1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Aic94xx SAS/SATA driver hardware interface.
4 *
5 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 */
8
9#include <linux/pci.h>
10#include <linux/slab.h>
11#include <linux/delay.h>
12#include <linux/module.h>
13#include <linux/firmware.h>
14
15#include "aic94xx.h"
16#include "aic94xx_reg.h"
17#include "aic94xx_hwi.h"
18#include "aic94xx_seq.h"
19#include "aic94xx_dump.h"
20
21u32 MBAR0_SWB_SIZE;
22
23/* ---------- Initialization ---------- */
24
25static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
26{
27	/* adapter came with a sas address */
28	if (asd_ha->hw_prof.sas_addr[0])
29		return 0;
30
31	return sas_request_addr(asd_ha->sas_ha.shost,
32				asd_ha->hw_prof.sas_addr);
33}
34
35static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
36{
37	int i;
38
39	for (i = 0; i < ASD_MAX_PHYS; i++) {
40		if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
41			continue;
42		/* Set a phy's address only if it has none.
43		 */
44		ASD_DPRINTK("setting phy%d addr to %llx\n", i,
45			    SAS_ADDR(asd_ha->hw_prof.sas_addr));
46		memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
47		       asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
48	}
49}
50
51/* ---------- PHY initialization ---------- */
52
53static void asd_init_phy_identify(struct asd_phy *phy)
54{
55	phy->identify_frame = phy->id_frm_tok->vaddr;
56
57	memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
58
59	phy->identify_frame->dev_type = SAS_END_DEVICE;
60	if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
61		phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
62	if (phy->sas_phy.role & PHY_ROLE_TARGET)
63		phy->identify_frame->target_bits = phy->sas_phy.tproto;
64	memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
65	       SAS_ADDR_SIZE);
66	phy->identify_frame->phy_id = phy->sas_phy.id;
67}
68
69static int asd_init_phy(struct asd_phy *phy)
70{
71	struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
72	struct asd_sas_phy *sas_phy = &phy->sas_phy;
73
74	sas_phy->enabled = 1;
75	sas_phy->iproto = SAS_PROTOCOL_ALL;
76	sas_phy->tproto = 0;
77	sas_phy->role = PHY_ROLE_INITIATOR;
78	sas_phy->oob_mode = OOB_NOT_CONNECTED;
79	sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
80
81	phy->id_frm_tok = asd_alloc_coherent(asd_ha,
82					     sizeof(*phy->identify_frame),
83					     GFP_KERNEL);
84	if (!phy->id_frm_tok) {
85		asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
86		return -ENOMEM;
87	} else
88		asd_init_phy_identify(phy);
89
90	memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
91
92	return 0;
93}
94
95static void asd_init_ports(struct asd_ha_struct *asd_ha)
96{
97	int i;
98
99	spin_lock_init(&asd_ha->asd_ports_lock);
100	for (i = 0; i < ASD_MAX_PHYS; i++) {
101		struct asd_port *asd_port = &asd_ha->asd_ports[i];
102
103		memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
104		memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
105		asd_port->phy_mask = 0;
106		asd_port->num_phys = 0;
107	}
108}
109
110static int asd_init_phys(struct asd_ha_struct *asd_ha)
111{
112	u8 i;
113	u8 phy_mask = asd_ha->hw_prof.enabled_phys;
114
115	for (i = 0; i < ASD_MAX_PHYS; i++) {
116		struct asd_phy *phy = &asd_ha->phys[i];
117
118		phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
119		phy->asd_port = NULL;
120
121		phy->sas_phy.enabled = 0;
122		phy->sas_phy.id = i;
123		phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
124		phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
125		phy->sas_phy.ha = &asd_ha->sas_ha;
126		phy->sas_phy.lldd_phy = phy;
127	}
128
129	/* Now enable and initialize only the enabled phys. */
130	for_each_phy(phy_mask, phy_mask, i) {
131		int err = asd_init_phy(&asd_ha->phys[i]);
132		if (err)
133			return err;
134	}
135
136	return 0;
137}
138
139/* ---------- Sliding windows ---------- */
140
141static int asd_init_sw(struct asd_ha_struct *asd_ha)
142{
143	struct pci_dev *pcidev = asd_ha->pcidev;
144	int err;
145	u32 v;
146
147	/* Unlock MBARs */
148	err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
149	if (err) {
150		asd_printk("couldn't access conf. space of %s\n",
151			   pci_name(pcidev));
152		goto Err;
153	}
154	if (v)
155		err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
156	if (err) {
157		asd_printk("couldn't write to MBAR_KEY of %s\n",
158			   pci_name(pcidev));
159		goto Err;
160	}
161
162	/* Set sliding windows A, B and C to point to proper internal
163	 * memory regions.
164	 */
165	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
166	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
167			       REG_BASE_ADDR_CSEQCIO);
168	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
169	asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
170	asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
171	asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
172	MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
173	if (!asd_ha->iospace) {
174		/* MBAR1 will point to OCM (On Chip Memory) */
175		pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
176		asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
177	}
178	spin_lock_init(&asd_ha->iolock);
179Err:
180	return err;
181}
182
183/* ---------- SCB initialization ---------- */
184
185/**
186 * asd_init_scbs - manually allocate the first SCB.
187 * @asd_ha: pointer to host adapter structure
188 *
189 * This allocates the very first SCB which would be sent to the
190 * sequencer for execution.  Its bus address is written to
191 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8.  Since the bus address of
192 * the _next_ scb to be DMA-ed to the host adapter is read from the last
193 * SCB DMA-ed to the host adapter, we have to always stay one step
194 * ahead of the sequencer and keep one SCB already allocated.
195 */
196static int asd_init_scbs(struct asd_ha_struct *asd_ha)
197{
198	struct asd_seq_data *seq = &asd_ha->seq;
199	int bitmap_bytes;
200
201	/* allocate the index array and bitmap */
202	asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
203	asd_ha->seq.tc_index_array = kcalloc(asd_ha->seq.tc_index_bitmap_bits,
204					     sizeof(void *),
205					     GFP_KERNEL);
206	if (!asd_ha->seq.tc_index_array)
207		return -ENOMEM;
208
209	bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
210	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
211	asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
212	if (!asd_ha->seq.tc_index_bitmap) {
213		kfree(asd_ha->seq.tc_index_array);
214		asd_ha->seq.tc_index_array = NULL;
215		return -ENOMEM;
216	}
217
218	spin_lock_init(&seq->tc_index_lock);
219
220	seq->next_scb.size = sizeof(struct scb);
221	seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
222					     &seq->next_scb.dma_handle);
223	if (!seq->next_scb.vaddr) {
224		kfree(asd_ha->seq.tc_index_bitmap);
225		kfree(asd_ha->seq.tc_index_array);
226		asd_ha->seq.tc_index_bitmap = NULL;
227		asd_ha->seq.tc_index_array = NULL;
228		return -ENOMEM;
229	}
230
231	seq->pending = 0;
232	spin_lock_init(&seq->pend_q_lock);
233	INIT_LIST_HEAD(&seq->pend_q);
234
235	return 0;
236}
237
238static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
239{
240	asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
241	asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
242	ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
243		    asd_ha->hw_prof.max_scbs,
244		    asd_ha->hw_prof.max_ddbs);
245}
246
247/* ---------- Done List initialization ---------- */
248
249static void asd_dl_tasklet_handler(unsigned long);
250
251static int asd_init_dl(struct asd_ha_struct *asd_ha)
252{
253	asd_ha->seq.actual_dl
254		= asd_alloc_coherent(asd_ha,
255			     ASD_DL_SIZE * sizeof(struct done_list_struct),
256				     GFP_KERNEL);
257	if (!asd_ha->seq.actual_dl)
258		return -ENOMEM;
259	asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
260	asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
261	asd_ha->seq.dl_next = 0;
262	tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
263		     (unsigned long) asd_ha);
264
265	return 0;
266}
267
268/* ---------- EDB and ESCB init ---------- */
269
270static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
271{
272	struct asd_seq_data *seq = &asd_ha->seq;
273	int i;
274
275	seq->edb_arr = kmalloc_array(seq->num_edbs, sizeof(*seq->edb_arr),
276				     gfp_flags);
277	if (!seq->edb_arr)
278		return -ENOMEM;
279
280	for (i = 0; i < seq->num_edbs; i++) {
281		seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
282						     gfp_flags);
283		if (!seq->edb_arr[i])
284			goto Err_unroll;
285		memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
286	}
287
288	ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
289
290	return 0;
291
292Err_unroll:
293	for (i-- ; i >= 0; i--)
294		asd_free_coherent(asd_ha, seq->edb_arr[i]);
295	kfree(seq->edb_arr);
296	seq->edb_arr = NULL;
297
298	return -ENOMEM;
299}
300
301static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
302			   gfp_t gfp_flags)
303{
304	struct asd_seq_data *seq = &asd_ha->seq;
305	struct asd_ascb *escb;
306	int i, escbs;
307
308	seq->escb_arr = kmalloc_array(seq->num_escbs, sizeof(*seq->escb_arr),
309				      gfp_flags);
310	if (!seq->escb_arr)
311		return -ENOMEM;
312
313	escbs = seq->num_escbs;
314	escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
315	if (!escb) {
316		asd_printk("couldn't allocate list of escbs\n");
317		goto Err;
318	}
319	seq->num_escbs -= escbs;  /* subtract what was not allocated */
320	ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
321
322	for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
323							       struct asd_ascb,
324							       list)) {
325		seq->escb_arr[i] = escb;
326		escb->scb->header.opcode = EMPTY_SCB;
327	}
328
329	return 0;
330Err:
331	kfree(seq->escb_arr);
332	seq->escb_arr = NULL;
333	return -ENOMEM;
334
335}
336
337static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
338{
339	struct asd_seq_data *seq = &asd_ha->seq;
340	int i, k, z = 0;
341
342	for (i = 0; i < seq->num_escbs; i++) {
343		struct asd_ascb *ascb = seq->escb_arr[i];
344		struct empty_scb *escb = &ascb->scb->escb;
345
346		ascb->edb_index = z;
347
348		escb->num_valid = ASD_EDBS_PER_SCB;
349
350		for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
351			struct sg_el *eb = &escb->eb[k];
352			struct asd_dma_tok *edb = seq->edb_arr[z++];
353
354			memset(eb, 0, sizeof(*eb));
355			eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
356			eb->size = cpu_to_le32(((u32) edb->size));
357		}
358	}
359}
360
361/**
362 * asd_init_escbs -- allocate and initialize empty scbs
363 * @asd_ha: pointer to host adapter structure
364 *
365 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
366 * They transport sense data, etc.
367 */
368static int asd_init_escbs(struct asd_ha_struct *asd_ha)
369{
370	struct asd_seq_data *seq = &asd_ha->seq;
371	int err = 0;
372
373	/* Allocate two empty data buffers (edb) per sequencer. */
374	int edbs = 2*(1+asd_ha->hw_prof.num_phys);
375
376	seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
377	seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
378
379	err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
380	if (err) {
381		asd_printk("couldn't allocate edbs\n");
382		return err;
383	}
384
385	err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
386	if (err) {
387		asd_printk("couldn't allocate escbs\n");
388		return err;
389	}
390
391	asd_assign_edbs2escbs(asd_ha);
392	/* In order to insure that normal SCBs do not overfill sequencer
393	 * memory and leave no space for escbs (halting condition),
394	 * we increment pending here by the number of escbs.  However,
395	 * escbs are never pending.
396	 */
397	seq->pending   = seq->num_escbs;
398	seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
399
400	return 0;
401}
402
403/* ---------- HW initialization ---------- */
404
405/**
406 * asd_chip_hardrst -- hard reset the chip
407 * @asd_ha: pointer to host adapter structure
408 *
409 * This takes 16 cycles and is synchronous to CFCLK, which runs
410 * at 200 MHz, so this should take at most 80 nanoseconds.
411 */
412int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
413{
414	int i;
415	int count = 100;
416	u32 reg;
417
418	for (i = 0 ; i < 4 ; i++) {
419		asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
420	}
421
422	do {
423		udelay(1);
424		reg = asd_read_reg_dword(asd_ha, CHIMINT);
425		if (reg & HARDRSTDET) {
426			asd_write_reg_dword(asd_ha, CHIMINT,
427					    HARDRSTDET|PORRSTDET);
428			return 0;
429		}
430	} while (--count > 0);
431
432	return -ENODEV;
433}
434
435/**
436 * asd_init_chip -- initialize the chip
437 * @asd_ha: pointer to host adapter structure
438 *
439 * Hard resets the chip, disables HA interrupts, downloads the sequnecer
440 * microcode and starts the sequencers.  The caller has to explicitly
441 * enable HA interrupts with asd_enable_ints(asd_ha).
442 */
443static int asd_init_chip(struct asd_ha_struct *asd_ha)
444{
445	int err;
446
447	err = asd_chip_hardrst(asd_ha);
448	if (err) {
449		asd_printk("couldn't hard reset %s\n",
450			    pci_name(asd_ha->pcidev));
451		goto out;
452	}
453
454	asd_disable_ints(asd_ha);
455
456	err = asd_init_seqs(asd_ha);
457	if (err) {
458		asd_printk("couldn't init seqs for %s\n",
459			   pci_name(asd_ha->pcidev));
460		goto out;
461	}
462
463	err = asd_start_seqs(asd_ha);
464	if (err) {
465		asd_printk("couldn't start seqs for %s\n",
466			   pci_name(asd_ha->pcidev));
467		goto out;
468	}
469out:
470	return err;
471}
472
473#define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
474
475static int max_devs = 0;
476module_param_named(max_devs, max_devs, int, S_IRUGO);
477MODULE_PARM_DESC(max_devs, "\n"
478	"\tMaximum number of SAS devices to support (not LUs).\n"
479	"\tDefault: 2176, Maximum: 65663.\n");
480
481static int max_cmnds = 0;
482module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
483MODULE_PARM_DESC(max_cmnds, "\n"
484	"\tMaximum number of commands queuable.\n"
485	"\tDefault: 512, Maximum: 66047.\n");
486
487static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
488{
489	unsigned long dma_addr = OCM_BASE_ADDR;
490	u32 d;
491
492	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
493	asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
494	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
495	d |= 4;
496	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
497	asd_ha->hw_prof.max_ddbs += MAX_DEVS;
498}
499
500static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
501{
502	dma_addr_t dma_handle;
503	unsigned long dma_addr;
504	u32 d;
505	int size;
506
507	asd_extend_devctx_ocm(asd_ha);
508
509	asd_ha->hw_prof.ddb_ext = NULL;
510	if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
511		max_devs = asd_ha->hw_prof.max_ddbs;
512		return 0;
513	}
514
515	size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
516
517	asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
518	if (!asd_ha->hw_prof.ddb_ext) {
519		asd_printk("couldn't allocate memory for %d devices\n",
520			   max_devs);
521		max_devs = asd_ha->hw_prof.max_ddbs;
522		return -ENOMEM;
523	}
524	dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
525	dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
526	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
527	dma_handle = (dma_addr_t) dma_addr;
528	asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
529	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
530	d &= ~4;
531	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
532
533	asd_ha->hw_prof.max_ddbs = max_devs;
534
535	return 0;
536}
537
538static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
539{
540	dma_addr_t dma_handle;
541	unsigned long dma_addr;
542	u32 d;
543	int size;
544
545	asd_ha->hw_prof.scb_ext = NULL;
546	if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
547		max_cmnds = asd_ha->hw_prof.max_scbs;
548		return 0;
549	}
550
551	size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
552
553	asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
554	if (!asd_ha->hw_prof.scb_ext) {
555		asd_printk("couldn't allocate memory for %d commands\n",
556			   max_cmnds);
557		max_cmnds = asd_ha->hw_prof.max_scbs;
558		return -ENOMEM;
559	}
560	dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
561	dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
562	dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
563	dma_handle = (dma_addr_t) dma_addr;
564	asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
565	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
566	d &= ~1;
567	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
568
569	asd_ha->hw_prof.max_scbs = max_cmnds;
570
571	return 0;
572}
573
574/**
575 * asd_init_ctxmem -- initialize context memory
576 * @asd_ha: pointer to host adapter structure
577 *
578 * This function sets the maximum number of SCBs and
579 * DDBs which can be used by the sequencer.  This is normally
580 * 512 and 128 respectively.  If support for more SCBs or more DDBs
581 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
582 * initialized here to extend context memory to point to host memory,
583 * thus allowing unlimited support for SCBs and DDBs -- only limited
584 * by host memory.
585 */
586static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
587{
588	int bitmap_bytes;
589
590	asd_get_max_scb_ddb(asd_ha);
591	asd_extend_devctx(asd_ha);
592	asd_extend_cmdctx(asd_ha);
593
594	/* The kernel wants bitmaps to be unsigned long sized. */
595	bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
596	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
597	asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
598	if (!asd_ha->hw_prof.ddb_bitmap)
599		return -ENOMEM;
600	spin_lock_init(&asd_ha->hw_prof.ddb_lock);
601
602	return 0;
603}
604
605int asd_init_hw(struct asd_ha_struct *asd_ha)
606{
607	int err;
608	u32 v;
609
610	err = asd_init_sw(asd_ha);
611	if (err)
612		return err;
613
614	err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
615	if (err) {
616		asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
617			   pci_name(asd_ha->pcidev));
618		return err;
619	}
620	err = pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
621					v | SC_TMR_DIS);
622	if (err) {
623		asd_printk("couldn't disable split completion timer of %s\n",
624			   pci_name(asd_ha->pcidev));
625		return err;
626	}
627
628	err = asd_read_ocm(asd_ha);
629	if (err) {
630		asd_printk("couldn't read ocm(%d)\n", err);
631		/* While suspicios, it is not an error that we
632		 * couldn't read the OCM. */
633	}
634
635	err = asd_read_flash(asd_ha);
636	if (err) {
637		asd_printk("couldn't read flash(%d)\n", err);
638		/* While suspicios, it is not an error that we
639		 * couldn't read FLASH memory.
640		 */
641	}
642
643	asd_init_ctxmem(asd_ha);
644
645	if (asd_get_user_sas_addr(asd_ha)) {
646		asd_printk("No SAS Address provided for %s\n",
647			   pci_name(asd_ha->pcidev));
648		err = -ENODEV;
649		goto Out;
650	}
651
652	asd_propagate_sas_addr(asd_ha);
653
654	err = asd_init_phys(asd_ha);
655	if (err) {
656		asd_printk("couldn't initialize phys for %s\n",
657			    pci_name(asd_ha->pcidev));
658		goto Out;
659	}
660
661	asd_init_ports(asd_ha);
662
663	err = asd_init_scbs(asd_ha);
664	if (err) {
665		asd_printk("couldn't initialize scbs for %s\n",
666			    pci_name(asd_ha->pcidev));
667		goto Out;
668	}
669
670	err = asd_init_dl(asd_ha);
671	if (err) {
672		asd_printk("couldn't initialize the done list:%d\n",
673			    err);
674		goto Out;
675	}
676
677	err = asd_init_escbs(asd_ha);
678	if (err) {
679		asd_printk("couldn't initialize escbs\n");
680		goto Out;
681	}
682
683	err = asd_init_chip(asd_ha);
684	if (err) {
685		asd_printk("couldn't init the chip\n");
686		goto Out;
687	}
688Out:
689	return err;
690}
691
692/* ---------- Chip reset ---------- */
693
694/**
695 * asd_chip_reset -- reset the host adapter, etc
696 * @asd_ha: pointer to host adapter structure of interest
697 *
698 * Called from the ISR.  Hard reset the chip.  Let everything
699 * timeout.  This should be no different than hot-unplugging the
700 * host adapter.  Once everything times out we'll init the chip with
701 * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
702 * XXX finish.
703 */
704static void asd_chip_reset(struct asd_ha_struct *asd_ha)
705{
706	ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
707	asd_chip_hardrst(asd_ha);
708}
709
710/* ---------- Done List Routines ---------- */
711
712static void asd_dl_tasklet_handler(unsigned long data)
713{
714	struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
715	struct asd_seq_data *seq = &asd_ha->seq;
716	unsigned long flags;
717
718	while (1) {
719		struct done_list_struct *dl = &seq->dl[seq->dl_next];
720		struct asd_ascb *ascb;
721
722		if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
723			break;
724
725		/* find the aSCB */
726		spin_lock_irqsave(&seq->tc_index_lock, flags);
727		ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
728		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
729		if (unlikely(!ascb)) {
730			ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
731			goto next_1;
732		} else if (ascb->scb->header.opcode == EMPTY_SCB) {
733			goto out;
734		} else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
735			goto next_1;
736		}
737		spin_lock_irqsave(&seq->pend_q_lock, flags);
738		list_del_init(&ascb->list);
739		seq->pending--;
740		spin_unlock_irqrestore(&seq->pend_q_lock, flags);
741	out:
742		ascb->tasklet_complete(ascb, dl);
743
744	next_1:
745		seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
746		if (!seq->dl_next)
747			seq->dl_toggle ^= DL_TOGGLE_MASK;
748	}
749}
750
751/* ---------- Interrupt Service Routines ---------- */
752
753/**
754 * asd_process_donelist_isr -- schedule processing of done list entries
755 * @asd_ha: pointer to host adapter structure
756 */
757static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
758{
759	tasklet_schedule(&asd_ha->seq.dl_tasklet);
760}
761
762/**
763 * asd_com_sas_isr -- process device communication interrupt (COMINT)
764 * @asd_ha: pointer to host adapter structure
765 */
766static void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
767{
768	u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
769
770	/* clear COMSTAT int */
771	asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
772
773	if (comstat & CSBUFPERR) {
774		asd_printk("%s: command/status buffer dma parity error\n",
775			   pci_name(asd_ha->pcidev));
776	} else if (comstat & CSERR) {
777		int i;
778		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
779		dmaerr &= 0xFF;
780		asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
781			   "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
782			   pci_name(asd_ha->pcidev),
783			   dmaerr,
784			   asd_read_reg_dword(asd_ha, CSDMAADR),
785			   asd_read_reg_dword(asd_ha, CSDMAADR+4));
786		asd_printk("CSBUFFER:\n");
787		for (i = 0; i < 8; i++) {
788			asd_printk("%08x %08x %08x %08x\n",
789				   asd_read_reg_dword(asd_ha, CSBUFFER),
790				   asd_read_reg_dword(asd_ha, CSBUFFER+4),
791				   asd_read_reg_dword(asd_ha, CSBUFFER+8),
792				   asd_read_reg_dword(asd_ha, CSBUFFER+12));
793		}
794		asd_dump_seq_state(asd_ha, 0);
795	} else if (comstat & OVLYERR) {
796		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
797		dmaerr = (dmaerr >> 8) & 0xFF;
798		asd_printk("%s: overlay dma error:0x%x\n",
799			   pci_name(asd_ha->pcidev),
800			   dmaerr);
801	}
802	asd_chip_reset(asd_ha);
803}
804
805static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
806{
807	static const char *halt_code[256] = {
808		"UNEXPECTED_INTERRUPT0",
809		"UNEXPECTED_INTERRUPT1",
810		"UNEXPECTED_INTERRUPT2",
811		"UNEXPECTED_INTERRUPT3",
812		"UNEXPECTED_INTERRUPT4",
813		"UNEXPECTED_INTERRUPT5",
814		"UNEXPECTED_INTERRUPT6",
815		"UNEXPECTED_INTERRUPT7",
816		"UNEXPECTED_INTERRUPT8",
817		"UNEXPECTED_INTERRUPT9",
818		"UNEXPECTED_INTERRUPT10",
819		[11 ... 19] = "unknown[11,19]",
820		"NO_FREE_SCB_AVAILABLE",
821		"INVALID_SCB_OPCODE",
822		"INVALID_MBX_OPCODE",
823		"INVALID_ATA_STATE",
824		"ATA_QUEUE_FULL",
825		"ATA_TAG_TABLE_FAULT",
826		"ATA_TAG_MASK_FAULT",
827		"BAD_LINK_QUEUE_STATE",
828		"DMA2CHIM_QUEUE_ERROR",
829		"EMPTY_SCB_LIST_FULL",
830		"unknown[30]",
831		"IN_USE_SCB_ON_FREE_LIST",
832		"BAD_OPEN_WAIT_STATE",
833		"INVALID_STP_AFFILIATION",
834		"unknown[34]",
835		"EXEC_QUEUE_ERROR",
836		"TOO_MANY_EMPTIES_NEEDED",
837		"EMPTY_REQ_QUEUE_ERROR",
838		"Q_MONIRTT_MGMT_ERROR",
839		"TARGET_MODE_FLOW_ERROR",
840		"DEVICE_QUEUE_NOT_FOUND",
841		"START_IRTT_TIMER_ERROR",
842		"ABORT_TASK_ILLEGAL_REQ",
843		[43 ... 255] = "unknown[43,255]"
844	};
845
846	if (dchstatus & CSEQINT) {
847		u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
848
849		if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
850			asd_printk("%s: CSEQ arp2int:0x%x\n",
851				   pci_name(asd_ha->pcidev),
852				   arp2int);
853		} else if (arp2int & ARP2HALTC)
854			asd_printk("%s: CSEQ halted: %s\n",
855				   pci_name(asd_ha->pcidev),
856				   halt_code[(arp2int>>16)&0xFF]);
857		else
858			asd_printk("%s: CARP2INT:0x%x\n",
859				   pci_name(asd_ha->pcidev),
860				   arp2int);
861	}
862	if (dchstatus & LSEQINT_MASK) {
863		int lseq;
864		u8  lseq_mask = dchstatus & LSEQINT_MASK;
865
866		for_each_sequencer(lseq_mask, lseq_mask, lseq) {
867			u32 arp2int = asd_read_reg_dword(asd_ha,
868							 LmARP2INT(lseq));
869			if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
870				       | ARP2CIOPERR)) {
871				asd_printk("%s: LSEQ%d arp2int:0x%x\n",
872					   pci_name(asd_ha->pcidev),
873					   lseq, arp2int);
874				/* XXX we should only do lseq reset */
875			} else if (arp2int & ARP2HALTC)
876				asd_printk("%s: LSEQ%d halted: %s\n",
877					   pci_name(asd_ha->pcidev),
878					   lseq,halt_code[(arp2int>>16)&0xFF]);
879			else
880				asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
881					   pci_name(asd_ha->pcidev), lseq,
882					   arp2int);
883		}
884	}
885	asd_chip_reset(asd_ha);
886}
887
888/**
889 * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
890 * @asd_ha: pointer to host adapter structure
891 */
892static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
893{
894	u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
895
896	if (dchstatus & CFIFTOERR) {
897		asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
898		asd_chip_reset(asd_ha);
899	} else
900		asd_arp2_err(asd_ha, dchstatus);
901}
902
903/**
904 * asd_rbi_exsi_isr -- process external system interface interrupt (INITERR)
905 * @asd_ha: pointer to host adapter structure
906 */
907static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
908{
909	u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
910
911	if (!(stat0r & ASIERR)) {
912		asd_printk("hmm, EXSI interrupted but no error?\n");
913		return;
914	}
915
916	if (stat0r & ASIFMTERR) {
917		asd_printk("ASI SEEPROM format error for %s\n",
918			   pci_name(asd_ha->pcidev));
919	} else if (stat0r & ASISEECHKERR) {
920		u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
921		asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
922			   stat1r & CHECKSUM_MASK,
923			   pci_name(asd_ha->pcidev));
924	} else {
925		u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
926
927		if (!(statr & CPI2ASIMSTERR_MASK)) {
928			ASD_DPRINTK("hmm, ASIERR?\n");
929			return;
930		} else {
931			u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
932			u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
933
934			asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
935				   "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
936				   "master id: 0x%x, master err: 0x%x\n",
937				   pci_name(asd_ha->pcidev),
938				   addr, data,
939				   (statr & CPI2ASIBYTECNT_MASK) >> 16,
940				   (statr & CPI2ASIBYTEEN_MASK) >> 12,
941				   (statr & CPI2ASITARGERR_MASK) >> 8,
942				   (statr & CPI2ASITARGMID_MASK) >> 4,
943				   (statr & CPI2ASIMSTERR_MASK));
944		}
945	}
946	asd_chip_reset(asd_ha);
947}
948
949/**
950 * asd_hst_pcix_isr -- process host interface interrupts
951 * @asd_ha: pointer to host adapter structure
952 *
953 * Asserted on PCIX errors: target abort, etc.
954 */
955static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
956{
957	u16 status;
958	u32 pcix_status;
959	u32 ecc_status;
960
961	pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
962	pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
963	pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
964
965	if (status & PCI_STATUS_DETECTED_PARITY)
966		asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
967	else if (status & PCI_STATUS_REC_MASTER_ABORT)
968		asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
969	else if (status & PCI_STATUS_REC_TARGET_ABORT)
970		asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
971	else if (status & PCI_STATUS_PARITY)
972		asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
973	else if (pcix_status & RCV_SCE) {
974		asd_printk("received split completion error for %s\n",
975			   pci_name(asd_ha->pcidev));
976		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
977		/* XXX: Abort task? */
978		return;
979	} else if (pcix_status & UNEXP_SC) {
980		asd_printk("unexpected split completion for %s\n",
981			   pci_name(asd_ha->pcidev));
982		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
983		/* ignore */
984		return;
985	} else if (pcix_status & SC_DISCARD)
986		asd_printk("split completion discarded for %s\n",
987			   pci_name(asd_ha->pcidev));
988	else if (ecc_status & UNCOR_ECCERR)
989		asd_printk("uncorrectable ECC error for %s\n",
990			   pci_name(asd_ha->pcidev));
991	asd_chip_reset(asd_ha);
992}
993
994/**
995 * asd_hw_isr -- host adapter interrupt service routine
996 * @irq: ignored
997 * @dev_id: pointer to host adapter structure
998 *
999 * The ISR processes done list entries and level 3 error handling.
1000 */
1001irqreturn_t asd_hw_isr(int irq, void *dev_id)
1002{
1003	struct asd_ha_struct *asd_ha = dev_id;
1004	u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
1005
1006	if (!chimint)
1007		return IRQ_NONE;
1008
1009	asd_write_reg_dword(asd_ha, CHIMINT, chimint);
1010	(void) asd_read_reg_dword(asd_ha, CHIMINT);
1011
1012	if (chimint & DLAVAIL)
1013		asd_process_donelist_isr(asd_ha);
1014	if (chimint & COMINT)
1015		asd_com_sas_isr(asd_ha);
1016	if (chimint & DEVINT)
1017		asd_dch_sas_isr(asd_ha);
1018	if (chimint & INITERR)
1019		asd_rbi_exsi_isr(asd_ha);
1020	if (chimint & HOSTERR)
1021		asd_hst_pcix_isr(asd_ha);
1022
1023	return IRQ_HANDLED;
1024}
1025
1026/* ---------- SCB handling ---------- */
1027
1028static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
1029				       gfp_t gfp_flags)
1030{
1031	extern struct kmem_cache *asd_ascb_cache;
1032	struct asd_seq_data *seq = &asd_ha->seq;
1033	struct asd_ascb *ascb;
1034	unsigned long flags;
1035
1036	ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
1037
1038	if (ascb) {
1039		ascb->dma_scb.size = sizeof(struct scb);
1040		ascb->dma_scb.vaddr = dma_pool_zalloc(asd_ha->scb_pool,
1041						     gfp_flags,
1042						    &ascb->dma_scb.dma_handle);
1043		if (!ascb->dma_scb.vaddr) {
1044			kmem_cache_free(asd_ascb_cache, ascb);
1045			return NULL;
1046		}
1047		asd_init_ascb(asd_ha, ascb);
1048
1049		spin_lock_irqsave(&seq->tc_index_lock, flags);
1050		ascb->tc_index = asd_tc_index_get(seq, ascb);
1051		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
1052		if (ascb->tc_index == -1)
1053			goto undo;
1054
1055		ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
1056	}
1057
1058	return ascb;
1059undo:
1060	dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
1061		      ascb->dma_scb.dma_handle);
1062	kmem_cache_free(asd_ascb_cache, ascb);
1063	ASD_DPRINTK("no index for ascb\n");
1064	return NULL;
1065}
1066
1067/**
1068 * asd_ascb_alloc_list -- allocate a list of aSCBs
1069 * @asd_ha: pointer to host adapter structure
1070 * @num: pointer to integer number of aSCBs
1071 * @gfp_flags: GFP_ flags.
1072 *
1073 * This is the only function which is used to allocate aSCBs.
1074 * It can allocate one or many. If more than one, then they form
1075 * a linked list in two ways: by their list field of the ascb struct
1076 * and by the next_scb field of the scb_header.
1077 *
1078 * Returns NULL if no memory was available, else pointer to a list
1079 * of ascbs.  When this function returns, @num would be the number
1080 * of SCBs which were not able to be allocated, 0 if all requested
1081 * were able to be allocated.
1082 */
1083struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
1084				     *asd_ha, int *num,
1085				     gfp_t gfp_flags)
1086{
1087	struct asd_ascb *first = NULL;
1088
1089	for ( ; *num > 0; --*num) {
1090		struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
1091
1092		if (!ascb)
1093			break;
1094		else if (!first)
1095			first = ascb;
1096		else {
1097			struct asd_ascb *last = list_entry(first->list.prev,
1098							   struct asd_ascb,
1099							   list);
1100			list_add_tail(&ascb->list, &first->list);
1101			last->scb->header.next_scb =
1102				cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
1103		}
1104	}
1105
1106	return first;
1107}
1108
1109/**
1110 * asd_swap_head_scb -- swap the head scb
1111 * @asd_ha: pointer to host adapter structure
1112 * @ascb: pointer to the head of an ascb list
1113 *
1114 * The sequencer knows the DMA address of the next SCB to be DMAed to
1115 * the host adapter, from initialization or from the last list DMAed.
1116 * seq->next_scb keeps the address of this SCB.  The sequencer will
1117 * DMA to the host adapter this list of SCBs.  But the head (first
1118 * element) of this list is not known to the sequencer.  Here we swap
1119 * the head of the list with the known SCB (memcpy()).
1120 * Only one memcpy() is required per list so it is in our interest
1121 * to keep the list of SCB as long as possible so that the ratio
1122 * of number of memcpy calls to the number of SCB DMA-ed is as small
1123 * as possible.
1124 *
1125 * LOCKING: called with the pending list lock held.
1126 */
1127static void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
1128			      struct asd_ascb *ascb)
1129{
1130	struct asd_seq_data *seq = &asd_ha->seq;
1131	struct asd_ascb *last = list_entry(ascb->list.prev,
1132					   struct asd_ascb,
1133					   list);
1134	struct asd_dma_tok t = ascb->dma_scb;
1135
1136	memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
1137	ascb->dma_scb = seq->next_scb;
1138	ascb->scb = ascb->dma_scb.vaddr;
1139	seq->next_scb = t;
1140	last->scb->header.next_scb =
1141		cpu_to_le64(((u64)seq->next_scb.dma_handle));
1142}
1143
1144/**
1145 * asd_start_scb_timers -- (add and) start timers of SCBs
1146 * @list: pointer to struct list_head of the scbs
1147 *
1148 * If an SCB in the @list has no timer function, assign the default
1149 * one,  then start the timer of the SCB.  This function is
1150 * intended to be called from asd_post_ascb_list(), just prior to
1151 * posting the SCBs to the sequencer.
1152 */
1153static void asd_start_scb_timers(struct list_head *list)
1154{
1155	struct asd_ascb *ascb;
1156	list_for_each_entry(ascb, list, list) {
1157		if (!ascb->uldd_timer) {
1158			ascb->timer.function = asd_ascb_timedout;
1159			ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
1160			add_timer(&ascb->timer);
1161		}
1162	}
1163}
1164
1165/**
1166 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1167 * @asd_ha: pointer to a host adapter structure
1168 * @ascb: pointer to the first aSCB in the list
1169 * @num: number of aSCBs in the list (to be posted)
1170 *
1171 * See queueing comment in asd_post_escb_list().
1172 *
1173 * Additional note on queuing: In order to minimize the ratio of memcpy()
1174 * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1175 * in one go.
1176 * Two cases are possible:
1177 *    A) can_queue >= num,
1178 *    B) can_queue < num.
1179 * Case A: we can send the whole batch at once.  Increment "pending"
1180 * in the beginning of this function, when it is checked, in order to
1181 * eliminate races when this function is called by multiple processes.
1182 * Case B: should never happen.
1183 */
1184int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1185		       int num)
1186{
1187	unsigned long flags;
1188	LIST_HEAD(list);
1189	int can_queue;
1190
1191	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1192	can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
1193	if (can_queue >= num)
1194		asd_ha->seq.pending += num;
1195	else
1196		can_queue = 0;
1197
1198	if (!can_queue) {
1199		spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1200		asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
1201		return -SAS_QUEUE_FULL;
1202	}
1203
1204	asd_swap_head_scb(asd_ha, ascb);
1205
1206	__list_add(&list, ascb->list.prev, &ascb->list);
1207
1208	asd_start_scb_timers(&list);
1209
1210	asd_ha->seq.scbpro += num;
1211	list_splice_init(&list, asd_ha->seq.pend_q.prev);
1212	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1213	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1214
1215	return 0;
1216}
1217
1218/**
1219 * asd_post_escb_list -- post a list of 1 or more empty scb
1220 * @asd_ha: pointer to a host adapter structure
1221 * @ascb: pointer to the first empty SCB in the list
1222 * @num: number of aSCBs in the list (to be posted)
1223 *
1224 * This is essentially the same as asd_post_ascb_list, but we do not
1225 * increment pending, add those to the pending list or get indexes.
1226 * See asd_init_escbs() and asd_init_post_escbs().
1227 *
1228 * Since sending a list of ascbs is a superset of sending a single
1229 * ascb, this function exists to generalize this.  More specifically,
1230 * when sending a list of those, we want to do only a _single_
1231 * memcpy() at swap head, as opposed to for each ascb sent (in the
1232 * case of sending them one by one).  That is, we want to minimize the
1233 * ratio of memcpy() operations to the number of ascbs sent.  The same
1234 * logic applies to asd_post_ascb_list().
1235 */
1236int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1237		       int num)
1238{
1239	unsigned long flags;
1240
1241	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1242	asd_swap_head_scb(asd_ha, ascb);
1243	asd_ha->seq.scbpro += num;
1244	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1245	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1246
1247	return 0;
1248}
1249
1250/* ---------- LED ---------- */
1251
1252/**
1253 * asd_turn_led -- turn on/off an LED
1254 * @asd_ha: pointer to host adapter structure
1255 * @phy_id: the PHY id whose LED we want to manupulate
1256 * @op: 1 to turn on, 0 to turn off
1257 */
1258void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1259{
1260	if (phy_id < ASD_MAX_PHYS) {
1261		u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
1262		if (op)
1263			v |= LEDPOL;
1264		else
1265			v &= ~LEDPOL;
1266		asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
1267	}
1268}
1269
1270/**
1271 * asd_control_led -- enable/disable an LED on the board
1272 * @asd_ha: pointer to host adapter structure
1273 * @phy_id: integer, the phy id
1274 * @op: integer, 1 to enable, 0 to disable the LED
1275 *
1276 * First we output enable the LED, then we set the source
1277 * to be an external module.
1278 */
1279void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1280{
1281	if (phy_id < ASD_MAX_PHYS) {
1282		u32 v;
1283
1284		v = asd_read_reg_dword(asd_ha, GPIOOER);
1285		if (op)
1286			v |= (1 << phy_id);
1287		else
1288			v &= ~(1 << phy_id);
1289		asd_write_reg_dword(asd_ha, GPIOOER, v);
1290
1291		v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
1292		if (op)
1293			v |= (1 << phy_id);
1294		else
1295			v &= ~(1 << phy_id);
1296		asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
1297	}
1298}
1299
1300/* ---------- PHY enable ---------- */
1301
1302static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
1303{
1304	struct asd_phy *phy = &asd_ha->phys[phy_id];
1305
1306	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
1307	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
1308			   HOTPLUG_DELAY_TIMEOUT);
1309
1310	/* Get defaults from manuf. sector */
1311	/* XXX we need defaults for those in case MS is broken. */
1312	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
1313			   phy->phy_desc->phy_control_0);
1314	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
1315			   phy->phy_desc->phy_control_1);
1316	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
1317			   phy->phy_desc->phy_control_2);
1318	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
1319			   phy->phy_desc->phy_control_3);
1320
1321	asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
1322			    ASD_COMINIT_TIMEOUT);
1323
1324	asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
1325			   phy->id_frm_tok->dma_handle);
1326
1327	asd_control_led(asd_ha, phy_id, 1);
1328
1329	return 0;
1330}
1331
1332int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
1333{
1334	u8  phy_m;
1335	u8  i;
1336	int num = 0, k;
1337	struct asd_ascb *ascb;
1338	struct asd_ascb *ascb_list;
1339
1340	if (!phy_mask) {
1341		asd_printk("%s called with phy_mask of 0!?\n", __func__);
1342		return 0;
1343	}
1344
1345	for_each_phy(phy_mask, phy_m, i) {
1346		num++;
1347		asd_enable_phy(asd_ha, i);
1348	}
1349
1350	k = num;
1351	ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
1352	if (!ascb_list) {
1353		asd_printk("no memory for control phy ascb list\n");
1354		return -ENOMEM;
1355	}
1356	num -= k;
1357
1358	ascb = ascb_list;
1359	for_each_phy(phy_mask, phy_m, i) {
1360		asd_build_control_phy(ascb, i, ENABLE_PHY);
1361		ascb = list_entry(ascb->list.next, struct asd_ascb, list);
1362	}
1363	ASD_DPRINTK("posting %d control phy scbs\n", num);
1364	k = asd_post_ascb_list(asd_ha, ascb_list, num);
1365	if (k)
1366		asd_ascb_free_list(ascb_list);
1367
1368	return k;
1369}
1370