1/*
2 * This file is part of the Chelsio FCoE driver for Linux.
3 *
4 * Copyright (c) 2008-2013 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses.  You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * OpenIB.org BSD license below:
10 *
11 *     Redistribution and use in source and binary forms, with or
12 *     without modification, are permitted provided that the following
13 *     conditions are met:
14 *
15 *      - Redistributions of source code must retain the above
16 *        copyright notice, this list of conditions and the following
17 *        disclaimer.
18 *
19 *      - Redistributions in binary form must reproduce the above
20 *        copyright notice, this list of conditions and the following
21 *        disclaimer in the documentation and/or other materials
22 *        provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include "csio_hw.h"
35#include "csio_init.h"
36
37static int
38csio_t5_set_mem_win(struct csio_hw *hw, uint32_t win)
39{
40	u32 mem_win_base;
41	/*
42	 * Truncation intentional: we only read the bottom 32-bits of the
43	 * 64-bit BAR0/BAR1 ...  We use the hardware backdoor mechanism to
44	 * read BAR0 instead of using pci_resource_start() because we could be
45	 * operating from within a Virtual Machine which is trapping our
46	 * accesses to our Configuration Space and we need to set up the PCI-E
47	 * Memory Window decoders with the actual addresses which will be
48	 * coming across the PCI-E link.
49	 */
50
51	/* For T5, only relative offset inside the PCIe BAR is passed */
52	mem_win_base = MEMWIN_BASE;
53
54	/*
55	 * Set up memory window for accessing adapter memory ranges.  (Read
56	 * back MA register to ensure that changes propagate before we attempt
57	 * to use the new values.)
58	 */
59	csio_wr_reg32(hw, mem_win_base | BIR_V(0) |
60			  WINDOW_V(ilog2(MEMWIN_APERTURE) - 10),
61			  PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
62	csio_rd_reg32(hw,
63		      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
64
65	return 0;
66}
67
68/*
69 * Interrupt handler for the PCIE module.
70 */
71static void
72csio_t5_pcie_intr_handler(struct csio_hw *hw)
73{
74	static struct intr_info pcie_intr_info[] = {
75		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
76		-1, 1 },
77		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
78		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
79		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
80		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
81		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
82		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
83		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
84		-1, 1 },
85		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
86		-1, 1 },
87		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
88		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
89		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
90		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
91		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
92		-1, 1 },
93		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
94		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
95		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
96		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
97		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
98		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
99		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
100		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
101		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
102		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
103		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
104		-1, 1 },
105		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
106		-1, 1 },
107		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
108		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
109		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
110		{ READRSPERR_F, "Outbound read error", -1, 0 },
111		{ 0, NULL, 0, 0 }
112	};
113
114	int fat;
115	fat = csio_handle_intr_status(hw, PCIE_INT_CAUSE_A, pcie_intr_info);
116	if (fat)
117		csio_hw_fatal_err(hw);
118}
119
120/*
121 * csio_t5_flash_cfg_addr - return the address of the flash configuration file
122 * @hw: the HW module
123 *
124 * Return the address within the flash where the Firmware Configuration
125 * File is stored.
126 */
127static unsigned int
128csio_t5_flash_cfg_addr(struct csio_hw *hw)
129{
130	return FLASH_CFG_START;
131}
132
133/*
134 *      csio_t5_mc_read - read from MC through backdoor accesses
135 *      @hw: the hw module
136 *      @idx: index to the register
137 *      @addr: address of first byte requested
138 *      @data: 64 bytes of data containing the requested address
139 *      @ecc: where to store the corresponding 64-bit ECC word
140 *
141 *      Read 64 bytes of data from MC starting at a 64-byte-aligned address
142 *      that covers the requested address @addr.  If @parity is not %NULL it
143 *      is assigned the 64-bit ECC word for the read data.
144 */
145static int
146csio_t5_mc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
147		uint64_t *ecc)
148{
149	int i;
150	uint32_t mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
151	uint32_t mc_bist_data_pattern_reg;
152
153	mc_bist_cmd_reg = MC_REG(MC_P_BIST_CMD_A, idx);
154	mc_bist_cmd_addr_reg = MC_REG(MC_P_BIST_CMD_ADDR_A, idx);
155	mc_bist_cmd_len_reg = MC_REG(MC_P_BIST_CMD_LEN_A, idx);
156	mc_bist_data_pattern_reg = MC_REG(MC_P_BIST_DATA_PATTERN_A, idx);
157
158	if (csio_rd_reg32(hw, mc_bist_cmd_reg) & START_BIST_F)
159		return -EBUSY;
160	csio_wr_reg32(hw, addr & ~0x3fU, mc_bist_cmd_addr_reg);
161	csio_wr_reg32(hw, 64, mc_bist_cmd_len_reg);
162	csio_wr_reg32(hw, 0xc, mc_bist_data_pattern_reg);
163	csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F |  BIST_CMD_GAP_V(1),
164		      mc_bist_cmd_reg);
165	i = csio_hw_wait_op_done_val(hw, mc_bist_cmd_reg, START_BIST_F,
166				     0, 10, 1, NULL);
167	if (i)
168		return i;
169
170#define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA_A, i)
171
172	for (i = 15; i >= 0; i--)
173		*data++ = htonl(csio_rd_reg32(hw, MC_DATA(i)));
174	if (ecc)
175		*ecc = csio_rd_reg64(hw, MC_DATA(16));
176#undef MC_DATA
177	return 0;
178}
179
180/*
181 *      csio_t5_edc_read - read from EDC through backdoor accesses
182 *      @hw: the hw module
183 *      @idx: which EDC to access
184 *      @addr: address of first byte requested
185 *      @data: 64 bytes of data containing the requested address
186 *      @ecc: where to store the corresponding 64-bit ECC word
187 *
188 *      Read 64 bytes of data from EDC starting at a 64-byte-aligned address
189 *      that covers the requested address @addr.  If @parity is not %NULL it
190 *      is assigned the 64-bit ECC word for the read data.
191 */
192static int
193csio_t5_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
194		uint64_t *ecc)
195{
196	int i;
197	uint32_t edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
198	uint32_t edc_bist_cmd_data_pattern;
199
200/*
201 * These macro are missing in t4_regs.h file.
202 */
203#define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
204#define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
205
206	edc_bist_cmd_reg = EDC_REG_T5(EDC_H_BIST_CMD_A, idx);
207	edc_bist_cmd_addr_reg = EDC_REG_T5(EDC_H_BIST_CMD_ADDR_A, idx);
208	edc_bist_cmd_len_reg = EDC_REG_T5(EDC_H_BIST_CMD_LEN_A, idx);
209	edc_bist_cmd_data_pattern = EDC_REG_T5(EDC_H_BIST_DATA_PATTERN_A, idx);
210#undef EDC_REG_T5
211#undef EDC_STRIDE_T5
212
213	if (csio_rd_reg32(hw, edc_bist_cmd_reg) & START_BIST_F)
214		return -EBUSY;
215	csio_wr_reg32(hw, addr & ~0x3fU, edc_bist_cmd_addr_reg);
216	csio_wr_reg32(hw, 64, edc_bist_cmd_len_reg);
217	csio_wr_reg32(hw, 0xc, edc_bist_cmd_data_pattern);
218	csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F |  BIST_CMD_GAP_V(1),
219		      edc_bist_cmd_reg);
220	i = csio_hw_wait_op_done_val(hw, edc_bist_cmd_reg, START_BIST_F,
221				     0, 10, 1, NULL);
222	if (i)
223		return i;
224
225#define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA_A, i) + idx)
226
227	for (i = 15; i >= 0; i--)
228		*data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i)));
229	if (ecc)
230		*ecc = csio_rd_reg64(hw, EDC_DATA(16));
231#undef EDC_DATA
232	return 0;
233}
234
235/*
236 * csio_t5_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
237 * @hw: the csio_hw
238 * @win: PCI-E memory Window to use
239 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_MC0 (or MEM_MC) or MEM_MC1
240 * @addr: address within indicated memory type
241 * @len: amount of memory to transfer
242 * @buf: host memory buffer
243 * @dir: direction of transfer 1 => read, 0 => write
244 *
245 * Reads/writes an [almost] arbitrary memory region in the firmware: the
246 * firmware memory address, length and host buffer must be aligned on
247 * 32-bit boundaries.  The memory is transferred as a raw byte sequence
248 * from/to the firmware's memory.  If this memory contains data
249 * structures which contain multi-byte integers, it's the callers
250 * responsibility to perform appropriate byte order conversions.
251 */
252static int
253csio_t5_memory_rw(struct csio_hw *hw, u32 win, int mtype, u32 addr,
254		u32 len, uint32_t *buf, int dir)
255{
256	u32 pos, start, offset, memoffset;
257	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
258
259	/*
260	 * Argument sanity checks ...
261	 */
262	if ((addr & 0x3) || (len & 0x3))
263		return -EINVAL;
264
265	/* Offset into the region of memory which is being accessed
266	 * MEM_EDC0 = 0
267	 * MEM_EDC1 = 1
268	 * MEM_MC   = 2 -- T4
269	 * MEM_MC0  = 2 -- For T5
270	 * MEM_MC1  = 3 -- For T5
271	 */
272	edc_size  = EDRAM0_SIZE_G(csio_rd_reg32(hw, MA_EDRAM0_BAR_A));
273	if (mtype != MEM_MC1)
274		memoffset = (mtype * (edc_size * 1024 * 1024));
275	else {
276		mc_size = EXT_MEM_SIZE_G(csio_rd_reg32(hw,
277						       MA_EXT_MEMORY_BAR_A));
278		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
279	}
280
281	/* Determine the PCIE_MEM_ACCESS_OFFSET */
282	addr = addr + memoffset;
283
284	/*
285	 * Each PCI-E Memory Window is programmed with a window size -- or
286	 * "aperture" -- which controls the granularity of its mapping onto
287	 * adapter memory.  We need to grab that aperture in order to know
288	 * how to use the specified window.  The window is also programmed
289	 * with the base address of the Memory Window in BAR0's address
290	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
291	 * the address is relative to BAR0.
292	 */
293	mem_reg = csio_rd_reg32(hw,
294			PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
295	mem_aperture = 1 << (WINDOW_V(mem_reg) + 10);
296	mem_base = PCIEOFST_G(mem_reg) << 10;
297
298	start = addr & ~(mem_aperture-1);
299	offset = addr - start;
300	win_pf = PFNUM_V(hw->pfn);
301
302	csio_dbg(hw, "csio_t5_memory_rw: mem_reg: 0x%x, mem_aperture: 0x%x\n",
303		 mem_reg, mem_aperture);
304	csio_dbg(hw, "csio_t5_memory_rw: mem_base: 0x%x, mem_offset: 0x%x\n",
305		 mem_base, memoffset);
306	csio_dbg(hw, "csio_t5_memory_rw: start:0x%x, offset:0x%x, win_pf:%d\n",
307		 start, offset, win_pf);
308	csio_dbg(hw, "csio_t5_memory_rw: mtype: %d, addr: 0x%x, len: %d\n",
309		 mtype, addr, len);
310
311	for (pos = start; len > 0; pos += mem_aperture, offset = 0) {
312		/*
313		 * Move PCI-E Memory Window to our current transfer
314		 * position.  Read it back to ensure that changes propagate
315		 * before we attempt to use the new value.
316		 */
317		csio_wr_reg32(hw, pos | win_pf,
318			PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
319		csio_rd_reg32(hw,
320			PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
321
322		while (offset < mem_aperture && len > 0) {
323			if (dir)
324				*buf++ = csio_rd_reg32(hw, mem_base + offset);
325			else
326				csio_wr_reg32(hw, *buf++, mem_base + offset);
327
328			offset += sizeof(__be32);
329			len -= sizeof(__be32);
330		}
331	}
332	return 0;
333}
334
335/*
336 * csio_t5_dfs_create_ext_mem - setup debugfs for MC0 or MC1 to read the values
337 * @hw: the csio_hw
338 *
339 * This function creates files in the debugfs with external memory region
340 * MC0 & MC1.
341 */
342static void
343csio_t5_dfs_create_ext_mem(struct csio_hw *hw)
344{
345	u32 size;
346	int i = csio_rd_reg32(hw, MA_TARGET_MEM_ENABLE_A);
347
348	if (i & EXT_MEM_ENABLE_F) {
349		size = csio_rd_reg32(hw, MA_EXT_MEMORY_BAR_A);
350		csio_add_debugfs_mem(hw, "mc0", MEM_MC0,
351				     EXT_MEM_SIZE_G(size));
352	}
353	if (i & EXT_MEM1_ENABLE_F) {
354		size = csio_rd_reg32(hw, MA_EXT_MEMORY1_BAR_A);
355		csio_add_debugfs_mem(hw, "mc1", MEM_MC1,
356				     EXT_MEM_SIZE_G(size));
357	}
358}
359
360/* T5 adapter specific function */
361struct csio_hw_chip_ops t5_ops = {
362	.chip_set_mem_win		= csio_t5_set_mem_win,
363	.chip_pcie_intr_handler		= csio_t5_pcie_intr_handler,
364	.chip_flash_cfg_addr		= csio_t5_flash_cfg_addr,
365	.chip_mc_read			= csio_t5_mc_read,
366	.chip_edc_read			= csio_t5_edc_read,
367	.chip_memory_rw			= csio_t5_memory_rw,
368	.chip_dfs_create_ext_mem	= csio_t5_dfs_create_ext_mem,
369};
370