		ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
74
75	if (ioasa->rc.scsi_rc) {
76		/* We have a SCSI status */
77		if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
78			memcpy(scp->sense_buffer, ioasa->sense_data,
79			       SISL_SENSE_DATA_LEN);
80			scp->result = ioasa->rc.scsi_rc;
81		} else
82			scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
83	}
84
85	/*
86	 * We encountered an error. Set scp->result based on nature
87	 * of error.
88	 */
89	if (ioasa->rc.fc_rc) {
90		/* We have an FC status */
91		switch (ioasa->rc.fc_rc) {
92		case SISL_FC_RC_LINKDOWN:
93			scp->result = (DID_REQUEUE << 16);
94			break;
95		case SISL_FC_RC_RESID:
96			/* This indicates an FCP resid underrun */
97			if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
98				/* If the SISL_RC_FLAGS_OVERRUN flag was set,
99				 * then we will handle this error else where.
100				 * If not then we must handle it here.
101				 * This is probably an AFU bug.
102				 */
103				scp->result = (DID_ERROR << 16);
104			}
105			break;
106		case SISL_FC_RC_RESIDERR:
107			/* Resid mismatch between adapter and device */
108		case SISL_FC_RC_TGTABORT:
109		case SISL_FC_RC_ABORTOK:
110		case SISL_FC_RC_ABORTFAIL:
111		case SISL_FC_RC_NOLOGI:
112		case SISL_FC_RC_ABORTPEND:
113		case SISL_FC_RC_WRABORTPEND:
114		case SISL_FC_RC_NOEXP:
115		case SISL_FC_RC_INUSE:
116			scp->result = (DID_ERROR << 16);
117			break;
118		}
119	}
120
121	if (ioasa->rc.afu_rc) {
122		/* We have an AFU error */
123		switch (ioasa->rc.afu_rc) {
124		case SISL_AFU_RC_NO_CHANNELS:
125			scp->result = (DID_NO_CONNECT << 16);
126			break;
127		case SISL_AFU_RC_DATA_DMA_ERR:
128			switch (ioasa->afu_extra) {
129			case SISL_AFU_DMA_ERR_PAGE_IN:
130				/* Retry */
131				scp->result = (DID_IMM_RETRY << 16);
132				break;
133			case SISL_AFU_DMA_ERR_INVALID_EA:
134			default:
135				scp->result = (DID_ERROR << 16);
136			}
137			break;
138		case SISL_AFU_RC_OUT_OF_DATA_BUFS:
139			/* Retry */
140			scp->result = (DID_ERROR << 16);
141			break;
142		default:
143			scp->result = (DID_ERROR << 16);
144		}
145	}
146}
147
148/**
149 * cmd_complete() - command completion handler
150 * @cmd:	AFU command that has completed.
151 *
152 * For SCSI commands this routine prepares and submits commands that have
153 * either completed or timed out to the SCSI stack. For internal commands
154 * (TMF or AFU), this routine simply notifies the originator that the
155 * command has completed.
156 */
157static void cmd_complete(struct afu_cmd *cmd)
158{
159	struct scsi_cmnd *scp;
160	ulong lock_flags;
161	struct afu *afu = cmd->parent;
162	struct cxlflash_cfg *cfg = afu->parent;
163	struct device *dev = &cfg->dev->dev;
164	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
165
166	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
167	list_del(&cmd->list);
168	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
169
170	if (cmd->scp) {
171		scp = cmd->scp;
172		if (unlikely(cmd->sa.ioasc))
173			process_cmd_err(cmd, scp);
174		else
175			scp->result = (DID_OK << 16);
176
177		dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
178				    __func__, scp, scp->result, cmd->sa.ioasc);
179		scsi_done(scp);
180	} else if (cmd->cmd_tmf) {
181		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
182		cfg->tmf_active = false;
183		wake_up_all_locked(&cfg->tmf_waitq);
184		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
185	} else
186		complete(&cmd->cevent);
187}
188
189/**
190 * flush_pending_cmds() - flush all pending commands on this hardware queue
191 * @hwq:	Hardware queue to flush.
192 *
193 * The hardware send queue lock associated with this hardware queue must be
194 * held when calling this routine.
195 */
196static void flush_pending_cmds(struct hwq *hwq)
197{
198	struct cxlflash_cfg *cfg = hwq->afu->parent;
199	struct afu_cmd *cmd, *tmp;
200	struct scsi_cmnd *scp;
201	ulong lock_flags;
202
203	list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) {
204		/* Bypass command when on a doneq, cmd_complete() will handle */
205		if (!list_empty(&cmd->queue))
206			continue;
207
208		list_del(&cmd->list);
209
210		if (cmd->scp) {
211			scp = cmd->scp;
212			scp->result = (DID_IMM_RETRY << 16);
213			scsi_done(scp);
214		} else {
215			cmd->cmd_aborted = true;
216
217			if (cmd->cmd_tmf) {
218				spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
219				cfg->tmf_active = false;
220				wake_up_all_locked(&cfg->tmf_waitq);
221				spin_unlock_irqrestore(&cfg->tmf_slock,
222						       lock_flags);
223			} else
224				complete(&cmd->cevent);
225		}
226	}
227}
228
229/**
230 * context_reset() - reset context via specified register
231 * @hwq:	Hardware queue owning the context to be reset.
232 * @reset_reg:	MMIO register to perform reset.
233 *
234 * When the reset is successful, the SISLite specification guarantees that
235 * the AFU has aborted all currently pending I/O. Accordingly, these commands
236 * must be flushed.
237 *
238 * Return: 0 on success, -errno on failure
239 */
240static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg)
241{
242	struct cxlflash_cfg *cfg = hwq->afu->parent;
243	struct device *dev = &cfg->dev->dev;
244	int rc = -ETIMEDOUT;
245	int nretry = 0;
246	u64 val = 0x1;
247	ulong lock_flags;
248
249	dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq);
250
251	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
252
253	writeq_be(val, reset_reg);
254	do {
255		val = readq_be(reset_reg);
256		if ((val & 0x1) == 0x0) {
257			rc = 0;
258			break;
259		}
260
261		/* Double delay each time */
262		udelay(1 << nretry);
263	} while (nretry++ < MC_ROOM_RETRY_CNT);
264
265	if (!rc)
266		flush_pending_cmds(hwq);
267
268	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
269
270	dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n",
271		__func__, rc, val, nretry);
272	return rc;
273}
274
275/**
276 * context_reset_ioarrin() - reset context via IOARRIN register
277 * @hwq:	Hardware queue owning the context to be reset.
278 *
279 * Return: 0 on success, -errno on failure
280 */
281static int context_reset_ioarrin(struct hwq *hwq)
282{
283	return context_reset(hwq, &hwq->host_map->ioarrin);
284}
285
286/**
287 * context_reset_sq() - reset context via SQ_CONTEXT_RESET register
288 * @hwq:	Hardware queue owning the context to be reset.
289 *
290 * Return: 0 on success, -errno on failure
291 */
292static int context_reset_sq(struct hwq *hwq)
293{
294	return context_reset(hwq, &hwq->host_map->sq_ctx_reset);
295}
296
297/**
298 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
299 * @afu:	AFU associated with the host.
300 * @cmd:	AFU command to send.
301 *
302 * Return:
303 *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
304 */
305static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
306{
307	struct cxlflash_cfg *cfg = afu->parent;
308	struct device *dev = &cfg->dev->dev;
309	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
310	int rc = 0;
311	s64 room;
312	ulong lock_flags;
313
314	/*
315	 * To avoid the performance penalty of MMIO, spread the update of
316	 * 'room' over multiple commands.
317	 */
318	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
319	if (--hwq->room < 0) {
320		room = readq_be(&hwq->host_map->cmd_room);
321		if (room <= 0) {
322			dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
323					    "0x%02X, room=0x%016llX\n",
324					    __func__, cmd->rcb.cdb[0], room);
325			hwq->room = 0;
326			rc = SCSI_MLQUEUE_HOST_BUSY;
327			goto out;
328		}
329		hwq->room = room - 1;
330	}
331
332	list_add(&cmd->list, &hwq->pending_cmds);
333	writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
334out:
335	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
336	dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n",
337		__func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
338	return rc;
339}
340
341/**
342 * send_cmd_sq() - sends an AFU command via SQ ring
343 * @afu:	AFU associated with the host.
344 * @cmd:	AFU command to send.
345 *
346 * Return:
347 *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
348 */
349static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
350{
351	struct cxlflash_cfg *cfg = afu->parent;
352	struct device *dev = &cfg->dev->dev;
353	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
354	int rc = 0;
355	int newval;
356	ulong lock_flags;
357
358	newval = atomic_dec_if_positive(&hwq->hsq_credits);
359	if (newval <= 0) {
360		rc = SCSI_MLQUEUE_HOST_BUSY;
361		goto out;
362	}
363
364	cmd->rcb.ioasa = &cmd->sa;
365
366	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
367
368	*hwq->hsq_curr = cmd->rcb;
369	if (hwq->hsq_curr < hwq->hsq_end)
370		hwq->hsq_curr++;
371	else
372		hwq->hsq_curr = hwq->hsq_start;
373
374	list_add(&cmd->list, &hwq->pending_cmds);
375	writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
376
377	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
378out:
379	dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
380	       "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
381	       cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
382	       readq_be(&hwq->host_map->sq_head),
383	       readq_be(&hwq->host_map->sq_tail));
384	return rc;
385}
386
387/**
388 * wait_resp() - polls for a response or timeout to a sent AFU command
389 * @afu:	AFU associated with the host.
390 * @cmd:	AFU command that was sent.
391 *
392 * Return: 0 on success, -errno on failure
393 */
394static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
395{
396	struct cxlflash_cfg *cfg = afu->parent;
397	struct device *dev = &cfg->dev->dev;
398	int rc = 0;
399	ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
400
401	timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
402	if (!timeout)
403		rc = -ETIMEDOUT;
404
405	if (cmd->cmd_aborted)
406		rc = -EAGAIN;
407
408	if (unlikely(cmd->sa.ioasc != 0)) {
409		dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
410			__func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
411		rc = -EIO;
412	}
413
414	return rc;
415}
416
417/**
418 * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command
419 * @host:	SCSI host associated with device.
420 * @scp:	SCSI command to send.
421 * @afu:	SCSI command to send.
422 *
423 * Hashes a command based upon the hardware queue mode.
424 *
425 * Return: Trusted index of target hardware queue
426 */
427static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp,
428			     struct afu *afu)
429{
430	u32 tag;
431	u32 hwq = 0;
432
433	if (afu->num_hwqs == 1)
434		return 0;
435
436	switch (afu->hwq_mode) {
437	case HWQ_MODE_RR:
438		hwq = afu->hwq_rr_count++ % afu->num_hwqs;
439		break;
440	case HWQ_MODE_TAG:
441		tag = blk_mq_unique_tag(scsi_cmd_to_rq(scp));
442		hwq = blk_mq_unique_tag_to_hwq(tag);
443		break;
444	case HWQ_MODE_CPU:
445		hwq = smp_processor_id() % afu->num_hwqs;
446		break;
447	default:
448		WARN_ON_ONCE(1);
449	}
450
451	return hwq;
452}
453
454/**
455 * send_tmf() - sends a Task Management Function (TMF)
456 * @cfg:	Internal structure associated with the host.
457 * @sdev:	SCSI device destined for TMF.
458 * @tmfcmd:	TMF command to send.
459 *
460 * Return:
461 *	0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure
462 */
463static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev,
464		    u64 tmfcmd)
465{
466	struct afu *afu = cfg->afu;
467	struct afu_cmd *cmd = NULL;
468	struct device *dev = &cfg->dev->dev;
469	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
470	bool needs_deletion = false;
471	char *buf = NULL;
472	ulong lock_flags;
473	int rc = 0;
474	ulong to;
475
476	buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
477	if (unlikely(!buf)) {
478		dev_err(dev, "%s: no memory for command\n", __func__);
479		rc = -ENOMEM;
480		goto out;
481	}
482
483	cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
484	INIT_LIST_HEAD(&cmd->queue);
485
486	/* When Task Management Function is active do not send another */
487	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
488	if (cfg->tmf_active)
489		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
490						  !cfg->tmf_active,
491						  cfg->tmf_slock);
492	cfg->tmf_active = true;
493	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
494
495	cmd->parent = afu;
496	cmd->cmd_tmf = true;
497	cmd->hwq_index = hwq->index;
498
499	cmd->rcb.ctx_id = hwq->ctx_hndl;
500	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
501	cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel);
502	cmd->rcb.lun_id = lun_to_lunid(sdev->lun);
503	cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
504			      SISL_REQ_FLAGS_SUP_UNDERRUN |
505			      SISL_REQ_FLAGS_TMF_CMD);
506	memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
507
508	rc = afu->send_cmd(afu, cmd);
509	if (unlikely(rc)) {
510		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
511		cfg->tmf_active = false;
512		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
513		goto out;
514	}
515
516	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
517	to = msecs_to_jiffies(5000);
518	to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
519						       !cfg->tmf_active,
520						       cfg->tmf_slock,
521						       to);
522	if (!to) {
523		dev_err(dev, "%s: TMF timed out\n", __func__);
524		rc = -ETIMEDOUT;
525		needs_deletion = true;
526	} else if (cmd->cmd_aborted) {
527		dev_err(dev, "%s: TMF aborted\n", __func__);
528		rc = -EAGAIN;
529	} else if (cmd->sa.ioasc) {
530		dev_err(dev, "%s: TMF failed ioasc=%08x\n",
531			__func__, cmd->sa.ioasc);
532		rc = -EIO;
533	}
534	cfg->tmf_active = false;
535	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
536
537	if (needs_deletion) {
538		spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
539		list_del(&cmd->list);
540		spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
541	}
542out:
543	kfree(buf);
544	return rc;
545}
546
547/**
548 * cxlflash_driver_info() - information handler for this host driver
549 * @host:	SCSI host associated with device.
550 *
551 * Return: A string describing the device.
552 */
553static const char *cxlflash_driver_info(struct Scsi_Host *host)
554{
555	return CXLFLASH_ADAPTER_NAME;
556}
557
558/**
559 * cxlflash_queuecommand() - sends a mid-layer request
560 * @host:	SCSI host associated with device.
561 * @scp:	SCSI command to send.
562 *
563 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
564 */
565static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
566{
567	struct cxlflash_cfg *cfg = shost_priv(host);
568	struct afu *afu = cfg->afu;
569	struct device *dev = &cfg->dev->dev;
570	struct afu_cmd *cmd = sc_to_afuci(scp);
571	struct scatterlist *sg = scsi_sglist(scp);
572	int hwq_index = cmd_to_target_hwq(host, scp, afu);
573	struct hwq *hwq = get_hwq(afu, hwq_index);
574	u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
575	ulong lock_flags;
576	int rc = 0;
577
578	dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
579			    "cdb=(%08x-%08x-%08x-%08x)\n",
580			    __func__, scp, host->host_no, scp->device->channel,
581			    scp->device->id, scp->device->lun,
582			    get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
583			    get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
584			    get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
585			    get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
586
587	/*
588	 * If a Task Management Function is active, wait for it to complete
589	 * before continuing with regular commands.
590	 */
591	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
592	if (cfg->tmf_active) {
593		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
594		rc = SCSI_MLQUEUE_HOST_BUSY;
595		goto out;
596	}
597	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
598
599	switch (cfg->state) {
600	case STATE_PROBING:
601	case STATE_PROBED:
602	case STATE_RESET:
603		dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
604		rc = SCSI_MLQUEUE_HOST_BUSY;
605		goto out;
606	case STATE_FAILTERM:
607		dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
608		scp->result = (DID_NO_CONNECT << 16);
609		scsi_done(scp);
610		rc = 0;
611		goto out;
612	default:
613		atomic_inc(&afu->cmds_active);
614		break;
615	}
616
617	if (likely(sg)) {
618		cmd->rcb.data_len = sg->length;
619		cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
620	}
621
622	cmd->scp = scp;
623	cmd->parent = afu;
624	cmd->hwq_index = hwq_index;
625
626	cmd->sa.ioasc = 0;
627	cmd->rcb.ctx_id = hwq->ctx_hndl;
628	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
629	cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
630	cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
631
632	if (scp->sc_data_direction == DMA_TO_DEVICE)
633		req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
634
635	cmd->rcb.req_flags = req_flags;
636	memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
637
638	rc = afu->send_cmd(afu, cmd);
639	atomic_dec(&afu->cmds_active);
640out:
641	return rc;
642}
643
644/**
645 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
646 * @cfg:	Internal structure associated with the host.
647 */
648static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
649{
650	struct pci_dev *pdev = cfg->dev;
651
652	if (pci_channel_offline(pdev))
653		wait_event_timeout(cfg->reset_waitq,
654				   !pci_channel_offline(pdev),
655				   CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
656}
657
658/**
659 * free_mem() - free memory associated with the AFU
660 * @cfg:	Internal structure associated with the host.
661 */
662static void free_mem(struct cxlflash_cfg *cfg)
663{
664	struct afu *afu = cfg->afu;
665
666	if (cfg->afu) {
667		free_pages((ulong)afu, get_order(sizeof(struct afu)));
668		cfg->afu = NULL;
669	}
670}
671
672/**
673 * cxlflash_reset_sync() - synchronizing point for asynchronous resets
674 * @cfg:	Internal structure associated with the host.
675 */
676static void cxlflash_reset_sync(struct cxlflash_cfg *cfg)
677{
678	if (cfg->async_reset_cookie == 0)
679		return;
680
681	/* Wait until all async calls prior to this cookie have completed */
682	async_synchronize_cookie(cfg->async_reset_cookie + 1);
683	cfg->async_reset_cookie = 0;
684}
685
686/**
687 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
688 * @cfg:	Internal structure associated with the host.
689 *
690 * Safe to call with AFU in a partially allocated/initialized state.
691 *
692 * Cancels scheduled worker threads, waits for any active internal AFU
693 * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
694 */
695static void stop_afu(struct cxlflash_cfg *cfg)
696{
697	struct afu *afu = cfg->afu;
698	struct hwq *hwq;
699	int i;
700
701	cancel_work_sync(&cfg->work_q);
702	if (!current_is_async())
703		cxlflash_reset_sync(cfg);
704
705	if (likely(afu)) {
706		while (atomic_read(&afu->cmds_active))
707			ssleep(1);
708
709		if (afu_is_irqpoll_enabled(afu)) {
710			for (i = 0; i < afu->num_hwqs; i++) {
711				hwq = get_hwq(afu, i);
712
713				irq_poll_disable(&hwq->irqpoll);
714			}
715		}
716
717		if (likely(afu->afu_map)) {
718			cfg->ops->psa_unmap(afu->afu_map);
719			afu->afu_map = NULL;
720		}
721	}
722}
723
724/**
725 * term_intr() - disables all AFU interrupts
726 * @cfg:	Internal structure associated with the host.
727 * @level:	Depth of allocation, where to begin waterfall tear down.
728 * @index:	Index of the hardware queue.
729 *
730 * Safe to call with AFU/MC in partially allocated/initialized state.
731 */
732static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
733		      u32 index)
734{
735	struct afu *afu = cfg->afu;
736	struct device *dev = &cfg->dev->dev;
737	struct hwq *hwq;
738
739	if (!afu) {
740		dev_err(dev, "%s: returning with NULL afu\n", __func__);
741		return;
742	}
743
744	hwq = get_hwq(afu, index);
745
746	if (!hwq->ctx_cookie) {
747		dev_err(dev, "%s: returning with NULL MC\n", __func__);
748		return;
749	}
750
751	switch (level) {
752	case UNMAP_THREE:
753		/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
754		if (index == PRIMARY_HWQ)
755			cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq);
756		fallthrough;
757	case UNMAP_TWO:
758		cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq);
759		fallthrough;
760	case UNMAP_ONE:
761		cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq);
762		fallthrough;
763	case FREE_IRQ:
764		cfg->ops->free_afu_irqs(hwq->ctx_cookie);
765		fallthrough;
766	case UNDO_NOOP:
767		/* No action required */
768		break;
769	}
770}
771
772/**
773 * term_mc() - terminates the master context
774 * @cfg:	Internal structure associated with the host.
775 * @index:	Index of the hardware queue.
776 *
777 * Safe to call with AFU/MC in partially allocated/initialized state.
778 */
779static void term_mc(struct cxlflash_cfg *cfg, u32 index)
780{
781	struct afu *afu = cfg->afu;
782	struct device *dev = &cfg->dev->dev;
783	struct hwq *hwq;
784	ulong lock_flags;
785
786	if (!afu) {
787		dev_err(dev, "%s: returning with NULL afu\n", __func__);
788		return;
789	}
790
791	hwq = get_hwq(afu, index);
792
793	if (!hwq->ctx_cookie) {
794		dev_err(dev, "%s: returning with NULL MC\n", __func__);
795		return;
796	}
797
798	WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie));
799	if (index != PRIMARY_HWQ)
800		WARN_ON(cfg->ops->release_context(hwq->ctx_cookie));
801	hwq->ctx_cookie = NULL;
802
803	spin_lock_irqsave(&hwq->hrrq_slock, lock_flags);
804	hwq->hrrq_online = false;
805	spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags);
806
807	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
808	flush_pending_cmds(hwq);
809	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
810}
811
812/**
813 * term_afu() - terminates the AFU
814 * @cfg:	Internal structure associated with the host.
815 *
816 * Safe to call with AFU/MC in partially allocated/initialized state.
817 */
818static void term_afu(struct cxlflash_cfg *cfg)
819{
820	struct device *dev = &cfg->dev->dev;
821	int k;
822
823	/*
824	 * Tear down is carefully orchestrated to ensure
825	 * no interrupts can come in when the problem state
826	 * area is unmapped.
827	 *
828	 * 1) Disable all AFU interrupts for each master
829	 * 2) Unmap the problem state area
830	 * 3) Stop each master context
831	 */
832	for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
833		term_intr(cfg, UNMAP_THREE, k);
834
835	stop_afu(cfg);
836
837	for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
838		term_mc(cfg, k);
839
840	dev_dbg(dev, "%s: returning\n", __func__);
841}
842
843/**
844 * notify_shutdown() - notifies device of pending shutdown
845 * @cfg:	Internal structure associated with the host.
846 * @wait:	Whether to wait for shutdown processing to complete.
847 *
848 * This function will notify the AFU that the adapter is being shutdown
849 * and will wait for shutdown processing to complete if wait is true.
850 * This notification should flush pending I/Os to the device and halt
851 * further I/Os until the next AFU reset is issued and device restarted.
852 */
853static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
854{
855	struct afu *afu = cfg->afu;
856	struct device *dev = &cfg->dev->dev;
857	struct dev_dependent_vals *ddv;
858	__be64 __iomem *fc_port_regs;
859	u64 reg, status;
860	int i, retry_cnt = 0;
861
862	ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
863	if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
864		return;
865
866	if (!afu || !afu->afu_map) {
867		dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
868		return;
869	}
870
871	/* Notify AFU */
872	for (i = 0; i < cfg->num_fc_ports; i++) {
873		fc_port_regs = get_fc_port_regs(cfg, i);
874
875		reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
876		reg |= SISL_FC_SHUTDOWN_NORMAL;
877		writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
878	}
879
880	if (!wait)
881		return;
882
883	/* Wait up to 1.5 seconds for shutdown processing to complete */
884	for (i = 0; i < cfg->num_fc_ports; i++) {
885		fc_port_regs = get_fc_port_regs(cfg, i);
886		retry_cnt = 0;
887
888		while (true) {
889			status = readq_be(&fc_port_regs[FC_STATUS / 8]);
890			if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
891				break;
892			if (++retry_cnt >= MC_RETRY_CNT) {
893				dev_dbg(dev, "%s: port %d shutdown processing "
894					"not yet completed\n", __func__, i);
895				break;
896			}
897			msleep(100 * retry_cnt);
898		}
899	}
900}
901
902/**
903 * cxlflash_get_minor() - gets the first available minor number
904 *
905 * Return: Unique minor number that can be used to create the character device.
906 */
907static int cxlflash_get_minor(void)
908{
909	int minor;
910	long bit;
911
912	bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
913	if (bit >= CXLFLASH_MAX_ADAPTERS)
914		return -1;
915
916	minor = bit & MINORMASK;
917	set_bit(minor, cxlflash_minor);
918	return minor;
919}
920
921/**
922 * cxlflash_put_minor() - releases the minor number
923 * @minor:	Minor number that is no longer needed.
924 */
925static void cxlflash_put_minor(int minor)
926{
927	clear_bit(minor, cxlflash_minor);
928}
929
930/**
931 * cxlflash_release_chrdev() - release the character device for the host
932 * @cfg:	Internal structure associated with the host.
933 */
934static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg)
935{
936	device_unregister(cfg->chardev);
937	cfg->chardev = NULL;
938	cdev_del(&cfg->cdev);
939	cxlflash_put_minor(MINOR(cfg->cdev.dev));
940}
941
942/**
943 * cxlflash_remove() - PCI entry point to tear down host
944 * @pdev:	PCI device associated with the host.
945 *
946 * Safe to use as a cleanup in partially allocated/initialized state. Note that
947 * the reset_waitq is flushed as part of the stop/termination of user contexts.
948 */
949static void cxlflash_remove(struct pci_dev *pdev)
950{
951	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
952	struct device *dev = &pdev->dev;
953	ulong lock_flags;
954
955	if (!pci_is_enabled(pdev)) {
956		dev_dbg(dev, "%s: Device is disabled\n", __func__);
957		return;
958	}
959
960	/* Yield to running recovery threads before continuing with remove */
961	wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
962				     cfg->state != STATE_PROBING);
963	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
964	if (cfg->tmf_active)
965		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
966						  !cfg->tmf_active,
967						  cfg->tmf_slock);
968	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
969
970	/* Notify AFU and wait for shutdown processing to complete */
971	notify_shutdown(cfg, true);
972
973	cfg->state = STATE_FAILTERM;
974	cxlflash_stop_term_user_contexts(cfg);
975
976	switch (cfg->init_state) {
977	case INIT_STATE_CDEV:
978		cxlflash_release_chrdev(cfg);
979		fallthrough;
980	case INIT_STATE_SCSI:
981		cxlflash_term_local_luns(cfg);
982		scsi_remove_host(cfg->host);
983		fallthrough;
984	case INIT_STATE_AFU:
985		term_afu(cfg);
986		fallthrough;
987	case INIT_STATE_PCI:
988		cfg->ops->destroy_afu(cfg->afu_cookie);
989		pci_disable_device(pdev);
990		fallthrough;
991	case INIT_STATE_NONE:
992		free_mem(cfg);
993		scsi_host_put(cfg->host);
994		break;
995	}
996
997	dev_dbg(dev, "%s: returning\n", __func__);
998}
999
1000/**
1001 * alloc_mem() - allocates the AFU and its command pool
1002 * @cfg:	Internal structure associated with the host.
1003 *
1004 * A partially allocated state remains on failure.
1005 *
1006 * Return:
1007 *	0 on success
1008 *	-ENOMEM on failure to allocate memory
1009 */
1010static int alloc_mem(struct cxlflash_cfg *cfg)
1011{
1012	int rc = 0;
1013	struct device *dev = &cfg->dev->dev;
1014
1015	/* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
1016	cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1017					    get_order(sizeof(struct afu)));
1018	if (unlikely(!cfg->afu)) {
1019		dev_err(dev, "%s: cannot get %d free pages\n",
1020			__func__, get_order(sizeof(struct afu)));
1021		rc = -ENOMEM;
1022		goto out;
1023	}
1024	cfg->afu->parent = cfg;
1025	cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS;
1026	cfg->afu->afu_map = NULL;
1027out:
1028	return rc;
1029}
1030
1031/**
1032 * init_pci() - initializes the host as a PCI device
1033 * @cfg:	Internal structure associated with the host.
1034 *
1035 * Return: 0 on success, -errno on failure
1036 */
1037static int init_pci(struct cxlflash_cfg *cfg)
1038{
1039	struct pci_dev *pdev = cfg->dev;
1040	struct device *dev = &cfg->dev->dev;
1041	int rc = 0;
1042
1043	rc = pci_enable_device(pdev);
1044	if (rc || pci_channel_offline(pdev)) {
1045		if (pci_channel_offline(pdev)) {
1046			cxlflash_wait_for_pci_err_recovery(cfg);
1047			rc = pci_enable_device(pdev);
1048		}
1049
1050		if (rc) {
1051			dev_err(dev, "%s: Cannot enable adapter\n", __func__);
1052			cxlflash_wait_for_pci_err_recovery(cfg);
1053			goto out;
1054		}
1055	}
1056
1057out:
1058	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1059	return rc;
1060}
1061
1062/**
1063 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
1064 * @cfg:	Internal structure associated with the host.
1065 *
1066 * Return: 0 on success, -errno on failure
1067 */
1068static int init_scsi(struct cxlflash_cfg *cfg)
1069{
1070	struct pci_dev *pdev = cfg->dev;
1071	struct device *dev = &cfg->dev->dev;
1072	int rc = 0;
1073
1074	rc = scsi_add_host(cfg->host, &pdev->dev);
1075	if (rc) {
1076		dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
1077		goto out;
1078	}
1079
1080	scsi_scan_host(cfg->host);
1081
1082out:
1083	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1084	return rc;
1085}
1086
1087/**
1088 * set_port_online() - transitions the specified host FC port to online state
1089 * @fc_regs:	Top of MMIO region defined for specified port.
1090 *
1091 * The provided MMIO region must be mapped prior to call. Online state means
1092 * that the FC link layer has synced, completed the handshaking process, and
1093 * is ready for login to start.
1094 */
1095static void set_port_online(__be64 __iomem *fc_regs)
1096{
1097	u64 cmdcfg;
1098
1099	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1100	cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE);	/* clear OFF_LINE */
1101	cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE);	/* set ON_LINE */
1102	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1103}
1104
1105/**
1106 * set_port_offline() - transitions the specified host FC port to offline state
1107 * @fc_regs:	Top of MMIO region defined for specified port.
1108 *
1109 * The provided MMIO region must be mapped prior to call.
1110 */
1111static void set_port_offline(__be64 __iomem *fc_regs)
1112{
1113	u64 cmdcfg;
1114
1115	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1116	cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE);	/* clear ON_LINE */
1117	cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE);	/* set OFF_LINE */
1118	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1119}
1120
1121/**
1122 * wait_port_online() - waits for the specified host FC port come online
1123 * @fc_regs:	Top of MMIO region defined for specified port.
1124 * @delay_us:	Number of microseconds to delay between reading port status.
1125 * @nretry:	Number of cycles to retry reading port status.
1126 *
1127 * The provided MMIO region must be mapped prior to call. This will timeout
1128 * when the cable is not plugged in.
1129 *
1130 * Return:
1131 *	TRUE (1) when the specified port is online
1132 *	FALSE (0) when the specified port fails to come online after timeout
1133 */
1134static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1135{
1136	u64 status;
1137
1138	WARN_ON(delay_us < 1000);
1139
1140	do {
1141		msleep(delay_us / 1000);
1142		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1143		if (status == U64_MAX)
1144			nretry /= 2;
1145	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
1146		 nretry--);
1147
1148	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
1149}
1150
1151/**
1152 * wait_port_offline() - waits for the specified host FC port go offline
1153 * @fc_regs:	Top of MMIO region defined for specified port.
1154 * @delay_us:	Number of microseconds to delay between reading port status.
1155 * @nretry:	Number of cycles to retry reading port status.
1156 *
1157 * The provided MMIO region must be mapped prior to call.
1158 *
1159 * Return:
1160 *	TRUE (1) when the specified port is offline
1161 *	FALSE (0) when the specified port fails to go offline after timeout
1162 */
1163static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1164{
1165	u64 status;
1166
1167	WARN_ON(delay_us < 1000);
1168
1169	do {
1170		msleep(delay_us / 1000);
1171		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1172		if (status == U64_MAX)
1173			nretry /= 2;
1174	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1175		 nretry--);
1176
1177	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1178}
1179
1180/**
1181 * afu_set_wwpn() - configures the WWPN for the specified host FC port
1182 * @afu:	AFU associated with the host that owns the specified FC port.
1183 * @port:	Port number being configured.
1184 * @fc_regs:	Top of MMIO region defined for specified port.
1185 * @wwpn:	The world-wide-port-number previously discovered for port.
1186 *
1187 * The provided MMIO region must be mapped prior to call. As part of the
1188 * sequence to configure the WWPN, the port is toggled offline and then back
1189 * online. This toggling action can cause this routine to delay up to a few
1190 * seconds. When configured to use the internal LUN feature of the AFU, a
1191 * failure to come online is overridden.
1192 */
1193static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1194			 u64 wwpn)
1195{
1196	struct cxlflash_cfg *cfg = afu->parent;
1197	struct device *dev = &cfg->dev->dev;
1198
1199	set_port_offline(fc_regs);
1200	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1201			       FC_PORT_STATUS_RETRY_CNT)) {
1202		dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
1203			__func__, port);
1204	}
1205
1206	writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1207
1208	set_port_online(fc_regs);
1209	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1210			      FC_PORT_STATUS_RETRY_CNT)) {
1211		dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
1212			__func__, port);
1213	}
1214}
1215
1216/**
1217 * afu_link_reset() - resets the specified host FC port
1218 * @afu:	AFU associated with the host that owns the specified FC port.
1219 * @port:	Port number being configured.
1220 * @fc_regs:	Top of MMIO region defined for specified port.
1221 *
1222 * The provided MMIO region must be mapped prior to call. The sequence to
1223 * reset the port involves toggling it offline and then back online. This
1224 * action can cause this routine to delay up to a few seconds. An effort
1225 * is made to maintain link with the device by switching to host to use
1226 * the alternate port exclusively while the reset takes place.
1227 * failure to come online is overridden.
1228 */
1229static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
1230{
1231	struct cxlflash_cfg *cfg = afu->parent;
1232	struct device *dev = &cfg->dev->dev;
1233	u64 port_sel;
1234
1235	/* first switch the AFU to the other links, if any */
1236	port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1237	port_sel &= ~(1ULL << port);
1238	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1239	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1240
1241	set_port_offline(fc_regs);
1242	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1243			       FC_PORT_STATUS_RETRY_CNT))
1244		dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1245			__func__, port);
1246
1247	set_port_online(fc_regs);
1248	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1249			      FC_PORT_STATUS_RETRY_CNT))
1250		dev_err(dev, "%s: wait on port %d to go online timed out\n",
1251			__func__, port);
1252
1253	/* switch back to include this port */
1254	port_sel |= (1ULL << port);
1255	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1256	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1257
1258	dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1259}
1260
1261/**
1262 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1263 * @afu:	AFU associated with the host.
1264 */
1265static void afu_err_intr_init(struct afu *afu)
1266{
1267	struct cxlflash_cfg *cfg = afu->parent;
1268	__be64 __iomem *fc_port_regs;
1269	int i;
1270	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
1271	u64 reg;
1272
1273	/* global async interrupts: AFU clears afu_ctrl on context exit
1274	 * if async interrupts were sent to that context. This prevents
1275	 * the AFU form sending further async interrupts when
1276	 * there is
1277	 * nobody to receive them.
1278	 */
1279
1280	/* mask all */
1281	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1282	/* set LISN# to send and point to primary master context */
1283	reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1284
1285	if (afu->internal_lun)
1286		reg |= 1;	/* Bit 63 indicates local lun */
1287	writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1288	/* clear all */
1289	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1290	/* unmask bits that are of interest */
1291	/* note: afu can send an interrupt after this step */
1292	writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1293	/* clear again in case a bit came on after previous clear but before */
1294	/* unmask */
1295	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1296
1297	/* Clear/Set internal lun bits */
1298	fc_port_regs = get_fc_port_regs(cfg, 0);
1299	reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
1300	reg &= SISL_FC_INTERNAL_MASK;
1301	if (afu->internal_lun)
1302		reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1303	writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
1304
1305	/* now clear FC errors */
1306	for (i = 0; i < cfg->num_fc_ports; i++) {
1307		fc_port_regs = get_fc_port_regs(cfg, i);
1308
1309		writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
1310		writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1311	}
1312
1313	/* sync interrupts for master's IOARRIN write */
1314	/* note that unlike asyncs, there can be no pending sync interrupts */
1315	/* at this time (this is a fresh context and master has not written */
1316	/* IOARRIN yet), so there is nothing to clear. */
1317
1318	/* set LISN#, it is always sent to the context that wrote IOARRIN */
1319	for (i = 0; i < afu->num_hwqs; i++) {
1320		hwq = get_hwq(afu, i);
1321
1322		reg = readq_be(&hwq->host_map->ctx_ctrl);
1323		WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0);
1324		reg |= SISL_MSI_SYNC_ERROR;
1325		writeq_be(reg, &hwq->host_map->ctx_ctrl);
1326		writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
1327	}
1328}
1329
1330/**
1331 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1332 * @irq:	Interrupt number.
1333 * @data:	Private data provided at interrupt registration, the AFU.
1334 *
1335 * Return: Always return IRQ_HANDLED.
1336 */
1337static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1338{
1339	struct hwq *hwq = (struct hwq *)data;
1340	struct cxlflash_cfg *cfg = hwq->afu->parent;
1341	struct device *dev = &cfg->dev->dev;
1342	u64 reg;
1343	u64 reg_unmasked;
1344
1345	reg = readq_be(&hwq->host_map->intr_status);
1346	reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1347
1348	if (reg_unmasked == 0UL) {
1349		dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1350			__func__, reg);
1351		goto cxlflash_sync_err_irq_exit;
1352	}
1353
1354	dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1355		__func__, reg);
1356
1357	writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
1358
1359cxlflash_sync_err_irq_exit:
1360	return IRQ_HANDLED;
1361}
1362
1363/**
1364 * process_hrrq() - process the read-response queue
1365 * @hwq:	HWQ associated with the host.
1366 * @doneq:	Queue of commands harvested from the RRQ.
1367 * @budget:	Threshold of RRQ entries to process.
1368 *
1369 * This routine must be called holding the disabled RRQ spin lock.
1370 *
1371 * Return: The number of entries processed.
1372 */
1373static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
1374{
1375	struct afu *afu = hwq->afu;
1376	struct afu_cmd *cmd;
1377	struct sisl_ioasa *ioasa;
1378	struct sisl_ioarcb *ioarcb;
1379	bool toggle = hwq->toggle;
1380	int num_hrrq = 0;
1381	u64 entry,
1382	    *hrrq_start = hwq->hrrq_start,
1383	    *hrrq_end = hwq->hrrq_end,
1384	    *hrrq_curr = hwq->hrrq_curr;
1385
1386	/* Process ready RRQ entries up to the specified budget (if any) */
1387	while (true) {
1388		entry = *hrrq_curr;
1389
1390		if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1391			break;
1392
1393		entry &= ~SISL_RESP_HANDLE_T_BIT;
1394
1395		if (afu_is_sq_cmd_mode(afu)) {
1396			ioasa = (struct sisl_ioasa *)entry;
1397			cmd = container_of(ioasa, struct afu_cmd, sa);
1398		} else {
1399			ioarcb = (struct sisl_ioarcb *)entry;
1400			cmd = container_of(ioarcb, struct afu_cmd, rcb);
1401		}
1402
1403		list_add_tail(&cmd->queue, doneq);
1404
1405		/* Advance to next entry or wrap and flip the toggle bit */
1406		if (hrrq_curr < hrrq_end)
1407			hrrq_curr++;
1408		else {
1409			hrrq_curr = hrrq_start;
1410			toggle ^= SISL_RESP_HANDLE_T_BIT;
1411		}
1412
1413		atomic_inc(&hwq->hsq_credits);
1414		num_hrrq++;
1415
1416		if (budget > 0 && num_hrrq >= budget)
1417			break;
1418	}
1419
1420	hwq->hrrq_curr = hrrq_curr;
1421	hwq->toggle = toggle;
1422
1423	return num_hrrq;
1424}
1425
1426/**
1427 * process_cmd_doneq() - process a queue of harvested RRQ commands
1428 * @doneq:	Queue of completed commands.
1429 *
1430 * Note that upon return the queue can no longer be trusted.
1431 */
1432static void process_cmd_doneq(struct list_head *doneq)
1433{
1434	struct afu_cmd *cmd, *tmp;
1435
1436	WARN_ON(list_empty(doneq));
1437
1438	list_for_each_entry_safe(cmd, tmp, doneq, queue)
1439		cmd_complete(cmd);
1440}
1441
1442/**
1443 * cxlflash_irqpoll() - process a queue of harvested RRQ commands
1444 * @irqpoll:	IRQ poll structure associated with queue to poll.
1445 * @budget:	Threshold of RRQ entries to process per poll.
1446 *
1447 * Return: The number of entries processed.
1448 */
1449static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
1450{
1451	struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
1452	unsigned long hrrq_flags;
1453	LIST_HEAD(doneq);
1454	int num_entries = 0;
1455
1456	spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1457
1458	num_entries = process_hrrq(hwq, &doneq, budget);
1459	if (num_entries < budget)
1460		irq_poll_complete(irqpoll);
1461
1462	spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1463
1464	process_cmd_doneq(&doneq);
1465	return num_entries;
1466}
1467
1468/**
1469 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1470 * @irq:	Interrupt number.
1471 * @data:	Private data provided at interrupt registration, the AFU.
1472 *
1473 * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
1474 */
1475static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1476{
1477	struct hwq *hwq = (struct hwq *)data;
1478	struct afu *afu = hwq->afu;
1479	unsigned long hrrq_flags;
1480	LIST_HEAD(doneq);
1481	int num_entries = 0;
1482
1483	spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1484
1485	/* Silently drop spurious interrupts when queue is not online */
1486	if (!hwq->hrrq_online) {
1487		spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1488		return IRQ_HANDLED;
1489	}
1490
1491	if (afu_is_irqpoll_enabled(afu)) {
1492		irq_poll_sched(&hwq->irqpoll);
1493		spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1494		return IRQ_HANDLED;
1495	}
1496
1497	num_entries = process_hrrq(hwq, &doneq, -1);
1498	spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1499
1500	if (num_entries == 0)
1501		return IRQ_NONE;
1502
1503	process_cmd_doneq(&doneq);
1504	return IRQ_HANDLED;
1505}
1506
1507/*
1508 * Asynchronous interrupt information table
1509 *
1510 * NOTE:
1511 *	- Order matters here as this array is indexed by bit position.
1512 *
1513 *	- The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
1514 *	  as complex and complains due to a lack of parentheses/braces.
1515 */
1516#define ASTATUS_FC(_a, _b, _c, _d)					 \
1517	{ SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
1518
1519#define BUILD_SISL_ASTATUS_FC_PORT(_a)					 \
1520	ASTATUS_FC(_a, LINK_UP, "link up", 0),				 \
1521	ASTATUS_FC(_a, LINK_DN, "link down", 0),			 \
1522	ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST),		 \
1523	ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR),		 \
1524	ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
1525	ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET),	 \
1526	ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0),		 \
1527	ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
1528
1529static const struct asyc_intr_info ainfo[] = {
1530	BUILD_SISL_ASTATUS_FC_PORT(1),
1531	BUILD_SISL_ASTATUS_FC_PORT(0),
1532	BUILD_SISL_ASTATUS_FC_PORT(3),
1533	BUILD_SISL_ASTATUS_FC_PORT(2)
1534};
1535
1536/**
1537 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1538 * @irq:	Interrupt number.
1539 * @data:	Private data provided at interrupt registration, the AFU.
1540 *
1541 * Return: Always return IRQ_HANDLED.
1542 */
1543static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1544{
1545	struct hwq *hwq = (struct hwq *)data;
1546	struct afu *afu = hwq->afu;
1547	struct cxlflash_cfg *cfg = afu->parent;
1548	struct device *dev = &cfg->dev->dev;
1549	const struct asyc_intr_info *info;
1550	struct sisl_global_map __iomem *global = &afu->afu_map->global;
1551	__be64 __iomem *fc_port_regs;
1552	u64 reg_unmasked;
1553	u64 reg;
1554	u64 bit;
1555	u8 port;
1556
1557	reg = readq_be(&global->regs.aintr_status);
1558	reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1559
1560	if (unlikely(reg_unmasked == 0)) {
1561		dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1562			__func__, reg);
1563		goto out;
1564	}
1565
1566	/* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1567	writeq_be(reg_unmasked, &global->regs.aintr_clear);
1568
1569	/* Check each bit that is on */
1570	for_each_set_bit(bit, (ulong *)&reg_unmasked, BITS_PER_LONG) {
1571		if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
1572			WARN_ON_ONCE(1);
1573			continue;
1574		}
1575
1576		info = &ainfo[bit];
1577		if (unlikely(info->status != 1ULL << bit)) {
1578			WARN_ON_ONCE(1);
1579			continue;
1580		}
1581
1582		port = info->port;
1583		fc_port_regs = get_fc_port_regs(cfg, port);
1584
1585		dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1586			__func__, port, info->desc,
1587		       readq_be(&fc_port_regs[FC_STATUS / 8]));
1588
1589		/*
1590		 * Do link reset first, some OTHER errors will set FC_ERROR
1591		 * again if cleared before or w/o a reset
1592		 */
1593		if (info->action & LINK_RESET) {
1594			dev_err(dev, "%s: FC Port %d: resetting link\n",
1595				__func__, port);
1596			cfg->lr_state = LINK_RESET_REQUIRED;
1597			cfg->lr_port = port;
1598			schedule_work(&cfg->work_q);
1599		}
1600
1601		if (info->action & CLR_FC_ERROR) {
1602			reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
1603
1604			/*
1605			 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1606			 * should be the same and tracing one is sufficient.
1607			 */
1608
1609			dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1610				__func__, port, reg);
1611
1612			writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
1613			writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1614		}
1615
1616		if (info->action & SCAN_HOST) {
1617			atomic_inc(&cfg->scan_host_needed);
1618			schedule_work(&cfg->work_q);
1619		}
1620	}
1621
1622out:
1623	return IRQ_HANDLED;
1624}
1625
1626/**
1627 * read_vpd() - obtains the WWPNs from VPD
1628 * @cfg:	Internal structure associated with the host.
1629 * @wwpn:	Array of size MAX_FC_PORTS to pass back WWPNs
1630 *
1631 * Return: 0 on success, -errno on failure
1632 */
1633static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1634{
1635	struct device *dev = &cfg->dev->dev;
1636	struct pci_dev *pdev = cfg->dev;
1637	int i, k, rc = 0;
1638	unsigned int kw_size;
1639	ssize_t vpd_size;
1640	char vpd_data[CXLFLASH_VPD_LEN];
1641	char tmp_buf[WWPN_BUF_LEN] = { 0 };
1642	const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *)
1643						cfg->dev_id->driver_data;
1644	const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED;
1645	const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
1646
1647	/* Get the VPD data from the device */
1648	vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1649	if (unlikely(vpd_size <= 0)) {
1650		dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1651			__func__, vpd_size);
1652		rc = -ENODEV;
1653		goto out;
1654	}
1655
1656	/*
1657	 * Find the offset of the WWPN tag within the read only
1658	 * VPD data and validate the found field (partials are
1659	 * no good to us). Convert the ASCII data to an integer
1660	 * value. Note that we must copy to a temporary buffer
1661	 * because the conversion service requires that the ASCII
1662	 * string be terminated.
1663	 *
1664	 * Allow for WWPN not being found for all devices, setting
1665	 * the returned WWPN to zero when not found. Notify with a
1666	 * log error for cards that should have had WWPN keywords
1667	 * in the VPD - cards requiring WWPN will not have their
1668	 * ports programmed and operate in an undefined state.
1669	 */
1670	for (k = 0; k < cfg->num_fc_ports; k++) {
1671		i = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
1672						 wwpn_vpd_tags[k], &kw_size);
1673		if (i == -ENOENT) {
1674			if (wwpn_vpd_required)
1675				dev_err(dev, "%s: Port %d WWPN not found\n",
1676					__func__, k);
1677			wwpn[k] = 0ULL;
1678			continue;
1679		}
1680
1681		if (i < 0 || kw_size != WWPN_LEN) {
1682			dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1683				__func__, k);
1684			rc = -ENODEV;
1685			goto out;
1686		}
1687
1688		memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1689		rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1690		if (unlikely(rc)) {
1691			dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1692				__func__, k);
1693			rc = -ENODEV;
1694			goto out;
1695		}
1696
1697		dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
1698	}
1699
1700out:
1701	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1702	return rc;
1703}
1704
1705/**
1706 * init_pcr() - initialize the provisioning and control registers
1707 * @cfg:	Internal structure associated with the host.
1708 *
1709 * Also sets up fast access to the mapped registers and initializes AFU
1710 * command fields that never change.
1711 */
1712static void init_pcr(struct cxlflash_cfg *cfg)
1713{
1714	struct afu *afu = cfg->afu;
1715	struct sisl_ctrl_map __iomem *ctrl_map;
1716	struct hwq *hwq;
1717	void *cookie;
1718	int i;
1719
1720	for (i = 0; i < MAX_CONTEXT; i++) {
1721		ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1722		/* Disrupt any clients that could be running */
1723		/* e.g. clients that survived a master restart */
1724		writeq_be(0, &ctrl_map->rht_start);
1725		writeq_be(0, &ctrl_map->rht_cnt_id);
1726		writeq_be(0, &ctrl_map->ctx_cap);
1727	}
1728
1729	/* Copy frequently used fields into hwq */
1730	for (i = 0; i < afu->num_hwqs; i++) {
1731		hwq = get_hwq(afu, i);
1732		cookie = hwq->ctx_cookie;
1733
1734		hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie);
1735		hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
1736		hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
1737
1738		/* Program the Endian Control for the master context */
1739		writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
1740	}
1741}
1742
1743/**
1744 * init_global() - initialize AFU global registers
1745 * @cfg:	Internal structure associated with the host.
1746 */
1747static int init_global(struct cxlflash_cfg *cfg)
1748{
1749	struct afu *afu = cfg->afu;
1750	struct device *dev = &cfg->dev->dev;
1751	struct hwq *hwq;
1752	struct sisl_host_map __iomem *hmap;
1753	__be64 __iomem *fc_port_regs;
1754	u64 wwpn[MAX_FC_PORTS];	/* wwpn of AFU ports */
1755	int i = 0, num_ports = 0;
1756	int rc = 0;
1757	int j;
1758	void *ctx;
1759	u64 reg;
1760
1761	rc = read_vpd(cfg, &wwpn[0]);
1762	if (rc) {
1763		dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1764		goto out;
1765	}
1766
1767	/* Set up RRQ and SQ in HWQ for master issued cmds */
1768	for (i = 0; i < afu->num_hwqs; i++) {
1769		hwq = get_hwq(afu, i);
1770		hmap = hwq->host_map;
1771
1772		writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
1773		writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
1774		hwq->hrrq_online = true;
1775
1776		if (afu_is_sq_cmd_mode(afu)) {
1777			writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
1778			writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
1779		}
1780	}
1781
1782	/* AFU configuration */
1783	reg = readq_be(&afu->afu_map->global.regs.afu_config);
1784	reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1785	/* enable all auto retry options and control endianness */
1786	/* leave others at default: */
1787	/* CTX_CAP write protected, mbox_r does not clear on read and */
1788	/* checker on if dual afu */
1789	writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1790
1791	/* Global port select: select either port */
1792	if (afu->internal_lun) {
1793		/* Only use port 0 */
1794		writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1795		num_ports = 0;
1796	} else {
1797		writeq_be(PORT_MASK(cfg->num_fc_ports),
1798			  &afu->afu_map->global.regs.afu_port_sel);
1799		num_ports = cfg->num_fc_ports;
1800	}
1801
1802	for (i = 0; i < num_ports; i++) {
1803		fc_port_regs = get_fc_port_regs(cfg, i);
1804
1805		/* Unmask all errors (but they are still masked at AFU) */
1806		writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
1807		/* Clear CRC error cnt & set a threshold */
1808		(void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
1809		writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
1810
1811		/* Set WWPNs. If already programmed, wwpn[i] is 0 */
1812		if (wwpn[i] != 0)
1813			afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
1814		/* Programming WWPN back to back causes additional
1815		 * offline/online transitions and a PLOGI
1816		 */
1817		msleep(100);
1818	}
1819
1820	if (afu_is_ocxl_lisn(afu)) {
1821		/* Set up the LISN effective address for each master */
1822		for (i = 0; i < afu->num_hwqs; i++) {
1823			hwq = get_hwq(afu, i);
1824			ctx = hwq->ctx_cookie;
1825
1826			for (j = 0; j < hwq->num_irqs; j++) {
1827				reg = cfg->ops->get_irq_objhndl(ctx, j);
1828				writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]);
1829			}
1830
1831			reg = hwq->ctx_hndl;
1832			writeq_be(SISL_LISN_PASID(reg, reg),
1833				  &hwq->ctrl_map->lisn_pasid[0]);
1834			writeq_be(SISL_LISN_PASID(0UL, reg),
1835				  &hwq->ctrl_map->lisn_pasid[1]);
1836		}
1837	}
1838
1839	/* Set up master's own CTX_CAP to allow real mode, host translation */
1840	/* tables, afu cmds and read/write GSCSI cmds. */
1841	/* First, unlock ctx_cap write by reading mbox */
1842	for (i = 0; i < afu->num_hwqs; i++) {
1843		hwq = get_hwq(afu, i);
1844
1845		(void)readq_be(&hwq->ctrl_map->mbox_r);	/* unlock ctx_cap */
1846		writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1847			SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1848			SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1849			&hwq->ctrl_map->ctx_cap);
1850	}
1851
1852	/*
1853	 * Determine write-same unmap support for host by evaluating the unmap
1854	 * sector support bit of the context control register associated with
1855	 * the primary hardware queue. Note that while this status is reflected
1856	 * in a context register, the outcome can be assumed to be host-wide.
1857	 */
1858	hwq = get_hwq(afu, PRIMARY_HWQ);
1859	reg = readq_be(&hwq->host_map->ctx_ctrl);
1860	if (reg & SISL_CTX_CTRL_UNMAP_SECTOR)
1861		cfg->ws_unmap = true;
1862
1863	/* Initialize heartbeat */
1864	afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1865out:
1866	return rc;
1867}
1868
1869/**
1870 * start_afu() - initializes and starts the AFU
1871 * @cfg:	Internal structure associated with the host.
1872 */
1873static int start_afu(struct cxlflash_cfg *cfg)
1874{
1875	struct afu *afu = cfg->afu;
1876	struct device *dev = &cfg->dev->dev;
1877	struct hwq *hwq;
1878	int rc = 0;
1879	int i;
1880
1881	init_pcr(cfg);
1882
1883	/* Initialize each HWQ */
1884	for (i = 0; i < afu->num_hwqs; i++) {
1885		hwq = get_hwq(afu, i);
1886
1887		/* After an AFU reset, RRQ entries are stale, clear them */
1888		memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
1889
1890		/* Initialize RRQ pointers */
1891		hwq->hrrq_start = &hwq->rrq_entry[0];
1892		hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
1893		hwq->hrrq_curr = hwq->hrrq_start;
1894		hwq->toggle = 1;
1895
1896		/* Initialize spin locks */
1897		spin_lock_init(&hwq->hrrq_slock);
1898		spin_lock_init(&hwq->hsq_slock);
1899
1900		/* Initialize SQ */
1901		if (afu_is_sq_cmd_mode(afu)) {
1902			memset(&hwq->sq, 0, sizeof(hwq->sq));
1903			hwq->hsq_start = &hwq->sq[0];
1904			hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
1905			hwq->hsq_curr = hwq->hsq_start;
1906
1907			atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
1908		}
1909
1910		/* Initialize IRQ poll */
1911		if (afu_is_irqpoll_enabled(afu))
1912			irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
1913				      cxlflash_irqpoll);
1914
1915	}
1916
1917	rc = init_global(cfg);
1918
1919	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1920	return rc;
1921}
1922
1923/**
1924 * init_intr() - setup interrupt handlers for the master context
1925 * @cfg:	Internal structure associated with the host.
1926 * @hwq:	Hardware queue to initialize.
1927 *
1928 * Return: 0 on success, -errno on failure
1929 */
1930static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1931				 struct hwq *hwq)
1932{
1933	struct device *dev = &cfg->dev->dev;
1934	void *ctx = hwq->ctx_cookie;
1935	int rc = 0;
1936	enum undo_level level = UNDO_NOOP;
1937	bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
1938	int num_irqs = hwq->num_irqs;
1939
1940	rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs);
1941	if (unlikely(rc)) {
1942		dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1943			__func__, rc);
1944		level = UNDO_NOOP;
1945		goto out;
1946	}
1947
1948	rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
1949				   "SISL_MSI_SYNC_ERROR");
1950	if (unlikely(rc <= 0)) {
1951		dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1952		level = FREE_IRQ;
1953		goto out;
1954	}
1955
1956	rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
1957				   "SISL_MSI_RRQ_UPDATED");
1958	if (unlikely(rc <= 0)) {
1959		dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1960		level = UNMAP_ONE;
1961		goto out;
1962	}
1963
1964	/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
1965	if (!is_primary_hwq)
1966		goto out;
1967
1968	rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
1969				   "SISL_MSI_ASYNC_ERROR");
1970	if (unlikely(rc <= 0)) {
1971		dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1972		level = UNMAP_TWO;
1973		goto out;
1974	}
1975out:
1976	return level;
1977}
1978
1979/**
1980 * init_mc() - create and register as the master context
1981 * @cfg:	Internal structure associated with the host.
1982 * @index:	HWQ Index of the master context.
1983 *
1984 * Return: 0 on success, -errno on failure
1985 */
1986static int init_mc(struct cxlflash_cfg *cfg, u32 index)
1987{
1988	void *ctx;
1989	struct device *dev = &cfg->dev->dev;
1990	struct hwq *hwq = get_hwq(cfg->afu, index);
1991	int rc = 0;
1992	int num_irqs;
1993	enum undo_level level;
1994
1995	hwq->afu = cfg->afu;
1996	hwq->index = index;
1997	INIT_LIST_HEAD(&hwq->pending_cmds);
1998
1999	if (index == PRIMARY_HWQ) {
2000		ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie);
2001		num_irqs = 3;
2002	} else {
2003		ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie);
2004		num_irqs = 2;
2005	}
2006	if (IS_ERR_OR_NULL(ctx)) {
2007		rc = -ENOMEM;
2008		goto err1;
2009	}
2010
2011	WARN_ON(hwq->ctx_cookie);
2012	hwq->ctx_cookie = ctx;
2013	hwq->num_irqs = num_irqs;
2014
2015	/* Set it up as a master with the CXL */
2016	cfg->ops->set_master(ctx);
2017
2018	/* Reset AFU when initializing primary context */
2019	if (index == PRIMARY_HWQ) {
2020		rc = cfg->ops->afu_reset(ctx);
2021		if (unlikely(rc)) {
2022			dev_err(dev, "%s: AFU reset failed rc=%d\n",
2023				      __func__, rc);
2024			goto err1;
2025		}
2026	}
2027
2028	level = init_intr(cfg, hwq);
2029	if (unlikely(level)) {
2030		dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
2031		goto err2;
2032	}
2033
2034	/* Finally, activate the context by starting it */
2035	rc = cfg->ops->start_context(hwq->ctx_cookie);
2036	if (unlikely(rc)) {
2037		dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
2038		level = UNMAP_THREE;
2039		goto err2;
2040	}
2041
2042out:
2043	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2044	return rc;
2045err2:
2046	term_intr(cfg, level, index);
2047	if (index != PRIMARY_HWQ)
2048		cfg->ops->release_context(ctx);
2049err1:
2050	hwq->ctx_cookie = NULL;
2051	goto out;
2052}
2053
2054/**
2055 * get_num_afu_ports() - determines and configures the number of AFU ports
2056 * @cfg:	Internal structure associated with the host.
2057 *
2058 * This routine determines the number of AFU ports by converting the global
2059 * port selection mask. The converted value is only valid following an AFU
2060 * reset (explicit or power-on). This routine must be invoked shortly after
2061 * mapping as other routines are dependent on the number of ports during the
2062 * initialization sequence.
2063 *
2064 * To support legacy AFUs that might not have reflected an initial global
2065 * port mask (value read is 0), default to the number of ports originally
2066 * supported by the cxlflash driver (2) before hardware with other port
2067 * offerings was introduced.
2068 */
2069static void get_num_afu_ports(struct cxlflash_cfg *cfg)
2070{
2071	struct afu *afu = cfg->afu;
2072	struct device *dev = &cfg->dev->dev;
2073	u64 port_mask;
2074	int num_fc_ports = LEGACY_FC_PORTS;
2075
2076	port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
2077	if (port_mask != 0ULL)
2078		num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
2079
2080	dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
2081		__func__, port_mask, num_fc_ports);
2082
2083	cfg->num_fc_ports = num_fc_ports;
2084	cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
2085}
2086
2087/**
2088 * init_afu() - setup as master context and start AFU
2089 * @cfg:	Internal structure associated with the host.
2090 *
2091 * This routine is a higher level of control for configuring the
2092 * AFU on probe and reset paths.
2093 *
2094 * Return: 0 on success, -errno on failure
2095 */
2096static int init_afu(struct cxlflash_cfg *cfg)
2097{
2098	u64 reg;
2099	int rc = 0;
2100	struct afu *afu = cfg->afu;
2101	struct device *dev = &cfg->dev->dev;
2102	struct hwq *hwq;
2103	int i;
2104
2105	cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true);
2106
2107	mutex_init(&afu->sync_active);
2108	afu->num_hwqs = afu->desired_hwqs;
2109	for (i = 0; i < afu->num_hwqs; i++) {
2110		rc = init_mc(cfg, i);
2111		if (rc) {
2112			dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
2113				__func__, rc, i);
2114			goto err1;
2115		}
2116	}
2117
2118	/* Map the entire MMIO space of the AFU using the first context */
2119	hwq = get_hwq(afu, PRIMARY_HWQ);
2120	afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie);
2121	if (!afu->afu_map) {
2122		dev_err(dev, "%s: psa_map failed\n", __func__);
2123		rc = -ENOMEM;
2124		goto err1;
2125	}
2126
2127	/* No byte reverse on reading afu_version or string will be backwards */
2128	reg = readq(&afu->afu_map->global.regs.afu_version);
2129	memcpy(afu->version, &reg, sizeof(reg));
2130	afu->interface_version =
2131	    readq_be(&afu->afu_map->global.regs.interface_version);
2132	if ((afu->interface_version + 1) == 0) {
2133		dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
2134			"interface version %016llx\n", afu->version,
2135		       afu->interface_version);
2136		rc = -EINVAL;
2137		goto err1;
2138	}
2139
2140	if (afu_is_sq_cmd_mode(afu)) {
2141		afu->send_cmd = send_cmd_sq;
2142		afu->context_reset = context_reset_sq;
2143	} else {
2144		afu->send_cmd = send_cmd_ioarrin;
2145		afu->context_reset = context_reset_ioarrin;
2146	}
2147
2148	dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
2149		afu->version, afu->interface_version);
2150
2151	get_num_afu_ports(cfg);
2152
2153	rc = start_afu(cfg);
2154	if (rc) {
2155		dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
2156		goto err1;
2157	}
2158
2159	afu_err_intr_init(cfg->afu);
2160	for (i = 0; i < afu->num_hwqs; i++) {
2161		hwq = get_hwq(afu, i);
2162
2163		hwq->room = readq_be(&hwq->host_map->cmd_room);
2164	}
2165
2166	/* Restore the LUN mappings */
2167	cxlflash_restore_luntable(cfg);
2168out:
2169	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2170	return rc;
2171
2172err1:
2173	for (i = afu->num_hwqs - 1; i >= 0; i--) {
2174		term_intr(cfg, UNMAP_THREE, i);
2175		term_mc(cfg, i);
2176	}
2177	goto out;
2178}
2179
2180/**
2181 * afu_reset() - resets the AFU
2182 * @cfg:	Internal structure associated with the host.
2183 *
2184 * Return: 0 on success, -errno on failure
2185 */
2186static int afu_reset(struct cxlflash_cfg *cfg)
2187{
2188	struct device *dev = &cfg->dev->dev;
2189	int rc = 0;
2190
2191	/* Stop the context before the reset. Since the context is
2192	 * no longer available restart it after the reset is complete
2193	 */
2194	term_afu(cfg);
2195
2196	rc = init_afu(cfg);
2197
2198	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2199	return rc;
2200}
2201
2202/**
2203 * drain_ioctls() - wait until all currently executing ioctls have completed
2204 * @cfg:	Internal structure associated with the host.
2205 *
2206 * Obtain write access to read/write semaphore that wraps ioctl
2207 * handling to 'drain' ioctls currently executing.
2208 */
2209static void drain_ioctls(struct cxlflash_cfg *cfg)
2210{
2211	down_write(&cfg->ioctl_rwsem);
2212	up_write(&cfg->ioctl_rwsem);
2213}
2214
2215/**
2216 * cxlflash_async_reset_host() - asynchronous host reset handler
2217 * @data:	Private data provided while scheduling reset.
2218 * @cookie:	Cookie that can be used for checkpointing.
2219 */
2220static void cxlflash_async_reset_host(void *data, async_cookie_t cookie)
2221{
2222	struct cxlflash_cfg *cfg = data;
2223	struct device *dev = &cfg->dev->dev;
2224	int rc = 0;
2225
2226	if (cfg->state != STATE_RESET) {
2227		dev_dbg(dev, "%s: Not performing a reset, state=%d\n",
2228			__func__, cfg->state);
2229		goto out;
2230	}
2231
2232	drain_ioctls(cfg);
2233	cxlflash_mark_contexts_error(cfg);
2234	rc = afu_reset(cfg);
2235	if (rc)
2236		cfg->state = STATE_FAILTERM;
2237	else
2238		cfg->state = STATE_NORMAL;
2239	wake_up_all(&cfg->reset_waitq);
2240
2241out:
2242	scsi_unblock_requests(cfg->host);
2243}
2244
2245/**
2246 * cxlflash_schedule_async_reset() - schedule an asynchronous host reset
2247 * @cfg:	Internal structure associated with the host.
2248 */
2249static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg)
2250{
2251	struct device *dev = &cfg->dev->dev;
2252
2253	if (cfg->state != STATE_NORMAL) {
2254		dev_dbg(dev, "%s: Not performing reset state=%d\n",
2255			__func__, cfg->state);
2256		return;
2257	}
2258
2259	cfg->state = STATE_RESET;
2260	scsi_block_requests(cfg->host);
2261	cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host,
2262						 cfg);
2263}
2264
2265/**
2266 * send_afu_cmd() - builds and sends an internal AFU command
2267 * @afu:	AFU associated with the host.
2268 * @rcb:	Pre-populated IOARCB describing command to send.
2269 *
2270 * The AFU can only take one internal AFU command at a time. This limitation is
2271 * enforced by using a mutex to provide exclusive access to the AFU during the
2272 * operation. This design point requires calling threads to not be on interrupt
2273 * context due to the possibility of sleeping during concurrent AFU operations.
2274 *
2275 * The command status is optionally passed back to the caller when the caller
2276 * populates the IOASA field of the IOARCB with a pointer to an IOASA structure.
2277 *
2278 * Return:
2279 *	0 on success, -errno on failure
2280 */
2281static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb)
2282{
2283	struct cxlflash_cfg *cfg = afu->parent;
2284	struct device *dev = &cfg->dev->dev;
2285	struct afu_cmd *cmd = NULL;
2286	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
2287	ulong lock_flags;
2288	char *buf = NULL;
2289	int rc = 0;
2290	int nretry = 0;
2291
2292	if (cfg->state != STATE_NORMAL) {
2293		dev_dbg(dev, "%s: Sync not required state=%u\n",
2294			__func__, cfg->state);
2295		return 0;
2296	}
2297
2298	mutex_lock(&afu->sync_active);
2299	atomic_inc(&afu->cmds_active);
2300	buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
2301	if (unlikely(!buf)) {
2302		dev_err(dev, "%s: no memory for command\n", __func__);
2303		rc = -ENOMEM;
2304		goto out;
2305	}
2306
2307	cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
2308
2309retry:
2310	memset(cmd, 0, sizeof(*cmd));
2311	memcpy(&cmd->rcb, rcb, sizeof(*rcb));
2312	INIT_LIST_HEAD(&cmd->queue);
2313	init_completion(&cmd->cevent);
2314	cmd->parent = afu;
2315	cmd->hwq_index = hwq->index;
2316	cmd->rcb.ctx_id = hwq->ctx_hndl;
2317
2318	dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n",
2319		__func__, afu, cmd, cmd->rcb.cdb[0], nretry);
2320
2321	rc = afu->send_cmd(afu, cmd);
2322	if (unlikely(rc)) {
2323		rc = -ENOBUFS;
2324		goto out;
2325	}
2326
2327	rc = wait_resp(afu, cmd);
2328	switch (rc) {
2329	case -ETIMEDOUT:
2330		rc = afu->context_reset(hwq);
2331		if (rc) {
2332			/* Delete the command from pending_cmds list */
2333			spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
2334			list_del(&cmd->list);
2335			spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
2336
2337			cxlflash_schedule_async_reset(cfg);
2338			break;
2339		}
2340		fallthrough;	/* to retry */
2341	case -EAGAIN:
2342		if (++nretry < 2)
2343			goto retry;
2344		fallthrough;	/* to exit */
2345	default:
2346		break;
2347	}
2348
2349	if (rcb->ioasa)
2350		*rcb->ioasa = cmd->sa;
2351out:
2352	atomic_dec(&afu->cmds_active);
2353	mutex_unlock(&afu->sync_active);
2354	kfree(buf);
2355	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2356	return rc;
2357}
2358
2359/**
2360 * cxlflash_afu_sync() - builds and sends an AFU sync command
2361 * @afu:	AFU associated with the host.
2362 * @ctx:	Identifies context requesting sync.
2363 * @res:	Identifies resource requesting sync.
2364 * @mode:	Type of sync to issue (lightweight, heavyweight, global).
2365 *
2366 * AFU sync operations are only necessary and allowed when the device is
2367 * operating normally. When not operating normally, sync requests can occur as
2368 * part of cleaning up resources associated with an adapter prior to removal.
2369 * In this scenario, these requests are simply ignored (safe due to the AFU
2370 * going away).
2371 *
2372 * Return:
2373 *	0 on success, -errno on failure
2374 */
2375int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode)
2376{
2377	struct cxlflash_cfg *cfg = afu->parent;
2378	struct device *dev = &cfg->dev->dev;
2379	struct sisl_ioarcb rcb = { 0 };
2380
2381	dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n",
2382		__func__, afu, ctx, res, mode);
2383
2384	rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
2385	rcb.msi = SISL_MSI_RRQ_UPDATED;
2386	rcb.timeout = MC_AFU_SYNC_TIMEOUT;
2387
2388	rcb.cdb[0] = SISL_AFU_CMD_SYNC;
2389	rcb.cdb[1] = mode;
2390	put_unaligned_be16(ctx, &rcb.cdb[2]);
2391	put_unaligned_be32(res, &rcb.cdb[4]);
2392
2393	return send_afu_cmd(afu, &rcb);
2394}
2395
2396/**
2397 * cxlflash_eh_abort_handler() - abort a SCSI command
2398 * @scp:	SCSI command to abort.
2399 *
2400 * CXL Flash devices do not support a single command abort. Reset the context
2401 * as per SISLite specification. Flush any pending commands in the hardware
2402 * queue before the reset.
2403 *
2404 * Return: SUCCESS/FAILED as defined in scsi/scsi.h
2405 */
2406static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp)
2407{
2408	int rc = FAILED;
2409	struct Scsi_Host *host = scp->device->host;
2410	struct cxlflash_cfg *cfg = shost_priv(host);
2411	struct afu_cmd *cmd = sc_to_afuc(scp);
2412	struct device *dev = &cfg->dev->dev;
2413	struct afu *afu = cfg->afu;
2414	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
2415
2416	dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2417		"cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2418		scp->device->channel, scp->device->id, scp->device->lun,
2419		get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2420		get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2421		get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2422		get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2423
2424	/* When the state is not normal, another reset/reload is in progress.
2425	 * Return failed and the mid-layer will invoke host reset handler.
2426	 */
2427	if (cfg->state != STATE_NORMAL) {
2428		dev_dbg(dev, "%s: Invalid state for abort, state=%d\n",
2429			__func__, cfg->state);
2430		goto out;
2431	}
2432
2433	rc = afu->context_reset(hwq);
2434	if (unlikely(rc))
2435		goto out;
2436
2437	rc = SUCCESS;
2438
2439out:
2440	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2441	return rc;
2442}
2443
2444/**
2445 * cxlflash_eh_device_reset_handler() - reset a single LUN
2446 * @scp:	SCSI command to send.
2447 *
2448 * Return:
2449 *	SUCCESS as defined in scsi/scsi.h
2450 *	FAILED as defined in scsi/scsi.h
2451 */
2452static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
2453{
2454	int rc = SUCCESS;
2455	struct scsi_device *sdev = scp->device;
2456	struct Scsi_Host *host = sdev->host;
2457	struct cxlflash_cfg *cfg = shost_priv(host);
2458	struct device *dev = &cfg->dev->dev;
2459	int rcr = 0;
2460
2461	dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__,
2462		host->host_no, sdev->channel, sdev->id, sdev->lun);
2463retry:
2464	switch (cfg->state) {
2465	case STATE_NORMAL:
2466		rcr = send_tmf(cfg, sdev, TMF_LUN_RESET);
2467		if (unlikely(rcr))
2468			rc = FAILED;
2469		break;
2470	case STATE_RESET:
2471		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2472		goto retry;
2473	default:
2474		rc = FAILED;
2475		break;
2476	}
2477
2478	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2479	return rc;
2480}
2481
2482/**
2483 * cxlflash_eh_host_reset_handler() - reset the host adapter
2484 * @scp:	SCSI command from stack identifying host.
2485 *
2486 * Following a reset, the state is evaluated again in case an EEH occurred
2487 * during the reset. In such a scenario, the host reset will either yield
2488 * until the EEH recovery is complete or return success or failure based
2489 * upon the current device state.
2490 *
2491 * Return:
2492 *	SUCCESS as defined in scsi/scsi.h
2493 *	FAILED as defined in scsi/scsi.h
2494 */
2495static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
2496{
2497	int rc = SUCCESS;
2498	int rcr = 0;
2499	struct Scsi_Host *host = scp->device->host;
2500	struct cxlflash_cfg *cfg = shost_priv(host);
2501	struct device *dev = &cfg->dev->dev;
2502
2503	dev_dbg(dev, "%s: %d\n", __func__, host->host_no);
2504
2505	switch (cfg->state) {
2506	case STATE_NORMAL:
2507		cfg->state = STATE_RESET;
2508		drain_ioctls(cfg);
2509		cxlflash_mark_contexts_error(cfg);
2510		rcr = afu_reset(cfg);
2511		if (rcr) {
2512			rc = FAILED;
2513			cfg->state = STATE_FAILTERM;
2514		} else
2515			cfg->state = STATE_NORMAL;
2516		wake_up_all(&cfg->reset_waitq);
2517		ssleep(1);
2518		fallthrough;
2519	case STATE_RESET:
2520		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2521		if (cfg->state == STATE_NORMAL)
2522			break;
2523		fallthrough;
2524	default:
2525		rc = FAILED;
2526		break;
2527	}
2528
2529	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2530	return rc;
2531}
2532
2533/**
2534 * cxlflash_change_queue_depth() - change the queue depth for the device
2535 * @sdev:	SCSI device destined for queue depth change.
2536 * @qdepth:	Requested queue depth value to set.
2537 *
2538 * The requested queue depth is capped to the maximum supported value.
2539 *
2540 * Return: The actual queue depth set.
2541 */
2542static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2543{
2544
2545	if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2546		qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2547
2548	scsi_change_queue_depth(sdev, qdepth);
2549	return sdev->queue_depth;
2550}
2551
2552/**
2553 * cxlflash_show_port_status() - queries and presents the current port status
2554 * @port:	Desired port for status reporting.
2555 * @cfg:	Internal structure associated with the host.
2556 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2557 *
2558 * Return: The size of the ASCII string returned in @buf or -EINVAL.
2559 */
2560static ssize_t cxlflash_show_port_status(u32 port,
2561					 struct cxlflash_cfg *cfg,
2562					 char *buf)
2563{
2564	struct device *dev = &cfg->dev->dev;
2565	char *disp_status;
2566	u64 status;
2567	__be64 __iomem *fc_port_regs;
2568
2569	WARN_ON(port >= MAX_FC_PORTS);
2570
2571	if (port >= cfg->num_fc_ports) {
2572		dev_info(dev, "%s: Port %d not supported on this card.\n",
2573			__func__, port);
2574		return -EINVAL;
2575	}
2576
2577	fc_port_regs = get_fc_port_regs(cfg, port);
2578	status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
2579	status &= FC_MTIP_STATUS_MASK;
2580
2581	if (status == FC_MTIP_STATUS_ONLINE)
2582		disp_status = "online";
2583	else if (status == FC_MTIP_STATUS_OFFLINE)
2584		disp_status = "offline";
2585	else
2586		disp_status = "unknown";
2587
2588	return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2589}
2590
2591/**
2592 * port0_show() - queries and presents the current status of port 0
2593 * @dev:	Generic device associated with the host owning the port.
2594 * @attr:	Device attribute representing the port.
2595 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2596 *
2597 * Return: The size of the ASCII string returned in @buf.
2598 */
2599static ssize_t port0_show(struct device *dev,
2600			  struct device_attribute *attr,
2601			  char *buf)
2602{
2603	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2604
2605	return cxlflash_show_port_status(0, cfg, buf);
2606}
2607
2608/**
2609 * port1_show() - queries and presents the current status of port 1
2610 * @dev:	Generic device associated with the host owning the port.
2611 * @attr:	Device attribute representing the port.
2612 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2613 *
2614 * Return: The size of the ASCII string returned in @buf.
2615 */
2616static ssize_t port1_show(struct device *dev,
2617			  struct device_attribute *attr,
2618			  char *buf)
2619{
2620	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2621
2622	return cxlflash_show_port_status(1, cfg, buf);
2623}
2624
2625/**
2626 * port2_show() - queries and presents the current status of port 2
2627 * @dev:	Generic device associated with the host owning the port.
2628 * @attr:	Device attribute representing the port.
2629 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2630 *
2631 * Return: The size of the ASCII string returned in @buf.
2632 */
2633static ssize_t port2_show(struct device *dev,
2634			  struct device_attribute *attr,
2635			  char *buf)
2636{
2637	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2638
2639	return cxlflash_show_port_status(2, cfg, buf);
2640}
2641
2642/**
2643 * port3_show() - queries and presents the current status of port 3
2644 * @dev:	Generic device associated with the host owning the port.
2645 * @attr:	Device attribute representing the port.
2646 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2647 *
2648 * Return: The size of the ASCII string returned in @buf.
2649 */
2650static ssize_t port3_show(struct device *dev,
2651			  struct device_attribute *attr,
2652			  char *buf)
2653{
2654	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2655
2656	return cxlflash_show_port_status(3, cfg, buf);
2657}
2658
2659/**
2660 * lun_mode_show() - presents the current LUN mode of the host
2661 * @dev:	Generic device associated with the host.
2662 * @attr:	Device attribute representing the LUN mode.
2663 * @buf:	Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2664 *
2665 * Return: The size of the ASCII string returned in @buf.
2666 */
2667static ssize_t lun_mode_show(struct device *dev,
2668			     struct device_attribute *attr, char *buf)
2669{
2670	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2671	struct afu *afu = cfg->afu;
2672
2673	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2674}
2675
2676/**
2677 * lun_mode_store() - sets the LUN mode of the host
2678 * @dev:	Generic device associated with the host.
2679 * @attr:	Device attribute representing the LUN mode.
2680 * @buf:	Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2681 * @count:	Length of data resizing in @buf.
2682 *
2683 * The CXL Flash AFU supports a dummy LUN mode where the external
2684 * links and storage are not required. Space on the FPGA is used
2685 * to create 1 or 2 small LUNs which are presented to the system
2686 * as if they were a normal storage device. This feature is useful
2687 * during development and also provides manufacturing with a way
2688 * to test the AFU without an actual device.
2689 *
2690 * 0 = external LUN[s] (default)
2691 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2692 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2693 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2694 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2695 *
2696 * Return: The size of the ASCII string returned in @buf.
2697 */
2698static ssize_t lun_mode_store(struct device *dev,
2699			      struct device_attribute *attr,
2700			      const char *buf, size_t count)
2701{
2702	struct Scsi_Host *shost = class_to_shost(dev);
2703	struct cxlflash_cfg *cfg = shost_priv(shost);
2704	struct afu *afu = cfg->afu;
2705	int rc;
2706	u32 lun_mode;
2707
2708	rc = kstrtouint(buf, 10, &lun_mode);
2709	if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2710		afu->internal_lun = lun_mode;
2711
2712		/*
2713		 * When configured for internal LUN, there is only one channel,
2714		 * channel number 0, else there will be one less than the number
2715		 * of fc ports for this card.
2716		 */
2717		if (afu->internal_lun)
2718			shost->max_channel = 0;
2719		else
2720			shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
2721
2722		afu_reset(cfg);
2723		scsi_scan_host(cfg->host);
2724	}
2725
2726	return count;
2727}
2728
2729/**
2730 * ioctl_version_show() - presents the current ioctl version of the host
2731 * @dev:	Generic device associated with the host.
2732 * @attr:	Device attribute representing the ioctl version.
2733 * @buf:	Buffer of length PAGE_SIZE to report back the ioctl version.
2734 *
2735 * Return: The size of the ASCII string returned in @buf.
2736 */
2737static ssize_t ioctl_version_show(struct device *dev,
2738				  struct device_attribute *attr, char *buf)
2739{
2740	ssize_t bytes = 0;
2741
2742	bytes = scnprintf(buf, PAGE_SIZE,
2743			  "disk: %u\n", DK_CXLFLASH_VERSION_0);
2744	bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2745			   "host: %u\n", HT_CXLFLASH_VERSION_0);
2746
2747	return bytes;
2748}
2749
2750/**
2751 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2752 * @port:	Desired port for status reporting.
2753 * @cfg:	Internal structure associated with the host.
2754 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2755 *
2756 * Return: The size of the ASCII string returned in @buf or -EINVAL.
2757 */
2758static ssize_t cxlflash_show_port_lun_table(u32 port,
2759					    struct cxlflash_cfg *cfg,
2760					    char *buf)
2761{
2762	struct device *dev = &cfg->dev->dev;
2763	__be64 __iomem *fc_port_luns;
2764	int i;
2765	ssize_t bytes = 0;
2766
2767	WARN_ON(port >= MAX_FC_PORTS);
2768
2769	if (port >= cfg->num_fc_ports) {
2770		dev_info(dev, "%s: Port %d not supported on this card.\n",
2771			__func__, port);
2772		return -EINVAL;
2773	}
2774
2775	fc_port_luns = get_fc_port_luns(cfg, port);
2776
2777	for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2778		bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2779				   "%03d: %016llx\n",
2780				   i, readq_be(&fc_port_luns[i]));
2781	return bytes;
2782}
2783
2784/**
2785 * port0_lun_table_show() - presents the current LUN table of port 0
2786 * @dev:	Generic device associated with the host owning the port.
2787 * @attr:	Device attribute representing the port.
2788 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2789 *
2790 * Return: The size of the ASCII string returned in @buf.
2791 */
2792static ssize_t port0_lun_table_show(struct device *dev,
2793				    struct device_attribute *attr,
2794				    char *buf)
2795{
2796	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2797
2798	return cxlflash_show_port_lun_table(0, cfg, buf);
2799}
2800
2801/**
2802 * port1_lun_table_show() - presents the current LUN table of port 1
2803 * @dev:	Generic device associated with the host owning the port.
2804 * @attr:	Device attribute representing the port.
2805 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2806 *
2807 * Return: The size of the ASCII string returned in @buf.
2808 */
2809static ssize_t port1_lun_table_show(struct device *dev,
2810				    struct device_attribute *attr,
2811				    char *buf)
2812{
2813	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2814
2815	return cxlflash_show_port_lun_table(1, cfg, buf);
2816}
2817
2818/**
2819 * port2_lun_table_show() - presents the current LUN table of port 2
2820 * @dev:	Generic device associated with the host owning the port.
2821 * @attr:	Device attribute representing the port.
2822 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2823 *
2824 * Return: The size of the ASCII string returned in @buf.
2825 */
2826static ssize_t port2_lun_table_show(struct device *dev,
2827				    struct device_attribute *attr,
2828				    char *buf)
2829{
2830	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2831
2832	return cxlflash_show_port_lun_table(2, cfg, buf);
2833}
2834
2835/**
2836 * port3_lun_table_show() - presents the current LUN table of port 3
2837 * @dev:	Generic device associated with the host owning the port.
2838 * @attr:	Device attribute representing the port.
2839 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2840 *
2841 * Return: The size of the ASCII string returned in @buf.
2842 */
2843static ssize_t port3_lun_table_show(struct device *dev,
2844				    struct device_attribute *attr,
2845				    char *buf)
2846{
2847	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2848
2849	return cxlflash_show_port_lun_table(3, cfg, buf);
2850}
2851
2852/**
2853 * irqpoll_weight_show() - presents the current IRQ poll weight for the host
2854 * @dev:	Generic device associated with the host.
2855 * @attr:	Device attribute representing the IRQ poll weight.
2856 * @buf:	Buffer of length PAGE_SIZE to report back the current IRQ poll
2857 *		weight in ASCII.
2858 *
2859 * An IRQ poll weight of 0 indicates polling is disabled.
2860 *
2861 * Return: The size of the ASCII string returned in @buf.
2862 */
2863static ssize_t irqpoll_weight_show(struct device *dev,
2864				   struct device_attribute *attr, char *buf)
2865{
2866	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2867	struct afu *afu = cfg->afu;
2868
2869	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
2870}
2871
2872/**
2873 * irqpoll_weight_store() - sets the current IRQ poll weight for the host
2874 * @dev:	Generic device associated with the host.
2875 * @attr:	Device attribute representing the IRQ poll weight.
2876 * @buf:	Buffer of length PAGE_SIZE containing the desired IRQ poll
2877 *		weight in ASCII.
2878 * @count:	Length of data resizing in @buf.
2879 *
2880 * An IRQ poll weight of 0 indicates polling is disabled.
2881 *
2882 * Return: The size of the ASCII string returned in @buf.
2883 */
2884static ssize_t irqpoll_weight_store(struct device *dev,
2885				    struct device_attribute *attr,
2886				    const char *buf, size_t count)
2887{
2888	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2889	struct device *cfgdev = &cfg->dev->dev;
2890	struct afu *afu = cfg->afu;
2891	struct hwq *hwq;
2892	u32 weight;
2893	int rc, i;
2894
2895	rc = kstrtouint(buf, 10, &weight);
2896	if (rc)
2897		return -EINVAL;
2898
2899	if (weight > 256) {
2900		dev_info(cfgdev,
2901			 "Invalid IRQ poll weight. It must be 256 or less.\n");
2902		return -EINVAL;
2903	}
2904
2905	if (weight == afu->irqpoll_weight) {
2906		dev_info(cfgdev,
2907			 "Current IRQ poll weight has the same weight.\n");
2908		return -EINVAL;
2909	}
2910
2911	if (afu_is_irqpoll_enabled(afu)) {
2912		for (i = 0; i < afu->num_hwqs; i++) {
2913			hwq = get_hwq(afu, i);
2914
2915			irq_poll_disable(&hwq->irqpoll);
2916		}
2917	}
2918
2919	afu->irqpoll_weight = weight;
2920
2921	if (weight > 0) {
2922		for (i = 0; i < afu->num_hwqs; i++) {
2923			hwq = get_hwq(afu, i);
2924
2925			irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
2926		}
2927	}
2928
2929	return count;
2930}
2931
2932/**
2933 * num_hwqs_show() - presents the number of hardware queues for the host
2934 * @dev:	Generic device associated with the host.
2935 * @attr:	Device attribute representing the number of hardware queues.
2936 * @buf:	Buffer of length PAGE_SIZE to report back the number of hardware
2937 *		queues in ASCII.
2938 *
2939 * Return: The size of the ASCII string returned in @buf.
2940 */
2941static ssize_t num_hwqs_show(struct device *dev,
2942			     struct device_attribute *attr, char *buf)
2943{
2944	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2945	struct afu *afu = cfg->afu;
2946
2947	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs);
2948}
2949
2950/**
2951 * num_hwqs_store() - sets the number of hardware queues for the host
2952 * @dev:	Generic device associated with the host.
2953 * @attr:	Device attribute representing the number of hardware queues.
2954 * @buf:	Buffer of length PAGE_SIZE containing the number of hardware
2955 *		queues in ASCII.
2956 * @count:	Length of data resizing in @buf.
2957 *
2958 * n > 0: num_hwqs = n
2959 * n = 0: num_hwqs = num_online_cpus()
2960 * n < 0: num_online_cpus() / abs(n)
2961 *
2962 * Return: The size of the ASCII string returned in @buf.
2963 */
2964static ssize_t num_hwqs_store(struct device *dev,
2965			      struct device_attribute *attr,
2966			      const char *buf, size_t count)
2967{
2968	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2969	struct afu *afu = cfg->afu;
2970	int rc;
2971	int nhwqs, num_hwqs;
2972
2973	rc = kstrtoint(buf, 10, &nhwqs);
2974	if (rc)
2975		return -EINVAL;
2976
2977	if (nhwqs >= 1)
2978		num_hwqs = nhwqs;
2979	else if (nhwqs == 0)
2980		num_hwqs = num_online_cpus();
2981	else
2982		num_hwqs = num_online_cpus() / abs(nhwqs);
2983
2984	afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS);
2985	WARN_ON_ONCE(afu->desired_hwqs == 0);
2986
2987retry:
2988	switch (cfg->state) {
2989	case STATE_NORMAL:
2990		cfg->state = STATE_RESET;
2991		drain_ioctls(cfg);
2992		cxlflash_mark_contexts_error(cfg);
2993		rc = afu_reset(cfg);
2994		if (rc)
2995			cfg->state = STATE_FAILTERM;
2996		else
2997			cfg->state = STATE_NORMAL;
2998		wake_up_all(&cfg->reset_waitq);
2999		break;
3000	case STATE_RESET:
3001		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
3002		if (cfg->state == STATE_NORMAL)
3003			goto retry;
3004		fallthrough;
3005	default:
3006		/* Ideally should not happen */
3007		dev_err(dev, "%s: Device is not ready, state=%d\n",
3008			__func__, cfg->state);
3009		break;
3010	}
3011
3012	return count;
3013}
3014
3015static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" };
3016
3017/**
3018 * hwq_mode_show() - presents the HWQ steering mode for the host
3019 * @dev:	Generic device associated with the host.
3020 * @attr:	Device attribute representing the HWQ steering mode.
3021 * @buf:	Buffer of length PAGE_SIZE to report back the HWQ steering mode
3022 *		as a character string.
3023 *
3024 * Return: The size of the ASCII string returned in @buf.
3025 */
3026static ssize_t hwq_mode_show(struct device *dev,
3027			     struct device_attribute *attr, char *buf)
3028{
3029	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
3030	struct afu *afu = cfg->afu;
3031
3032	return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]);
3033}
3034
3035/**
3036 * hwq_mode_store() - sets the HWQ steering mode for the host
3037 * @dev:	Generic device associated with the host.
3038 * @attr:	Device attribute representing the HWQ steering mode.
3039 * @buf:	Buffer of length PAGE_SIZE containing the HWQ steering mode
3040 *		as a character string.
3041 * @count:	Length of data resizing in @buf.
3042 *
3043 * rr = Round-Robin
3044 * tag = Block MQ Tagging
3045 * cpu = CPU Affinity
3046 *
3047 * Return: The size of the ASCII string returned in @buf.
3048 */
3049static ssize_t hwq_mode_store(struct device *dev,
3050			      struct device_attribute *attr,
3051			      const char *buf, size_t count)
3052{
3053	struct Scsi_Host *shost = class_to_shost(dev);
3054	struct cxlflash_cfg *cfg = shost_priv(shost);
3055	struct device *cfgdev = &cfg->dev->dev;
3056	struct afu *afu = cfg->afu;
3057	int i;
3058	u32 mode = MAX_HWQ_MODE;
3059
3060	for (i = 0; i < MAX_HWQ_MODE; i++) {
3061		if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) {
3062			mode = i;
3063			break;
3064		}
3065	}
3066
3067	if (mode >= MAX_HWQ_MODE) {
3068		dev_info(cfgdev, "Invalid HWQ steering mode.\n");
3069		return -EINVAL;
3070	}
3071
3072	afu->hwq_mode = mode;
3073
3074	return count;
3075}
3076
3077/**
3078 * mode_show() - presents the current mode of the device
3079 * @dev:	Generic device associated with the device.
3080 * @attr:	Device attribute representing the device mode.
3081 * @buf:	Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
3082 *
3083 * Return: The size of the ASCII string returned in @buf.
3084 */
3085static ssize_t mode_show(struct device *dev,
3086			 struct device_attribute *attr, char *buf)
3087{
3088	struct scsi_device *sdev = to_scsi_device(dev);
3089
3090	return scnprintf(buf, PAGE_SIZE, "%s\n",
3091			 sdev->hostdata ? "superpipe" : "legacy");
3092}
3093
3094/*
3095 * Host attributes
3096 */
3097static DEVICE_ATTR_RO(port0);
3098static DEVICE_ATTR_RO(port1);
3099static DEVICE_ATTR_RO(port2);
3100static DEVICE_ATTR_RO(port3);
3101static DEVICE_ATTR_RW(lun_mode);
3102static DEVICE_ATTR_RO(ioctl_version);
3103static DEVICE_ATTR_RO(port0_lun_table);
3104static DEVICE_ATTR_RO(port1_lun_table);
3105static DEVICE_ATTR_RO(port2_lun_table);
3106static DEVICE_ATTR_RO(port3_lun_table);
3107static DEVICE_ATTR_RW(irqpoll_weight);
3108static DEVICE_ATTR_RW(num_hwqs);
3109static DEVICE_ATTR_RW(hwq_mode);
3110
3111static struct attribute *cxlflash_host_attrs[] = {
3112	&dev_attr_port0.attr,
3113	&dev_attr_port1.attr,
3114	&dev_attr_port2.attr,
3115	&dev_attr_port3.attr,
3116	&dev_attr_lun_mode.attr,
3117	&dev_attr_ioctl_version.attr,
3118	&dev_attr_port0_lun_table.attr,
3119	&dev_attr_port1_lun_table.attr,
3120	&dev_attr_port2_lun_table.attr,
3121	&dev_attr_port3_lun_table.attr,
3122	&dev_attr_irqpoll_weight.attr,
3123	&dev_attr_num_hwqs.attr,
3124	&dev_attr_hwq_mode.attr,
3125	NULL
3126};
3127
3128ATTRIBUTE_GROUPS(cxlflash_host);
3129
3130/*
3131 * Device attributes
3132 */
3133static DEVICE_ATTR_RO(mode);
3134
3135static struct attribute *cxlflash_dev_attrs[] = {
3136	&dev_attr_mode.attr,
3137	NULL
3138};
3139
3140ATTRIBUTE_GROUPS(cxlflash_dev);
3141
3142/*
3143 * Host template
3144 */
3145static struct scsi_host_template driver_template = {
3146	.module = THIS_MODULE,
3147	.name = CXLFLASH_ADAPTER_NAME,
3148	.info = cxlflash_driver_info,
3149	.ioctl = cxlflash_ioctl,
3150	.proc_name = CXLFLASH_NAME,
3151	.queuecommand = cxlflash_queuecommand,
3152	.eh_abort_handler = cxlflash_eh_abort_handler,
3153	.eh_device_reset_handler = cxlflash_eh_device_reset_handler,
3154	.eh_host_reset_handler = cxlflash_eh_host_reset_handler,
3155	.change_queue_depth = cxlflash_change_queue_depth,
3156	.cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
3157	.can_queue = CXLFLASH_MAX_CMDS,
3158	.cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
3159	.this_id = -1,
3160	.sg_tablesize = 1,	/* No scatter gather support */
3161	.max_sectors = CXLFLASH_MAX_SECTORS,
3162	.shost_groups = cxlflash_host_groups,
3163	.sdev_groups = cxlflash_dev_groups,
3164};
3165
3166/*
3167 * Device dependent values
3168 */
3169static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
3170					CXLFLASH_WWPN_VPD_REQUIRED };
3171static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
3172					CXLFLASH_NOTIFY_SHUTDOWN };
3173static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
3174					(CXLFLASH_NOTIFY_SHUTDOWN |
3175					CXLFLASH_OCXL_DEV) };
3176
3177/*
3178 * PCI device binding table
3179 */
3180static struct pci_device_id cxlflash_pci_table[] = {
3181	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
3182	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
3183	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
3184	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
3185	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
3186	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
3187	{}
3188};
3189
3190MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
3191
3192/**
3193 * cxlflash_worker_thread() - work thread handler for the AFU
3194 * @work:	Work structure contained within cxlflash associated with host.
3195 *
3196 * Handles the following events:
3197 * - Link reset which cannot be performed on interrupt context due to
3198 * blocking up to a few seconds
3199 * - Rescan the host
3200 */
3201static void cxlflash_worker_thread(struct work_struct *work)
3202{
3203	struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
3204						work_q);
3205	struct afu *afu = cfg->afu;
3206	struct device *dev = &cfg->dev->dev;
3207	__be64 __iomem *fc_port_regs;
3208	int port;
3209	ulong lock_flags;
3210
3211	/* Avoid MMIO if the device has failed */
3212
3213	if (cfg->state != STATE_NORMAL)
3214		return;
3215
3216	spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3217
3218	if (cfg->lr_state == LINK_RESET_REQUIRED) {
3219		port = cfg->lr_port;
3220		if (port < 0)
3221			dev_err(dev, "%s: invalid port index %d\n",
3222				__func__, port);
3223		else {
3224			spin_unlock_irqrestore(cfg->host->host_lock,
3225					       lock_flags);
3226
3227			/* The reset can block... */
3228			fc_port_regs = get_fc_port_regs(cfg, port);
3229			afu_link_reset(afu, port, fc_port_regs);
3230			spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3231		}
3232
3233		cfg->lr_state = LINK_RESET_COMPLETE;
3234	}
3235
3236	spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
3237
3238	if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
3239		scsi_scan_host(cfg->host);
3240}
3241
3242/**
3243 * cxlflash_chr_open() - character device open handler
3244 * @inode:	Device inode associated with this character device.
3245 * @file:	File pointer for this device.
3246 *
3247 * Only users with admin privileges are allowed to open the character device.
3248 *
3249 * Return: 0 on success, -errno on failure
3250 */
3251static int cxlflash_chr_open(struct inode *inode, struct file *file)
3252{
3253	struct cxlflash_cfg *cfg;
3254
3255	if (!capable(CAP_SYS_ADMIN))
3256		return -EACCES;
3257
3258	cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev);
3259	file->private_data = cfg;
3260
3261	return 0;
3262}
3263
3264/**
3265 * decode_hioctl() - translates encoded host ioctl to easily identifiable string
3266 * @cmd:        The host ioctl command to decode.
3267 *
3268 * Return: A string identifying the decoded host ioctl.
3269 */
3270static char *decode_hioctl(unsigned int cmd)
3271{
3272	switch (cmd) {
3273	case HT_CXLFLASH_LUN_PROVISION:
3274		return __stringify_1(HT_CXLFLASH_LUN_PROVISION);
3275	}
3276
3277	return "UNKNOWN";
3278}
3279
3280/**
3281 * cxlflash_lun_provision() - host LUN provisioning handler
3282 * @cfg:	Internal structure associated with the host.
3283 * @lunprov:	Kernel copy of userspace ioctl data structure.
3284 *
3285 * Return: 0 on success, -errno on failure
3286 */
3287static int cxlflash_lun_provision(struct cxlflash_cfg *cfg,
3288				  struct ht_cxlflash_lun_provision *lunprov)
3289{
3290	struct afu *afu = cfg->afu;
3291	struct device *dev = &cfg->dev->dev;
3292	struct sisl_ioarcb rcb;
3293	struct sisl_ioasa asa;
3294	__be64 __iomem *fc_port_regs;
3295	u16 port = lunprov->port;
3296	u16 scmd = lunprov->hdr.subcmd;
3297	u16 type;
3298	u64 reg;
3299	u64 size;
3300	u64 lun_id;
3301	int rc = 0;
3302
3303	if (!afu_is_lun_provision(afu)) {
3304		rc = -ENOTSUPP;
3305		goto out;
3306	}
3307
3308	if (port >= cfg->num_fc_ports) {
3309		rc = -EINVAL;
3310		goto out;
3311	}
3312
3313	switch (scmd) {
3314	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN:
3315		type = SISL_AFU_LUN_PROVISION_CREATE;
3316		size = lunprov->size;
3317		lun_id = 0;
3318		break;
3319	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN:
3320		type = SISL_AFU_LUN_PROVISION_DELETE;
3321		size = 0;
3322		lun_id = lunprov->lun_id;
3323		break;
3324	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT:
3325		fc_port_regs = get_fc_port_regs(cfg, port);
3326
3327		reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]);
3328		lunprov->max_num_luns = reg;
3329		reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]);
3330		lunprov->cur_num_luns = reg;
3331		reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]);
3332		lunprov->max_cap_port = reg;
3333		reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]);
3334		lunprov->cur_cap_port = reg;
3335
3336		goto out;
3337	default:
3338		rc = -EINVAL;
3339		goto out;
3340	}
3341
3342	memset(&rcb, 0, sizeof(rcb));
3343	memset(&asa, 0, sizeof(asa));
3344	rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
3345	rcb.lun_id = lun_id;
3346	rcb.msi = SISL_MSI_RRQ_UPDATED;
3347	rcb.timeout = MC_LUN_PROV_TIMEOUT;
3348	rcb.ioasa = &asa;
3349
3350	rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION;
3351	rcb.cdb[1] = type;
3352	rcb.cdb[2] = port;
3353	put_unaligned_be64(size, &rcb.cdb[8]);
3354
3355	rc = send_afu_cmd(afu, &rcb);
3356	if (rc) {
3357		dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3358			__func__, rc, asa.ioasc, asa.afu_extra);
3359		goto out;
3360	}
3361
3362	if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) {
3363		lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo;
3364		memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid));
3365	}
3366out:
3367	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3368	return rc;
3369}
3370
3371/**
3372 * cxlflash_afu_debug() - host AFU debug handler
3373 * @cfg:	Internal structure associated with the host.
3374 * @afu_dbg:	Kernel copy of userspace ioctl data structure.
3375 *
3376 * For debug requests requiring a data buffer, always provide an aligned
3377 * (cache line) buffer to the AFU to appease any alignment requirements.
3378 *
3379 * Return: 0 on success, -errno on failure
3380 */
3381static int cxlflash_afu_debug(struct cxlflash_cfg *cfg,
3382			      struct ht_cxlflash_afu_debug *afu_dbg)
3383{
3384	struct afu *afu = cfg->afu;
3385	struct device *dev = &cfg->dev->dev;
3386	struct sisl_ioarcb rcb;
3387	struct sisl_ioasa asa;
3388	char *buf = NULL;
3389	char *kbuf = NULL;
3390	void __user *ubuf = (__force void __user *)afu_dbg->data_ea;
3391	u16 req_flags = SISL_REQ_FLAGS_AFU_CMD;
3392	u32 ulen = afu_dbg->data_len;
3393	bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE;
3394	int rc = 0;
3395
3396	if (!afu_is_afu_debug(afu)) {
3397		rc = -ENOTSUPP;
3398		goto out;
3399	}
3400
3401	if (ulen) {
3402		req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN;
3403
3404		if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) {
3405			rc = -EINVAL;
3406			goto out;
3407		}
3408
3409		buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL);
3410		if (unlikely(!buf)) {
3411			rc = -ENOMEM;
3412			goto out;
3413		}
3414
3415		kbuf = PTR_ALIGN(buf, cache_line_size());
3416
3417		if (is_write) {
3418			req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
3419
3420			if (copy_from_user(kbuf, ubuf, ulen)) {
3421				rc = -EFAULT;
3422				goto out;
3423			}
3424		}
3425	}
3426
3427	memset(&rcb, 0, sizeof(rcb));
3428	memset(&asa, 0, sizeof(asa));
3429
3430	rcb.req_flags = req_flags;
3431	rcb.msi = SISL_MSI_RRQ_UPDATED;
3432	rcb.timeout = MC_AFU_DEBUG_TIMEOUT;
3433	rcb.ioasa = &asa;
3434
3435	if (ulen) {
3436		rcb.data_len = ulen;
3437		rcb.data_ea = (uintptr_t)kbuf;
3438	}
3439
3440	rcb.cdb[0] = SISL_AFU_CMD_DEBUG;
3441	memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd,
3442	       HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN);
3443
3444	rc = send_afu_cmd(afu, &rcb);
3445	if (rc) {
3446		dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3447			__func__, rc, asa.ioasc, asa.afu_extra);
3448		goto out;
3449	}
3450
3451	if (ulen && !is_write) {
3452		if (copy_to_user(ubuf, kbuf, ulen))
3453			rc = -EFAULT;
3454	}
3455out:
3456	kfree(buf);
3457	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3458	return rc;
3459}
3460
3461/**
3462 * cxlflash_chr_ioctl() - character device IOCTL handler
3463 * @file:	File pointer for this device.
3464 * @cmd:	IOCTL command.
3465 * @arg:	Userspace ioctl data structure.
3466 *
3467 * A read/write semaphore is used to implement a 'drain' of currently
3468 * running ioctls. The read semaphore is taken at the beginning of each
3469 * ioctl thread and released upon concluding execution. Additionally the
3470 * semaphore should be released and then reacquired in any ioctl execution
3471 * path which will wait for an event to occur that is outside the scope of
3472 * the ioctl (i.e. an adapter reset). To drain the ioctls currently running,
3473 * a thread simply needs to acquire the write semaphore.
3474 *
3475 * Return: 0 on success, -errno on failure
3476 */
3477static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd,
3478			       unsigned long arg)
3479{
3480	typedef int (*hioctl) (struct cxlflash_cfg *, void *);
3481
3482	struct cxlflash_cfg *cfg = file->private_data;
3483	struct device *dev = &cfg->dev->dev;
3484	char buf[sizeof(union cxlflash_ht_ioctls)];
3485	void __user *uarg = (void __user *)arg;
3486	struct ht_cxlflash_hdr *hdr;
3487	size_t size = 0;
3488	bool known_ioctl = false;
3489	int idx = 0;
3490	int rc = 0;
3491	hioctl do_ioctl = NULL;
3492
3493	static const struct {
3494		size_t size;
3495		hioctl ioctl;
3496	} ioctl_tbl[] = {	/* NOTE: order matters here */
3497	{ sizeof(struct ht_cxlflash_lun_provision),
3498		(hioctl)cxlflash_lun_provision },
3499	{ sizeof(struct ht_cxlflash_afu_debug),
3500		(hioctl)cxlflash_afu_debug },
3501	};
3502
3503	/* Hold read semaphore so we can drain if needed */
3504	down_read(&cfg->ioctl_rwsem);
3505
3506	dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n",
3507		__func__, cmd, idx, sizeof(ioctl_tbl));
3508
3509	switch (cmd) {
3510	case HT_CXLFLASH_LUN_PROVISION:
3511	case HT_CXLFLASH_AFU_DEBUG:
3512		known_ioctl = true;
3513		idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd);
3514		size = ioctl_tbl[idx].size;
3515		do_ioctl = ioctl_tbl[idx].ioctl;
3516
3517		if (likely(do_ioctl))
3518			break;
3519
3520		fallthrough;
3521	default:
3522		rc = -EINVAL;
3523		goto out;
3524	}
3525
3526	if (unlikely(copy_from_user(&buf, uarg, size))) {
3527		dev_err(dev, "%s: copy_from_user() fail "
3528			"size=%lu cmd=%d (%s) uarg=%p\n",
3529			__func__, size, cmd, decode_hioctl(cmd), uarg);
3530		rc = -EFAULT;
3531		goto out;
3532	}
3533
3534	hdr = (struct ht_cxlflash_hdr *)&buf;
3535	if (hdr->version != HT_CXLFLASH_VERSION_0) {
3536		dev_dbg(dev, "%s: Version %u not supported for %s\n",
3537			__func__, hdr->version, decode_hioctl(cmd));
3538		rc = -EINVAL;
3539		goto out;
3540	}
3541
3542	if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) {
3543		dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__);
3544		rc = -EINVAL;
3545		goto out;
3546	}
3547
3548	rc = do_ioctl(cfg, (void *)&buf);
3549	if (likely(!rc))
3550		if (unlikely(copy_to_user(uarg, &buf, size))) {
3551			dev_err(dev, "%s: copy_to_user() fail "
3552				"size=%lu cmd=%d (%s) uarg=%p\n",
3553				__func__, size, cmd, decode_hioctl(cmd), uarg);
3554			rc = -EFAULT;
3555		}
3556
3557	/* fall through to exit */
3558
3559out:
3560	up_read(&cfg->ioctl_rwsem);
3561	if (unlikely(rc && known_ioctl))
3562		dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3563			__func__, decode_hioctl(cmd), cmd, rc);
3564	else
3565		dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3566			__func__, decode_hioctl(cmd), cmd, rc);
3567	return rc;
3568}
3569
3570/*
3571 * Character device file operations
3572 */
3573static const struct file_operations cxlflash_chr_fops = {
3574	.owner          = THIS_MODULE,
3575	.open           = cxlflash_chr_open,
3576	.unlocked_ioctl	= cxlflash_chr_ioctl,
3577	.compat_ioctl	= compat_ptr_ioctl,
3578};
3579
3580/**
3581 * init_chrdev() - initialize the character device for the host
3582 * @cfg:	Internal structure associated with the host.
3583 *
3584 * Return: 0 on success, -errno on failure
3585 */
3586static int init_chrdev(struct cxlflash_cfg *cfg)
3587{
3588	struct device *dev = &cfg->dev->dev;
3589	struct device *char_dev;
3590	dev_t devno;
3591	int minor;
3592	int rc = 0;
3593
3594	minor = cxlflash_get_minor();
3595	if (unlikely(minor < 0)) {
3596		dev_err(dev, "%s: Exhausted allowed adapters\n", __func__);
3597		rc = -ENOSPC;
3598		goto out;
3599	}
3600
3601	devno = MKDEV(cxlflash_major, minor);
3602	cdev_init(&cfg->cdev, &cxlflash_chr_fops);
3603
3604	rc = cdev_add(&cfg->cdev, devno, 1);
3605	if (rc) {
3606		dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc);
3607		goto err1;
3608	}
3609
3610	char_dev = device_create(&cxlflash_class, NULL, devno,
3611				 NULL, "cxlflash%d", minor);
3612	if (IS_ERR(char_dev)) {
3613		rc = PTR_ERR(char_dev);
3614		dev_err(dev, "%s: device_create failed rc=%d\n",
3615			__func__, rc);
3616		goto err2;
3617	}
3618
3619	cfg->chardev = char_dev;
3620out:
3621	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3622	return rc;
3623err2:
3624	cdev_del(&cfg->cdev);
3625err1:
3626	cxlflash_put_minor(minor);
3627	goto out;
3628}
3629
3630/**
3631 * cxlflash_probe() - PCI entry point to add host
3632 * @pdev:	PCI device associated with the host.
3633 * @dev_id:	PCI device id associated with device.
3634 *
3635 * The device will initially start out in a 'probing' state and
3636 * transition to the 'normal' state at the end of a successful
3637 * probe. Should an EEH event occur during probe, the notification
3638 * thread (error_detected()) will wait until the probe handler
3639 * is nearly complete. At that time, the device will be moved to
3640 * a 'probed' state and the EEH thread woken up to drive the slot
3641 * reset and recovery (device moves to 'normal' state). Meanwhile,
3642 * the probe will be allowed to exit successfully.
3643 *
3644 * Return: 0 on success, -errno on failure
3645 */
3646static int cxlflash_probe(struct pci_dev *pdev,
3647			  const struct pci_device_id *dev_id)
3648{
3649	struct Scsi_Host *host;
3650	struct cxlflash_cfg *cfg = NULL;
3651	struct device *dev = &pdev->dev;
3652	struct dev_dependent_vals *ddv;
3653	int rc = 0;
3654	int k;
3655
3656	dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
3657		__func__, pdev->irq);
3658
3659	ddv = (struct dev_dependent_vals *)dev_id->driver_data;
3660	driver_template.max_sectors = ddv->max_sectors;
3661
3662	host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
3663	if (!host) {
3664		dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
3665		rc = -ENOMEM;
3666		goto out;
3667	}
3668
3669	host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
3670	host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
3671	host->unique_id = host->host_no;
3672	host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
3673
3674	cfg = shost_priv(host);
3675	cfg->state = STATE_PROBING;
3676	cfg->host = host;
3677	rc = alloc_mem(cfg);
3678	if (rc) {
3679		dev_err(dev, "%s: alloc_mem failed\n", __func__);
3680		rc = -ENOMEM;
3681		scsi_host_put(cfg->host);
3682		goto out;
3683	}
3684
3685	cfg->init_state = INIT_STATE_NONE;
3686	cfg->dev = pdev;
3687	cfg->cxl_fops = cxlflash_cxl_fops;
3688	cfg->ops = cxlflash_assign_ops(ddv);
3689	WARN_ON_ONCE(!cfg->ops);
3690
3691	/*
3692	 * Promoted LUNs move to the top of the LUN table. The rest stay on
3693	 * the bottom half. The bottom half grows from the end (index = 255),
3694	 * whereas the top half grows from the beginning (index = 0).
3695	 *
3696	 * Initialize the last LUN index for all possible ports.
3697	 */
3698	cfg->promote_lun_index = 0;
3699
3700	for (k = 0; k < MAX_FC_PORTS; k++)
3701		cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
3702
3703	cfg->dev_id = (struct pci_device_id *)dev_id;
3704
3705	init_waitqueue_head(&cfg->tmf_waitq);
3706	init_waitqueue_head(&cfg->reset_waitq);
3707
3708	INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
3709	cfg->lr_state = LINK_RESET_INVALID;
3710	cfg->lr_port = -1;
3711	spin_lock_init(&cfg->tmf_slock);
3712	mutex_init(&cfg->ctx_tbl_list_mutex);
3713	mutex_init(&cfg->ctx_recovery_mutex);
3714	init_rwsem(&cfg->ioctl_rwsem);
3715	INIT_LIST_HEAD(&cfg->ctx_err_recovery);
3716	INIT_LIST_HEAD(&cfg->lluns);
3717
3718	pci_set_drvdata(pdev, cfg);
3719
3720	rc = init_pci(cfg);
3721	if (rc) {
3722		dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
3723		goto out_remove;
3724	}
3725	cfg->init_state = INIT_STATE_PCI;
3726
3727	cfg->afu_cookie = cfg->ops->create_afu(pdev);
3728	if (unlikely(!cfg->afu_cookie)) {
3729		dev_err(dev, "%s: create_afu failed\n", __func__);
3730		rc = -ENOMEM;
3731		goto out_remove;
3732	}
3733
3734	rc = init_afu(cfg);
3735	if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
3736		dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
3737		goto out_remove;
3738	}
3739	cfg->init_state = INIT_STATE_AFU;
3740
3741	rc = init_scsi(cfg);
3742	if (rc) {
3743		dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
3744		goto out_remove;
3745	}
3746	cfg->init_state = INIT_STATE_SCSI;
3747
3748	rc = init_chrdev(cfg);
3749	if (rc) {
3750		dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc);
3751		goto out_remove;
3752	}
3753	cfg->init_state = INIT_STATE_CDEV;
3754
3755	if (wq_has_sleeper(&cfg->reset_waitq)) {
3756		cfg->state = STATE_PROBED;
3757		wake_up_all(&cfg->reset_waitq);
3758	} else
3759		cfg->state = STATE_NORMAL;
3760out:
3761	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3762	return rc;
3763
3764out_remove:
3765	cfg->state = STATE_PROBED;
3766	cxlflash_remove(pdev);
3767	goto out;
3768}
3769
3770/**
3771 * cxlflash_pci_error_detected() - called when a PCI error is detected
3772 * @pdev:	PCI device struct.
3773 * @state:	PCI channel state.
3774 *
3775 * When an EEH occurs during an active reset, wait until the reset is
3776 * complete and then take action based upon the device state.
3777 *
3778 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
3779 */
3780static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
3781						    pci_channel_state_t state)
3782{
3783	int rc = 0;
3784	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3785	struct device *dev = &cfg->dev->dev;
3786
3787	dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
3788
3789	switch (state) {
3790	case pci_channel_io_frozen:
3791		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
3792					     cfg->state != STATE_PROBING);
3793		if (cfg->state == STATE_FAILTERM)
3794			return PCI_ERS_RESULT_DISCONNECT;
3795
3796		cfg->state = STATE_RESET;
3797		scsi_block_requests(cfg->host);
3798		drain_ioctls(cfg);
3799		rc = cxlflash_mark_contexts_error(cfg);
3800		if (unlikely(rc))
3801			dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
3802				__func__, rc);
3803		term_afu(cfg);
3804		return PCI_ERS_RESULT_NEED_RESET;
3805	case pci_channel_io_perm_failure:
3806		cfg->state = STATE_FAILTERM;
3807		wake_up_all(&cfg->reset_waitq);
3808		scsi_unblock_requests(cfg->host);
3809		return PCI_ERS_RESULT_DISCONNECT;
3810	default:
3811		break;
3812	}
3813	return PCI_ERS_RESULT_NEED_RESET;
3814}
3815
3816/**
3817 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
3818 * @pdev:	PCI device struct.
3819 *
3820 * This routine is called by the pci error recovery code after the PCI
3821 * slot has been reset, just before we should resume normal operations.
3822 *
3823 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
3824 */
3825static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
3826{
3827	int rc = 0;
3828	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3829	struct device *dev = &cfg->dev->dev;
3830
3831	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3832
3833	rc = init_afu(cfg);
3834	if (unlikely(rc)) {
3835		dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
3836		return PCI_ERS_RESULT_DISCONNECT;
3837	}
3838
3839	return PCI_ERS_RESULT_RECOVERED;
3840}
3841
3842/**
3843 * cxlflash_pci_resume() - called when normal operation can resume
3844 * @pdev:	PCI device struct
3845 */
3846static void cxlflash_pci_resume(struct pci_dev *pdev)
3847{
3848	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3849	struct device *dev = &cfg->dev->dev;
3850
3851	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3852
3853	cfg->state = STATE_NORMAL;
3854	wake_up_all(&cfg->reset_waitq);
3855	scsi_unblock_requests(cfg->host);
3856}
3857
3858/**
3859 * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class
3860 * @dev:	Character device.
3861 * @mode:	Mode that can be used to verify access.
3862 *
3863 * Return: Allocated string describing the devtmpfs structure.
3864 */
3865static char *cxlflash_devnode(const struct device *dev, umode_t *mode)
3866{
3867	return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev));
3868}
3869
3870/**
3871 * cxlflash_class_init() - create character device class
3872 *
3873 * Return: 0 on success, -errno on failure
3874 */
3875static int cxlflash_class_init(void)
3876{
3877	dev_t devno;
3878	int rc = 0;
3879
3880	rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash");
3881	if (unlikely(rc)) {
3882		pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc);
3883		goto out;
3884	}
3885
3886	cxlflash_major = MAJOR(devno);
3887
3888	rc = class_register(&cxlflash_class);
3889	if (rc) {
3890		pr_err("%s: class_create failed rc=%d\n", __func__, rc);
3891		goto err;
3892	}
3893
3894out:
3895	pr_debug("%s: returning rc=%d\n", __func__, rc);
3896	return rc;
3897err:
3898	unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3899	goto out;
3900}
3901
3902/**
3903 * cxlflash_class_exit() - destroy character device class
3904 */
3905static void cxlflash_class_exit(void)
3906{
3907	dev_t devno = MKDEV(cxlflash_major, 0);
3908
3909	class_unregister(&cxlflash_class);
3910	unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3911}
3912
3913static const struct pci_error_handlers cxlflash_err_handler = {
3914	.error_detected = cxlflash_pci_error_detected,
3915	.slot_reset = cxlflash_pci_slot_reset,
3916	.resume = cxlflash_pci_resume,
3917};
3918
3919/*
3920 * PCI device structure
3921 */
3922static struct pci_driver cxlflash_driver = {
3923	.name = CXLFLASH_NAME,
3924	.id_table = cxlflash_pci_table,
3925	.probe = cxlflash_probe,
3926	.remove = cxlflash_remove,
3927	.shutdown = cxlflash_remove,
3928	.err_handler = &cxlflash_err_handler,
3929};
3930
3931/**
3932 * init_cxlflash() - module entry point
3933 *
3934 * Return: 0 on success, -errno on failure
3935 */
3936static int __init init_cxlflash(void)
3937{
3938	int rc;
3939
3940	check_sizes();
3941	cxlflash_list_init();
3942	rc = cxlflash_class_init();
3943	if (unlikely(rc))
3944		goto out;
3945
3946	rc = pci_register_driver(&cxlflash_driver);
3947	if (unlikely(rc))
3948		goto err;
3949out:
3950	pr_debug("%s: returning rc=%d\n", __func__, rc);
3951	return rc;
3952err:
3953	cxlflash_class_exit();
3954	goto out;
3955}
3956
3957/**
3958 * exit_cxlflash() - module exit point
3959 */
3960static void __exit exit_cxlflash(void)
3961{
3962	cxlflash_term_global_luns();
3963	cxlflash_free_errpage();
3964
3965	pci_unregister_driver(&cxlflash_driver);
3966	cxlflash_class_exit();
3967}
3968
3969module_init(init_cxlflash);
3970module_exit(exit_cxlflash);
3971