1/*
2 * Core routines and tables shareable across OS platforms.
3 *
4 * Copyright (c) 1994-2002 Justin T. Gibbs.
5 * Copyright (c) 2000-2003 Adaptec Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions, and the following disclaimer,
13 *    without modification.
14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15 *    substantially similar to the "NO WARRANTY" disclaimer below
16 *    ("Disclaimer") and any redistribution must be conditioned upon
17 *    including a substantially similar Disclaimer requirement for further
18 *    binary redistribution.
19 * 3. Neither the names of the above-listed copyright holders nor the names
20 *    of any contributors may be used to endorse or promote products derived
21 *    from this software without specific prior written permission.
22 *
23 * Alternatively, this software may be distributed under the terms of the
24 * GNU General Public License ("GPL") version 2 as published by the Free
25 * Software Foundation.
26 *
27 * NO WARRANTY
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGES.
39 *
40 * $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#250 $
41 */
42
43#include "aic79xx_osm.h"
44#include "aic79xx_inline.h"
45#include "aicasm/aicasm_insformat.h"
46
47/***************************** Lookup Tables **********************************/
48static const char *const ahd_chip_names[] =
49{
50	"NONE",
51	"aic7901",
52	"aic7902",
53	"aic7901A"
54};
55
56/*
57 * Hardware error codes.
58 */
59struct ahd_hard_error_entry {
60	uint8_t errno;
61	const char *errmesg;
62};
63
64static const struct ahd_hard_error_entry ahd_hard_errors[] = {
65	{ DSCTMOUT,	"Discard Timer has timed out" },
66	{ ILLOPCODE,	"Illegal Opcode in sequencer program" },
67	{ SQPARERR,	"Sequencer Parity Error" },
68	{ DPARERR,	"Data-path Parity Error" },
69	{ MPARERR,	"Scratch or SCB Memory Parity Error" },
70	{ CIOPARERR,	"CIOBUS Parity Error" },
71};
72static const u_int num_errors = ARRAY_SIZE(ahd_hard_errors);
73
74static const struct ahd_phase_table_entry ahd_phase_table[] =
75{
76	{ P_DATAOUT,	NOP,			"in Data-out phase"	},
77	{ P_DATAIN,	INITIATOR_ERROR,	"in Data-in phase"	},
78	{ P_DATAOUT_DT,	NOP,			"in DT Data-out phase"	},
79	{ P_DATAIN_DT,	INITIATOR_ERROR,	"in DT Data-in phase"	},
80	{ P_COMMAND,	NOP,			"in Command phase"	},
81	{ P_MESGOUT,	NOP,			"in Message-out phase"	},
82	{ P_STATUS,	INITIATOR_ERROR,	"in Status phase"	},
83	{ P_MESGIN,	MSG_PARITY_ERROR,	"in Message-in phase"	},
84	{ P_BUSFREE,	NOP,			"while idle"		},
85	{ 0,		NOP,			"in unknown phase"	}
86};
87
88/*
89 * In most cases we only wish to itterate over real phases, so
90 * exclude the last element from the count.
91 */
92static const u_int num_phases = ARRAY_SIZE(ahd_phase_table) - 1;
93
94/* Our Sequencer Program */
95#include "aic79xx_seq.h"
96
97/**************************** Function Declarations ***************************/
98static void		ahd_handle_transmission_error(struct ahd_softc *ahd);
99static void		ahd_handle_lqiphase_error(struct ahd_softc *ahd,
100						  u_int lqistat1);
101static int		ahd_handle_pkt_busfree(struct ahd_softc *ahd,
102					       u_int busfreetime);
103static int		ahd_handle_nonpkt_busfree(struct ahd_softc *ahd);
104static void		ahd_handle_proto_violation(struct ahd_softc *ahd);
105static void		ahd_force_renegotiation(struct ahd_softc *ahd,
106						struct ahd_devinfo *devinfo);
107
108static struct ahd_tmode_tstate*
109			ahd_alloc_tstate(struct ahd_softc *ahd,
110					 u_int scsi_id, char channel);
111#ifdef AHD_TARGET_MODE
112static void		ahd_free_tstate(struct ahd_softc *ahd,
113					u_int scsi_id, char channel, int force);
114#endif
115static void		ahd_devlimited_syncrate(struct ahd_softc *ahd,
116						struct ahd_initiator_tinfo *,
117						u_int *period,
118						u_int *ppr_options,
119						role_t role);
120static void		ahd_update_neg_table(struct ahd_softc *ahd,
121					     struct ahd_devinfo *devinfo,
122					     struct ahd_transinfo *tinfo);
123static void		ahd_update_pending_scbs(struct ahd_softc *ahd);
124static void		ahd_fetch_devinfo(struct ahd_softc *ahd,
125					  struct ahd_devinfo *devinfo);
126static void		ahd_scb_devinfo(struct ahd_softc *ahd,
127					struct ahd_devinfo *devinfo,
128					struct scb *scb);
129static void		ahd_setup_initiator_msgout(struct ahd_softc *ahd,
130						   struct ahd_devinfo *devinfo,
131						   struct scb *scb);
132static void		ahd_build_transfer_msg(struct ahd_softc *ahd,
133					       struct ahd_devinfo *devinfo);
134static void		ahd_construct_sdtr(struct ahd_softc *ahd,
135					   struct ahd_devinfo *devinfo,
136					   u_int period, u_int offset);
137static void		ahd_construct_wdtr(struct ahd_softc *ahd,
138					   struct ahd_devinfo *devinfo,
139					   u_int bus_width);
140static void		ahd_construct_ppr(struct ahd_softc *ahd,
141					  struct ahd_devinfo *devinfo,
142					  u_int period, u_int offset,
143					  u_int bus_width, u_int ppr_options);
144static void		ahd_clear_msg_state(struct ahd_softc *ahd);
145static void		ahd_handle_message_phase(struct ahd_softc *ahd);
146typedef enum {
147	AHDMSG_1B,
148	AHDMSG_2B,
149	AHDMSG_EXT
150} ahd_msgtype;
151static int		ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type,
152				     u_int msgval, int full);
153static int		ahd_parse_msg(struct ahd_softc *ahd,
154				      struct ahd_devinfo *devinfo);
155static int		ahd_handle_msg_reject(struct ahd_softc *ahd,
156					      struct ahd_devinfo *devinfo);
157static void		ahd_handle_ign_wide_residue(struct ahd_softc *ahd,
158						struct ahd_devinfo *devinfo);
159static void		ahd_reinitialize_dataptrs(struct ahd_softc *ahd);
160static void		ahd_handle_devreset(struct ahd_softc *ahd,
161					    struct ahd_devinfo *devinfo,
162					    u_int lun, cam_status status,
163					    char *message, int verbose_level);
164#ifdef AHD_TARGET_MODE
165static void		ahd_setup_target_msgin(struct ahd_softc *ahd,
166					       struct ahd_devinfo *devinfo,
167					       struct scb *scb);
168#endif
169
170static u_int		ahd_sglist_size(struct ahd_softc *ahd);
171static u_int		ahd_sglist_allocsize(struct ahd_softc *ahd);
172static bus_dmamap_callback_t
173			ahd_dmamap_cb;
174static void		ahd_initialize_hscbs(struct ahd_softc *ahd);
175static int		ahd_init_scbdata(struct ahd_softc *ahd);
176static void		ahd_fini_scbdata(struct ahd_softc *ahd);
177static void		ahd_setup_iocell_workaround(struct ahd_softc *ahd);
178static void		ahd_iocell_first_selection(struct ahd_softc *ahd);
179static void		ahd_add_col_list(struct ahd_softc *ahd,
180					 struct scb *scb, u_int col_idx);
181static void		ahd_rem_col_list(struct ahd_softc *ahd,
182					 struct scb *scb);
183static void		ahd_chip_init(struct ahd_softc *ahd);
184static void		ahd_qinfifo_requeue(struct ahd_softc *ahd,
185					    struct scb *prev_scb,
186					    struct scb *scb);
187static int		ahd_qinfifo_count(struct ahd_softc *ahd);
188static int		ahd_search_scb_list(struct ahd_softc *ahd, int target,
189					    char channel, int lun, u_int tag,
190					    role_t role, uint32_t status,
191					    ahd_search_action action,
192					    u_int *list_head, u_int *list_tail,
193					    u_int tid);
194static void		ahd_stitch_tid_list(struct ahd_softc *ahd,
195					    u_int tid_prev, u_int tid_cur,
196					    u_int tid_next);
197static void		ahd_add_scb_to_free_list(struct ahd_softc *ahd,
198						 u_int scbid);
199static u_int		ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
200				     u_int prev, u_int next, u_int tid);
201static void		ahd_reset_current_bus(struct ahd_softc *ahd);
202static void		ahd_stat_timer(struct timer_list *t);
203#ifdef AHD_DUMP_SEQ
204static void		ahd_dumpseq(struct ahd_softc *ahd);
205#endif
206static void		ahd_loadseq(struct ahd_softc *ahd);
207static int		ahd_check_patch(struct ahd_softc *ahd,
208					const struct patch **start_patch,
209					u_int start_instr, u_int *skip_addr);
210static u_int		ahd_resolve_seqaddr(struct ahd_softc *ahd,
211					    u_int address);
212static void		ahd_download_instr(struct ahd_softc *ahd,
213					   u_int instrptr, uint8_t *dconsts);
214static int		ahd_probe_stack_size(struct ahd_softc *ahd);
215static int		ahd_scb_active_in_fifo(struct ahd_softc *ahd,
216					       struct scb *scb);
217static void		ahd_run_data_fifo(struct ahd_softc *ahd,
218					  struct scb *scb);
219
220#ifdef AHD_TARGET_MODE
221static void		ahd_queue_lstate_event(struct ahd_softc *ahd,
222					       struct ahd_tmode_lstate *lstate,
223					       u_int initiator_id,
224					       u_int event_type,
225					       u_int event_arg);
226static void		ahd_update_scsiid(struct ahd_softc *ahd,
227					  u_int targid_mask);
228static int		ahd_handle_target_cmd(struct ahd_softc *ahd,
229					      struct target_cmd *cmd);
230#endif
231
232static int		ahd_abort_scbs(struct ahd_softc *ahd, int target,
233				       char channel, int lun, u_int tag,
234				       role_t role, uint32_t status);
235static void		ahd_alloc_scbs(struct ahd_softc *ahd);
236static void		ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl,
237				     u_int scbid);
238static void		ahd_calc_residual(struct ahd_softc *ahd,
239					  struct scb *scb);
240static void		ahd_clear_critical_section(struct ahd_softc *ahd);
241static void		ahd_clear_intstat(struct ahd_softc *ahd);
242static void		ahd_enable_coalescing(struct ahd_softc *ahd,
243					      int enable);
244static u_int		ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl);
245static void		ahd_freeze_devq(struct ahd_softc *ahd,
246					struct scb *scb);
247static void		ahd_handle_scb_status(struct ahd_softc *ahd,
248					      struct scb *scb);
249static const struct ahd_phase_table_entry* ahd_lookup_phase_entry(int phase);
250static void		ahd_shutdown(void *arg);
251static void		ahd_update_coalescing_values(struct ahd_softc *ahd,
252						     u_int timer,
253						     u_int maxcmds,
254						     u_int mincmds);
255static int		ahd_verify_vpd_cksum(struct vpd_config *vpd);
256static int		ahd_wait_seeprom(struct ahd_softc *ahd);
257static int		ahd_match_scb(struct ahd_softc *ahd, struct scb *scb,
258				      int target, char channel, int lun,
259				      u_int tag, role_t role);
260
261static void		ahd_reset_cmds_pending(struct ahd_softc *ahd);
262
263/*************************** Interrupt Services *******************************/
264static void		ahd_run_qoutfifo(struct ahd_softc *ahd);
265#ifdef AHD_TARGET_MODE
266static void		ahd_run_tqinfifo(struct ahd_softc *ahd, int paused);
267#endif
268static void		ahd_handle_hwerrint(struct ahd_softc *ahd);
269static void		ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat);
270static void		ahd_handle_scsiint(struct ahd_softc *ahd,
271					   u_int intstat);
272
273/************************ Sequencer Execution Control *************************/
274void
275ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
276{
277	if (ahd->src_mode == src && ahd->dst_mode == dst)
278		return;
279#ifdef AHD_DEBUG
280	if (ahd->src_mode == AHD_MODE_UNKNOWN
281	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
282		panic("Setting mode prior to saving it.\n");
283	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
284		printk("%s: Setting mode 0x%x\n", ahd_name(ahd),
285		       ahd_build_mode_state(ahd, src, dst));
286#endif
287	ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
288	ahd->src_mode = src;
289	ahd->dst_mode = dst;
290}
291
292static void
293ahd_update_modes(struct ahd_softc *ahd)
294{
295	ahd_mode_state mode_ptr;
296	ahd_mode src;
297	ahd_mode dst;
298
299	mode_ptr = ahd_inb(ahd, MODE_PTR);
300#ifdef AHD_DEBUG
301	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
302		printk("Reading mode 0x%x\n", mode_ptr);
303#endif
304	ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
305	ahd_known_modes(ahd, src, dst);
306}
307
308static void
309ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
310		 ahd_mode dstmode, const char *file, int line)
311{
312#ifdef AHD_DEBUG
313	if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
314	 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
315		panic("%s:%s:%d: Mode assertion failed.\n",
316		       ahd_name(ahd), file, line);
317	}
318#endif
319}
320
321#define AHD_ASSERT_MODES(ahd, source, dest) \
322	ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
323
324ahd_mode_state
325ahd_save_modes(struct ahd_softc *ahd)
326{
327	if (ahd->src_mode == AHD_MODE_UNKNOWN
328	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
329		ahd_update_modes(ahd);
330
331	return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
332}
333
334void
335ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
336{
337	ahd_mode src;
338	ahd_mode dst;
339
340	ahd_extract_mode_state(ahd, state, &src, &dst);
341	ahd_set_modes(ahd, src, dst);
342}
343
344/*
345 * Determine whether the sequencer has halted code execution.
346 * Returns non-zero status if the sequencer is stopped.
347 */
348int
349ahd_is_paused(struct ahd_softc *ahd)
350{
351	return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
352}
353
354/*
355 * Request that the sequencer stop and wait, indefinitely, for it
356 * to stop.  The sequencer will only acknowledge that it is paused
357 * once it has reached an instruction boundary and PAUSEDIS is
358 * cleared in the SEQCTL register.  The sequencer may use PAUSEDIS
359 * for critical sections.
360 */
361void
362ahd_pause(struct ahd_softc *ahd)
363{
364	ahd_outb(ahd, HCNTRL, ahd->pause);
365
366	/*
367	 * Since the sequencer can disable pausing in a critical section, we
368	 * must loop until it actually stops.
369	 */
370	while (ahd_is_paused(ahd) == 0)
371		;
372}
373
374/*
375 * Allow the sequencer to continue program execution.
376 * We check here to ensure that no additional interrupt
377 * sources that would cause the sequencer to halt have been
378 * asserted.  If, for example, a SCSI bus reset is detected
379 * while we are fielding a different, pausing, interrupt type,
380 * we don't want to release the sequencer before going back
381 * into our interrupt handler and dealing with this new
382 * condition.
383 */
384void
385ahd_unpause(struct ahd_softc *ahd)
386{
387	/*
388	 * Automatically restore our modes to those saved
389	 * prior to the first change of the mode.
390	 */
391	if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
392	 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
393		if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
394			ahd_reset_cmds_pending(ahd);
395		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
396	}
397
398	if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
399		ahd_outb(ahd, HCNTRL, ahd->unpause);
400
401	ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
402}
403
404/*********************** Scatter Gather List Handling *************************/
405void *
406ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
407	     void *sgptr, dma_addr_t addr, bus_size_t len, int last)
408{
409	scb->sg_count++;
410	if (sizeof(dma_addr_t) > 4
411	 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
412		struct ahd_dma64_seg *sg;
413
414		sg = (struct ahd_dma64_seg *)sgptr;
415		sg->addr = ahd_htole64(addr);
416		sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
417		return (sg + 1);
418	} else {
419		struct ahd_dma_seg *sg;
420
421		sg = (struct ahd_dma_seg *)sgptr;
422		sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
423		sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
424				    | (last ? AHD_DMA_LAST_SEG : 0));
425		return (sg + 1);
426	}
427}
428
429static void
430ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
431{
432	/* XXX Handle target mode SCBs. */
433	scb->crc_retry_count = 0;
434	if ((scb->flags & SCB_PACKETIZED) != 0) {
435		/* XXX what about ACA??  It is type 4, but TAG_TYPE == 0x3. */
436		scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
437	} else {
438		if (ahd_get_transfer_length(scb) & 0x01)
439			scb->hscb->task_attribute = SCB_XFERLEN_ODD;
440		else
441			scb->hscb->task_attribute = 0;
442	}
443
444	if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
445	 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
446		scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
447		    ahd_htole32(scb->sense_busaddr);
448}
449
450static void
451ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
452{
453	/*
454	 * Copy the first SG into the "current" data ponter area.
455	 */
456	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
457		struct ahd_dma64_seg *sg;
458
459		sg = (struct ahd_dma64_seg *)scb->sg_list;
460		scb->hscb->dataptr = sg->addr;
461		scb->hscb->datacnt = sg->len;
462	} else {
463		struct ahd_dma_seg *sg;
464		uint32_t *dataptr_words;
465
466		sg = (struct ahd_dma_seg *)scb->sg_list;
467		dataptr_words = (uint32_t*)&scb->hscb->dataptr;
468		dataptr_words[0] = sg->addr;
469		dataptr_words[1] = 0;
470		if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
471			uint64_t high_addr;
472
473			high_addr = ahd_le32toh(sg->len) & 0x7F000000;
474			scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
475		}
476		scb->hscb->datacnt = sg->len;
477	}
478	/*
479	 * Note where to find the SG entries in bus space.
480	 * We also set the full residual flag which the
481	 * sequencer will clear as soon as a data transfer
482	 * occurs.
483	 */
484	scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
485}
486
487static void
488ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
489{
490	scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
491	scb->hscb->dataptr = 0;
492	scb->hscb->datacnt = 0;
493}
494
495/************************** Memory mapping routines ***************************/
496static void *
497ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
498{
499	dma_addr_t sg_offset;
500
501	/* sg_list_phys points to entry 1, not 0 */
502	sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
503	return ((uint8_t *)scb->sg_list + sg_offset);
504}
505
506static uint32_t
507ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
508{
509	dma_addr_t sg_offset;
510
511	/* sg_list_phys points to entry 1, not 0 */
512	sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
513		  - ahd_sg_size(ahd);
514
515	return (scb->sg_list_busaddr + sg_offset);
516}
517
518static void
519ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
520{
521	ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
522			scb->hscb_map->dmamap,
523			/*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
524			/*len*/sizeof(*scb->hscb), op);
525}
526
527void
528ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
529{
530	if (scb->sg_count == 0)
531		return;
532
533	ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
534			scb->sg_map->dmamap,
535			/*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
536			/*len*/ahd_sg_size(ahd) * scb->sg_count, op);
537}
538
539static void
540ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
541{
542	ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
543			scb->sense_map->dmamap,
544			/*offset*/scb->sense_busaddr,
545			/*len*/AHD_SENSE_BUFSIZE, op);
546}
547
548#ifdef AHD_TARGET_MODE
549static uint32_t
550ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
551{
552	return (((uint8_t *)&ahd->targetcmds[index])
553	       - (uint8_t *)ahd->qoutfifo);
554}
555#endif
556
557/*********************** Miscellaneous Support Functions ***********************/
558/*
559 * Return pointers to the transfer negotiation information
560 * for the specified our_id/remote_id pair.
561 */
562struct ahd_initiator_tinfo *
563ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
564		    u_int remote_id, struct ahd_tmode_tstate **tstate)
565{
566	/*
567	 * Transfer data structures are stored from the perspective
568	 * of the target role.  Since the parameters for a connection
569	 * in the initiator role to a given target are the same as
570	 * when the roles are reversed, we pretend we are the target.
571	 */
572	if (channel == 'B')
573		our_id += 8;
574	*tstate = ahd->enabled_targets[our_id];
575	return (&(*tstate)->transinfo[remote_id]);
576}
577
578uint16_t
579ahd_inw(struct ahd_softc *ahd, u_int port)
580{
581	/*
582	 * Read high byte first as some registers increment
583	 * or have other side effects when the low byte is
584	 * read.
585	 */
586	uint16_t r = ahd_inb(ahd, port+1) << 8;
587	return r | ahd_inb(ahd, port);
588}
589
590void
591ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
592{
593	/*
594	 * Write low byte first to accommodate registers
595	 * such as PRGMCNT where the order maters.
596	 */
597	ahd_outb(ahd, port, value & 0xFF);
598	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
599}
600
601uint32_t
602ahd_inl(struct ahd_softc *ahd, u_int port)
603{
604	return ((ahd_inb(ahd, port))
605	      | (ahd_inb(ahd, port+1) << 8)
606	      | (ahd_inb(ahd, port+2) << 16)
607	      | (ahd_inb(ahd, port+3) << 24));
608}
609
610void
611ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
612{
613	ahd_outb(ahd, port, (value) & 0xFF);
614	ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
615	ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
616	ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
617}
618
619uint64_t
620ahd_inq(struct ahd_softc *ahd, u_int port)
621{
622	return ((ahd_inb(ahd, port))
623	      | (ahd_inb(ahd, port+1) << 8)
624	      | (ahd_inb(ahd, port+2) << 16)
625	      | (ahd_inb(ahd, port+3) << 24)
626	      | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
627	      | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
628	      | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
629	      | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
630}
631
632void
633ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
634{
635	ahd_outb(ahd, port, value & 0xFF);
636	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
637	ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
638	ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
639	ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
640	ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
641	ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
642	ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
643}
644
645u_int
646ahd_get_scbptr(struct ahd_softc *ahd)
647{
648	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
649			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
650	return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
651}
652
653void
654ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
655{
656	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
657			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
658	ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
659	ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
660}
661
662#if 0 /* unused */
663static u_int
664ahd_get_hnscb_qoff(struct ahd_softc *ahd)
665{
666	return (ahd_inw_atomic(ahd, HNSCB_QOFF));
667}
668#endif
669
670static void
671ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
672{
673	ahd_outw_atomic(ahd, HNSCB_QOFF, value);
674}
675
676#if 0 /* unused */
677static u_int
678ahd_get_hescb_qoff(struct ahd_softc *ahd)
679{
680	return (ahd_inb(ahd, HESCB_QOFF));
681}
682#endif
683
684static void
685ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
686{
687	ahd_outb(ahd, HESCB_QOFF, value);
688}
689
690static u_int
691ahd_get_snscb_qoff(struct ahd_softc *ahd)
692{
693	u_int oldvalue;
694
695	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
696	oldvalue = ahd_inw(ahd, SNSCB_QOFF);
697	ahd_outw(ahd, SNSCB_QOFF, oldvalue);
698	return (oldvalue);
699}
700
701static void
702ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
703{
704	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
705	ahd_outw(ahd, SNSCB_QOFF, value);
706}
707
708#if 0 /* unused */
709static u_int
710ahd_get_sescb_qoff(struct ahd_softc *ahd)
711{
712	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
713	return (ahd_inb(ahd, SESCB_QOFF));
714}
715#endif
716
717static void
718ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
719{
720	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
721	ahd_outb(ahd, SESCB_QOFF, value);
722}
723
724#if 0 /* unused */
725static u_int
726ahd_get_sdscb_qoff(struct ahd_softc *ahd)
727{
728	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
729	return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
730}
731#endif
732
733static void
734ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
735{
736	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
737	ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
738	ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
739}
740
741u_int
742ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
743{
744	u_int value;
745
746	/*
747	 * Workaround PCI-X Rev A. hardware bug.
748	 * After a host read of SCB memory, the chip
749	 * may become confused into thinking prefetch
750	 * was required.  This starts the discard timer
751	 * running and can cause an unexpected discard
752	 * timer interrupt.  The work around is to read
753	 * a normal register prior to the exhaustion of
754	 * the discard timer.  The mode pointer register
755	 * has no side effects and so serves well for
756	 * this purpose.
757	 *
758	 * Razor #528
759	 */
760	value = ahd_inb(ahd, offset);
761	if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
762		ahd_inb(ahd, MODE_PTR);
763	return (value);
764}
765
766u_int
767ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
768{
769	return (ahd_inb_scbram(ahd, offset)
770	      | (ahd_inb_scbram(ahd, offset+1) << 8));
771}
772
773static uint32_t
774ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
775{
776	return (ahd_inw_scbram(ahd, offset)
777	      | (ahd_inw_scbram(ahd, offset+2) << 16));
778}
779
780static uint64_t
781ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
782{
783	return (ahd_inl_scbram(ahd, offset)
784	      | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
785}
786
787struct scb *
788ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
789{
790	struct scb* scb;
791
792	if (tag >= AHD_SCB_MAX)
793		return (NULL);
794	scb = ahd->scb_data.scbindex[tag];
795	if (scb != NULL)
796		ahd_sync_scb(ahd, scb,
797			     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
798	return (scb);
799}
800
801static void
802ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
803{
804	struct	 hardware_scb *q_hscb;
805	struct	 map_node *q_hscb_map;
806	uint32_t saved_hscb_busaddr;
807
808	/*
809	 * Our queuing method is a bit tricky.  The card
810	 * knows in advance which HSCB (by address) to download,
811	 * and we can't disappoint it.  To achieve this, the next
812	 * HSCB to download is saved off in ahd->next_queued_hscb.
813	 * When we are called to queue "an arbitrary scb",
814	 * we copy the contents of the incoming HSCB to the one
815	 * the sequencer knows about, swap HSCB pointers and
816	 * finally assign the SCB to the tag indexed location
817	 * in the scb_array.  This makes sure that we can still
818	 * locate the correct SCB by SCB_TAG.
819	 */
820	q_hscb = ahd->next_queued_hscb;
821	q_hscb_map = ahd->next_queued_hscb_map;
822	saved_hscb_busaddr = q_hscb->hscb_busaddr;
823	memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
824	q_hscb->hscb_busaddr = saved_hscb_busaddr;
825	q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
826
827	/* Now swap HSCB pointers. */
828	ahd->next_queued_hscb = scb->hscb;
829	ahd->next_queued_hscb_map = scb->hscb_map;
830	scb->hscb = q_hscb;
831	scb->hscb_map = q_hscb_map;
832
833	/* Now define the mapping from tag to SCB in the scbindex */
834	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
835}
836
837/*
838 * Tell the sequencer about a new transaction to execute.
839 */
840void
841ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
842{
843	ahd_swap_with_next_hscb(ahd, scb);
844
845	if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
846		panic("Attempt to queue invalid SCB tag %x\n",
847		      SCB_GET_TAG(scb));
848
849	/*
850	 * Keep a history of SCBs we've downloaded in the qinfifo.
851	 */
852	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
853	ahd->qinfifonext++;
854
855	if (scb->sg_count != 0)
856		ahd_setup_data_scb(ahd, scb);
857	else
858		ahd_setup_noxfer_scb(ahd, scb);
859	ahd_setup_scb_common(ahd, scb);
860
861	/*
862	 * Make sure our data is consistent from the
863	 * perspective of the adapter.
864	 */
865	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
866
867#ifdef AHD_DEBUG
868	if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
869		uint64_t host_dataptr;
870
871		host_dataptr = ahd_le64toh(scb->hscb->dataptr);
872		printk("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
873		       ahd_name(ahd),
874		       SCB_GET_TAG(scb), scb->hscb->scsiid,
875		       ahd_le32toh(scb->hscb->hscb_busaddr),
876		       (u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
877		       (u_int)(host_dataptr & 0xFFFFFFFF),
878		       ahd_le32toh(scb->hscb->datacnt));
879	}
880#endif
881	/* Tell the adapter about the newly queued SCB */
882	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
883}
884
885/************************** Interrupt Processing ******************************/
886static void
887ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
888{
889	ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
890			/*offset*/0,
891			/*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
892}
893
894static void
895ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
896{
897#ifdef AHD_TARGET_MODE
898	if ((ahd->flags & AHD_TARGETROLE) != 0) {
899		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
900				ahd->shared_data_map.dmamap,
901				ahd_targetcmd_offset(ahd, 0),
902				sizeof(struct target_cmd) * AHD_TMODE_CMDS,
903				op);
904	}
905#endif
906}
907
908/*
909 * See if the firmware has posted any completed commands
910 * into our in-core command complete fifos.
911 */
912#define AHD_RUN_QOUTFIFO 0x1
913#define AHD_RUN_TQINFIFO 0x2
914static u_int
915ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
916{
917	u_int retval;
918
919	retval = 0;
920	ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
921			/*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
922			/*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
923	if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
924	  == ahd->qoutfifonext_valid_tag)
925		retval |= AHD_RUN_QOUTFIFO;
926#ifdef AHD_TARGET_MODE
927	if ((ahd->flags & AHD_TARGETROLE) != 0
928	 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
929		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
930				ahd->shared_data_map.dmamap,
931				ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
932				/*len*/sizeof(struct target_cmd),
933				BUS_DMASYNC_POSTREAD);
934		if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
935			retval |= AHD_RUN_TQINFIFO;
936	}
937#endif
938	return (retval);
939}
940
941/*
942 * Catch an interrupt from the adapter
943 */
944int
945ahd_intr(struct ahd_softc *ahd)
946{
947	u_int	intstat;
948
949	if ((ahd->pause & INTEN) == 0) {
950		/*
951		 * Our interrupt is not enabled on the chip
952		 * and may be disabled for re-entrancy reasons,
953		 * so just return.  This is likely just a shared
954		 * interrupt.
955		 */
956		return (0);
957	}
958
959	/*
960	 * Instead of directly reading the interrupt status register,
961	 * infer the cause of the interrupt by checking our in-core
962	 * completion queues.  This avoids a costly PCI bus read in
963	 * most cases.
964	 */
965	if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
966	 && (ahd_check_cmdcmpltqueues(ahd) != 0))
967		intstat = CMDCMPLT;
968	else
969		intstat = ahd_inb(ahd, INTSTAT);
970
971	if ((intstat & INT_PEND) == 0)
972		return (0);
973
974	if (intstat & CMDCMPLT) {
975		ahd_outb(ahd, CLRINT, CLRCMDINT);
976
977		/*
978		 * Ensure that the chip sees that we've cleared
979		 * this interrupt before we walk the output fifo.
980		 * Otherwise, we may, due to posted bus writes,
981		 * clear the interrupt after we finish the scan,
982		 * and after the sequencer has added new entries
983		 * and asserted the interrupt again.
984		 */
985		if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
986			if (ahd_is_paused(ahd)) {
987				/*
988				 * Potentially lost SEQINT.
989				 * If SEQINTCODE is non-zero,
990				 * simulate the SEQINT.
991				 */
992				if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
993					intstat |= SEQINT;
994			}
995		} else {
996			ahd_flush_device_writes(ahd);
997		}
998		ahd_run_qoutfifo(ahd);
999		ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
1000		ahd->cmdcmplt_total++;
1001#ifdef AHD_TARGET_MODE
1002		if ((ahd->flags & AHD_TARGETROLE) != 0)
1003			ahd_run_tqinfifo(ahd, /*paused*/FALSE);
1004#endif
1005	}
1006
1007	/*
1008	 * Handle statuses that may invalidate our cached
1009	 * copy of INTSTAT separately.
1010	 */
1011	if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
1012		/* Hot eject.  Do nothing */
1013	} else if (intstat & HWERRINT) {
1014		ahd_handle_hwerrint(ahd);
1015	} else if ((intstat & (PCIINT|SPLTINT)) != 0) {
1016		ahd->bus_intr(ahd);
1017	} else {
1018
1019		if ((intstat & SEQINT) != 0)
1020			ahd_handle_seqint(ahd, intstat);
1021
1022		if ((intstat & SCSIINT) != 0)
1023			ahd_handle_scsiint(ahd, intstat);
1024	}
1025	return (1);
1026}
1027
1028/******************************** Private Inlines *****************************/
1029static inline void
1030ahd_assert_atn(struct ahd_softc *ahd)
1031{
1032	ahd_outb(ahd, SCSISIGO, ATNO);
1033}
1034
1035/*
1036 * Determine if the current connection has a packetized
1037 * agreement.  This does not necessarily mean that we
1038 * are currently in a packetized transfer.  We could
1039 * just as easily be sending or receiving a message.
1040 */
1041static int
1042ahd_currently_packetized(struct ahd_softc *ahd)
1043{
1044	ahd_mode_state	 saved_modes;
1045	int		 packetized;
1046
1047	saved_modes = ahd_save_modes(ahd);
1048	if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) {
1049		/*
1050		 * The packetized bit refers to the last
1051		 * connection, not the current one.  Check
1052		 * for non-zero LQISTATE instead.
1053		 */
1054		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
1055		packetized = ahd_inb(ahd, LQISTATE) != 0;
1056	} else {
1057		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1058		packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED;
1059	}
1060	ahd_restore_modes(ahd, saved_modes);
1061	return (packetized);
1062}
1063
1064static inline int
1065ahd_set_active_fifo(struct ahd_softc *ahd)
1066{
1067	u_int active_fifo;
1068
1069	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
1070	active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
1071	switch (active_fifo) {
1072	case 0:
1073	case 1:
1074		ahd_set_modes(ahd, active_fifo, active_fifo);
1075		return (1);
1076	default:
1077		return (0);
1078	}
1079}
1080
1081static inline void
1082ahd_unbusy_tcl(struct ahd_softc *ahd, u_int tcl)
1083{
1084	ahd_busy_tcl(ahd, tcl, SCB_LIST_NULL);
1085}
1086
1087/*
1088 * Determine whether the sequencer reported a residual
1089 * for this SCB/transaction.
1090 */
1091static inline void
1092ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
1093{
1094	uint32_t sgptr;
1095
1096	sgptr = ahd_le32toh(scb->hscb->sgptr);
1097	if ((sgptr & SG_STATUS_VALID) != 0)
1098		ahd_calc_residual(ahd, scb);
1099}
1100
1101static inline void
1102ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
1103{
1104	uint32_t sgptr;
1105
1106	sgptr = ahd_le32toh(scb->hscb->sgptr);
1107	if ((sgptr & SG_STATUS_VALID) != 0)
1108		ahd_handle_scb_status(ahd, scb);
1109	else
1110		ahd_done(ahd, scb);
1111}
1112
1113
1114/************************* Sequencer Execution Control ************************/
1115/*
1116 * Restart the sequencer program from address zero
1117 */
1118static void
1119ahd_restart(struct ahd_softc *ahd)
1120{
1121
1122	ahd_pause(ahd);
1123
1124	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1125
1126	/* No more pending messages */
1127	ahd_clear_msg_state(ahd);
1128	ahd_outb(ahd, SCSISIGO, 0);		/* De-assert BSY */
1129	ahd_outb(ahd, MSG_OUT, NOP);	/* No message to send */
1130	ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET);
1131	ahd_outb(ahd, SEQINTCTL, 0);
1132	ahd_outb(ahd, LASTPHASE, P_BUSFREE);
1133	ahd_outb(ahd, SEQ_FLAGS, 0);
1134	ahd_outb(ahd, SAVED_SCSIID, 0xFF);
1135	ahd_outb(ahd, SAVED_LUN, 0xFF);
1136
1137	/*
1138	 * Ensure that the sequencer's idea of TQINPOS
1139	 * matches our own.  The sequencer increments TQINPOS
1140	 * only after it sees a DMA complete and a reset could
1141	 * occur before the increment leaving the kernel to believe
1142	 * the command arrived but the sequencer to not.
1143	 */
1144	ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
1145
1146	/* Always allow reselection */
1147	ahd_outb(ahd, SCSISEQ1,
1148		 ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
1149	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1150
1151	/*
1152	 * Clear any pending sequencer interrupt.  It is no
1153	 * longer relevant since we're resetting the Program
1154	 * Counter.
1155	 */
1156	ahd_outb(ahd, CLRINT, CLRSEQINT);
1157
1158	ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
1159	ahd_unpause(ahd);
1160}
1161
1162static void
1163ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo)
1164{
1165	ahd_mode_state	 saved_modes;
1166
1167#ifdef AHD_DEBUG
1168	if ((ahd_debug & AHD_SHOW_FIFOS) != 0)
1169		printk("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo);
1170#endif
1171	saved_modes = ahd_save_modes(ahd);
1172	ahd_set_modes(ahd, fifo, fifo);
1173	ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
1174	if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1175		ahd_outb(ahd, CCSGCTL, CCSGRESET);
1176	ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1177	ahd_outb(ahd, SG_STATE, 0);
1178	ahd_restore_modes(ahd, saved_modes);
1179}
1180
1181/************************* Input/Output Queues ********************************/
1182/*
1183 * Flush and completed commands that are sitting in the command
1184 * complete queues down on the chip but have yet to be dma'ed back up.
1185 */
1186static void
1187ahd_flush_qoutfifo(struct ahd_softc *ahd)
1188{
1189	struct		scb *scb;
1190	ahd_mode_state	saved_modes;
1191	u_int		saved_scbptr;
1192	u_int		ccscbctl;
1193	u_int		scbid;
1194	u_int		next_scbid;
1195
1196	saved_modes = ahd_save_modes(ahd);
1197
1198	/*
1199	 * Flush the good status FIFO for completed packetized commands.
1200	 */
1201	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1202	saved_scbptr = ahd_get_scbptr(ahd);
1203	while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) {
1204		u_int fifo_mode;
1205		u_int i;
1206
1207		scbid = ahd_inw(ahd, GSFIFO);
1208		scb = ahd_lookup_scb(ahd, scbid);
1209		if (scb == NULL) {
1210			printk("%s: Warning - GSFIFO SCB %d invalid\n",
1211			       ahd_name(ahd), scbid);
1212			continue;
1213		}
1214		/*
1215		 * Determine if this transaction is still active in
1216		 * any FIFO.  If it is, we must flush that FIFO to
1217		 * the host before completing the  command.
1218		 */
1219		fifo_mode = 0;
1220rescan_fifos:
1221		for (i = 0; i < 2; i++) {
1222			/* Toggle to the other mode. */
1223			fifo_mode ^= 1;
1224			ahd_set_modes(ahd, fifo_mode, fifo_mode);
1225
1226			if (ahd_scb_active_in_fifo(ahd, scb) == 0)
1227				continue;
1228
1229			ahd_run_data_fifo(ahd, scb);
1230
1231			/*
1232			 * Running this FIFO may cause a CFG4DATA for
1233			 * this same transaction to assert in the other
1234			 * FIFO or a new snapshot SAVEPTRS interrupt
1235			 * in this FIFO.  Even running a FIFO may not
1236			 * clear the transaction if we are still waiting
1237			 * for data to drain to the host. We must loop
1238			 * until the transaction is not active in either
1239			 * FIFO just to be sure.  Reset our loop counter
1240			 * so we will visit both FIFOs again before
1241			 * declaring this transaction finished.  We
1242			 * also delay a bit so that status has a chance
1243			 * to change before we look at this FIFO again.
1244			 */
1245			ahd_delay(200);
1246			goto rescan_fifos;
1247		}
1248		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1249		ahd_set_scbptr(ahd, scbid);
1250		if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0
1251		 && ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0
1252		  || (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR)
1253		      & SG_LIST_NULL) != 0)) {
1254			u_int comp_head;
1255
1256			/*
1257			 * The transfer completed with a residual.
1258			 * Place this SCB on the complete DMA list
1259			 * so that we update our in-core copy of the
1260			 * SCB before completing the command.
1261			 */
1262			ahd_outb(ahd, SCB_SCSI_STATUS, 0);
1263			ahd_outb(ahd, SCB_SGPTR,
1264				 ahd_inb_scbram(ahd, SCB_SGPTR)
1265				 | SG_STATUS_VALID);
1266			ahd_outw(ahd, SCB_TAG, scbid);
1267			ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL);
1268			comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1269			if (SCBID_IS_NULL(comp_head)) {
1270				ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid);
1271				ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1272			} else {
1273				u_int tail;
1274
1275				tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL);
1276				ahd_set_scbptr(ahd, tail);
1277				ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid);
1278				ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1279				ahd_set_scbptr(ahd, scbid);
1280			}
1281		} else
1282			ahd_complete_scb(ahd, scb);
1283	}
1284	ahd_set_scbptr(ahd, saved_scbptr);
1285
1286	/*
1287	 * Setup for command channel portion of flush.
1288	 */
1289	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1290
1291	/*
1292	 * Wait for any inprogress DMA to complete and clear DMA state
1293	 * if this is for an SCB in the qinfifo.
1294	 */
1295	while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) {
1296
1297		if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) {
1298			if ((ccscbctl & ARRDONE) != 0)
1299				break;
1300		} else if ((ccscbctl & CCSCBDONE) != 0)
1301			break;
1302		ahd_delay(200);
1303	}
1304	/*
1305	 * We leave the sequencer to cleanup in the case of DMA's to
1306	 * update the qoutfifo.  In all other cases (DMA's to the
1307	 * chip or a push of an SCB from the COMPLETE_DMA_SCB list),
1308	 * we disable the DMA engine so that the sequencer will not
1309	 * attempt to handle the DMA completion.
1310	 */
1311	if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0)
1312		ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN));
1313
1314	/*
1315	 * Complete any SCBs that just finished
1316	 * being DMA'ed into the qoutfifo.
1317	 */
1318	ahd_run_qoutfifo(ahd);
1319
1320	saved_scbptr = ahd_get_scbptr(ahd);
1321	/*
1322	 * Manually update/complete any completed SCBs that are waiting to be
1323	 * DMA'ed back up to the host.
1324	 */
1325	scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1326	while (!SCBID_IS_NULL(scbid)) {
1327		uint8_t *hscb_ptr;
1328		u_int	 i;
1329
1330		ahd_set_scbptr(ahd, scbid);
1331		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1332		scb = ahd_lookup_scb(ahd, scbid);
1333		if (scb == NULL) {
1334			printk("%s: Warning - DMA-up and complete "
1335			       "SCB %d invalid\n", ahd_name(ahd), scbid);
1336			continue;
1337		}
1338		hscb_ptr = (uint8_t *)scb->hscb;
1339		for (i = 0; i < sizeof(struct hardware_scb); i++)
1340			*hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i);
1341
1342		ahd_complete_scb(ahd, scb);
1343		scbid = next_scbid;
1344	}
1345	ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
1346	ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
1347
1348	scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
1349	while (!SCBID_IS_NULL(scbid)) {
1350
1351		ahd_set_scbptr(ahd, scbid);
1352		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1353		scb = ahd_lookup_scb(ahd, scbid);
1354		if (scb == NULL) {
1355			printk("%s: Warning - Complete Qfrz SCB %d invalid\n",
1356			       ahd_name(ahd), scbid);
1357			continue;
1358		}
1359
1360		ahd_complete_scb(ahd, scb);
1361		scbid = next_scbid;
1362	}
1363	ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
1364
1365	scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD);
1366	while (!SCBID_IS_NULL(scbid)) {
1367
1368		ahd_set_scbptr(ahd, scbid);
1369		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1370		scb = ahd_lookup_scb(ahd, scbid);
1371		if (scb == NULL) {
1372			printk("%s: Warning - Complete SCB %d invalid\n",
1373			       ahd_name(ahd), scbid);
1374			continue;
1375		}
1376
1377		ahd_complete_scb(ahd, scb);
1378		scbid = next_scbid;
1379	}
1380	ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
1381
1382	/*
1383	 * Restore state.
1384	 */
1385	ahd_set_scbptr(ahd, saved_scbptr);
1386	ahd_restore_modes(ahd, saved_modes);
1387	ahd->flags |= AHD_UPDATE_PEND_CMDS;
1388}
1389
1390/*
1391 * Determine if an SCB for a packetized transaction
1392 * is active in a FIFO.
1393 */
1394static int
1395ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb)
1396{
1397
1398	/*
1399	 * The FIFO is only active for our transaction if
1400	 * the SCBPTR matches the SCB's ID and the firmware
1401	 * has installed a handler for the FIFO or we have
1402	 * a pending SAVEPTRS or CFG4DATA interrupt.
1403	 */
1404	if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb)
1405	 || ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0
1406	  && (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0))
1407		return (0);
1408
1409	return (1);
1410}
1411
1412/*
1413 * Run a data fifo to completion for a transaction we know
1414 * has completed across the SCSI bus (good status has been
1415 * received).  We are already set to the correct FIFO mode
1416 * on entry to this routine.
1417 *
1418 * This function attempts to operate exactly as the firmware
1419 * would when running this FIFO.  Care must be taken to update
1420 * this routine any time the firmware's FIFO algorithm is
1421 * changed.
1422 */
1423static void
1424ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb)
1425{
1426	u_int seqintsrc;
1427
1428	seqintsrc = ahd_inb(ahd, SEQINTSRC);
1429	if ((seqintsrc & CFG4DATA) != 0) {
1430		uint32_t datacnt;
1431		uint32_t sgptr;
1432
1433		/*
1434		 * Clear full residual flag.
1435		 */
1436		sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID;
1437		ahd_outb(ahd, SCB_SGPTR, sgptr);
1438
1439		/*
1440		 * Load datacnt and address.
1441		 */
1442		datacnt = ahd_inl_scbram(ahd, SCB_DATACNT);
1443		if ((datacnt & AHD_DMA_LAST_SEG) != 0) {
1444			sgptr |= LAST_SEG;
1445			ahd_outb(ahd, SG_STATE, 0);
1446		} else
1447			ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1448		ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR));
1449		ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK);
1450		ahd_outb(ahd, SG_CACHE_PRE, sgptr);
1451		ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1452
1453		/*
1454		 * Initialize Residual Fields.
1455		 */
1456		ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24);
1457		ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK);
1458
1459		/*
1460		 * Mark the SCB as having a FIFO in use.
1461		 */
1462		ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1463			 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1);
1464
1465		/*
1466		 * Install a "fake" handler for this FIFO.
1467		 */
1468		ahd_outw(ahd, LONGJMP_ADDR, 0);
1469
1470		/*
1471		 * Notify the hardware that we have satisfied
1472		 * this sequencer interrupt.
1473		 */
1474		ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA);
1475	} else if ((seqintsrc & SAVEPTRS) != 0) {
1476		uint32_t sgptr;
1477		uint32_t resid;
1478
1479		if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) {
1480			/*
1481			 * Snapshot Save Pointers.  All that
1482			 * is necessary to clear the snapshot
1483			 * is a CLRCHN.
1484			 */
1485			goto clrchn;
1486		}
1487
1488		/*
1489		 * Disable S/G fetch so the DMA engine
1490		 * is available to future users.
1491		 */
1492		if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1493			ahd_outb(ahd, CCSGCTL, 0);
1494		ahd_outb(ahd, SG_STATE, 0);
1495
1496		/*
1497		 * Flush the data FIFO.  Strickly only
1498		 * necessary for Rev A parts.
1499		 */
1500		ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH);
1501
1502		/*
1503		 * Calculate residual.
1504		 */
1505		sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1506		resid = ahd_inl(ahd, SHCNT);
1507		resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24;
1508		ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid);
1509		if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) {
1510			/*
1511			 * Must back up to the correct S/G element.
1512			 * Typically this just means resetting our
1513			 * low byte to the offset in the SG_CACHE,
1514			 * but if we wrapped, we have to correct
1515			 * the other bytes of the sgptr too.
1516			 */
1517			if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0
1518			 && (sgptr & 0x80) == 0)
1519				sgptr -= 0x100;
1520			sgptr &= ~0xFF;
1521			sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW)
1522			       & SG_ADDR_MASK;
1523			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1524			ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0);
1525		} else if ((resid & AHD_SG_LEN_MASK) == 0) {
1526			ahd_outb(ahd, SCB_RESIDUAL_SGPTR,
1527				 sgptr | SG_LIST_NULL);
1528		}
1529		/*
1530		 * Save Pointers.
1531		 */
1532		ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR));
1533		ahd_outl(ahd, SCB_DATACNT, resid);
1534		ahd_outl(ahd, SCB_SGPTR, sgptr);
1535		ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS);
1536		ahd_outb(ahd, SEQIMODE,
1537			 ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS);
1538		/*
1539		 * If the data is to the SCSI bus, we are
1540		 * done, otherwise wait for FIFOEMP.
1541		 */
1542		if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0)
1543			goto clrchn;
1544	} else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) {
1545		uint32_t sgptr;
1546		uint64_t data_addr;
1547		uint32_t data_len;
1548		u_int	 dfcntrl;
1549
1550		/*
1551		 * Disable S/G fetch so the DMA engine
1552		 * is available to future users.  We won't
1553		 * be using the DMA engine to load segments.
1554		 */
1555		if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) {
1556			ahd_outb(ahd, CCSGCTL, 0);
1557			ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1558		}
1559
1560		/*
1561		 * Wait for the DMA engine to notice that the
1562		 * host transfer is enabled and that there is
1563		 * space in the S/G FIFO for new segments before
1564		 * loading more segments.
1565		 */
1566		if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0
1567		 && (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) {
1568
1569			/*
1570			 * Determine the offset of the next S/G
1571			 * element to load.
1572			 */
1573			sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1574			sgptr &= SG_PTR_MASK;
1575			if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1576				struct ahd_dma64_seg *sg;
1577
1578				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1579				data_addr = sg->addr;
1580				data_len = sg->len;
1581				sgptr += sizeof(*sg);
1582			} else {
1583				struct	ahd_dma_seg *sg;
1584
1585				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1586				data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK;
1587				data_addr <<= 8;
1588				data_addr |= sg->addr;
1589				data_len = sg->len;
1590				sgptr += sizeof(*sg);
1591			}
1592
1593			/*
1594			 * Update residual information.
1595			 */
1596			ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24);
1597			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1598
1599			/*
1600			 * Load the S/G.
1601			 */
1602			if (data_len & AHD_DMA_LAST_SEG) {
1603				sgptr |= LAST_SEG;
1604				ahd_outb(ahd, SG_STATE, 0);
1605			}
1606			ahd_outq(ahd, HADDR, data_addr);
1607			ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK);
1608			ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF);
1609
1610			/*
1611			 * Advertise the segment to the hardware.
1612			 */
1613			dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN;
1614			if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
1615				/*
1616				 * Use SCSIENWRDIS so that SCSIEN
1617				 * is never modified by this
1618				 * operation.
1619				 */
1620				dfcntrl |= SCSIENWRDIS;
1621			}
1622			ahd_outb(ahd, DFCNTRL, dfcntrl);
1623		}
1624	} else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) {
1625
1626		/*
1627		 * Transfer completed to the end of SG list
1628		 * and has flushed to the host.
1629		 */
1630		ahd_outb(ahd, SCB_SGPTR,
1631			 ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL);
1632		goto clrchn;
1633	} else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) {
1634clrchn:
1635		/*
1636		 * Clear any handler for this FIFO, decrement
1637		 * the FIFO use count for the SCB, and release
1638		 * the FIFO.
1639		 */
1640		ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1641		ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1642			 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1);
1643		ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
1644	}
1645}
1646
1647/*
1648 * Look for entries in the QoutFIFO that have completed.
1649 * The valid_tag completion field indicates the validity
1650 * of the entry - the valid value toggles each time through
1651 * the queue. We use the sg_status field in the completion
1652 * entry to avoid referencing the hscb if the completion
1653 * occurred with no errors and no residual.  sg_status is
1654 * a copy of the first byte (little endian) of the sgptr
1655 * hscb field.
1656 */
1657static void
1658ahd_run_qoutfifo(struct ahd_softc *ahd)
1659{
1660	struct ahd_completion *completion;
1661	struct scb *scb;
1662	u_int  scb_index;
1663
1664	if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0)
1665		panic("ahd_run_qoutfifo recursion");
1666	ahd->flags |= AHD_RUNNING_QOUTFIFO;
1667	ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD);
1668	for (;;) {
1669		completion = &ahd->qoutfifo[ahd->qoutfifonext];
1670
1671		if (completion->valid_tag != ahd->qoutfifonext_valid_tag)
1672			break;
1673
1674		scb_index = ahd_le16toh(completion->tag);
1675		scb = ahd_lookup_scb(ahd, scb_index);
1676		if (scb == NULL) {
1677			printk("%s: WARNING no command for scb %d "
1678			       "(cmdcmplt)\nQOUTPOS = %d\n",
1679			       ahd_name(ahd), scb_index,
1680			       ahd->qoutfifonext);
1681			ahd_dump_card_state(ahd);
1682		} else if ((completion->sg_status & SG_STATUS_VALID) != 0) {
1683			ahd_handle_scb_status(ahd, scb);
1684		} else {
1685			ahd_done(ahd, scb);
1686		}
1687
1688		ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1);
1689		if (ahd->qoutfifonext == 0)
1690			ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID;
1691	}
1692	ahd->flags &= ~AHD_RUNNING_QOUTFIFO;
1693}
1694
1695/************************* Interrupt Handling *********************************/
1696static void
1697ahd_handle_hwerrint(struct ahd_softc *ahd)
1698{
1699	/*
1700	 * Some catastrophic hardware error has occurred.
1701	 * Print it for the user and disable the controller.
1702	 */
1703	int i;
1704	int error;
1705
1706	error = ahd_inb(ahd, ERROR);
1707	for (i = 0; i < num_errors; i++) {
1708		if ((error & ahd_hard_errors[i].errno) != 0)
1709			printk("%s: hwerrint, %s\n",
1710			       ahd_name(ahd), ahd_hard_errors[i].errmesg);
1711	}
1712
1713	ahd_dump_card_state(ahd);
1714	panic("BRKADRINT");
1715
1716	/* Tell everyone that this HBA is no longer available */
1717	ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
1718		       CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
1719		       CAM_NO_HBA);
1720
1721	/* Tell the system that this controller has gone away. */
1722	ahd_free(ahd);
1723}
1724
1725#ifdef AHD_DEBUG
1726static void
1727ahd_dump_sglist(struct scb *scb)
1728{
1729	int i;
1730
1731	if (scb->sg_count > 0) {
1732		if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) {
1733			struct ahd_dma64_seg *sg_list;
1734
1735			sg_list = (struct ahd_dma64_seg*)scb->sg_list;
1736			for (i = 0; i < scb->sg_count; i++) {
1737				uint64_t addr;
1738
1739				addr = ahd_le64toh(sg_list[i].addr);
1740				printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1741				       i,
1742				       (uint32_t)((addr >> 32) & 0xFFFFFFFF),
1743				       (uint32_t)(addr & 0xFFFFFFFF),
1744				       sg_list[i].len & AHD_SG_LEN_MASK,
1745				       (sg_list[i].len & AHD_DMA_LAST_SEG)
1746				     ? " Last" : "");
1747			}
1748		} else {
1749			struct ahd_dma_seg *sg_list;
1750
1751			sg_list = (struct ahd_dma_seg*)scb->sg_list;
1752			for (i = 0; i < scb->sg_count; i++) {
1753				uint32_t len;
1754
1755				len = ahd_le32toh(sg_list[i].len);
1756				printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1757				       i,
1758				       (len & AHD_SG_HIGH_ADDR_MASK) >> 24,
1759				       ahd_le32toh(sg_list[i].addr),
1760				       len & AHD_SG_LEN_MASK,
1761				       len & AHD_DMA_LAST_SEG ? " Last" : "");
1762			}
1763		}
1764	}
1765}
1766#endif  /*  AHD_DEBUG  */
1767
1768static void
1769ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat)
1770{
1771	u_int seqintcode;
1772
1773	/*
1774	 * Save the sequencer interrupt code and clear the SEQINT
1775	 * bit. We will unpause the sequencer, if appropriate,
1776	 * after servicing the request.
1777	 */
1778	seqintcode = ahd_inb(ahd, SEQINTCODE);
1779	ahd_outb(ahd, CLRINT, CLRSEQINT);
1780	if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
1781		/*
1782		 * Unpause the sequencer and let it clear
1783		 * SEQINT by writing NO_SEQINT to it.  This
1784		 * will cause the sequencer to be paused again,
1785		 * which is the expected state of this routine.
1786		 */
1787		ahd_unpause(ahd);
1788		while (!ahd_is_paused(ahd))
1789			;
1790		ahd_outb(ahd, CLRINT, CLRSEQINT);
1791	}
1792	ahd_update_modes(ahd);
1793#ifdef AHD_DEBUG
1794	if ((ahd_debug & AHD_SHOW_MISC) != 0)
1795		printk("%s: Handle Seqint Called for code %d\n",
1796		       ahd_name(ahd), seqintcode);
1797#endif
1798	switch (seqintcode) {
1799	case ENTERING_NONPACK:
1800	{
1801		struct	scb *scb;
1802		u_int	scbid;
1803
1804		AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
1805				 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
1806		scbid = ahd_get_scbptr(ahd);
1807		scb = ahd_lookup_scb(ahd, scbid);
1808		if (scb == NULL) {
1809			/*
1810			 * Somehow need to know if this
1811			 * is from a selection or reselection.
1812			 * From that, we can determine target
1813			 * ID so we at least have an I_T nexus.
1814			 */
1815		} else {
1816			ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1817			ahd_outb(ahd, SAVED_LUN, scb->hscb->lun);
1818			ahd_outb(ahd, SEQ_FLAGS, 0x0);
1819		}
1820		if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0
1821		 && (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
1822			/*
1823			 * Phase change after read stream with
1824			 * CRC error with P0 asserted on last
1825			 * packet.
1826			 */
1827#ifdef AHD_DEBUG
1828			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1829				printk("%s: Assuming LQIPHASE_NLQ with "
1830				       "P0 assertion\n", ahd_name(ahd));
1831#endif
1832		}
1833#ifdef AHD_DEBUG
1834		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1835			printk("%s: Entering NONPACK\n", ahd_name(ahd));
1836#endif
1837		break;
1838	}
1839	case INVALID_SEQINT:
1840		printk("%s: Invalid Sequencer interrupt occurred, "
1841		       "resetting channel.\n",
1842		       ahd_name(ahd));
1843#ifdef AHD_DEBUG
1844		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1845			ahd_dump_card_state(ahd);
1846#endif
1847		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1848		break;
1849	case STATUS_OVERRUN:
1850	{
1851		struct	scb *scb;
1852		u_int	scbid;
1853
1854		scbid = ahd_get_scbptr(ahd);
1855		scb = ahd_lookup_scb(ahd, scbid);
1856		if (scb != NULL)
1857			ahd_print_path(ahd, scb);
1858		else
1859			printk("%s: ", ahd_name(ahd));
1860		printk("SCB %d Packetized Status Overrun", scbid);
1861		ahd_dump_card_state(ahd);
1862		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1863		break;
1864	}
1865	case CFG4ISTAT_INTR:
1866	{
1867		struct	scb *scb;
1868		u_int	scbid;
1869
1870		scbid = ahd_get_scbptr(ahd);
1871		scb = ahd_lookup_scb(ahd, scbid);
1872		if (scb == NULL) {
1873			ahd_dump_card_state(ahd);
1874			printk("CFG4ISTAT: Free SCB %d referenced", scbid);
1875			panic("For safety");
1876		}
1877		ahd_outq(ahd, HADDR, scb->sense_busaddr);
1878		ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE);
1879		ahd_outb(ahd, HCNT + 2, 0);
1880		ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG);
1881		ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1882		break;
1883	}
1884	case ILLEGAL_PHASE:
1885	{
1886		u_int bus_phase;
1887
1888		bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
1889		printk("%s: ILLEGAL_PHASE 0x%x\n",
1890		       ahd_name(ahd), bus_phase);
1891
1892		switch (bus_phase) {
1893		case P_DATAOUT:
1894		case P_DATAIN:
1895		case P_DATAOUT_DT:
1896		case P_DATAIN_DT:
1897		case P_MESGOUT:
1898		case P_STATUS:
1899		case P_MESGIN:
1900			ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1901			printk("%s: Issued Bus Reset.\n", ahd_name(ahd));
1902			break;
1903		case P_COMMAND:
1904		{
1905			struct	ahd_devinfo devinfo;
1906			struct	scb *scb;
1907			u_int	scbid;
1908
1909			/*
1910			 * If a target takes us into the command phase
1911			 * assume that it has been externally reset and
1912			 * has thus lost our previous packetized negotiation
1913			 * agreement.  Since we have not sent an identify
1914			 * message and may not have fully qualified the
1915			 * connection, we change our command to TUR, assert
1916			 * ATN and ABORT the task when we go to message in
1917			 * phase.  The OSM will see the REQUEUE_REQUEST
1918			 * status and retry the command.
1919			 */
1920			scbid = ahd_get_scbptr(ahd);
1921			scb = ahd_lookup_scb(ahd, scbid);
1922			if (scb == NULL) {
1923				printk("Invalid phase with no valid SCB.  "
1924				       "Resetting bus.\n");
1925				ahd_reset_channel(ahd, 'A',
1926						  /*Initiate Reset*/TRUE);
1927				break;
1928			}
1929			ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
1930					    SCB_GET_TARGET(ahd, scb),
1931					    SCB_GET_LUN(scb),
1932					    SCB_GET_CHANNEL(ahd, scb),
1933					    ROLE_INITIATOR);
1934			ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
1935				      AHD_TRANS_ACTIVE, /*paused*/TRUE);
1936			ahd_set_syncrate(ahd, &devinfo, /*period*/0,
1937					 /*offset*/0, /*ppr_options*/0,
1938					 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1939			/* Hand-craft TUR command */
1940			ahd_outb(ahd, SCB_CDB_STORE, 0);
1941			ahd_outb(ahd, SCB_CDB_STORE+1, 0);
1942			ahd_outb(ahd, SCB_CDB_STORE+2, 0);
1943			ahd_outb(ahd, SCB_CDB_STORE+3, 0);
1944			ahd_outb(ahd, SCB_CDB_STORE+4, 0);
1945			ahd_outb(ahd, SCB_CDB_STORE+5, 0);
1946			ahd_outb(ahd, SCB_CDB_LEN, 6);
1947			scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE);
1948			scb->hscb->control |= MK_MESSAGE;
1949			ahd_outb(ahd, SCB_CONTROL, scb->hscb->control);
1950			ahd_outb(ahd, MSG_OUT, HOST_MSG);
1951			ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1952			/*
1953			 * The lun is 0, regardless of the SCB's lun
1954			 * as we have not sent an identify message.
1955			 */
1956			ahd_outb(ahd, SAVED_LUN, 0);
1957			ahd_outb(ahd, SEQ_FLAGS, 0);
1958			ahd_assert_atn(ahd);
1959			scb->flags &= ~SCB_PACKETIZED;
1960			scb->flags |= SCB_ABORT|SCB_EXTERNAL_RESET;
1961			ahd_freeze_devq(ahd, scb);
1962			ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
1963			ahd_freeze_scb(scb);
1964
1965			/* Notify XPT */
1966			ahd_send_async(ahd, devinfo.channel, devinfo.target,
1967				       CAM_LUN_WILDCARD, AC_SENT_BDR);
1968
1969			/*
1970			 * Allow the sequencer to continue with
1971			 * non-pack processing.
1972			 */
1973			ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1974			ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT);
1975			if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
1976				ahd_outb(ahd, CLRLQOINT1, 0);
1977			}
1978#ifdef AHD_DEBUG
1979			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1980				ahd_print_path(ahd, scb);
1981				printk("Unexpected command phase from "
1982				       "packetized target\n");
1983			}
1984#endif
1985			break;
1986		}
1987		}
1988		break;
1989	}
1990	case CFG4OVERRUN:
1991	{
1992		struct	scb *scb;
1993		u_int	scb_index;
1994
1995#ifdef AHD_DEBUG
1996		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1997			printk("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd),
1998			       ahd_inb(ahd, MODE_PTR));
1999		}
2000#endif
2001		scb_index = ahd_get_scbptr(ahd);
2002		scb = ahd_lookup_scb(ahd, scb_index);
2003		if (scb == NULL) {
2004			/*
2005			 * Attempt to transfer to an SCB that is
2006			 * not outstanding.
2007			 */
2008			ahd_assert_atn(ahd);
2009			ahd_outb(ahd, MSG_OUT, HOST_MSG);
2010			ahd->msgout_buf[0] = ABORT_TASK;
2011			ahd->msgout_len = 1;
2012			ahd->msgout_index = 0;
2013			ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2014			/*
2015			 * Clear status received flag to prevent any
2016			 * attempt to complete this bogus SCB.
2017			 */
2018			ahd_outb(ahd, SCB_CONTROL,
2019				 ahd_inb_scbram(ahd, SCB_CONTROL)
2020				 & ~STATUS_RCVD);
2021		}
2022		break;
2023	}
2024	case DUMP_CARD_STATE:
2025	{
2026		ahd_dump_card_state(ahd);
2027		break;
2028	}
2029	case PDATA_REINIT:
2030	{
2031#ifdef AHD_DEBUG
2032		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2033			printk("%s: PDATA_REINIT - DFCNTRL = 0x%x "
2034			       "SG_CACHE_SHADOW = 0x%x\n",
2035			       ahd_name(ahd), ahd_inb(ahd, DFCNTRL),
2036			       ahd_inb(ahd, SG_CACHE_SHADOW));
2037		}
2038#endif
2039		ahd_reinitialize_dataptrs(ahd);
2040		break;
2041	}
2042	case HOST_MSG_LOOP:
2043	{
2044		struct ahd_devinfo devinfo;
2045
2046		/*
2047		 * The sequencer has encountered a message phase
2048		 * that requires host assistance for completion.
2049		 * While handling the message phase(s), we will be
2050		 * notified by the sequencer after each byte is
2051		 * transferred so we can track bus phase changes.
2052		 *
2053		 * If this is the first time we've seen a HOST_MSG_LOOP
2054		 * interrupt, initialize the state of the host message
2055		 * loop.
2056		 */
2057		ahd_fetch_devinfo(ahd, &devinfo);
2058		if (ahd->msg_type == MSG_TYPE_NONE) {
2059			struct scb *scb;
2060			u_int scb_index;
2061			u_int bus_phase;
2062
2063			bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2064			if (bus_phase != P_MESGIN
2065			 && bus_phase != P_MESGOUT) {
2066				printk("ahd_intr: HOST_MSG_LOOP bad "
2067				       "phase 0x%x\n", bus_phase);
2068				/*
2069				 * Probably transitioned to bus free before
2070				 * we got here.  Just punt the message.
2071				 */
2072				ahd_dump_card_state(ahd);
2073				ahd_clear_intstat(ahd);
2074				ahd_restart(ahd);
2075				return;
2076			}
2077
2078			scb_index = ahd_get_scbptr(ahd);
2079			scb = ahd_lookup_scb(ahd, scb_index);
2080			if (devinfo.role == ROLE_INITIATOR) {
2081				if (bus_phase == P_MESGOUT)
2082					ahd_setup_initiator_msgout(ahd,
2083								   &devinfo,
2084								   scb);
2085				else {
2086					ahd->msg_type =
2087					    MSG_TYPE_INITIATOR_MSGIN;
2088					ahd->msgin_index = 0;
2089				}
2090			}
2091#ifdef AHD_TARGET_MODE
2092			else {
2093				if (bus_phase == P_MESGOUT) {
2094					ahd->msg_type =
2095					    MSG_TYPE_TARGET_MSGOUT;
2096					ahd->msgin_index = 0;
2097				} else
2098					ahd_setup_target_msgin(ahd,
2099							       &devinfo,
2100							       scb);
2101			}
2102#endif
2103		}
2104
2105		ahd_handle_message_phase(ahd);
2106		break;
2107	}
2108	case NO_MATCH:
2109	{
2110		/* Ensure we don't leave the selection hardware on */
2111		AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
2112		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2113
2114		printk("%s:%c:%d: no active SCB for reconnecting "
2115		       "target - issuing BUS DEVICE RESET\n",
2116		       ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4);
2117		printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
2118		       "REG0 == 0x%x ACCUM = 0x%x\n",
2119		       ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN),
2120		       ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM));
2121		printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
2122		       "SINDEX == 0x%x\n",
2123		       ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd),
2124		       ahd_find_busy_tcl(ahd,
2125					 BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID),
2126						   ahd_inb(ahd, SAVED_LUN))),
2127		       ahd_inw(ahd, SINDEX));
2128		printk("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
2129		       "SCB_CONTROL == 0x%x\n",
2130		       ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID),
2131		       ahd_inb_scbram(ahd, SCB_LUN),
2132		       ahd_inb_scbram(ahd, SCB_CONTROL));
2133		printk("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n",
2134		       ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI));
2135		printk("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0));
2136		printk("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0));
2137		ahd_dump_card_state(ahd);
2138		ahd->msgout_buf[0] = TARGET_RESET;
2139		ahd->msgout_len = 1;
2140		ahd->msgout_index = 0;
2141		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2142		ahd_outb(ahd, MSG_OUT, HOST_MSG);
2143		ahd_assert_atn(ahd);
2144		break;
2145	}
2146	case PROTO_VIOLATION:
2147	{
2148		ahd_handle_proto_violation(ahd);
2149		break;
2150	}
2151	case IGN_WIDE_RES:
2152	{
2153		struct ahd_devinfo devinfo;
2154
2155		ahd_fetch_devinfo(ahd, &devinfo);
2156		ahd_handle_ign_wide_residue(ahd, &devinfo);
2157		break;
2158	}
2159	case BAD_PHASE:
2160	{
2161		u_int lastphase;
2162
2163		lastphase = ahd_inb(ahd, LASTPHASE);
2164		printk("%s:%c:%d: unknown scsi bus phase %x, "
2165		       "lastphase = 0x%x.  Attempting to continue\n",
2166		       ahd_name(ahd), 'A',
2167		       SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2168		       lastphase, ahd_inb(ahd, SCSISIGI));
2169		break;
2170	}
2171	case MISSED_BUSFREE:
2172	{
2173		u_int lastphase;
2174
2175		lastphase = ahd_inb(ahd, LASTPHASE);
2176		printk("%s:%c:%d: Missed busfree. "
2177		       "Lastphase = 0x%x, Curphase = 0x%x\n",
2178		       ahd_name(ahd), 'A',
2179		       SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2180		       lastphase, ahd_inb(ahd, SCSISIGI));
2181		ahd_restart(ahd);
2182		return;
2183	}
2184	case DATA_OVERRUN:
2185	{
2186		/*
2187		 * When the sequencer detects an overrun, it
2188		 * places the controller in "BITBUCKET" mode
2189		 * and allows the target to complete its transfer.
2190		 * Unfortunately, none of the counters get updated
2191		 * when the controller is in this mode, so we have
2192		 * no way of knowing how large the overrun was.
2193		 */
2194		struct	scb *scb;
2195		u_int	scbindex;
2196#ifdef AHD_DEBUG
2197		u_int	lastphase;
2198#endif
2199
2200		scbindex = ahd_get_scbptr(ahd);
2201		scb = ahd_lookup_scb(ahd, scbindex);
2202#ifdef AHD_DEBUG
2203		lastphase = ahd_inb(ahd, LASTPHASE);
2204		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2205			ahd_print_path(ahd, scb);
2206			printk("data overrun detected %s.  Tag == 0x%x.\n",
2207			       ahd_lookup_phase_entry(lastphase)->phasemsg,
2208			       SCB_GET_TAG(scb));
2209			ahd_print_path(ahd, scb);
2210			printk("%s seen Data Phase.  Length = %ld.  "
2211			       "NumSGs = %d.\n",
2212			       ahd_inb(ahd, SEQ_FLAGS) & DPHASE
2213			       ? "Have" : "Haven't",
2214			       ahd_get_transfer_length(scb), scb->sg_count);
2215			ahd_dump_sglist(scb);
2216		}
2217#endif
2218
2219		/*
2220		 * Set this and it will take effect when the
2221		 * target does a command complete.
2222		 */
2223		ahd_freeze_devq(ahd, scb);
2224		ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
2225		ahd_freeze_scb(scb);
2226		break;
2227	}
2228	case MKMSG_FAILED:
2229	{
2230		struct ahd_devinfo devinfo;
2231		struct scb *scb;
2232		u_int scbid;
2233
2234		ahd_fetch_devinfo(ahd, &devinfo);
2235		printk("%s:%c:%d:%d: Attempt to issue message failed\n",
2236		       ahd_name(ahd), devinfo.channel, devinfo.target,
2237		       devinfo.lun);
2238		scbid = ahd_get_scbptr(ahd);
2239		scb = ahd_lookup_scb(ahd, scbid);
2240		if (scb != NULL
2241		 && (scb->flags & SCB_RECOVERY_SCB) != 0)
2242			/*
2243			 * Ensure that we didn't put a second instance of this
2244			 * SCB into the QINFIFO.
2245			 */
2246			ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2247					   SCB_GET_CHANNEL(ahd, scb),
2248					   SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2249					   ROLE_INITIATOR, /*status*/0,
2250					   SEARCH_REMOVE);
2251		ahd_outb(ahd, SCB_CONTROL,
2252			 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
2253		break;
2254	}
2255	case TASKMGMT_FUNC_COMPLETE:
2256	{
2257		u_int	scbid;
2258		struct	scb *scb;
2259
2260		scbid = ahd_get_scbptr(ahd);
2261		scb = ahd_lookup_scb(ahd, scbid);
2262		if (scb != NULL) {
2263			u_int	   lun;
2264			u_int	   tag;
2265			cam_status error;
2266
2267			ahd_print_path(ahd, scb);
2268			printk("Task Management Func 0x%x Complete\n",
2269			       scb->hscb->task_management);
2270			lun = CAM_LUN_WILDCARD;
2271			tag = SCB_LIST_NULL;
2272
2273			switch (scb->hscb->task_management) {
2274			case SIU_TASKMGMT_ABORT_TASK:
2275				tag = SCB_GET_TAG(scb);
2276				fallthrough;
2277			case SIU_TASKMGMT_ABORT_TASK_SET:
2278			case SIU_TASKMGMT_CLEAR_TASK_SET:
2279				lun = scb->hscb->lun;
2280				error = CAM_REQ_ABORTED;
2281				ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
2282					       'A', lun, tag, ROLE_INITIATOR,
2283					       error);
2284				break;
2285			case SIU_TASKMGMT_LUN_RESET:
2286				lun = scb->hscb->lun;
2287				fallthrough;
2288			case SIU_TASKMGMT_TARGET_RESET:
2289			{
2290				struct ahd_devinfo devinfo;
2291
2292				ahd_scb_devinfo(ahd, &devinfo, scb);
2293				error = CAM_BDR_SENT;
2294				ahd_handle_devreset(ahd, &devinfo, lun,
2295						    CAM_BDR_SENT,
2296						    lun != CAM_LUN_WILDCARD
2297						    ? "Lun Reset"
2298						    : "Target Reset",
2299						    /*verbose_level*/0);
2300				break;
2301			}
2302			default:
2303				panic("Unexpected TaskMgmt Func\n");
2304				break;
2305			}
2306		}
2307		break;
2308	}
2309	case TASKMGMT_CMD_CMPLT_OKAY:
2310	{
2311		u_int	scbid;
2312		struct	scb *scb;
2313
2314		/*
2315		 * An ABORT TASK TMF failed to be delivered before
2316		 * the targeted command completed normally.
2317		 */
2318		scbid = ahd_get_scbptr(ahd);
2319		scb = ahd_lookup_scb(ahd, scbid);
2320		if (scb != NULL) {
2321			/*
2322			 * Remove the second instance of this SCB from
2323			 * the QINFIFO if it is still there.
2324                         */
2325			ahd_print_path(ahd, scb);
2326			printk("SCB completes before TMF\n");
2327			/*
2328			 * Handle losing the race.  Wait until any
2329			 * current selection completes.  We will then
2330			 * set the TMF back to zero in this SCB so that
2331			 * the sequencer doesn't bother to issue another
2332			 * sequencer interrupt for its completion.
2333			 */
2334			while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
2335			    && (ahd_inb(ahd, SSTAT0) & SELDO) == 0
2336			    && (ahd_inb(ahd, SSTAT1) & SELTO) == 0)
2337				;
2338			ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0);
2339			ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2340					   SCB_GET_CHANNEL(ahd, scb),
2341					   SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2342					   ROLE_INITIATOR, /*status*/0,
2343					   SEARCH_REMOVE);
2344		}
2345		break;
2346	}
2347	case TRACEPOINT0:
2348	case TRACEPOINT1:
2349	case TRACEPOINT2:
2350	case TRACEPOINT3:
2351		printk("%s: Tracepoint %d\n", ahd_name(ahd),
2352		       seqintcode - TRACEPOINT0);
2353		break;
2354	case NO_SEQINT:
2355		break;
2356	case SAW_HWERR:
2357		ahd_handle_hwerrint(ahd);
2358		break;
2359	default:
2360		printk("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd),
2361		       seqintcode);
2362		break;
2363	}
2364	/*
2365	 *  The sequencer is paused immediately on
2366	 *  a SEQINT, so we should restart it when
2367	 *  we're done.
2368	 */
2369	ahd_unpause(ahd);
2370}
2371
2372static void
2373ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat)
2374{
2375	struct scb	*scb;
2376	u_int		 status0;
2377	u_int		 status3;
2378	u_int		 status;
2379	u_int		 lqistat1;
2380	u_int		 lqostat0;
2381	u_int		 scbid;
2382	u_int		 busfreetime;
2383
2384	ahd_update_modes(ahd);
2385	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2386
2387	status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR);
2388	status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO);
2389	status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
2390	lqistat1 = ahd_inb(ahd, LQISTAT1);
2391	lqostat0 = ahd_inb(ahd, LQOSTAT0);
2392	busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2393
2394	/*
2395	 * Ignore external resets after a bus reset.
2396	 */
2397	if (((status & SCSIRSTI) != 0) && (ahd->flags & AHD_BUS_RESET_ACTIVE)) {
2398		ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
2399		return;
2400	}
2401
2402	/*
2403	 * Clear bus reset flag
2404	 */
2405	ahd->flags &= ~AHD_BUS_RESET_ACTIVE;
2406
2407	if ((status0 & (SELDI|SELDO)) != 0) {
2408		u_int simode0;
2409
2410		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2411		simode0 = ahd_inb(ahd, SIMODE0);
2412		status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO);
2413		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2414	}
2415	scbid = ahd_get_scbptr(ahd);
2416	scb = ahd_lookup_scb(ahd, scbid);
2417	if (scb != NULL
2418	 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
2419		scb = NULL;
2420
2421	if ((status0 & IOERR) != 0) {
2422		u_int now_lvd;
2423
2424		now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40;
2425		printk("%s: Transceiver State Has Changed to %s mode\n",
2426		       ahd_name(ahd), now_lvd ? "LVD" : "SE");
2427		ahd_outb(ahd, CLRSINT0, CLRIOERR);
2428		/*
2429		 * A change in I/O mode is equivalent to a bus reset.
2430		 */
2431		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2432		ahd_pause(ahd);
2433		ahd_setup_iocell_workaround(ahd);
2434		ahd_unpause(ahd);
2435	} else if ((status0 & OVERRUN) != 0) {
2436
2437		printk("%s: SCSI offset overrun detected.  Resetting bus.\n",
2438		       ahd_name(ahd));
2439		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2440	} else if ((status & SCSIRSTI) != 0) {
2441
2442		printk("%s: Someone reset channel A\n", ahd_name(ahd));
2443		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE);
2444	} else if ((status & SCSIPERR) != 0) {
2445
2446		/* Make sure the sequencer is in a safe location. */
2447		ahd_clear_critical_section(ahd);
2448
2449		ahd_handle_transmission_error(ahd);
2450	} else if (lqostat0 != 0) {
2451
2452		printk("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0);
2453		ahd_outb(ahd, CLRLQOINT0, lqostat0);
2454		if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2455			ahd_outb(ahd, CLRLQOINT1, 0);
2456	} else if ((status & SELTO) != 0) {
2457		/* Stop the selection */
2458		ahd_outb(ahd, SCSISEQ0, 0);
2459
2460		/* Make sure the sequencer is in a safe location. */
2461		ahd_clear_critical_section(ahd);
2462
2463		/* No more pending messages */
2464		ahd_clear_msg_state(ahd);
2465
2466		/* Clear interrupt state */
2467		ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
2468
2469		/*
2470		 * Although the driver does not care about the
2471		 * 'Selection in Progress' status bit, the busy
2472		 * LED does.  SELINGO is only cleared by a successful
2473		 * selection, so we must manually clear it to insure
2474		 * the LED turns off just incase no future successful
2475		 * selections occur (e.g. no devices on the bus).
2476		 */
2477		ahd_outb(ahd, CLRSINT0, CLRSELINGO);
2478
2479		scbid = ahd_inw(ahd, WAITING_TID_HEAD);
2480		scb = ahd_lookup_scb(ahd, scbid);
2481		if (scb == NULL) {
2482			printk("%s: ahd_intr - referenced scb not "
2483			       "valid during SELTO scb(0x%x)\n",
2484			       ahd_name(ahd), scbid);
2485			ahd_dump_card_state(ahd);
2486		} else {
2487			struct ahd_devinfo devinfo;
2488#ifdef AHD_DEBUG
2489			if ((ahd_debug & AHD_SHOW_SELTO) != 0) {
2490				ahd_print_path(ahd, scb);
2491				printk("Saw Selection Timeout for SCB 0x%x\n",
2492				       scbid);
2493			}
2494#endif
2495			ahd_scb_devinfo(ahd, &devinfo, scb);
2496			ahd_set_transaction_status(scb, CAM_SEL_TIMEOUT);
2497			ahd_freeze_devq(ahd, scb);
2498
2499			/*
2500			 * Cancel any pending transactions on the device
2501			 * now that it seems to be missing.  This will
2502			 * also revert us to async/narrow transfers until
2503			 * we can renegotiate with the device.
2504			 */
2505			ahd_handle_devreset(ahd, &devinfo,
2506					    CAM_LUN_WILDCARD,
2507					    CAM_SEL_TIMEOUT,
2508					    "Selection Timeout",
2509					    /*verbose_level*/1);
2510		}
2511		ahd_outb(ahd, CLRINT, CLRSCSIINT);
2512		ahd_iocell_first_selection(ahd);
2513		ahd_unpause(ahd);
2514	} else if ((status0 & (SELDI|SELDO)) != 0) {
2515
2516		ahd_iocell_first_selection(ahd);
2517		ahd_unpause(ahd);
2518	} else if (status3 != 0) {
2519		printk("%s: SCSI Cell parity error SSTAT3 == 0x%x\n",
2520		       ahd_name(ahd), status3);
2521		ahd_outb(ahd, CLRSINT3, status3);
2522	} else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) {
2523
2524		/* Make sure the sequencer is in a safe location. */
2525		ahd_clear_critical_section(ahd);
2526
2527		ahd_handle_lqiphase_error(ahd, lqistat1);
2528	} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2529		/*
2530		 * This status can be delayed during some
2531		 * streaming operations.  The SCSIPHASE
2532		 * handler has already dealt with this case
2533		 * so just clear the error.
2534		 */
2535		ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ);
2536	} else if ((status & BUSFREE) != 0
2537		|| (lqistat1 & LQOBUSFREE) != 0) {
2538		u_int lqostat1;
2539		int   restart;
2540		int   clear_fifo;
2541		int   packetized;
2542		u_int mode;
2543
2544		/*
2545		 * Clear our selection hardware as soon as possible.
2546		 * We may have an entry in the waiting Q for this target,
2547		 * that is affected by this busfree and we don't want to
2548		 * go about selecting the target while we handle the event.
2549		 */
2550		ahd_outb(ahd, SCSISEQ0, 0);
2551
2552		/* Make sure the sequencer is in a safe location. */
2553		ahd_clear_critical_section(ahd);
2554
2555		/*
2556		 * Determine what we were up to at the time of
2557		 * the busfree.
2558		 */
2559		mode = AHD_MODE_SCSI;
2560		busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2561		lqostat1 = ahd_inb(ahd, LQOSTAT1);
2562		switch (busfreetime) {
2563		case BUSFREE_DFF0:
2564		case BUSFREE_DFF1:
2565		{
2566			mode = busfreetime == BUSFREE_DFF0
2567			     ? AHD_MODE_DFF0 : AHD_MODE_DFF1;
2568			ahd_set_modes(ahd, mode, mode);
2569			scbid = ahd_get_scbptr(ahd);
2570			scb = ahd_lookup_scb(ahd, scbid);
2571			if (scb == NULL) {
2572				printk("%s: Invalid SCB %d in DFF%d "
2573				       "during unexpected busfree\n",
2574				       ahd_name(ahd), scbid, mode);
2575				packetized = 0;
2576			} else
2577				packetized = (scb->flags & SCB_PACKETIZED) != 0;
2578			clear_fifo = 1;
2579			break;
2580		}
2581		case BUSFREE_LQO:
2582			clear_fifo = 0;
2583			packetized = 1;
2584			break;
2585		default:
2586			clear_fifo = 0;
2587			packetized =  (lqostat1 & LQOBUSFREE) != 0;
2588			if (!packetized
2589			 && ahd_inb(ahd, LASTPHASE) == P_BUSFREE
2590			 && (ahd_inb(ahd, SSTAT0) & SELDI) == 0
2591			 && ((ahd_inb(ahd, SSTAT0) & SELDO) == 0
2592			  || (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0))
2593				/*
2594				 * Assume packetized if we are not
2595				 * on the bus in a non-packetized
2596				 * capacity and any pending selection
2597				 * was a packetized selection.
2598				 */
2599				packetized = 1;
2600			break;
2601		}
2602
2603#ifdef AHD_DEBUG
2604		if ((ahd_debug & AHD_SHOW_MISC) != 0)
2605			printk("Saw Busfree.  Busfreetime = 0x%x.\n",
2606			       busfreetime);
2607#endif
2608		/*
2609		 * Busfrees that occur in non-packetized phases are
2610		 * handled by the nonpkt_busfree handler.
2611		 */
2612		if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) {
2613			restart = ahd_handle_pkt_busfree(ahd, busfreetime);
2614		} else {
2615			packetized = 0;
2616			restart = ahd_handle_nonpkt_busfree(ahd);
2617		}
2618		/*
2619		 * Clear the busfree interrupt status.  The setting of
2620		 * the interrupt is a pulse, so in a perfect world, we
2621		 * would not need to muck with the ENBUSFREE logic.  This
2622		 * would ensure that if the bus moves on to another
2623		 * connection, busfree protection is still in force.  If
2624		 * BUSFREEREV is broken, however, we must manually clear
2625		 * the ENBUSFREE if the busfree occurred during a non-pack
2626		 * connection so that we don't get false positives during
2627		 * future, packetized, connections.
2628		 */
2629		ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
2630		if (packetized == 0
2631		 && (ahd->bugs & AHD_BUSFREEREV_BUG) != 0)
2632			ahd_outb(ahd, SIMODE1,
2633				 ahd_inb(ahd, SIMODE1) & ~ENBUSFREE);
2634
2635		if (clear_fifo)
2636			ahd_clear_fifo(ahd, mode);
2637
2638		ahd_clear_msg_state(ahd);
2639		ahd_outb(ahd, CLRINT, CLRSCSIINT);
2640		if (restart) {
2641			ahd_restart(ahd);
2642		} else {
2643			ahd_unpause(ahd);
2644		}
2645	} else {
2646		printk("%s: Missing case in ahd_handle_scsiint. status = %x\n",
2647		       ahd_name(ahd), status);
2648		ahd_dump_card_state(ahd);
2649		ahd_clear_intstat(ahd);
2650		ahd_unpause(ahd);
2651	}
2652}
2653
2654static void
2655ahd_handle_transmission_error(struct ahd_softc *ahd)
2656{
2657	struct	scb *scb;
2658	u_int	scbid;
2659	u_int	lqistat1;
2660	u_int	msg_out;
2661	u_int	curphase;
2662	u_int	lastphase;
2663	u_int	perrdiag;
2664	u_int	cur_col;
2665	int	silent;
2666
2667	scb = NULL;
2668	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2669	lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ);
2670	ahd_inb(ahd, LQISTAT2);
2671	if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0
2672	 && (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) {
2673		u_int lqistate;
2674
2675		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2676		lqistate = ahd_inb(ahd, LQISTATE);
2677		if ((lqistate >= 0x1E && lqistate <= 0x24)
2678		 || (lqistate == 0x29)) {
2679#ifdef AHD_DEBUG
2680			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2681				printk("%s: NLQCRC found via LQISTATE\n",
2682				       ahd_name(ahd));
2683			}
2684#endif
2685			lqistat1 |= LQICRCI_NLQ;
2686		}
2687		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2688	}
2689
2690	ahd_outb(ahd, CLRLQIINT1, lqistat1);
2691	lastphase = ahd_inb(ahd, LASTPHASE);
2692	curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2693	perrdiag = ahd_inb(ahd, PERRDIAG);
2694	msg_out = INITIATOR_ERROR;
2695	ahd_outb(ahd, CLRSINT1, CLRSCSIPERR);
2696
2697	/*
2698	 * Try to find the SCB associated with this error.
2699	 */
2700	silent = FALSE;
2701	if (lqistat1 == 0
2702	 || (lqistat1 & LQICRCI_NLQ) != 0) {
2703		if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0)
2704			ahd_set_active_fifo(ahd);
2705		scbid = ahd_get_scbptr(ahd);
2706		scb = ahd_lookup_scb(ahd, scbid);
2707		if (scb != NULL && SCB_IS_SILENT(scb))
2708			silent = TRUE;
2709	}
2710
2711	cur_col = 0;
2712	if (silent == FALSE) {
2713		printk("%s: Transmission error detected\n", ahd_name(ahd));
2714		ahd_lqistat1_print(lqistat1, &cur_col, 50);
2715		ahd_lastphase_print(lastphase, &cur_col, 50);
2716		ahd_scsisigi_print(curphase, &cur_col, 50);
2717		ahd_perrdiag_print(perrdiag, &cur_col, 50);
2718		printk("\n");
2719		ahd_dump_card_state(ahd);
2720	}
2721
2722	if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) {
2723		if (silent == FALSE) {
2724			printk("%s: Gross protocol error during incoming "
2725			       "packet.  lqistat1 == 0x%x.  Resetting bus.\n",
2726			       ahd_name(ahd), lqistat1);
2727		}
2728		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2729		return;
2730	} else if ((lqistat1 & LQICRCI_LQ) != 0) {
2731		/*
2732		 * A CRC error has been detected on an incoming LQ.
2733		 * The bus is currently hung on the last ACK.
2734		 * Hit LQIRETRY to release the last ack, and
2735		 * wait for the sequencer to determine that ATNO
2736		 * is asserted while in message out to take us
2737		 * to our host message loop.  No NONPACKREQ or
2738		 * LQIPHASE type errors will occur in this
2739		 * scenario.  After this first LQIRETRY, the LQI
2740		 * manager will be in ISELO where it will
2741		 * happily sit until another packet phase begins.
2742		 * Unexpected bus free detection is enabled
2743		 * through any phases that occur after we release
2744		 * this last ack until the LQI manager sees a
2745		 * packet phase.  This implies we may have to
2746		 * ignore a perfectly valid "unexected busfree"
2747		 * after our "initiator detected error" message is
2748		 * sent.  A busfree is the expected response after
2749		 * we tell the target that it's L_Q was corrupted.
2750		 * (SPI4R09 10.7.3.3.3)
2751		 */
2752		ahd_outb(ahd, LQCTL2, LQIRETRY);
2753		printk("LQIRetry for LQICRCI_LQ to release ACK\n");
2754	} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2755		/*
2756		 * We detected a CRC error in a NON-LQ packet.
2757		 * The hardware has varying behavior in this situation
2758		 * depending on whether this packet was part of a
2759		 * stream or not.
2760		 *
2761		 * PKT by PKT mode:
2762		 * The hardware has already acked the complete packet.
2763		 * If the target honors our outstanding ATN condition,
2764		 * we should be (or soon will be) in MSGOUT phase.
2765		 * This will trigger the LQIPHASE_LQ status bit as the
2766		 * hardware was expecting another LQ.  Unexpected
2767		 * busfree detection is enabled.  Once LQIPHASE_LQ is
2768		 * true (first entry into host message loop is much
2769		 * the same), we must clear LQIPHASE_LQ and hit
2770		 * LQIRETRY so the hardware is ready to handle
2771		 * a future LQ.  NONPACKREQ will not be asserted again
2772		 * once we hit LQIRETRY until another packet is
2773		 * processed.  The target may either go busfree
2774		 * or start another packet in response to our message.
2775		 *
2776		 * Read Streaming P0 asserted:
2777		 * If we raise ATN and the target completes the entire
2778		 * stream (P0 asserted during the last packet), the
2779		 * hardware will ack all data and return to the ISTART
2780		 * state.  When the target reponds to our ATN condition,
2781		 * LQIPHASE_LQ will be asserted.  We should respond to
2782		 * this with an LQIRETRY to prepare for any future
2783		 * packets.  NONPACKREQ will not be asserted again
2784		 * once we hit LQIRETRY until another packet is
2785		 * processed.  The target may either go busfree or
2786		 * start another packet in response to our message.
2787		 * Busfree detection is enabled.
2788		 *
2789		 * Read Streaming P0 not asserted:
2790		 * If we raise ATN and the target transitions to
2791		 * MSGOUT in or after a packet where P0 is not
2792		 * asserted, the hardware will assert LQIPHASE_NLQ.
2793		 * We should respond to the LQIPHASE_NLQ with an
2794		 * LQIRETRY.  Should the target stay in a non-pkt
2795		 * phase after we send our message, the hardware
2796		 * will assert LQIPHASE_LQ.  Recovery is then just as
2797		 * listed above for the read streaming with P0 asserted.
2798		 * Busfree detection is enabled.
2799		 */
2800		if (silent == FALSE)
2801			printk("LQICRC_NLQ\n");
2802		if (scb == NULL) {
2803			printk("%s: No SCB valid for LQICRC_NLQ.  "
2804			       "Resetting bus\n", ahd_name(ahd));
2805			ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2806			return;
2807		}
2808	} else if ((lqistat1 & LQIBADLQI) != 0) {
2809		printk("Need to handle BADLQI!\n");
2810		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2811		return;
2812	} else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) {
2813		if ((curphase & ~P_DATAIN_DT) != 0) {
2814			/* Ack the byte.  So we can continue. */
2815			if (silent == FALSE)
2816				printk("Acking %s to clear perror\n",
2817				    ahd_lookup_phase_entry(curphase)->phasemsg);
2818			ahd_inb(ahd, SCSIDAT);
2819		}
2820
2821		if (curphase == P_MESGIN)
2822			msg_out = MSG_PARITY_ERROR;
2823	}
2824
2825	/*
2826	 * We've set the hardware to assert ATN if we
2827	 * get a parity error on "in" phases, so all we
2828	 * need to do is stuff the message buffer with
2829	 * the appropriate message.  "In" phases have set
2830	 * mesg_out to something other than NOP.
2831	 */
2832	ahd->send_msg_perror = msg_out;
2833	if (scb != NULL && msg_out == INITIATOR_ERROR)
2834		scb->flags |= SCB_TRANSMISSION_ERROR;
2835	ahd_outb(ahd, MSG_OUT, HOST_MSG);
2836	ahd_outb(ahd, CLRINT, CLRSCSIINT);
2837	ahd_unpause(ahd);
2838}
2839
2840static void
2841ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1)
2842{
2843	/*
2844	 * Clear the sources of the interrupts.
2845	 */
2846	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2847	ahd_outb(ahd, CLRLQIINT1, lqistat1);
2848
2849	/*
2850	 * If the "illegal" phase changes were in response
2851	 * to our ATN to flag a CRC error, AND we ended up
2852	 * on packet boundaries, clear the error, restart the
2853	 * LQI manager as appropriate, and go on our merry
2854	 * way toward sending the message.  Otherwise, reset
2855	 * the bus to clear the error.
2856	 */
2857	ahd_set_active_fifo(ahd);
2858	if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0
2859	 && (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) {
2860		if ((lqistat1 & LQIPHASE_LQ) != 0) {
2861			printk("LQIRETRY for LQIPHASE_LQ\n");
2862			ahd_outb(ahd, LQCTL2, LQIRETRY);
2863		} else if ((lqistat1 & LQIPHASE_NLQ) != 0) {
2864			printk("LQIRETRY for LQIPHASE_NLQ\n");
2865			ahd_outb(ahd, LQCTL2, LQIRETRY);
2866		} else
2867			panic("ahd_handle_lqiphase_error: No phase errors\n");
2868		ahd_dump_card_state(ahd);
2869		ahd_outb(ahd, CLRINT, CLRSCSIINT);
2870		ahd_unpause(ahd);
2871	} else {
2872		printk("Resetting Channel for LQI Phase error\n");
2873		ahd_dump_card_state(ahd);
2874		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2875	}
2876}
2877
2878/*
2879 * Packetized unexpected or expected busfree.
2880 * Entered in mode based on busfreetime.
2881 */
2882static int
2883ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime)
2884{
2885	u_int lqostat1;
2886
2887	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
2888			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
2889	lqostat1 = ahd_inb(ahd, LQOSTAT1);
2890	if ((lqostat1 & LQOBUSFREE) != 0) {
2891		struct scb *scb;
2892		u_int scbid;
2893		u_int saved_scbptr;
2894		u_int waiting_h;
2895		u_int waiting_t;
2896		u_int next;
2897
2898		/*
2899		 * The LQO manager detected an unexpected busfree
2900		 * either:
2901		 *
2902		 * 1) During an outgoing LQ.
2903		 * 2) After an outgoing LQ but before the first
2904		 *    REQ of the command packet.
2905		 * 3) During an outgoing command packet.
2906		 *
2907		 * In all cases, CURRSCB is pointing to the
2908		 * SCB that encountered the failure.  Clean
2909		 * up the queue, clear SELDO and LQOBUSFREE,
2910		 * and allow the sequencer to restart the select
2911		 * out at its lesure.
2912		 */
2913		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2914		scbid = ahd_inw(ahd, CURRSCB);
2915		scb = ahd_lookup_scb(ahd, scbid);
2916		if (scb == NULL)
2917		       panic("SCB not valid during LQOBUSFREE");
2918		/*
2919		 * Clear the status.
2920		 */
2921		ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE);
2922		if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2923			ahd_outb(ahd, CLRLQOINT1, 0);
2924		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2925		ahd_flush_device_writes(ahd);
2926		ahd_outb(ahd, CLRSINT0, CLRSELDO);
2927
2928		/*
2929		 * Return the LQO manager to its idle loop.  It will
2930		 * not do this automatically if the busfree occurs
2931		 * after the first REQ of either the LQ or command
2932		 * packet or between the LQ and command packet.
2933		 */
2934		ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE);
2935
2936		/*
2937		 * Update the waiting for selection queue so
2938		 * we restart on the correct SCB.
2939		 */
2940		waiting_h = ahd_inw(ahd, WAITING_TID_HEAD);
2941		saved_scbptr = ahd_get_scbptr(ahd);
2942		if (waiting_h != scbid) {
2943
2944			ahd_outw(ahd, WAITING_TID_HEAD, scbid);
2945			waiting_t = ahd_inw(ahd, WAITING_TID_TAIL);
2946			if (waiting_t == waiting_h) {
2947				ahd_outw(ahd, WAITING_TID_TAIL, scbid);
2948				next = SCB_LIST_NULL;
2949			} else {
2950				ahd_set_scbptr(ahd, waiting_h);
2951				next = ahd_inw_scbram(ahd, SCB_NEXT2);
2952			}
2953			ahd_set_scbptr(ahd, scbid);
2954			ahd_outw(ahd, SCB_NEXT2, next);
2955		}
2956		ahd_set_scbptr(ahd, saved_scbptr);
2957		if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) {
2958			if (SCB_IS_SILENT(scb) == FALSE) {
2959				ahd_print_path(ahd, scb);
2960				printk("Probable outgoing LQ CRC error.  "
2961				       "Retrying command\n");
2962			}
2963			scb->crc_retry_count++;
2964		} else {
2965			ahd_set_transaction_status(scb, CAM_UNCOR_PARITY);
2966			ahd_freeze_scb(scb);
2967			ahd_freeze_devq(ahd, scb);
2968		}
2969		/* Return unpausing the sequencer. */
2970		return (0);
2971	} else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) {
2972		/*
2973		 * Ignore what are really parity errors that
2974		 * occur on the last REQ of a free running
2975		 * clock prior to going busfree.  Some drives
2976		 * do not properly active negate just before
2977		 * going busfree resulting in a parity glitch.
2978		 */
2979		ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE);
2980#ifdef AHD_DEBUG
2981		if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0)
2982			printk("%s: Parity on last REQ detected "
2983			       "during busfree phase.\n",
2984			       ahd_name(ahd));
2985#endif
2986		/* Return unpausing the sequencer. */
2987		return (0);
2988	}
2989	if (ahd->src_mode != AHD_MODE_SCSI) {
2990		u_int	scbid;
2991		struct	scb *scb;
2992
2993		scbid = ahd_get_scbptr(ahd);
2994		scb = ahd_lookup_scb(ahd, scbid);
2995		ahd_print_path(ahd, scb);
2996		printk("Unexpected PKT busfree condition\n");
2997		ahd_dump_card_state(ahd);
2998		ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A',
2999			       SCB_GET_LUN(scb), SCB_GET_TAG(scb),
3000			       ROLE_INITIATOR, CAM_UNEXP_BUSFREE);
3001
3002		/* Return restarting the sequencer. */
3003		return (1);
3004	}
3005	printk("%s: Unexpected PKT busfree condition\n", ahd_name(ahd));
3006	ahd_dump_card_state(ahd);
3007	/* Restart the sequencer. */
3008	return (1);
3009}
3010
3011/*
3012 * Non-packetized unexpected or expected busfree.
3013 */
3014static int
3015ahd_handle_nonpkt_busfree(struct ahd_softc *ahd)
3016{
3017	struct	ahd_devinfo devinfo;
3018	struct	scb *scb;
3019	u_int	lastphase;
3020	u_int	saved_scsiid;
3021	u_int	saved_lun;
3022	u_int	target;
3023	u_int	initiator_role_id;
3024	u_int	scbid;
3025	u_int	ppr_busfree;
3026	int	printerror;
3027
3028	/*
3029	 * Look at what phase we were last in.  If its message out,
3030	 * chances are pretty good that the busfree was in response
3031	 * to one of our abort requests.
3032	 */
3033	lastphase = ahd_inb(ahd, LASTPHASE);
3034	saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
3035	saved_lun = ahd_inb(ahd, SAVED_LUN);
3036	target = SCSIID_TARGET(ahd, saved_scsiid);
3037	initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
3038	ahd_compile_devinfo(&devinfo, initiator_role_id,
3039			    target, saved_lun, 'A', ROLE_INITIATOR);
3040	printerror = 1;
3041
3042	scbid = ahd_get_scbptr(ahd);
3043	scb = ahd_lookup_scb(ahd, scbid);
3044	if (scb != NULL
3045	 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
3046		scb = NULL;
3047
3048	ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0;
3049	if (lastphase == P_MESGOUT) {
3050		u_int tag;
3051
3052		tag = SCB_LIST_NULL;
3053		if (ahd_sent_msg(ahd, AHDMSG_1B, ABORT_TASK, TRUE)
3054		 || ahd_sent_msg(ahd, AHDMSG_1B, ABORT_TASK_SET, TRUE)) {
3055			int found;
3056			int sent_msg;
3057
3058			if (scb == NULL) {
3059				ahd_print_devinfo(ahd, &devinfo);
3060				printk("Abort for unidentified "
3061				       "connection completed.\n");
3062				/* restart the sequencer. */
3063				return (1);
3064			}
3065			sent_msg = ahd->msgout_buf[ahd->msgout_index - 1];
3066			ahd_print_path(ahd, scb);
3067			printk("SCB %d - Abort%s Completed.\n",
3068			       SCB_GET_TAG(scb),
3069			       sent_msg == ABORT_TASK ? "" : " Tag");
3070
3071			if (sent_msg == ABORT_TASK)
3072				tag = SCB_GET_TAG(scb);
3073
3074			if ((scb->flags & SCB_EXTERNAL_RESET) != 0) {
3075				/*
3076				 * This abort is in response to an
3077				 * unexpected switch to command phase
3078				 * for a packetized connection.  Since
3079				 * the identify message was never sent,
3080				 * "saved lun" is 0.  We really want to
3081				 * abort only the SCB that encountered
3082				 * this error, which could have a different
3083				 * lun.  The SCB will be retried so the OS
3084				 * will see the UA after renegotiating to
3085				 * packetized.
3086				 */
3087				tag = SCB_GET_TAG(scb);
3088				saved_lun = scb->hscb->lun;
3089			}
3090			found = ahd_abort_scbs(ahd, target, 'A', saved_lun,
3091					       tag, ROLE_INITIATOR,
3092					       CAM_REQ_ABORTED);
3093			printk("found == 0x%x\n", found);
3094			printerror = 0;
3095		} else if (ahd_sent_msg(ahd, AHDMSG_1B,
3096					TARGET_RESET, TRUE)) {
3097			ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD,
3098					    CAM_BDR_SENT, "Bus Device Reset",
3099					    /*verbose_level*/0);
3100			printerror = 0;
3101		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_PPR, FALSE)
3102			&& ppr_busfree == 0) {
3103			struct ahd_initiator_tinfo *tinfo;
3104			struct ahd_tmode_tstate *tstate;
3105
3106			/*
3107			 * PPR Rejected.
3108			 *
3109			 * If the previous negotiation was packetized,
3110			 * this could be because the device has been
3111			 * reset without our knowledge.  Force our
3112			 * current negotiation to async and retry the
3113			 * negotiation.  Otherwise retry the command
3114			 * with non-ppr negotiation.
3115			 */
3116#ifdef AHD_DEBUG
3117			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3118				printk("PPR negotiation rejected busfree.\n");
3119#endif
3120			tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
3121						    devinfo.our_scsiid,
3122						    devinfo.target, &tstate);
3123			if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) {
3124				ahd_set_width(ahd, &devinfo,
3125					      MSG_EXT_WDTR_BUS_8_BIT,
3126					      AHD_TRANS_CUR,
3127					      /*paused*/TRUE);
3128				ahd_set_syncrate(ahd, &devinfo,
3129						/*period*/0, /*offset*/0,
3130						/*ppr_options*/0,
3131						AHD_TRANS_CUR,
3132						/*paused*/TRUE);
3133				/*
3134				 * The expect PPR busfree handler below
3135				 * will effect the retry and necessary
3136				 * abort.
3137				 */
3138			} else {
3139				tinfo->curr.transport_version = 2;
3140				tinfo->goal.transport_version = 2;
3141				tinfo->goal.ppr_options = 0;
3142				if (scb != NULL) {
3143					/*
3144					 * Remove any SCBs in the waiting
3145					 * for selection queue that may
3146					 * also be for this target so that
3147					 * command ordering is preserved.
3148					 */
3149					ahd_freeze_devq(ahd, scb);
3150					ahd_qinfifo_requeue_tail(ahd, scb);
3151				}
3152				printerror = 0;
3153			}
3154		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_WDTR, FALSE)
3155			&& ppr_busfree == 0) {
3156			/*
3157			 * Negotiation Rejected.  Go-narrow and
3158			 * retry command.
3159			 */
3160#ifdef AHD_DEBUG
3161			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3162				printk("WDTR negotiation rejected busfree.\n");
3163#endif
3164			ahd_set_width(ahd, &devinfo,
3165				      MSG_EXT_WDTR_BUS_8_BIT,
3166				      AHD_TRANS_CUR|AHD_TRANS_GOAL,
3167				      /*paused*/TRUE);
3168			if (scb != NULL) {
3169				/*
3170				 * Remove any SCBs in the waiting for
3171				 * selection queue that may also be for
3172				 * this target so that command ordering
3173				 * is preserved.
3174				 */
3175				ahd_freeze_devq(ahd, scb);
3176				ahd_qinfifo_requeue_tail(ahd, scb);
3177			}
3178			printerror = 0;
3179		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_SDTR, FALSE)
3180			&& ppr_busfree == 0) {
3181			/*
3182			 * Negotiation Rejected.  Go-async and
3183			 * retry command.
3184			 */
3185#ifdef AHD_DEBUG
3186			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3187				printk("SDTR negotiation rejected busfree.\n");
3188#endif
3189			ahd_set_syncrate(ahd, &devinfo,
3190					/*period*/0, /*offset*/0,
3191					/*ppr_options*/0,
3192					AHD_TRANS_CUR|AHD_TRANS_GOAL,
3193					/*paused*/TRUE);
3194			if (scb != NULL) {
3195				/*
3196				 * Remove any SCBs in the waiting for
3197				 * selection queue that may also be for
3198				 * this target so that command ordering
3199				 * is preserved.
3200				 */
3201				ahd_freeze_devq(ahd, scb);
3202				ahd_qinfifo_requeue_tail(ahd, scb);
3203			}
3204			printerror = 0;
3205		} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0
3206			&& ahd_sent_msg(ahd, AHDMSG_1B,
3207					 INITIATOR_ERROR, TRUE)) {
3208
3209#ifdef AHD_DEBUG
3210			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3211				printk("Expected IDE Busfree\n");
3212#endif
3213			printerror = 0;
3214		} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE)
3215			&& ahd_sent_msg(ahd, AHDMSG_1B,
3216					MESSAGE_REJECT, TRUE)) {
3217
3218#ifdef AHD_DEBUG
3219			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3220				printk("Expected QAS Reject Busfree\n");
3221#endif
3222			printerror = 0;
3223		}
3224	}
3225
3226	/*
3227	 * The busfree required flag is honored at the end of
3228	 * the message phases.  We check it last in case we
3229	 * had to send some other message that caused a busfree.
3230	 */
3231	if (scb != NULL && printerror != 0
3232	 && (lastphase == P_MESGIN || lastphase == P_MESGOUT)
3233	 && ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) {
3234
3235		ahd_freeze_devq(ahd, scb);
3236		ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
3237		ahd_freeze_scb(scb);
3238		if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) {
3239			ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
3240				       SCB_GET_CHANNEL(ahd, scb),
3241				       SCB_GET_LUN(scb), SCB_LIST_NULL,
3242				       ROLE_INITIATOR, CAM_REQ_ABORTED);
3243		} else {
3244#ifdef AHD_DEBUG
3245			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3246				printk("PPR Negotiation Busfree.\n");
3247#endif
3248			ahd_done(ahd, scb);
3249		}
3250		printerror = 0;
3251	}
3252	if (printerror != 0) {
3253		int aborted;
3254
3255		aborted = 0;
3256		if (scb != NULL) {
3257			u_int tag;
3258
3259			if ((scb->hscb->control & TAG_ENB) != 0)
3260				tag = SCB_GET_TAG(scb);
3261			else
3262				tag = SCB_LIST_NULL;
3263			ahd_print_path(ahd, scb);
3264			aborted = ahd_abort_scbs(ahd, target, 'A',
3265				       SCB_GET_LUN(scb), tag,
3266				       ROLE_INITIATOR,
3267				       CAM_UNEXP_BUSFREE);
3268		} else {
3269			/*
3270			 * We had not fully identified this connection,
3271			 * so we cannot abort anything.
3272			 */
3273			printk("%s: ", ahd_name(ahd));
3274		}
3275		printk("Unexpected busfree %s, %d SCBs aborted, "
3276		       "PRGMCNT == 0x%x\n",
3277		       ahd_lookup_phase_entry(lastphase)->phasemsg,
3278		       aborted,
3279		       ahd_inw(ahd, PRGMCNT));
3280		ahd_dump_card_state(ahd);
3281		if (lastphase != P_BUSFREE)
3282			ahd_force_renegotiation(ahd, &devinfo);
3283	}
3284	/* Always restart the sequencer. */
3285	return (1);
3286}
3287
3288static void
3289ahd_handle_proto_violation(struct ahd_softc *ahd)
3290{
3291	struct	ahd_devinfo devinfo;
3292	struct	scb *scb;
3293	u_int	scbid;
3294	u_int	seq_flags;
3295	u_int	curphase;
3296	u_int	lastphase;
3297	int	found;
3298
3299	ahd_fetch_devinfo(ahd, &devinfo);
3300	scbid = ahd_get_scbptr(ahd);
3301	scb = ahd_lookup_scb(ahd, scbid);
3302	seq_flags = ahd_inb(ahd, SEQ_FLAGS);
3303	curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
3304	lastphase = ahd_inb(ahd, LASTPHASE);
3305	if ((seq_flags & NOT_IDENTIFIED) != 0) {
3306
3307		/*
3308		 * The reconnecting target either did not send an
3309		 * identify message, or did, but we didn't find an SCB
3310		 * to match.
3311		 */
3312		ahd_print_devinfo(ahd, &devinfo);
3313		printk("Target did not send an IDENTIFY message. "
3314		       "LASTPHASE = 0x%x.\n", lastphase);
3315		scb = NULL;
3316	} else if (scb == NULL) {
3317		/*
3318		 * We don't seem to have an SCB active for this
3319		 * transaction.  Print an error and reset the bus.
3320		 */
3321		ahd_print_devinfo(ahd, &devinfo);
3322		printk("No SCB found during protocol violation\n");
3323		goto proto_violation_reset;
3324	} else {
3325		ahd_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
3326		if ((seq_flags & NO_CDB_SENT) != 0) {
3327			ahd_print_path(ahd, scb);
3328			printk("No or incomplete CDB sent to device.\n");
3329		} else if ((ahd_inb_scbram(ahd, SCB_CONTROL)
3330			  & STATUS_RCVD) == 0) {
3331			/*
3332			 * The target never bothered to provide status to
3333			 * us prior to completing the command.  Since we don't
3334			 * know the disposition of this command, we must attempt
3335			 * to abort it.  Assert ATN and prepare to send an abort
3336			 * message.
3337			 */
3338			ahd_print_path(ahd, scb);
3339			printk("Completed command without status.\n");
3340		} else {
3341			ahd_print_path(ahd, scb);
3342			printk("Unknown protocol violation.\n");
3343			ahd_dump_card_state(ahd);
3344		}
3345	}
3346	if ((lastphase & ~P_DATAIN_DT) == 0
3347	 || lastphase == P_COMMAND) {
3348proto_violation_reset:
3349		/*
3350		 * Target either went directly to data
3351		 * phase or didn't respond to our ATN.
3352		 * The only safe thing to do is to blow
3353		 * it away with a bus reset.
3354		 */
3355		found = ahd_reset_channel(ahd, 'A', TRUE);
3356		printk("%s: Issued Channel %c Bus Reset. "
3357		       "%d SCBs aborted\n", ahd_name(ahd), 'A', found);
3358	} else {
3359		/*
3360		 * Leave the selection hardware off in case
3361		 * this abort attempt will affect yet to
3362		 * be sent commands.
3363		 */
3364		ahd_outb(ahd, SCSISEQ0,
3365			 ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
3366		ahd_assert_atn(ahd);
3367		ahd_outb(ahd, MSG_OUT, HOST_MSG);
3368		if (scb == NULL) {
3369			ahd_print_devinfo(ahd, &devinfo);
3370			ahd->msgout_buf[0] = ABORT_TASK;
3371			ahd->msgout_len = 1;
3372			ahd->msgout_index = 0;
3373			ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
3374		} else {
3375			ahd_print_path(ahd, scb);
3376			scb->flags |= SCB_ABORT;
3377		}
3378		printk("Protocol violation %s.  Attempting to abort.\n",
3379		       ahd_lookup_phase_entry(curphase)->phasemsg);
3380	}
3381}
3382
3383/*
3384 * Force renegotiation to occur the next time we initiate
3385 * a command to the current device.
3386 */
3387static void
3388ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3389{
3390	struct	ahd_initiator_tinfo *targ_info;
3391	struct	ahd_tmode_tstate *tstate;
3392
3393#ifdef AHD_DEBUG
3394	if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3395		ahd_print_devinfo(ahd, devinfo);
3396		printk("Forcing renegotiation\n");
3397	}
3398#endif
3399	targ_info = ahd_fetch_transinfo(ahd,
3400					devinfo->channel,
3401					devinfo->our_scsiid,
3402					devinfo->target,
3403					&tstate);
3404	ahd_update_neg_request(ahd, devinfo, tstate,
3405			       targ_info, AHD_NEG_IF_NON_ASYNC);
3406}
3407
3408#define AHD_MAX_STEPS 2000
3409static void
3410ahd_clear_critical_section(struct ahd_softc *ahd)
3411{
3412	ahd_mode_state	saved_modes;
3413	int		stepping;
3414	int		steps;
3415	int		first_instr;
3416	u_int		simode0;
3417	u_int		simode1;
3418	u_int		simode3;
3419	u_int		lqimode0;
3420	u_int		lqimode1;
3421	u_int		lqomode0;
3422	u_int		lqomode1;
3423
3424	if (ahd->num_critical_sections == 0)
3425		return;
3426
3427	stepping = FALSE;
3428	steps = 0;
3429	first_instr = 0;
3430	simode0 = 0;
3431	simode1 = 0;
3432	simode3 = 0;
3433	lqimode0 = 0;
3434	lqimode1 = 0;
3435	lqomode0 = 0;
3436	lqomode1 = 0;
3437	saved_modes = ahd_save_modes(ahd);
3438	for (;;) {
3439		struct	cs *cs;
3440		u_int	seqaddr;
3441		u_int	i;
3442
3443		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3444		seqaddr = ahd_inw(ahd, CURADDR);
3445
3446		cs = ahd->critical_sections;
3447		for (i = 0; i < ahd->num_critical_sections; i++, cs++) {
3448			if (cs->begin < seqaddr && cs->end >= seqaddr)
3449				break;
3450		}
3451
3452		if (i == ahd->num_critical_sections)
3453			break;
3454
3455		if (steps > AHD_MAX_STEPS) {
3456			printk("%s: Infinite loop in critical section\n"
3457			       "%s: First Instruction 0x%x now 0x%x\n",
3458			       ahd_name(ahd), ahd_name(ahd), first_instr,
3459			       seqaddr);
3460			ahd_dump_card_state(ahd);
3461			panic("critical section loop");
3462		}
3463
3464		steps++;
3465#ifdef AHD_DEBUG
3466		if ((ahd_debug & AHD_SHOW_MISC) != 0)
3467			printk("%s: Single stepping at 0x%x\n", ahd_name(ahd),
3468			       seqaddr);
3469#endif
3470		if (stepping == FALSE) {
3471
3472			first_instr = seqaddr;
3473			ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3474			simode0 = ahd_inb(ahd, SIMODE0);
3475			simode3 = ahd_inb(ahd, SIMODE3);
3476			lqimode0 = ahd_inb(ahd, LQIMODE0);
3477			lqimode1 = ahd_inb(ahd, LQIMODE1);
3478			lqomode0 = ahd_inb(ahd, LQOMODE0);
3479			lqomode1 = ahd_inb(ahd, LQOMODE1);
3480			ahd_outb(ahd, SIMODE0, 0);
3481			ahd_outb(ahd, SIMODE3, 0);
3482			ahd_outb(ahd, LQIMODE0, 0);
3483			ahd_outb(ahd, LQIMODE1, 0);
3484			ahd_outb(ahd, LQOMODE0, 0);
3485			ahd_outb(ahd, LQOMODE1, 0);
3486			ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3487			simode1 = ahd_inb(ahd, SIMODE1);
3488			/*
3489			 * We don't clear ENBUSFREE.  Unfortunately
3490			 * we cannot re-enable busfree detection within
3491			 * the current connection, so we must leave it
3492			 * on while single stepping.
3493			 */
3494			ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE);
3495			ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP);
3496			stepping = TRUE;
3497		}
3498		ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
3499		ahd_outb(ahd, CLRINT, CLRSCSIINT);
3500		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
3501		ahd_outb(ahd, HCNTRL, ahd->unpause);
3502		while (!ahd_is_paused(ahd))
3503			ahd_delay(200);
3504		ahd_update_modes(ahd);
3505	}
3506	if (stepping) {
3507		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3508		ahd_outb(ahd, SIMODE0, simode0);
3509		ahd_outb(ahd, SIMODE3, simode3);
3510		ahd_outb(ahd, LQIMODE0, lqimode0);
3511		ahd_outb(ahd, LQIMODE1, lqimode1);
3512		ahd_outb(ahd, LQOMODE0, lqomode0);
3513		ahd_outb(ahd, LQOMODE1, lqomode1);
3514		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3515		ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP);
3516		ahd_outb(ahd, SIMODE1, simode1);
3517		/*
3518		 * SCSIINT seems to glitch occasionally when
3519		 * the interrupt masks are restored.  Clear SCSIINT
3520		 * one more time so that only persistent errors
3521		 * are seen as a real interrupt.
3522		 */
3523		ahd_outb(ahd, CLRINT, CLRSCSIINT);
3524	}
3525	ahd_restore_modes(ahd, saved_modes);
3526}
3527
3528/*
3529 * Clear any pending interrupt status.
3530 */
3531static void
3532ahd_clear_intstat(struct ahd_softc *ahd)
3533{
3534	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
3535			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
3536	/* Clear any interrupt conditions this may have caused */
3537	ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2
3538				 |CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD);
3539	ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT
3540				 |CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI
3541				 |CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ);
3542	ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ
3543				 |CLRLQOATNPKT|CLRLQOTCRC);
3544	ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS
3545				 |CLRLQOBUSFREE|CLRLQOPHACHGINPKT);
3546	if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
3547		ahd_outb(ahd, CLRLQOINT0, 0);
3548		ahd_outb(ahd, CLRLQOINT1, 0);
3549	}
3550	ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR);
3551	ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
3552				|CLRBUSFREE|CLRSCSIPERR|CLRREQINIT);
3553	ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO
3554				|CLRIOERR|CLROVERRUN);
3555	ahd_outb(ahd, CLRINT, CLRSCSIINT);
3556}
3557
3558/**************************** Debugging Routines ******************************/
3559#ifdef AHD_DEBUG
3560uint32_t ahd_debug = AHD_DEBUG_OPTS;
3561#endif
3562
3563#if 0
3564void
3565ahd_print_scb(struct scb *scb)
3566{
3567	struct hardware_scb *hscb;
3568	int i;
3569
3570	hscb = scb->hscb;
3571	printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
3572	       (void *)scb,
3573	       hscb->control,
3574	       hscb->scsiid,
3575	       hscb->lun,
3576	       hscb->cdb_len);
3577	printk("Shared Data: ");
3578	for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++)
3579		printk("%#02x", hscb->shared_data.idata.cdb[i]);
3580	printk("        dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n",
3581	       (uint32_t)((ahd_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF),
3582	       (uint32_t)(ahd_le64toh(hscb->dataptr) & 0xFFFFFFFF),
3583	       ahd_le32toh(hscb->datacnt),
3584	       ahd_le32toh(hscb->sgptr),
3585	       SCB_GET_TAG(scb));
3586	ahd_dump_sglist(scb);
3587}
3588#endif  /*  0  */
3589
3590/************************* Transfer Negotiation *******************************/
3591/*
3592 * Allocate per target mode instance (ID we respond to as a target)
3593 * transfer negotiation data structures.
3594 */
3595static struct ahd_tmode_tstate *
3596ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel)
3597{
3598	struct ahd_tmode_tstate *master_tstate;
3599	struct ahd_tmode_tstate *tstate;
3600	int i;
3601
3602	master_tstate = ahd->enabled_targets[ahd->our_id];
3603	if (ahd->enabled_targets[scsi_id] != NULL
3604	 && ahd->enabled_targets[scsi_id] != master_tstate)
3605		panic("%s: ahd_alloc_tstate - Target already allocated",
3606		      ahd_name(ahd));
3607	tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC);
3608	if (tstate == NULL)
3609		return (NULL);
3610
3611	/*
3612	 * If we have allocated a master tstate, copy user settings from
3613	 * the master tstate (taken from SRAM or the EEPROM) for this
3614	 * channel, but reset our current and goal settings to async/narrow
3615	 * until an initiator talks to us.
3616	 */
3617	if (master_tstate != NULL) {
3618		memcpy(tstate, master_tstate, sizeof(*tstate));
3619		memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
3620		for (i = 0; i < 16; i++) {
3621			memset(&tstate->transinfo[i].curr, 0,
3622			      sizeof(tstate->transinfo[i].curr));
3623			memset(&tstate->transinfo[i].goal, 0,
3624			      sizeof(tstate->transinfo[i].goal));
3625		}
3626	} else
3627		memset(tstate, 0, sizeof(*tstate));
3628	ahd->enabled_targets[scsi_id] = tstate;
3629	return (tstate);
3630}
3631
3632#ifdef AHD_TARGET_MODE
3633/*
3634 * Free per target mode instance (ID we respond to as a target)
3635 * transfer negotiation data structures.
3636 */
3637static void
3638ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force)
3639{
3640	struct ahd_tmode_tstate *tstate;
3641
3642	/*
3643	 * Don't clean up our "master" tstate.
3644	 * It has our default user settings.
3645	 */
3646	if (scsi_id == ahd->our_id
3647	 && force == FALSE)
3648		return;
3649
3650	tstate = ahd->enabled_targets[scsi_id];
3651	kfree(tstate);
3652	ahd->enabled_targets[scsi_id] = NULL;
3653}
3654#endif
3655
3656/*
3657 * Called when we have an active connection to a target on the bus,
3658 * this function finds the nearest period to the input period limited
3659 * by the capabilities of the bus connectivity of and sync settings for
3660 * the target.
3661 */
3662static void
3663ahd_devlimited_syncrate(struct ahd_softc *ahd,
3664			struct ahd_initiator_tinfo *tinfo,
3665			u_int *period, u_int *ppr_options, role_t role)
3666{
3667	struct	ahd_transinfo *transinfo;
3668	u_int	maxsync;
3669
3670	if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0
3671	 && (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) {
3672		maxsync = AHD_SYNCRATE_PACED;
3673	} else {
3674		maxsync = AHD_SYNCRATE_ULTRA;
3675		/* Can't do DT related options on an SE bus */
3676		*ppr_options &= MSG_EXT_PPR_QAS_REQ;
3677	}
3678	/*
3679	 * Never allow a value higher than our current goal
3680	 * period otherwise we may allow a target initiated
3681	 * negotiation to go above the limit as set by the
3682	 * user.  In the case of an initiator initiated
3683	 * sync negotiation, we limit based on the user
3684	 * setting.  This allows the system to still accept
3685	 * incoming negotiations even if target initiated
3686	 * negotiation is not performed.
3687	 */
3688	if (role == ROLE_TARGET)
3689		transinfo = &tinfo->user;
3690	else
3691		transinfo = &tinfo->goal;
3692	*ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN);
3693	if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
3694		maxsync = max(maxsync, (u_int)AHD_SYNCRATE_ULTRA2);
3695		*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3696	}
3697	if (transinfo->period == 0) {
3698		*period = 0;
3699		*ppr_options = 0;
3700	} else {
3701		*period = max(*period, (u_int)transinfo->period);
3702		ahd_find_syncrate(ahd, period, ppr_options, maxsync);
3703	}
3704}
3705
3706/*
3707 * Look up the valid period to SCSIRATE conversion in our table.
3708 * Return the period and offset that should be sent to the target
3709 * if this was the beginning of an SDTR.
3710 */
3711void
3712ahd_find_syncrate(struct ahd_softc *ahd, u_int *period,
3713		  u_int *ppr_options, u_int maxsync)
3714{
3715	if (*period < maxsync)
3716		*period = maxsync;
3717
3718	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0
3719	 && *period > AHD_SYNCRATE_MIN_DT)
3720		*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3721
3722	if (*period > AHD_SYNCRATE_MIN)
3723		*period = 0;
3724
3725	/* Honor PPR option conformance rules. */
3726	if (*period > AHD_SYNCRATE_PACED)
3727		*ppr_options &= ~MSG_EXT_PPR_RTI;
3728
3729	if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
3730		*ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ);
3731
3732	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0)
3733		*ppr_options &= MSG_EXT_PPR_QAS_REQ;
3734
3735	/* Skip all PACED only entries if IU is not available */
3736	if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0
3737	 && *period < AHD_SYNCRATE_DT)
3738		*period = AHD_SYNCRATE_DT;
3739
3740	/* Skip all DT only entries if DT is not available */
3741	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
3742	 && *period < AHD_SYNCRATE_ULTRA2)
3743		*period = AHD_SYNCRATE_ULTRA2;
3744}
3745
3746/*
3747 * Truncate the given synchronous offset to a value the
3748 * current adapter type and syncrate are capable of.
3749 */
3750static void
3751ahd_validate_offset(struct ahd_softc *ahd,
3752		    struct ahd_initiator_tinfo *tinfo,
3753		    u_int period, u_int *offset, int wide,
3754		    role_t role)
3755{
3756	u_int maxoffset;
3757
3758	/* Limit offset to what we can do */
3759	if (period == 0)
3760		maxoffset = 0;
3761	else if (period <= AHD_SYNCRATE_PACED) {
3762		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0)
3763			maxoffset = MAX_OFFSET_PACED_BUG;
3764		else
3765			maxoffset = MAX_OFFSET_PACED;
3766	} else
3767		maxoffset = MAX_OFFSET_NON_PACED;
3768	*offset = min(*offset, maxoffset);
3769	if (tinfo != NULL) {
3770		if (role == ROLE_TARGET)
3771			*offset = min(*offset, (u_int)tinfo->user.offset);
3772		else
3773			*offset = min(*offset, (u_int)tinfo->goal.offset);
3774	}
3775}
3776
3777/*
3778 * Truncate the given transfer width parameter to a value the
3779 * current adapter type is capable of.
3780 */
3781static void
3782ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo,
3783		   u_int *bus_width, role_t role)
3784{
3785	switch (*bus_width) {
3786	default:
3787		if (ahd->features & AHD_WIDE) {
3788			/* Respond Wide */
3789			*bus_width = MSG_EXT_WDTR_BUS_16_BIT;
3790			break;
3791		}
3792		fallthrough;
3793	case MSG_EXT_WDTR_BUS_8_BIT:
3794		*bus_width = MSG_EXT_WDTR_BUS_8_BIT;
3795		break;
3796	}
3797	if (tinfo != NULL) {
3798		if (role == ROLE_TARGET)
3799			*bus_width = min((u_int)tinfo->user.width, *bus_width);
3800		else
3801			*bus_width = min((u_int)tinfo->goal.width, *bus_width);
3802	}
3803}
3804
3805/*
3806 * Update the bitmask of targets for which the controller should
3807 * negotiate with at the next convenient opportunity.  This currently
3808 * means the next time we send the initial identify messages for
3809 * a new transaction.
3810 */
3811int
3812ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3813		       struct ahd_tmode_tstate *tstate,
3814		       struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type)
3815{
3816	u_int auto_negotiate_orig;
3817
3818	auto_negotiate_orig = tstate->auto_negotiate;
3819	if (neg_type == AHD_NEG_ALWAYS) {
3820		/*
3821		 * Force our "current" settings to be
3822		 * unknown so that unless a bus reset
3823		 * occurs the need to renegotiate is
3824		 * recorded persistently.
3825		 */
3826		if ((ahd->features & AHD_WIDE) != 0)
3827			tinfo->curr.width = AHD_WIDTH_UNKNOWN;
3828		tinfo->curr.period = AHD_PERIOD_UNKNOWN;
3829		tinfo->curr.offset = AHD_OFFSET_UNKNOWN;
3830	}
3831	if (tinfo->curr.period != tinfo->goal.period
3832	 || tinfo->curr.width != tinfo->goal.width
3833	 || tinfo->curr.offset != tinfo->goal.offset
3834	 || tinfo->curr.ppr_options != tinfo->goal.ppr_options
3835	 || (neg_type == AHD_NEG_IF_NON_ASYNC
3836	  && (tinfo->goal.offset != 0
3837	   || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
3838	   || tinfo->goal.ppr_options != 0)))
3839		tstate->auto_negotiate |= devinfo->target_mask;
3840	else
3841		tstate->auto_negotiate &= ~devinfo->target_mask;
3842
3843	return (auto_negotiate_orig != tstate->auto_negotiate);
3844}
3845
3846/*
3847 * Update the user/goal/curr tables of synchronous negotiation
3848 * parameters as well as, in the case of a current or active update,
3849 * any data structures on the host controller.  In the case of an
3850 * active update, the specified target is currently talking to us on
3851 * the bus, so the transfer parameter update must take effect
3852 * immediately.
3853 */
3854void
3855ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3856		 u_int period, u_int offset, u_int ppr_options,
3857		 u_int type, int paused)
3858{
3859	struct	ahd_initiator_tinfo *tinfo;
3860	struct	ahd_tmode_tstate *tstate;
3861	u_int	old_period;
3862	u_int	old_offset;
3863	u_int	old_ppr;
3864	int	active;
3865	int	update_needed;
3866
3867	active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
3868	update_needed = 0;
3869
3870	if (period == 0 || offset == 0) {
3871		period = 0;
3872		offset = 0;
3873	}
3874
3875	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
3876				    devinfo->target, &tstate);
3877
3878	if ((type & AHD_TRANS_USER) != 0) {
3879		tinfo->user.period = period;
3880		tinfo->user.offset = offset;
3881		tinfo->user.ppr_options = ppr_options;
3882	}
3883
3884	if ((type & AHD_TRANS_GOAL) != 0) {
3885		tinfo->goal.period = period;
3886		tinfo->goal.offset = offset;
3887		tinfo->goal.ppr_options = ppr_options;
3888	}
3889
3890	old_period = tinfo->curr.period;
3891	old_offset = tinfo->curr.offset;
3892	old_ppr	   = tinfo->curr.ppr_options;
3893
3894	if ((type & AHD_TRANS_CUR) != 0
3895	 && (old_period != period
3896	  || old_offset != offset
3897	  || old_ppr != ppr_options)) {
3898
3899		update_needed++;
3900
3901		tinfo->curr.period = period;
3902		tinfo->curr.offset = offset;
3903		tinfo->curr.ppr_options = ppr_options;
3904
3905		ahd_send_async(ahd, devinfo->channel, devinfo->target,
3906			       CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
3907		if (bootverbose) {
3908			if (offset != 0) {
3909				int options;
3910
3911				printk("%s: target %d synchronous with "
3912				       "period = 0x%x, offset = 0x%x",
3913				       ahd_name(ahd), devinfo->target,
3914				       period, offset);
3915				options = 0;
3916				if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) {
3917					printk("(RDSTRM");
3918					options++;
3919				}
3920				if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
3921					printk("%s", options ? "|DT" : "(DT");
3922					options++;
3923				}
3924				if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3925					printk("%s", options ? "|IU" : "(IU");
3926					options++;
3927				}
3928				if ((ppr_options & MSG_EXT_PPR_RTI) != 0) {
3929					printk("%s", options ? "|RTI" : "(RTI");
3930					options++;
3931				}
3932				if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) {
3933					printk("%s", options ? "|QAS" : "(QAS");
3934					options++;
3935				}
3936				if (options != 0)
3937					printk(")\n");
3938				else
3939					printk("\n");
3940			} else {
3941				printk("%s: target %d using "
3942				       "asynchronous transfers%s\n",
3943				       ahd_name(ahd), devinfo->target,
3944				       (ppr_options & MSG_EXT_PPR_QAS_REQ) != 0
3945				     ?  "(QAS)" : "");
3946			}
3947		}
3948	}
3949	/*
3950	 * Always refresh the neg-table to handle the case of the
3951	 * sequencer setting the ENATNO bit for a MK_MESSAGE request.
3952	 * We will always renegotiate in that case if this is a
3953	 * packetized request.  Also manage the busfree expected flag
3954	 * from this common routine so that we catch changes due to
3955	 * WDTR or SDTR messages.
3956	 */
3957	if ((type & AHD_TRANS_CUR) != 0) {
3958		if (!paused)
3959			ahd_pause(ahd);
3960		ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
3961		if (!paused)
3962			ahd_unpause(ahd);
3963		if (ahd->msg_type != MSG_TYPE_NONE) {
3964			if ((old_ppr & MSG_EXT_PPR_IU_REQ)
3965			 != (ppr_options & MSG_EXT_PPR_IU_REQ)) {
3966#ifdef AHD_DEBUG
3967				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3968					ahd_print_devinfo(ahd, devinfo);
3969					printk("Expecting IU Change busfree\n");
3970				}
3971#endif
3972				ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
3973					       |  MSG_FLAG_IU_REQ_CHANGED;
3974			}
3975			if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) {
3976#ifdef AHD_DEBUG
3977				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3978					printk("PPR with IU_REQ outstanding\n");
3979#endif
3980				ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE;
3981			}
3982		}
3983	}
3984
3985	update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
3986						tinfo, AHD_NEG_TO_GOAL);
3987
3988	if (update_needed && active)
3989		ahd_update_pending_scbs(ahd);
3990}
3991
3992/*
3993 * Update the user/goal/curr tables of wide negotiation
3994 * parameters as well as, in the case of a current or active update,
3995 * any data structures on the host controller.  In the case of an
3996 * active update, the specified target is currently talking to us on
3997 * the bus, so the transfer parameter update must take effect
3998 * immediately.
3999 */
4000void
4001ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4002	      u_int width, u_int type, int paused)
4003{
4004	struct	ahd_initiator_tinfo *tinfo;
4005	struct	ahd_tmode_tstate *tstate;
4006	u_int	oldwidth;
4007	int	active;
4008	int	update_needed;
4009
4010	active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
4011	update_needed = 0;
4012	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4013				    devinfo->target, &tstate);
4014
4015	if ((type & AHD_TRANS_USER) != 0)
4016		tinfo->user.width = width;
4017
4018	if ((type & AHD_TRANS_GOAL) != 0)
4019		tinfo->goal.width = width;
4020
4021	oldwidth = tinfo->curr.width;
4022	if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) {
4023
4024		update_needed++;
4025
4026		tinfo->curr.width = width;
4027		ahd_send_async(ahd, devinfo->channel, devinfo->target,
4028			       CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
4029		if (bootverbose) {
4030			printk("%s: target %d using %dbit transfers\n",
4031			       ahd_name(ahd), devinfo->target,
4032			       8 * (0x01 << width));
4033		}
4034	}
4035
4036	if ((type & AHD_TRANS_CUR) != 0) {
4037		if (!paused)
4038			ahd_pause(ahd);
4039		ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
4040		if (!paused)
4041			ahd_unpause(ahd);
4042	}
4043
4044	update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4045						tinfo, AHD_NEG_TO_GOAL);
4046	if (update_needed && active)
4047		ahd_update_pending_scbs(ahd);
4048
4049}
4050
4051/*
4052 * Update the current state of tagged queuing for a given target.
4053 */
4054static void
4055ahd_set_tags(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
4056	     struct ahd_devinfo *devinfo, ahd_queue_alg alg)
4057{
4058	struct scsi_device *sdev = cmd->device;
4059
4060	ahd_platform_set_tags(ahd, sdev, devinfo, alg);
4061	ahd_send_async(ahd, devinfo->channel, devinfo->target,
4062		       devinfo->lun, AC_TRANSFER_NEG);
4063}
4064
4065static void
4066ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4067		     struct ahd_transinfo *tinfo)
4068{
4069	ahd_mode_state	saved_modes;
4070	u_int		period;
4071	u_int		ppr_opts;
4072	u_int		con_opts;
4073	u_int		offset;
4074	u_int		saved_negoaddr;
4075	uint8_t		iocell_opts[sizeof(ahd->iocell_opts)];
4076
4077	saved_modes = ahd_save_modes(ahd);
4078	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4079
4080	saved_negoaddr = ahd_inb(ahd, NEGOADDR);
4081	ahd_outb(ahd, NEGOADDR, devinfo->target);
4082	period = tinfo->period;
4083	offset = tinfo->offset;
4084	memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts));
4085	ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ
4086					|MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI);
4087	con_opts = 0;
4088	if (period == 0)
4089		period = AHD_SYNCRATE_ASYNC;
4090	if (period == AHD_SYNCRATE_160) {
4091
4092		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4093			/*
4094			 * When the SPI4 spec was finalized, PACE transfers
4095			 * was not made a configurable option in the PPR
4096			 * message.  Instead it is assumed to be enabled for
4097			 * any syncrate faster than 80MHz.  Nevertheless,
4098			 * Harpoon2A4 allows this to be configurable.
4099			 *
4100			 * Harpoon2A4 also assumes at most 2 data bytes per
4101			 * negotiated REQ/ACK offset.  Paced transfers take
4102			 * 4, so we must adjust our offset.
4103			 */
4104			ppr_opts |= PPROPT_PACE;
4105			offset *= 2;
4106
4107			/*
4108			 * Harpoon2A assumed that there would be a
4109			 * fallback rate between 160MHz and 80MHz,
4110			 * so 7 is used as the period factor rather
4111			 * than 8 for 160MHz.
4112			 */
4113			period = AHD_SYNCRATE_REVA_160;
4114		}
4115		if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0)
4116			iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4117			    ~AHD_PRECOMP_MASK;
4118	} else {
4119		/*
4120		 * Precomp should be disabled for non-paced transfers.
4121		 */
4122		iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK;
4123
4124		if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0
4125		 && (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0
4126		 && (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) {
4127			/*
4128			 * Slow down our CRC interval to be
4129			 * compatible with non-packetized
4130			 * U160 devices that can't handle a
4131			 * CRC at full speed.
4132			 */
4133			con_opts |= ENSLOWCRC;
4134		}
4135
4136		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4137			/*
4138			 * On H2A4, revert to a slower slewrate
4139			 * on non-paced transfers.
4140			 */
4141			iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4142			    ~AHD_SLEWRATE_MASK;
4143		}
4144	}
4145
4146	ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW);
4147	ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]);
4148	ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE);
4149	ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]);
4150
4151	ahd_outb(ahd, NEGPERIOD, period);
4152	ahd_outb(ahd, NEGPPROPTS, ppr_opts);
4153	ahd_outb(ahd, NEGOFFSET, offset);
4154
4155	if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT)
4156		con_opts |= WIDEXFER;
4157
4158	/*
4159	 * Slow down our CRC interval to be
4160	 * compatible with packetized U320 devices
4161	 * that can't handle a CRC at full speed
4162	 */
4163	if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
4164		con_opts |= ENSLOWCRC;
4165	}
4166
4167	/*
4168	 * During packetized transfers, the target will
4169	 * give us the opportunity to send command packets
4170	 * without us asserting attention.
4171	 */
4172	if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
4173		con_opts |= ENAUTOATNO;
4174	ahd_outb(ahd, NEGCONOPTS, con_opts);
4175	ahd_outb(ahd, NEGOADDR, saved_negoaddr);
4176	ahd_restore_modes(ahd, saved_modes);
4177}
4178
4179/*
4180 * When the transfer settings for a connection change, setup for
4181 * negotiation in pending SCBs to effect the change as quickly as
4182 * possible.  We also cancel any negotiations that are scheduled
4183 * for inflight SCBs that have not been started yet.
4184 */
4185static void
4186ahd_update_pending_scbs(struct ahd_softc *ahd)
4187{
4188	struct		scb *pending_scb;
4189	int		pending_scb_count;
4190	int		paused;
4191	u_int		saved_scbptr;
4192	ahd_mode_state	saved_modes;
4193
4194	/*
4195	 * Traverse the pending SCB list and ensure that all of the
4196	 * SCBs there have the proper settings.  We can only safely
4197	 * clear the negotiation required flag (setting requires the
4198	 * execution queue to be modified) and this is only possible
4199	 * if we are not already attempting to select out for this
4200	 * SCB.  For this reason, all callers only call this routine
4201	 * if we are changing the negotiation settings for the currently
4202	 * active transaction on the bus.
4203	 */
4204	pending_scb_count = 0;
4205	LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4206		struct ahd_devinfo devinfo;
4207		struct ahd_tmode_tstate *tstate;
4208
4209		ahd_scb_devinfo(ahd, &devinfo, pending_scb);
4210		ahd_fetch_transinfo(ahd, devinfo.channel, devinfo.our_scsiid,
4211				    devinfo.target, &tstate);
4212		if ((tstate->auto_negotiate & devinfo.target_mask) == 0
4213		 && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
4214			pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
4215			pending_scb->hscb->control &= ~MK_MESSAGE;
4216		}
4217		ahd_sync_scb(ahd, pending_scb,
4218			     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
4219		pending_scb_count++;
4220	}
4221
4222	if (pending_scb_count == 0)
4223		return;
4224
4225	if (ahd_is_paused(ahd)) {
4226		paused = 1;
4227	} else {
4228		paused = 0;
4229		ahd_pause(ahd);
4230	}
4231
4232	/*
4233	 * Force the sequencer to reinitialize the selection for
4234	 * the command at the head of the execution queue if it
4235	 * has already been setup.  The negotiation changes may
4236	 * effect whether we select-out with ATN.  It is only
4237	 * safe to clear ENSELO when the bus is not free and no
4238	 * selection is in progres or completed.
4239	 */
4240	saved_modes = ahd_save_modes(ahd);
4241	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4242	if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0
4243	 && (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0)
4244		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
4245	saved_scbptr = ahd_get_scbptr(ahd);
4246	/* Ensure that the hscbs down on the card match the new information */
4247	LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4248		u_int	scb_tag;
4249		u_int	control;
4250
4251		scb_tag = SCB_GET_TAG(pending_scb);
4252		ahd_set_scbptr(ahd, scb_tag);
4253		control = ahd_inb_scbram(ahd, SCB_CONTROL);
4254		control &= ~MK_MESSAGE;
4255		control |= pending_scb->hscb->control & MK_MESSAGE;
4256		ahd_outb(ahd, SCB_CONTROL, control);
4257	}
4258	ahd_set_scbptr(ahd, saved_scbptr);
4259	ahd_restore_modes(ahd, saved_modes);
4260
4261	if (paused == 0)
4262		ahd_unpause(ahd);
4263}
4264
4265/**************************** Pathing Information *****************************/
4266static void
4267ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4268{
4269	ahd_mode_state	saved_modes;
4270	u_int		saved_scsiid;
4271	role_t		role;
4272	int		our_id;
4273
4274	saved_modes = ahd_save_modes(ahd);
4275	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4276
4277	if (ahd_inb(ahd, SSTAT0) & TARGET)
4278		role = ROLE_TARGET;
4279	else
4280		role = ROLE_INITIATOR;
4281
4282	if (role == ROLE_TARGET
4283	 && (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
4284		/* We were selected, so pull our id from TARGIDIN */
4285		our_id = ahd_inb(ahd, TARGIDIN) & OID;
4286	} else if (role == ROLE_TARGET)
4287		our_id = ahd_inb(ahd, TOWNID);
4288	else
4289		our_id = ahd_inb(ahd, IOWNID);
4290
4291	saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
4292	ahd_compile_devinfo(devinfo,
4293			    our_id,
4294			    SCSIID_TARGET(ahd, saved_scsiid),
4295			    ahd_inb(ahd, SAVED_LUN),
4296			    SCSIID_CHANNEL(ahd, saved_scsiid),
4297			    role);
4298	ahd_restore_modes(ahd, saved_modes);
4299}
4300
4301void
4302ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4303{
4304	printk("%s:%c:%d:%d: ", ahd_name(ahd), 'A',
4305	       devinfo->target, devinfo->lun);
4306}
4307
4308static const struct ahd_phase_table_entry*
4309ahd_lookup_phase_entry(int phase)
4310{
4311	const struct ahd_phase_table_entry *entry;
4312	const struct ahd_phase_table_entry *last_entry;
4313
4314	/*
4315	 * num_phases doesn't include the default entry which
4316	 * will be returned if the phase doesn't match.
4317	 */
4318	last_entry = &ahd_phase_table[num_phases];
4319	for (entry = ahd_phase_table; entry < last_entry; entry++) {
4320		if (phase == entry->phase)
4321			break;
4322	}
4323	return (entry);
4324}
4325
4326void
4327ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target,
4328		    u_int lun, char channel, role_t role)
4329{
4330	devinfo->our_scsiid = our_id;
4331	devinfo->target = target;
4332	devinfo->lun = lun;
4333	devinfo->target_offset = target;
4334	devinfo->channel = channel;
4335	devinfo->role = role;
4336	if (channel == 'B')
4337		devinfo->target_offset += 8;
4338	devinfo->target_mask = (0x01 << devinfo->target_offset);
4339}
4340
4341static void
4342ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4343		struct scb *scb)
4344{
4345	role_t	role;
4346	int	our_id;
4347
4348	our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
4349	role = ROLE_INITIATOR;
4350	if ((scb->hscb->control & TARGET_SCB) != 0)
4351		role = ROLE_TARGET;
4352	ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb),
4353			    SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role);
4354}
4355
4356
4357/************************ Message Phase Processing ****************************/
4358/*
4359 * When an initiator transaction with the MK_MESSAGE flag either reconnects
4360 * or enters the initial message out phase, we are interrupted.  Fill our
4361 * outgoing message buffer with the appropriate message and beging handing
4362 * the message phase(s) manually.
4363 */
4364static void
4365ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4366			   struct scb *scb)
4367{
4368	/*
4369	 * To facilitate adding multiple messages together,
4370	 * each routine should increment the index and len
4371	 * variables instead of setting them explicitly.
4372	 */
4373	ahd->msgout_index = 0;
4374	ahd->msgout_len = 0;
4375
4376	if (ahd_currently_packetized(ahd))
4377		ahd->msg_flags |= MSG_FLAG_PACKETIZED;
4378
4379	if (ahd->send_msg_perror
4380	 && ahd_inb(ahd, MSG_OUT) == HOST_MSG) {
4381		ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror;
4382		ahd->msgout_len++;
4383		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4384#ifdef AHD_DEBUG
4385		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4386			printk("Setting up for Parity Error delivery\n");
4387#endif
4388		return;
4389	} else if (scb == NULL) {
4390		printk("%s: WARNING. No pending message for "
4391		       "I_T msgin.  Issuing NO-OP\n", ahd_name(ahd));
4392		ahd->msgout_buf[ahd->msgout_index++] = NOP;
4393		ahd->msgout_len++;
4394		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4395		return;
4396	}
4397
4398	if ((scb->flags & SCB_DEVICE_RESET) == 0
4399	 && (scb->flags & SCB_PACKETIZED) == 0
4400	 && ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) {
4401		u_int identify_msg;
4402
4403		identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
4404		if ((scb->hscb->control & DISCENB) != 0)
4405			identify_msg |= MSG_IDENTIFY_DISCFLAG;
4406		ahd->msgout_buf[ahd->msgout_index++] = identify_msg;
4407		ahd->msgout_len++;
4408
4409		if ((scb->hscb->control & TAG_ENB) != 0) {
4410			ahd->msgout_buf[ahd->msgout_index++] =
4411			    scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
4412			ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb);
4413			ahd->msgout_len += 2;
4414		}
4415	}
4416
4417	if (scb->flags & SCB_DEVICE_RESET) {
4418		ahd->msgout_buf[ahd->msgout_index++] = TARGET_RESET;
4419		ahd->msgout_len++;
4420		ahd_print_path(ahd, scb);
4421		printk("Bus Device Reset Message Sent\n");
4422		/*
4423		 * Clear our selection hardware in advance of
4424		 * the busfree.  We may have an entry in the waiting
4425		 * Q for this target, and we don't want to go about
4426		 * selecting while we handle the busfree and blow it
4427		 * away.
4428		 */
4429		ahd_outb(ahd, SCSISEQ0, 0);
4430	} else if ((scb->flags & SCB_ABORT) != 0) {
4431
4432		if ((scb->hscb->control & TAG_ENB) != 0) {
4433			ahd->msgout_buf[ahd->msgout_index++] = ABORT_TASK;
4434		} else {
4435			ahd->msgout_buf[ahd->msgout_index++] = ABORT_TASK_SET;
4436		}
4437		ahd->msgout_len++;
4438		ahd_print_path(ahd, scb);
4439		printk("Abort%s Message Sent\n",
4440		       (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
4441		/*
4442		 * Clear our selection hardware in advance of
4443		 * the busfree.  We may have an entry in the waiting
4444		 * Q for this target, and we don't want to go about
4445		 * selecting while we handle the busfree and blow it
4446		 * away.
4447		 */
4448		ahd_outb(ahd, SCSISEQ0, 0);
4449	} else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
4450		ahd_build_transfer_msg(ahd, devinfo);
4451		/*
4452		 * Clear our selection hardware in advance of potential
4453		 * PPR IU status change busfree.  We may have an entry in
4454		 * the waiting Q for this target, and we don't want to go
4455		 * about selecting while we handle the busfree and blow
4456		 * it away.
4457		 */
4458		ahd_outb(ahd, SCSISEQ0, 0);
4459	} else {
4460		printk("ahd_intr: AWAITING_MSG for an SCB that "
4461		       "does not have a waiting message\n");
4462		printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
4463		       devinfo->target_mask);
4464		panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x "
4465		      "SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control,
4466		      ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT),
4467		      scb->flags);
4468	}
4469
4470	/*
4471	 * Clear the MK_MESSAGE flag from the SCB so we aren't
4472	 * asked to send this message again.
4473	 */
4474	ahd_outb(ahd, SCB_CONTROL,
4475		 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
4476	scb->hscb->control &= ~MK_MESSAGE;
4477	ahd->msgout_index = 0;
4478	ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4479}
4480
4481/*
4482 * Build an appropriate transfer negotiation message for the
4483 * currently active target.
4484 */
4485static void
4486ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4487{
4488	/*
4489	 * We need to initiate transfer negotiations.
4490	 * If our current and goal settings are identical,
4491	 * we want to renegotiate due to a check condition.
4492	 */
4493	struct	ahd_initiator_tinfo *tinfo;
4494	struct	ahd_tmode_tstate *tstate;
4495	int	dowide;
4496	int	dosync;
4497	int	doppr;
4498	u_int	period;
4499	u_int	ppr_options;
4500	u_int	offset;
4501
4502	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4503				    devinfo->target, &tstate);
4504	/*
4505	 * Filter our period based on the current connection.
4506	 * If we can't perform DT transfers on this segment (not in LVD
4507	 * mode for instance), then our decision to issue a PPR message
4508	 * may change.
4509	 */
4510	period = tinfo->goal.period;
4511	offset = tinfo->goal.offset;
4512	ppr_options = tinfo->goal.ppr_options;
4513	/* Target initiated PPR is not allowed in the SCSI spec */
4514	if (devinfo->role == ROLE_TARGET)
4515		ppr_options = 0;
4516	ahd_devlimited_syncrate(ahd, tinfo, &period,
4517				&ppr_options, devinfo->role);
4518	dowide = tinfo->curr.width != tinfo->goal.width;
4519	dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
4520	/*
4521	 * Only use PPR if we have options that need it, even if the device
4522	 * claims to support it.  There might be an expander in the way
4523	 * that doesn't.
4524	 */
4525	doppr = ppr_options != 0;
4526
4527	if (!dowide && !dosync && !doppr) {
4528		dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
4529		dosync = tinfo->goal.offset != 0;
4530	}
4531
4532	if (!dowide && !dosync && !doppr) {
4533		/*
4534		 * Force async with a WDTR message if we have a wide bus,
4535		 * or just issue an SDTR with a 0 offset.
4536		 */
4537		if ((ahd->features & AHD_WIDE) != 0)
4538			dowide = 1;
4539		else
4540			dosync = 1;
4541
4542		if (bootverbose) {
4543			ahd_print_devinfo(ahd, devinfo);
4544			printk("Ensuring async\n");
4545		}
4546	}
4547	/* Target initiated PPR is not allowed in the SCSI spec */
4548	if (devinfo->role == ROLE_TARGET)
4549		doppr = 0;
4550
4551	/*
4552	 * Both the PPR message and SDTR message require the
4553	 * goal syncrate to be limited to what the target device
4554	 * is capable of handling (based on whether an LVD->SE
4555	 * expander is on the bus), so combine these two cases.
4556	 * Regardless, guarantee that if we are using WDTR and SDTR
4557	 * messages that WDTR comes first.
4558	 */
4559	if (doppr || (dosync && !dowide)) {
4560
4561		offset = tinfo->goal.offset;
4562		ahd_validate_offset(ahd, tinfo, period, &offset,
4563				    doppr ? tinfo->goal.width
4564					  : tinfo->curr.width,
4565				    devinfo->role);
4566		if (doppr) {
4567			ahd_construct_ppr(ahd, devinfo, period, offset,
4568					  tinfo->goal.width, ppr_options);
4569		} else {
4570			ahd_construct_sdtr(ahd, devinfo, period, offset);
4571		}
4572	} else {
4573		ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width);
4574	}
4575}
4576
4577/*
4578 * Build a synchronous negotiation message in our message
4579 * buffer based on the input parameters.
4580 */
4581static void
4582ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4583		   u_int period, u_int offset)
4584{
4585	if (offset == 0)
4586		period = AHD_ASYNC_XFER_PERIOD;
4587	ahd->msgout_index += spi_populate_sync_msg(
4588			ahd->msgout_buf + ahd->msgout_index, period, offset);
4589	ahd->msgout_len += 5;
4590	if (bootverbose) {
4591		printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
4592		       ahd_name(ahd), devinfo->channel, devinfo->target,
4593		       devinfo->lun, period, offset);
4594	}
4595}
4596
4597/*
4598 * Build a wide negotiateion message in our message
4599 * buffer based on the input parameters.
4600 */
4601static void
4602ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4603		   u_int bus_width)
4604{
4605	ahd->msgout_index += spi_populate_width_msg(
4606			ahd->msgout_buf + ahd->msgout_index, bus_width);
4607	ahd->msgout_len += 4;
4608	if (bootverbose) {
4609		printk("(%s:%c:%d:%d): Sending WDTR %x\n",
4610		       ahd_name(ahd), devinfo->channel, devinfo->target,
4611		       devinfo->lun, bus_width);
4612	}
4613}
4614
4615/*
4616 * Build a parallel protocol request message in our message
4617 * buffer based on the input parameters.
4618 */
4619static void
4620ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4621		  u_int period, u_int offset, u_int bus_width,
4622		  u_int ppr_options)
4623{
4624	/*
4625	 * Always request precompensation from
4626	 * the other target if we are running
4627	 * at paced syncrates.
4628	 */
4629	if (period <= AHD_SYNCRATE_PACED)
4630		ppr_options |= MSG_EXT_PPR_PCOMP_EN;
4631	if (offset == 0)
4632		period = AHD_ASYNC_XFER_PERIOD;
4633	ahd->msgout_index += spi_populate_ppr_msg(
4634			ahd->msgout_buf + ahd->msgout_index, period, offset,
4635			bus_width, ppr_options);
4636	ahd->msgout_len += 8;
4637	if (bootverbose) {
4638		printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
4639		       "offset %x, ppr_options %x\n", ahd_name(ahd),
4640		       devinfo->channel, devinfo->target, devinfo->lun,
4641		       bus_width, period, offset, ppr_options);
4642	}
4643}
4644
4645/*
4646 * Clear any active message state.
4647 */
4648static void
4649ahd_clear_msg_state(struct ahd_softc *ahd)
4650{
4651	ahd_mode_state saved_modes;
4652
4653	saved_modes = ahd_save_modes(ahd);
4654	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4655	ahd->send_msg_perror = 0;
4656	ahd->msg_flags = MSG_FLAG_NONE;
4657	ahd->msgout_len = 0;
4658	ahd->msgin_index = 0;
4659	ahd->msg_type = MSG_TYPE_NONE;
4660	if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
4661		/*
4662		 * The target didn't care to respond to our
4663		 * message request, so clear ATN.
4664		 */
4665		ahd_outb(ahd, CLRSINT1, CLRATNO);
4666	}
4667	ahd_outb(ahd, MSG_OUT, NOP);
4668	ahd_outb(ahd, SEQ_FLAGS2,
4669		 ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
4670	ahd_restore_modes(ahd, saved_modes);
4671}
4672
4673/*
4674 * Manual message loop handler.
4675 */
4676static void
4677ahd_handle_message_phase(struct ahd_softc *ahd)
4678{
4679	struct	ahd_devinfo devinfo;
4680	u_int	bus_phase;
4681	int	end_session;
4682
4683	ahd_fetch_devinfo(ahd, &devinfo);
4684	end_session = FALSE;
4685	bus_phase = ahd_inb(ahd, LASTPHASE);
4686
4687	if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) {
4688		printk("LQIRETRY for LQIPHASE_OUTPKT\n");
4689		ahd_outb(ahd, LQCTL2, LQIRETRY);
4690	}
4691reswitch:
4692	switch (ahd->msg_type) {
4693	case MSG_TYPE_INITIATOR_MSGOUT:
4694	{
4695		int lastbyte;
4696		int phasemis;
4697		int msgdone;
4698
4699		if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0)
4700			panic("HOST_MSG_LOOP interrupt with no active message");
4701
4702#ifdef AHD_DEBUG
4703		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4704			ahd_print_devinfo(ahd, &devinfo);
4705			printk("INITIATOR_MSG_OUT");
4706		}
4707#endif
4708		phasemis = bus_phase != P_MESGOUT;
4709		if (phasemis) {
4710#ifdef AHD_DEBUG
4711			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4712				printk(" PHASEMIS %s\n",
4713				       ahd_lookup_phase_entry(bus_phase)
4714							     ->phasemsg);
4715			}
4716#endif
4717			if (bus_phase == P_MESGIN) {
4718				/*
4719				 * Change gears and see if
4720				 * this messages is of interest to
4721				 * us or should be passed back to
4722				 * the sequencer.
4723				 */
4724				ahd_outb(ahd, CLRSINT1, CLRATNO);
4725				ahd->send_msg_perror = 0;
4726				ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN;
4727				ahd->msgin_index = 0;
4728				goto reswitch;
4729			}
4730			end_session = TRUE;
4731			break;
4732		}
4733
4734		if (ahd->send_msg_perror) {
4735			ahd_outb(ahd, CLRSINT1, CLRATNO);
4736			ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4737#ifdef AHD_DEBUG
4738			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4739				printk(" byte 0x%x\n", ahd->send_msg_perror);
4740#endif
4741			/*
4742			 * If we are notifying the target of a CRC error
4743			 * during packetized operations, the target is
4744			 * within its rights to acknowledge our message
4745			 * with a busfree.
4746			 */
4747			if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0
4748			 && ahd->send_msg_perror == INITIATOR_ERROR)
4749				ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE;
4750
4751			ahd_outb(ahd, RETURN_2, ahd->send_msg_perror);
4752			ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4753			break;
4754		}
4755
4756		msgdone	= ahd->msgout_index == ahd->msgout_len;
4757		if (msgdone) {
4758			/*
4759			 * The target has requested a retry.
4760			 * Re-assert ATN, reset our message index to
4761			 * 0, and try again.
4762			 */
4763			ahd->msgout_index = 0;
4764			ahd_assert_atn(ahd);
4765		}
4766
4767		lastbyte = ahd->msgout_index == (ahd->msgout_len - 1);
4768		if (lastbyte) {
4769			/* Last byte is signified by dropping ATN */
4770			ahd_outb(ahd, CLRSINT1, CLRATNO);
4771		}
4772
4773		/*
4774		 * Clear our interrupt status and present
4775		 * the next byte on the bus.
4776		 */
4777		ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4778#ifdef AHD_DEBUG
4779		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4780			printk(" byte 0x%x\n",
4781			       ahd->msgout_buf[ahd->msgout_index]);
4782#endif
4783		ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]);
4784		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4785		break;
4786	}
4787	case MSG_TYPE_INITIATOR_MSGIN:
4788	{
4789		int phasemis;
4790		int message_done;
4791
4792#ifdef AHD_DEBUG
4793		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4794			ahd_print_devinfo(ahd, &devinfo);
4795			printk("INITIATOR_MSG_IN");
4796		}
4797#endif
4798		phasemis = bus_phase != P_MESGIN;
4799		if (phasemis) {
4800#ifdef AHD_DEBUG
4801			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4802				printk(" PHASEMIS %s\n",
4803				       ahd_lookup_phase_entry(bus_phase)
4804							     ->phasemsg);
4805			}
4806#endif
4807			ahd->msgin_index = 0;
4808			if (bus_phase == P_MESGOUT
4809			 && (ahd->send_msg_perror != 0
4810			  || (ahd->msgout_len != 0
4811			   && ahd->msgout_index == 0))) {
4812				ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4813				goto reswitch;
4814			}
4815			end_session = TRUE;
4816			break;
4817		}
4818
4819		/* Pull the byte in without acking it */
4820		ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS);
4821#ifdef AHD_DEBUG
4822		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4823			printk(" byte 0x%x\n",
4824			       ahd->msgin_buf[ahd->msgin_index]);
4825#endif
4826
4827		message_done = ahd_parse_msg(ahd, &devinfo);
4828
4829		if (message_done) {
4830			/*
4831			 * Clear our incoming message buffer in case there
4832			 * is another message following this one.
4833			 */
4834			ahd->msgin_index = 0;
4835
4836			/*
4837			 * If this message illicited a response,
4838			 * assert ATN so the target takes us to the
4839			 * message out phase.
4840			 */
4841			if (ahd->msgout_len != 0) {
4842#ifdef AHD_DEBUG
4843				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4844					ahd_print_devinfo(ahd, &devinfo);
4845					printk("Asserting ATN for response\n");
4846				}
4847#endif
4848				ahd_assert_atn(ahd);
4849			}
4850		} else
4851			ahd->msgin_index++;
4852
4853		if (message_done == MSGLOOP_TERMINATED) {
4854			end_session = TRUE;
4855		} else {
4856			/* Ack the byte */
4857			ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4858			ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ);
4859		}
4860		break;
4861	}
4862	case MSG_TYPE_TARGET_MSGIN:
4863	{
4864		int msgdone;
4865		int msgout_request;
4866
4867		/*
4868		 * By default, the message loop will continue.
4869		 */
4870		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4871
4872		if (ahd->msgout_len == 0)
4873			panic("Target MSGIN with no active message");
4874
4875		/*
4876		 * If we interrupted a mesgout session, the initiator
4877		 * will not know this until our first REQ.  So, we
4878		 * only honor mesgout requests after we've sent our
4879		 * first byte.
4880		 */
4881		if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0
4882		 && ahd->msgout_index > 0)
4883			msgout_request = TRUE;
4884		else
4885			msgout_request = FALSE;
4886
4887		if (msgout_request) {
4888
4889			/*
4890			 * Change gears and see if
4891			 * this messages is of interest to
4892			 * us or should be passed back to
4893			 * the sequencer.
4894			 */
4895			ahd->msg_type = MSG_TYPE_TARGET_MSGOUT;
4896			ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO);
4897			ahd->msgin_index = 0;
4898			/* Dummy read to REQ for first byte */
4899			ahd_inb(ahd, SCSIDAT);
4900			ahd_outb(ahd, SXFRCTL0,
4901				 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4902			break;
4903		}
4904
4905		msgdone = ahd->msgout_index == ahd->msgout_len;
4906		if (msgdone) {
4907			ahd_outb(ahd, SXFRCTL0,
4908				 ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4909			end_session = TRUE;
4910			break;
4911		}
4912
4913		/*
4914		 * Present the next byte on the bus.
4915		 */
4916		ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4917		ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]);
4918		break;
4919	}
4920	case MSG_TYPE_TARGET_MSGOUT:
4921	{
4922		int lastbyte;
4923		int msgdone;
4924
4925		/*
4926		 * By default, the message loop will continue.
4927		 */
4928		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4929
4930		/*
4931		 * The initiator signals that this is
4932		 * the last byte by dropping ATN.
4933		 */
4934		lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0;
4935
4936		/*
4937		 * Read the latched byte, but turn off SPIOEN first
4938		 * so that we don't inadvertently cause a REQ for the
4939		 * next byte.
4940		 */
4941		ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4942		ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT);
4943		msgdone = ahd_parse_msg(ahd, &devinfo);
4944		if (msgdone == MSGLOOP_TERMINATED) {
4945			/*
4946			 * The message is *really* done in that it caused
4947			 * us to go to bus free.  The sequencer has already
4948			 * been reset at this point, so pull the ejection
4949			 * handle.
4950			 */
4951			return;
4952		}
4953
4954		ahd->msgin_index++;
4955
4956		/*
4957		 * XXX Read spec about initiator dropping ATN too soon
4958		 *     and use msgdone to detect it.
4959		 */
4960		if (msgdone == MSGLOOP_MSGCOMPLETE) {
4961			ahd->msgin_index = 0;
4962
4963			/*
4964			 * If this message illicited a response, transition
4965			 * to the Message in phase and send it.
4966			 */
4967			if (ahd->msgout_len != 0) {
4968				ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO);
4969				ahd_outb(ahd, SXFRCTL0,
4970					 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4971				ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
4972				ahd->msgin_index = 0;
4973				break;
4974			}
4975		}
4976
4977		if (lastbyte)
4978			end_session = TRUE;
4979		else {
4980			/* Ask for the next byte. */
4981			ahd_outb(ahd, SXFRCTL0,
4982				 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4983		}
4984
4985		break;
4986	}
4987	default:
4988		panic("Unknown REQINIT message type");
4989	}
4990
4991	if (end_session) {
4992		if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) {
4993			printk("%s: Returning to Idle Loop\n",
4994			       ahd_name(ahd));
4995			ahd_clear_msg_state(ahd);
4996
4997			/*
4998			 * Perform the equivalent of a clear_target_state.
4999			 */
5000			ahd_outb(ahd, LASTPHASE, P_BUSFREE);
5001			ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT);
5002			ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
5003		} else {
5004			ahd_clear_msg_state(ahd);
5005			ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP);
5006		}
5007	}
5008}
5009
5010/*
5011 * See if we sent a particular extended message to the target.
5012 * If "full" is true, return true only if the target saw the full
5013 * message.  If "full" is false, return true if the target saw at
5014 * least the first byte of the message.
5015 */
5016static int
5017ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full)
5018{
5019	int found;
5020	u_int index;
5021
5022	found = FALSE;
5023	index = 0;
5024
5025	while (index < ahd->msgout_len) {
5026		if (ahd->msgout_buf[index] == EXTENDED_MESSAGE) {
5027			u_int end_index;
5028
5029			end_index = index + 1 + ahd->msgout_buf[index + 1];
5030			if (ahd->msgout_buf[index+2] == msgval
5031			 && type == AHDMSG_EXT) {
5032
5033				if (full) {
5034					if (ahd->msgout_index > end_index)
5035						found = TRUE;
5036				} else if (ahd->msgout_index > index)
5037					found = TRUE;
5038			}
5039			index = end_index;
5040		} else if (ahd->msgout_buf[index] >= SIMPLE_QUEUE_TAG
5041			&& ahd->msgout_buf[index] <= IGNORE_WIDE_RESIDUE) {
5042
5043			/* Skip tag type and tag id or residue param*/
5044			index += 2;
5045		} else {
5046			/* Single byte message */
5047			if (type == AHDMSG_1B
5048			 && ahd->msgout_index > index
5049			 && (ahd->msgout_buf[index] == msgval
5050			  || ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
5051			   && msgval == MSG_IDENTIFYFLAG)))
5052				found = TRUE;
5053			index++;
5054		}
5055
5056		if (found)
5057			break;
5058	}
5059	return (found);
5060}
5061
5062/*
5063 * Wait for a complete incoming message, parse it, and respond accordingly.
5064 */
5065static int
5066ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5067{
5068	struct	ahd_initiator_tinfo *tinfo;
5069	struct	ahd_tmode_tstate *tstate;
5070	int	reject;
5071	int	done;
5072	int	response;
5073
5074	done = MSGLOOP_IN_PROG;
5075	response = FALSE;
5076	reject = FALSE;
5077	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
5078				    devinfo->target, &tstate);
5079
5080	/*
5081	 * Parse as much of the message as is available,
5082	 * rejecting it if we don't support it.  When
5083	 * the entire message is available and has been
5084	 * handled, return MSGLOOP_MSGCOMPLETE, indicating
5085	 * that we have parsed an entire message.
5086	 *
5087	 * In the case of extended messages, we accept the length
5088	 * byte outright and perform more checking once we know the
5089	 * extended message type.
5090	 */
5091	switch (ahd->msgin_buf[0]) {
5092	case DISCONNECT:
5093	case SAVE_POINTERS:
5094	case COMMAND_COMPLETE:
5095	case RESTORE_POINTERS:
5096	case IGNORE_WIDE_RESIDUE:
5097		/*
5098		 * End our message loop as these are messages
5099		 * the sequencer handles on its own.
5100		 */
5101		done = MSGLOOP_TERMINATED;
5102		break;
5103	case MESSAGE_REJECT:
5104		response = ahd_handle_msg_reject(ahd, devinfo);
5105		fallthrough;
5106	case NOP:
5107		done = MSGLOOP_MSGCOMPLETE;
5108		break;
5109	case EXTENDED_MESSAGE:
5110	{
5111		/* Wait for enough of the message to begin validation */
5112		if (ahd->msgin_index < 2)
5113			break;
5114		switch (ahd->msgin_buf[2]) {
5115		case EXTENDED_SDTR:
5116		{
5117			u_int	 period;
5118			u_int	 ppr_options;
5119			u_int	 offset;
5120			u_int	 saved_offset;
5121
5122			if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
5123				reject = TRUE;
5124				break;
5125			}
5126
5127			/*
5128			 * Wait until we have both args before validating
5129			 * and acting on this message.
5130			 *
5131			 * Add one to MSG_EXT_SDTR_LEN to account for
5132			 * the extended message preamble.
5133			 */
5134			if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
5135				break;
5136
5137			period = ahd->msgin_buf[3];
5138			ppr_options = 0;
5139			saved_offset = offset = ahd->msgin_buf[4];
5140			ahd_devlimited_syncrate(ahd, tinfo, &period,
5141						&ppr_options, devinfo->role);
5142			ahd_validate_offset(ahd, tinfo, period, &offset,
5143					    tinfo->curr.width, devinfo->role);
5144			if (bootverbose) {
5145				printk("(%s:%c:%d:%d): Received "
5146				       "SDTR period %x, offset %x\n\t"
5147				       "Filtered to period %x, offset %x\n",
5148				       ahd_name(ahd), devinfo->channel,
5149				       devinfo->target, devinfo->lun,
5150				       ahd->msgin_buf[3], saved_offset,
5151				       period, offset);
5152			}
5153			ahd_set_syncrate(ahd, devinfo, period,
5154					 offset, ppr_options,
5155					 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5156					 /*paused*/TRUE);
5157
5158			/*
5159			 * See if we initiated Sync Negotiation
5160			 * and didn't have to fall down to async
5161			 * transfers.
5162			 */
5163			if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_SDTR, TRUE)) {
5164				/* We started it */
5165				if (saved_offset != offset) {
5166					/* Went too low - force async */
5167					reject = TRUE;
5168				}
5169			} else {
5170				/*
5171				 * Send our own SDTR in reply
5172				 */
5173				if (bootverbose
5174				 && devinfo->role == ROLE_INITIATOR) {
5175					printk("(%s:%c:%d:%d): Target "
5176					       "Initiated SDTR\n",
5177					       ahd_name(ahd), devinfo->channel,
5178					       devinfo->target, devinfo->lun);
5179				}
5180				ahd->msgout_index = 0;
5181				ahd->msgout_len = 0;
5182				ahd_construct_sdtr(ahd, devinfo,
5183						   period, offset);
5184				ahd->msgout_index = 0;
5185				response = TRUE;
5186			}
5187			done = MSGLOOP_MSGCOMPLETE;
5188			break;
5189		}
5190		case EXTENDED_WDTR:
5191		{
5192			u_int bus_width;
5193			u_int saved_width;
5194			u_int sending_reply;
5195
5196			sending_reply = FALSE;
5197			if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
5198				reject = TRUE;
5199				break;
5200			}
5201
5202			/*
5203			 * Wait until we have our arg before validating
5204			 * and acting on this message.
5205			 *
5206			 * Add one to MSG_EXT_WDTR_LEN to account for
5207			 * the extended message preamble.
5208			 */
5209			if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1))
5210				break;
5211
5212			bus_width = ahd->msgin_buf[3];
5213			saved_width = bus_width;
5214			ahd_validate_width(ahd, tinfo, &bus_width,
5215					   devinfo->role);
5216			if (bootverbose) {
5217				printk("(%s:%c:%d:%d): Received WDTR "
5218				       "%x filtered to %x\n",
5219				       ahd_name(ahd), devinfo->channel,
5220				       devinfo->target, devinfo->lun,
5221				       saved_width, bus_width);
5222			}
5223
5224			if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_WDTR, TRUE)) {
5225				/*
5226				 * Don't send a WDTR back to the
5227				 * target, since we asked first.
5228				 * If the width went higher than our
5229				 * request, reject it.
5230				 */
5231				if (saved_width > bus_width) {
5232					reject = TRUE;
5233					printk("(%s:%c:%d:%d): requested %dBit "
5234					       "transfers.  Rejecting...\n",
5235					       ahd_name(ahd), devinfo->channel,
5236					       devinfo->target, devinfo->lun,
5237					       8 * (0x01 << bus_width));
5238					bus_width = 0;
5239				}
5240			} else {
5241				/*
5242				 * Send our own WDTR in reply
5243				 */
5244				if (bootverbose
5245				 && devinfo->role == ROLE_INITIATOR) {
5246					printk("(%s:%c:%d:%d): Target "
5247					       "Initiated WDTR\n",
5248					       ahd_name(ahd), devinfo->channel,
5249					       devinfo->target, devinfo->lun);
5250				}
5251				ahd->msgout_index = 0;
5252				ahd->msgout_len = 0;
5253				ahd_construct_wdtr(ahd, devinfo, bus_width);
5254				ahd->msgout_index = 0;
5255				response = TRUE;
5256				sending_reply = TRUE;
5257			}
5258			/*
5259			 * After a wide message, we are async, but
5260			 * some devices don't seem to honor this portion
5261			 * of the spec.  Force a renegotiation of the
5262			 * sync component of our transfer agreement even
5263			 * if our goal is async.  By updating our width
5264			 * after forcing the negotiation, we avoid
5265			 * renegotiating for width.
5266			 */
5267			ahd_update_neg_request(ahd, devinfo, tstate,
5268					       tinfo, AHD_NEG_ALWAYS);
5269			ahd_set_width(ahd, devinfo, bus_width,
5270				      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5271				      /*paused*/TRUE);
5272			if (sending_reply == FALSE && reject == FALSE) {
5273
5274				/*
5275				 * We will always have an SDTR to send.
5276				 */
5277				ahd->msgout_index = 0;
5278				ahd->msgout_len = 0;
5279				ahd_build_transfer_msg(ahd, devinfo);
5280				ahd->msgout_index = 0;
5281				response = TRUE;
5282			}
5283			done = MSGLOOP_MSGCOMPLETE;
5284			break;
5285		}
5286		case EXTENDED_PPR:
5287		{
5288			u_int	period;
5289			u_int	offset;
5290			u_int	bus_width;
5291			u_int	ppr_options;
5292			u_int	saved_width;
5293			u_int	saved_offset;
5294			u_int	saved_ppr_options;
5295
5296			if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) {
5297				reject = TRUE;
5298				break;
5299			}
5300
5301			/*
5302			 * Wait until we have all args before validating
5303			 * and acting on this message.
5304			 *
5305			 * Add one to MSG_EXT_PPR_LEN to account for
5306			 * the extended message preamble.
5307			 */
5308			if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1))
5309				break;
5310
5311			period = ahd->msgin_buf[3];
5312			offset = ahd->msgin_buf[5];
5313			bus_width = ahd->msgin_buf[6];
5314			saved_width = bus_width;
5315			ppr_options = ahd->msgin_buf[7];
5316			/*
5317			 * According to the spec, a DT only
5318			 * period factor with no DT option
5319			 * set implies async.
5320			 */
5321			if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
5322			 && period <= 9)
5323				offset = 0;
5324			saved_ppr_options = ppr_options;
5325			saved_offset = offset;
5326
5327			/*
5328			 * Transfer options are only available if we
5329			 * are negotiating wide.
5330			 */
5331			if (bus_width == 0)
5332				ppr_options &= MSG_EXT_PPR_QAS_REQ;
5333
5334			ahd_validate_width(ahd, tinfo, &bus_width,
5335					   devinfo->role);
5336			ahd_devlimited_syncrate(ahd, tinfo, &period,
5337						&ppr_options, devinfo->role);
5338			ahd_validate_offset(ahd, tinfo, period, &offset,
5339					    bus_width, devinfo->role);
5340
5341			if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_PPR, TRUE)) {
5342				/*
5343				 * If we are unable to do any of the
5344				 * requested options (we went too low),
5345				 * then we'll have to reject the message.
5346				 */
5347				if (saved_width > bus_width
5348				 || saved_offset != offset
5349				 || saved_ppr_options != ppr_options) {
5350					reject = TRUE;
5351					period = 0;
5352					offset = 0;
5353					bus_width = 0;
5354					ppr_options = 0;
5355				}
5356			} else {
5357				if (devinfo->role != ROLE_TARGET)
5358					printk("(%s:%c:%d:%d): Target "
5359					       "Initiated PPR\n",
5360					       ahd_name(ahd), devinfo->channel,
5361					       devinfo->target, devinfo->lun);
5362				else
5363					printk("(%s:%c:%d:%d): Initiator "
5364					       "Initiated PPR\n",
5365					       ahd_name(ahd), devinfo->channel,
5366					       devinfo->target, devinfo->lun);
5367				ahd->msgout_index = 0;
5368				ahd->msgout_len = 0;
5369				ahd_construct_ppr(ahd, devinfo, period, offset,
5370						  bus_width, ppr_options);
5371				ahd->msgout_index = 0;
5372				response = TRUE;
5373			}
5374			if (bootverbose) {
5375				printk("(%s:%c:%d:%d): Received PPR width %x, "
5376				       "period %x, offset %x,options %x\n"
5377				       "\tFiltered to width %x, period %x, "
5378				       "offset %x, options %x\n",
5379				       ahd_name(ahd), devinfo->channel,
5380				       devinfo->target, devinfo->lun,
5381				       saved_width, ahd->msgin_buf[3],
5382				       saved_offset, saved_ppr_options,
5383				       bus_width, period, offset, ppr_options);
5384			}
5385			ahd_set_width(ahd, devinfo, bus_width,
5386				      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5387				      /*paused*/TRUE);
5388			ahd_set_syncrate(ahd, devinfo, period,
5389					 offset, ppr_options,
5390					 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5391					 /*paused*/TRUE);
5392
5393			done = MSGLOOP_MSGCOMPLETE;
5394			break;
5395		}
5396		default:
5397			/* Unknown extended message.  Reject it. */
5398			reject = TRUE;
5399			break;
5400		}
5401		break;
5402	}
5403#ifdef AHD_TARGET_MODE
5404	case TARGET_RESET:
5405		ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD,
5406				    CAM_BDR_SENT,
5407				    "Bus Device Reset Received",
5408				    /*verbose_level*/0);
5409		ahd_restart(ahd);
5410		done = MSGLOOP_TERMINATED;
5411		break;
5412	case ABORT_TASK:
5413	case ABORT_TASK_SET:
5414	case CLEAR_TASK_SET:
5415	{
5416		int tag;
5417
5418		/* Target mode messages */
5419		if (devinfo->role != ROLE_TARGET) {
5420			reject = TRUE;
5421			break;
5422		}
5423		tag = SCB_LIST_NULL;
5424		if (ahd->msgin_buf[0] == ABORT_TASK)
5425			tag = ahd_inb(ahd, INITIATOR_TAG);
5426		ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5427			       devinfo->lun, tag, ROLE_TARGET,
5428			       CAM_REQ_ABORTED);
5429
5430		tstate = ahd->enabled_targets[devinfo->our_scsiid];
5431		if (tstate != NULL) {
5432			struct ahd_tmode_lstate* lstate;
5433
5434			lstate = tstate->enabled_luns[devinfo->lun];
5435			if (lstate != NULL) {
5436				ahd_queue_lstate_event(ahd, lstate,
5437						       devinfo->our_scsiid,
5438						       ahd->msgin_buf[0],
5439						       /*arg*/tag);
5440				ahd_send_lstate_events(ahd, lstate);
5441			}
5442		}
5443		ahd_restart(ahd);
5444		done = MSGLOOP_TERMINATED;
5445		break;
5446	}
5447#endif
5448	case QAS_REQUEST:
5449#ifdef AHD_DEBUG
5450		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
5451			printk("%s: QAS request.  SCSISIGI == 0x%x\n",
5452			       ahd_name(ahd), ahd_inb(ahd, SCSISIGI));
5453#endif
5454		ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE;
5455		fallthrough;
5456	case TERMINATE_IO_PROC:
5457	default:
5458		reject = TRUE;
5459		break;
5460	}
5461
5462	if (reject) {
5463		/*
5464		 * Setup to reject the message.
5465		 */
5466		ahd->msgout_index = 0;
5467		ahd->msgout_len = 1;
5468		ahd->msgout_buf[0] = MESSAGE_REJECT;
5469		done = MSGLOOP_MSGCOMPLETE;
5470		response = TRUE;
5471	}
5472
5473	if (done != MSGLOOP_IN_PROG && !response)
5474		/* Clear the outgoing message buffer */
5475		ahd->msgout_len = 0;
5476
5477	return (done);
5478}
5479
5480/*
5481 * Process a message reject message.
5482 */
5483static int
5484ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5485{
5486	/*
5487	 * What we care about here is if we had an
5488	 * outstanding SDTR or WDTR message for this
5489	 * target.  If we did, this is a signal that
5490	 * the target is refusing negotiation.
5491	 */
5492	struct scb *scb;
5493	struct ahd_initiator_tinfo *tinfo;
5494	struct ahd_tmode_tstate *tstate;
5495	u_int scb_index;
5496	u_int last_msg;
5497	int   response = 0;
5498
5499	scb_index = ahd_get_scbptr(ahd);
5500	scb = ahd_lookup_scb(ahd, scb_index);
5501	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
5502				    devinfo->our_scsiid,
5503				    devinfo->target, &tstate);
5504	/* Might be necessary */
5505	last_msg = ahd_inb(ahd, LAST_MSG);
5506
5507	if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_PPR, /*full*/FALSE)) {
5508		if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_PPR, /*full*/TRUE)
5509		 && tinfo->goal.period <= AHD_SYNCRATE_PACED) {
5510			/*
5511			 * Target may not like our SPI-4 PPR Options.
5512			 * Attempt to negotiate 80MHz which will turn
5513			 * off these options.
5514			 */
5515			if (bootverbose) {
5516				printk("(%s:%c:%d:%d): PPR Rejected. "
5517				       "Trying simple U160 PPR\n",
5518				       ahd_name(ahd), devinfo->channel,
5519				       devinfo->target, devinfo->lun);
5520			}
5521			tinfo->goal.period = AHD_SYNCRATE_DT;
5522			tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ
5523						|  MSG_EXT_PPR_QAS_REQ
5524						|  MSG_EXT_PPR_DT_REQ;
5525		} else {
5526			/*
5527			 * Target does not support the PPR message.
5528			 * Attempt to negotiate SPI-2 style.
5529			 */
5530			if (bootverbose) {
5531				printk("(%s:%c:%d:%d): PPR Rejected. "
5532				       "Trying WDTR/SDTR\n",
5533				       ahd_name(ahd), devinfo->channel,
5534				       devinfo->target, devinfo->lun);
5535			}
5536			tinfo->goal.ppr_options = 0;
5537			tinfo->curr.transport_version = 2;
5538			tinfo->goal.transport_version = 2;
5539		}
5540		ahd->msgout_index = 0;
5541		ahd->msgout_len = 0;
5542		ahd_build_transfer_msg(ahd, devinfo);
5543		ahd->msgout_index = 0;
5544		response = 1;
5545	} else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_WDTR, /*full*/FALSE)) {
5546
5547		/* note 8bit xfers */
5548		printk("(%s:%c:%d:%d): refuses WIDE negotiation.  Using "
5549		       "8bit transfers\n", ahd_name(ahd),
5550		       devinfo->channel, devinfo->target, devinfo->lun);
5551		ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5552			      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5553			      /*paused*/TRUE);
5554		/*
5555		 * No need to clear the sync rate.  If the target
5556		 * did not accept the command, our syncrate is
5557		 * unaffected.  If the target started the negotiation,
5558		 * but rejected our response, we already cleared the
5559		 * sync rate before sending our WDTR.
5560		 */
5561		if (tinfo->goal.offset != tinfo->curr.offset) {
5562
5563			/* Start the sync negotiation */
5564			ahd->msgout_index = 0;
5565			ahd->msgout_len = 0;
5566			ahd_build_transfer_msg(ahd, devinfo);
5567			ahd->msgout_index = 0;
5568			response = 1;
5569		}
5570	} else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_SDTR, /*full*/FALSE)) {
5571		/* note asynch xfers and clear flag */
5572		ahd_set_syncrate(ahd, devinfo, /*period*/0,
5573				 /*offset*/0, /*ppr_options*/0,
5574				 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5575				 /*paused*/TRUE);
5576		printk("(%s:%c:%d:%d): refuses synchronous negotiation. "
5577		       "Using asynchronous transfers\n",
5578		       ahd_name(ahd), devinfo->channel,
5579		       devinfo->target, devinfo->lun);
5580	} else if ((scb->hscb->control & SIMPLE_QUEUE_TAG) != 0) {
5581		int tag_type;
5582		int mask;
5583
5584		tag_type = (scb->hscb->control & SIMPLE_QUEUE_TAG);
5585
5586		if (tag_type == SIMPLE_QUEUE_TAG) {
5587			printk("(%s:%c:%d:%d): refuses tagged commands.  "
5588			       "Performing non-tagged I/O\n", ahd_name(ahd),
5589			       devinfo->channel, devinfo->target, devinfo->lun);
5590			ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_NONE);
5591			mask = ~0x23;
5592		} else {
5593			printk("(%s:%c:%d:%d): refuses %s tagged commands.  "
5594			       "Performing simple queue tagged I/O only\n",
5595			       ahd_name(ahd), devinfo->channel, devinfo->target,
5596			       devinfo->lun, tag_type == ORDERED_QUEUE_TAG
5597			       ? "ordered" : "head of queue");
5598			ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_BASIC);
5599			mask = ~0x03;
5600		}
5601
5602		/*
5603		 * Resend the identify for this CCB as the target
5604		 * may believe that the selection is invalid otherwise.
5605		 */
5606		ahd_outb(ahd, SCB_CONTROL,
5607			 ahd_inb_scbram(ahd, SCB_CONTROL) & mask);
5608		scb->hscb->control &= mask;
5609		ahd_set_transaction_tag(scb, /*enabled*/FALSE,
5610					/*type*/SIMPLE_QUEUE_TAG);
5611		ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG);
5612		ahd_assert_atn(ahd);
5613		ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
5614			     SCB_GET_TAG(scb));
5615
5616		/*
5617		 * Requeue all tagged commands for this target
5618		 * currently in our possession so they can be
5619		 * converted to untagged commands.
5620		 */
5621		ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
5622				   SCB_GET_CHANNEL(ahd, scb),
5623				   SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
5624				   ROLE_INITIATOR, CAM_REQUEUE_REQ,
5625				   SEARCH_COMPLETE);
5626	} else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) {
5627		/*
5628		 * Most likely the device believes that we had
5629		 * previously negotiated packetized.
5630		 */
5631		ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
5632			       |  MSG_FLAG_IU_REQ_CHANGED;
5633
5634		ahd_force_renegotiation(ahd, devinfo);
5635		ahd->msgout_index = 0;
5636		ahd->msgout_len = 0;
5637		ahd_build_transfer_msg(ahd, devinfo);
5638		ahd->msgout_index = 0;
5639		response = 1;
5640	} else {
5641		/*
5642		 * Otherwise, we ignore it.
5643		 */
5644		printk("%s:%c:%d: Message reject for %x -- ignored\n",
5645		       ahd_name(ahd), devinfo->channel, devinfo->target,
5646		       last_msg);
5647	}
5648	return (response);
5649}
5650
5651/*
5652 * Process an ingnore wide residue message.
5653 */
5654static void
5655ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5656{
5657	u_int scb_index;
5658	struct scb *scb;
5659
5660	scb_index = ahd_get_scbptr(ahd);
5661	scb = ahd_lookup_scb(ahd, scb_index);
5662	/*
5663	 * XXX Actually check data direction in the sequencer?
5664	 * Perhaps add datadir to some spare bits in the hscb?
5665	 */
5666	if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0
5667	 || ahd_get_transfer_dir(scb) != CAM_DIR_IN) {
5668		/*
5669		 * Ignore the message if we haven't
5670		 * seen an appropriate data phase yet.
5671		 */
5672	} else {
5673		/*
5674		 * If the residual occurred on the last
5675		 * transfer and the transfer request was
5676		 * expected to end on an odd count, do
5677		 * nothing.  Otherwise, subtract a byte
5678		 * and update the residual count accordingly.
5679		 */
5680		uint32_t sgptr;
5681
5682		sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR);
5683		if ((sgptr & SG_LIST_NULL) != 0
5684		 && (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5685		     & SCB_XFERLEN_ODD) != 0) {
5686			/*
5687			 * If the residual occurred on the last
5688			 * transfer and the transfer request was
5689			 * expected to end on an odd count, do
5690			 * nothing.
5691			 */
5692		} else {
5693			uint32_t data_cnt;
5694			uint64_t data_addr;
5695			uint32_t sglen;
5696
5697			/* Pull in the rest of the sgptr */
5698			sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5699			data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT);
5700			if ((sgptr & SG_LIST_NULL) != 0) {
5701				/*
5702				 * The residual data count is not updated
5703				 * for the command run to completion case.
5704				 * Explicitly zero the count.
5705				 */
5706				data_cnt &= ~AHD_SG_LEN_MASK;
5707			}
5708			data_addr = ahd_inq(ahd, SHADDR);
5709			data_cnt += 1;
5710			data_addr -= 1;
5711			sgptr &= SG_PTR_MASK;
5712			if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5713				struct ahd_dma64_seg *sg;
5714
5715				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5716
5717				/*
5718				 * The residual sg ptr points to the next S/G
5719				 * to load so we must go back one.
5720				 */
5721				sg--;
5722				sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5723				if (sg != scb->sg_list
5724				 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5725
5726					sg--;
5727					sglen = ahd_le32toh(sg->len);
5728					/*
5729					 * Preserve High Address and SG_LIST
5730					 * bits while setting the count to 1.
5731					 */
5732					data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5733					data_addr = ahd_le64toh(sg->addr)
5734						  + (sglen & AHD_SG_LEN_MASK)
5735						  - 1;
5736
5737					/*
5738					 * Increment sg so it points to the
5739					 * "next" sg.
5740					 */
5741					sg++;
5742					sgptr = ahd_sg_virt_to_bus(ahd, scb,
5743								   sg);
5744				}
5745			} else {
5746				struct ahd_dma_seg *sg;
5747
5748				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5749
5750				/*
5751				 * The residual sg ptr points to the next S/G
5752				 * to load so we must go back one.
5753				 */
5754				sg--;
5755				sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5756				if (sg != scb->sg_list
5757				 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5758
5759					sg--;
5760					sglen = ahd_le32toh(sg->len);
5761					/*
5762					 * Preserve High Address and SG_LIST
5763					 * bits while setting the count to 1.
5764					 */
5765					data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5766					data_addr = ahd_le32toh(sg->addr)
5767						  + (sglen & AHD_SG_LEN_MASK)
5768						  - 1;
5769
5770					/*
5771					 * Increment sg so it points to the
5772					 * "next" sg.
5773					 */
5774					sg++;
5775					sgptr = ahd_sg_virt_to_bus(ahd, scb,
5776								  sg);
5777				}
5778			}
5779			/*
5780			 * Toggle the "oddness" of the transfer length
5781			 * to handle this mid-transfer ignore wide
5782			 * residue.  This ensures that the oddness is
5783			 * correct for subsequent data transfers.
5784			 */
5785			ahd_outb(ahd, SCB_TASK_ATTRIBUTE,
5786			    ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5787			    ^ SCB_XFERLEN_ODD);
5788
5789			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
5790			ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt);
5791			/*
5792			 * The FIFO's pointers will be updated if/when the
5793			 * sequencer re-enters a data phase.
5794			 */
5795		}
5796	}
5797}
5798
5799
5800/*
5801 * Reinitialize the data pointers for the active transfer
5802 * based on its current residual.
5803 */
5804static void
5805ahd_reinitialize_dataptrs(struct ahd_softc *ahd)
5806{
5807	struct		 scb *scb;
5808	ahd_mode_state	 saved_modes;
5809	u_int		 scb_index;
5810	u_int		 wait;
5811	uint32_t	 sgptr;
5812	uint32_t	 resid;
5813	uint64_t	 dataptr;
5814
5815	AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK,
5816			 AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK);
5817
5818	scb_index = ahd_get_scbptr(ahd);
5819	scb = ahd_lookup_scb(ahd, scb_index);
5820
5821	/*
5822	 * Release and reacquire the FIFO so we
5823	 * have a clean slate.
5824	 */
5825	ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
5826	wait = 1000;
5827	while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE))
5828		ahd_delay(100);
5829	if (wait == 0) {
5830		ahd_print_path(ahd, scb);
5831		printk("ahd_reinitialize_dataptrs: Forcing FIFO free.\n");
5832		ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
5833	}
5834	saved_modes = ahd_save_modes(ahd);
5835	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5836	ahd_outb(ahd, DFFSTAT,
5837		 ahd_inb(ahd, DFFSTAT)
5838		| (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0));
5839
5840	/*
5841	 * Determine initial values for data_addr and data_cnt
5842	 * for resuming the data phase.
5843	 */
5844	sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5845	sgptr &= SG_PTR_MASK;
5846
5847	resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16)
5848	      | (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8)
5849	      | ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT);
5850
5851	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5852		struct ahd_dma64_seg *sg;
5853
5854		sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5855
5856		/* The residual sg_ptr always points to the next sg */
5857		sg--;
5858
5859		dataptr = ahd_le64toh(sg->addr)
5860			+ (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5861			- resid;
5862		ahd_outl(ahd, HADDR + 4, dataptr >> 32);
5863	} else {
5864		struct	 ahd_dma_seg *sg;
5865
5866		sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5867
5868		/* The residual sg_ptr always points to the next sg */
5869		sg--;
5870
5871		dataptr = ahd_le32toh(sg->addr)
5872			+ (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5873			- resid;
5874		ahd_outb(ahd, HADDR + 4,
5875			 (ahd_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24);
5876	}
5877	ahd_outl(ahd, HADDR, dataptr);
5878	ahd_outb(ahd, HCNT + 2, resid >> 16);
5879	ahd_outb(ahd, HCNT + 1, resid >> 8);
5880	ahd_outb(ahd, HCNT, resid);
5881}
5882
5883/*
5884 * Handle the effects of issuing a bus device reset message.
5885 */
5886static void
5887ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5888		    u_int lun, cam_status status, char *message,
5889		    int verbose_level)
5890{
5891#ifdef AHD_TARGET_MODE
5892	struct ahd_tmode_tstate* tstate;
5893#endif
5894	int found;
5895
5896	found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5897			       lun, SCB_LIST_NULL, devinfo->role,
5898			       status);
5899
5900#ifdef AHD_TARGET_MODE
5901	/*
5902	 * Send an immediate notify ccb to all target mord peripheral
5903	 * drivers affected by this action.
5904	 */
5905	tstate = ahd->enabled_targets[devinfo->our_scsiid];
5906	if (tstate != NULL) {
5907		u_int cur_lun;
5908		u_int max_lun;
5909
5910		if (lun != CAM_LUN_WILDCARD) {
5911			cur_lun = 0;
5912			max_lun = AHD_NUM_LUNS - 1;
5913		} else {
5914			cur_lun = lun;
5915			max_lun = lun;
5916		}
5917		for (;cur_lun <= max_lun; cur_lun++) {
5918			struct ahd_tmode_lstate* lstate;
5919
5920			lstate = tstate->enabled_luns[cur_lun];
5921			if (lstate == NULL)
5922				continue;
5923
5924			ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid,
5925					       TARGET_RESET, /*arg*/0);
5926			ahd_send_lstate_events(ahd, lstate);
5927		}
5928	}
5929#endif
5930
5931	/*
5932	 * Go back to async/narrow transfers and renegotiate.
5933	 */
5934	ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5935		      AHD_TRANS_CUR, /*paused*/TRUE);
5936	ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0,
5937			 /*ppr_options*/0, AHD_TRANS_CUR,
5938			 /*paused*/TRUE);
5939
5940	if (status != CAM_SEL_TIMEOUT)
5941		ahd_send_async(ahd, devinfo->channel, devinfo->target,
5942			       CAM_LUN_WILDCARD, AC_SENT_BDR);
5943
5944	if (message != NULL && bootverbose)
5945		printk("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd),
5946		       message, devinfo->channel, devinfo->target, found);
5947}
5948
5949#ifdef AHD_TARGET_MODE
5950static void
5951ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5952		       struct scb *scb)
5953{
5954
5955	/*
5956	 * To facilitate adding multiple messages together,
5957	 * each routine should increment the index and len
5958	 * variables instead of setting them explicitly.
5959	 */
5960	ahd->msgout_index = 0;
5961	ahd->msgout_len = 0;
5962
5963	if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
5964		ahd_build_transfer_msg(ahd, devinfo);
5965	else
5966		panic("ahd_intr: AWAITING target message with no message");
5967
5968	ahd->msgout_index = 0;
5969	ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
5970}
5971#endif
5972/**************************** Initialization **********************************/
5973static u_int
5974ahd_sglist_size(struct ahd_softc *ahd)
5975{
5976	bus_size_t list_size;
5977
5978	list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG;
5979	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
5980		list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG;
5981	return (list_size);
5982}
5983
5984/*
5985 * Calculate the optimum S/G List allocation size.  S/G elements used
5986 * for a given transaction must be physically contiguous.  Assume the
5987 * OS will allocate full pages to us, so it doesn't make sense to request
5988 * less than a page.
5989 */
5990static u_int
5991ahd_sglist_allocsize(struct ahd_softc *ahd)
5992{
5993	bus_size_t sg_list_increment;
5994	bus_size_t sg_list_size;
5995	bus_size_t max_list_size;
5996	bus_size_t best_list_size;
5997
5998	/* Start out with the minimum required for AHD_NSEG. */
5999	sg_list_increment = ahd_sglist_size(ahd);
6000	sg_list_size = sg_list_increment;
6001
6002	/* Get us as close as possible to a page in size. */
6003	while ((sg_list_size + sg_list_increment) <= PAGE_SIZE)
6004		sg_list_size += sg_list_increment;
6005
6006	/*
6007	 * Try to reduce the amount of wastage by allocating
6008	 * multiple pages.
6009	 */
6010	best_list_size = sg_list_size;
6011	max_list_size = roundup(sg_list_increment, PAGE_SIZE);
6012	if (max_list_size < 4 * PAGE_SIZE)
6013		max_list_size = 4 * PAGE_SIZE;
6014	if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment))
6015		max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment);
6016	while ((sg_list_size + sg_list_increment) <= max_list_size
6017	   &&  (sg_list_size % PAGE_SIZE) != 0) {
6018		bus_size_t new_mod;
6019		bus_size_t best_mod;
6020
6021		sg_list_size += sg_list_increment;
6022		new_mod = sg_list_size % PAGE_SIZE;
6023		best_mod = best_list_size % PAGE_SIZE;
6024		if (new_mod > best_mod || new_mod == 0) {
6025			best_list_size = sg_list_size;
6026		}
6027	}
6028	return (best_list_size);
6029}
6030
6031/*
6032 * Allocate a controller structure for a new device
6033 * and perform initial initializion.
6034 */
6035struct ahd_softc *
6036ahd_alloc(void *platform_arg, char *name)
6037{
6038	struct  ahd_softc *ahd;
6039
6040	ahd = kzalloc(sizeof(*ahd), GFP_ATOMIC);
6041	if (!ahd) {
6042		printk("aic7xxx: cannot malloc softc!\n");
6043		kfree(name);
6044		return NULL;
6045	}
6046
6047	ahd->seep_config = kmalloc(sizeof(*ahd->seep_config), GFP_ATOMIC);
6048	if (ahd->seep_config == NULL) {
6049		kfree(ahd);
6050		kfree(name);
6051		return (NULL);
6052	}
6053	LIST_INIT(&ahd->pending_scbs);
6054	/* We don't know our unit number until the OSM sets it */
6055	ahd->name = name;
6056	ahd->unit = -1;
6057	ahd->description = NULL;
6058	ahd->bus_description = NULL;
6059	ahd->channel = 'A';
6060	ahd->chip = AHD_NONE;
6061	ahd->features = AHD_FENONE;
6062	ahd->bugs = AHD_BUGNONE;
6063	ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A
6064		   | AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A;
6065	timer_setup(&ahd->stat_timer, ahd_stat_timer, 0);
6066	ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT;
6067	ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT;
6068	ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT;
6069	ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT;
6070	ahd->int_coalescing_stop_threshold =
6071	    AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT;
6072
6073#ifdef AHD_DEBUG
6074	if ((ahd_debug & AHD_SHOW_MEMORY) != 0) {
6075		printk("%s: scb size = 0x%x, hscb size = 0x%x\n",
6076		       ahd_name(ahd), (u_int)sizeof(struct scb),
6077		       (u_int)sizeof(struct hardware_scb));
6078	}
6079#endif
6080	if (ahd_platform_alloc(ahd, platform_arg) != 0) {
6081		ahd_free(ahd);
6082		ahd = NULL;
6083	}
6084	return (ahd);
6085}
6086
6087int
6088ahd_softc_init(struct ahd_softc *ahd)
6089{
6090
6091	ahd->unpause = 0;
6092	ahd->pause = PAUSE;
6093	return (0);
6094}
6095
6096void
6097ahd_set_unit(struct ahd_softc *ahd, int unit)
6098{
6099	ahd->unit = unit;
6100}
6101
6102void
6103ahd_set_name(struct ahd_softc *ahd, char *name)
6104{
6105	kfree(ahd->name);
6106	ahd->name = name;
6107}
6108
6109void
6110ahd_free(struct ahd_softc *ahd)
6111{
6112	int i;
6113
6114	switch (ahd->init_level) {
6115	default:
6116	case 5:
6117		ahd_shutdown(ahd);
6118		fallthrough;
6119	case 4:
6120		ahd_dmamap_unload(ahd, ahd->shared_data_dmat,
6121				  ahd->shared_data_map.dmamap);
6122		fallthrough;
6123	case 3:
6124		ahd_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo,
6125				ahd->shared_data_map.dmamap);
6126		ahd_dmamap_destroy(ahd, ahd->shared_data_dmat,
6127				   ahd->shared_data_map.dmamap);
6128		fallthrough;
6129	case 2:
6130		ahd_dma_tag_destroy(ahd, ahd->shared_data_dmat);
6131		break;
6132	case 1:
6133		break;
6134	case 0:
6135		break;
6136	}
6137
6138	ahd_platform_free(ahd);
6139	ahd_fini_scbdata(ahd);
6140	for (i = 0; i < AHD_NUM_TARGETS; i++) {
6141		struct ahd_tmode_tstate *tstate;
6142
6143		tstate = ahd->enabled_targets[i];
6144		if (tstate != NULL) {
6145#ifdef AHD_TARGET_MODE
6146			int j;
6147
6148			for (j = 0; j < AHD_NUM_LUNS; j++) {
6149				struct ahd_tmode_lstate *lstate;
6150
6151				lstate = tstate->enabled_luns[j];
6152				if (lstate != NULL) {
6153					xpt_free_path(lstate->path);
6154					kfree(lstate);
6155				}
6156			}
6157#endif
6158			kfree(tstate);
6159		}
6160	}
6161#ifdef AHD_TARGET_MODE
6162	if (ahd->black_hole != NULL) {
6163		xpt_free_path(ahd->black_hole->path);
6164		kfree(ahd->black_hole);
6165	}
6166#endif
6167	kfree(ahd->name);
6168	kfree(ahd->seep_config);
6169	kfree(ahd->saved_stack);
6170	kfree(ahd);
6171	return;
6172}
6173
6174static void
6175ahd_shutdown(void *arg)
6176{
6177	struct	ahd_softc *ahd;
6178
6179	ahd = (struct ahd_softc *)arg;
6180
6181	/*
6182	 * Stop periodic timer callbacks.
6183	 */
6184	del_timer_sync(&ahd->stat_timer);
6185
6186	/* This will reset most registers to 0, but not all */
6187	ahd_reset(ahd, /*reinit*/FALSE);
6188}
6189
6190/*
6191 * Reset the controller and record some information about it
6192 * that is only available just after a reset.  If "reinit" is
6193 * non-zero, this reset occurred after initial configuration
6194 * and the caller requests that the chip be fully reinitialized
6195 * to a runable state.  Chip interrupts are *not* enabled after
6196 * a reinitialization.  The caller must enable interrupts via
6197 * ahd_intr_enable().
6198 */
6199int
6200ahd_reset(struct ahd_softc *ahd, int reinit)
6201{
6202	u_int	 sxfrctl1;
6203	int	 wait;
6204	uint32_t cmd;
6205
6206	/*
6207	 * Preserve the value of the SXFRCTL1 register for all channels.
6208	 * It contains settings that affect termination and we don't want
6209	 * to disturb the integrity of the bus.
6210	 */
6211	ahd_pause(ahd);
6212	ahd_update_modes(ahd);
6213	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6214	sxfrctl1 = ahd_inb(ahd, SXFRCTL1);
6215
6216	cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
6217	if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6218		uint32_t mod_cmd;
6219
6220		/*
6221		 * A4 Razor #632
6222		 * During the assertion of CHIPRST, the chip
6223		 * does not disable its parity logic prior to
6224		 * the start of the reset.  This may cause a
6225		 * parity error to be detected and thus a
6226		 * spurious SERR or PERR assertion.  Disable
6227		 * PERR and SERR responses during the CHIPRST.
6228		 */
6229		mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN);
6230		ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6231				     mod_cmd, /*bytes*/2);
6232	}
6233	ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause);
6234
6235	/*
6236	 * Ensure that the reset has finished.  We delay 1000us
6237	 * prior to reading the register to make sure the chip
6238	 * has sufficiently completed its reset to handle register
6239	 * accesses.
6240	 */
6241	wait = 1000;
6242	do {
6243		ahd_delay(1000);
6244	} while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK));
6245
6246	if (wait == 0) {
6247		printk("%s: WARNING - Failed chip reset!  "
6248		       "Trying to initialize anyway.\n", ahd_name(ahd));
6249	}
6250	ahd_outb(ahd, HCNTRL, ahd->pause);
6251
6252	if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6253		/*
6254		 * Clear any latched PCI error status and restore
6255		 * previous SERR and PERR response enables.
6256		 */
6257		ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
6258				     0xFF, /*bytes*/1);
6259		ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6260				     cmd, /*bytes*/2);
6261	}
6262
6263	/*
6264	 * Mode should be SCSI after a chip reset, but lets
6265	 * set it just to be safe.  We touch the MODE_PTR
6266	 * register directly so as to bypass the lazy update
6267	 * code in ahd_set_modes().
6268	 */
6269	ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6270	ahd_outb(ahd, MODE_PTR,
6271		 ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI));
6272
6273	/*
6274	 * Restore SXFRCTL1.
6275	 *
6276	 * We must always initialize STPWEN to 1 before we
6277	 * restore the saved values.  STPWEN is initialized
6278	 * to a tri-state condition which can only be cleared
6279	 * by turning it on.
6280	 */
6281	ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
6282	ahd_outb(ahd, SXFRCTL1, sxfrctl1);
6283
6284	/* Determine chip configuration */
6285	ahd->features &= ~AHD_WIDE;
6286	if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0)
6287		ahd->features |= AHD_WIDE;
6288
6289	/*
6290	 * If a recovery action has forced a chip reset,
6291	 * re-initialize the chip to our liking.
6292	 */
6293	if (reinit != 0)
6294		ahd_chip_init(ahd);
6295
6296	return (0);
6297}
6298
6299/*
6300 * Determine the number of SCBs available on the controller
6301 */
6302static int
6303ahd_probe_scbs(struct ahd_softc *ahd) {
6304	int i;
6305
6306	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
6307			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
6308	for (i = 0; i < AHD_SCB_MAX; i++) {
6309		int j;
6310
6311		ahd_set_scbptr(ahd, i);
6312		ahd_outw(ahd, SCB_BASE, i);
6313		for (j = 2; j < 64; j++)
6314			ahd_outb(ahd, SCB_BASE+j, 0);
6315		/* Start out life as unallocated (needing an abort) */
6316		ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE);
6317		if (ahd_inw_scbram(ahd, SCB_BASE) != i)
6318			break;
6319		ahd_set_scbptr(ahd, 0);
6320		if (ahd_inw_scbram(ahd, SCB_BASE) != 0)
6321			break;
6322	}
6323	return (i);
6324}
6325
6326static void
6327ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
6328{
6329	dma_addr_t *baddr;
6330
6331	baddr = (dma_addr_t *)arg;
6332	*baddr = segs->ds_addr;
6333}
6334
6335static void
6336ahd_initialize_hscbs(struct ahd_softc *ahd)
6337{
6338	int i;
6339
6340	for (i = 0; i < ahd->scb_data.maxhscbs; i++) {
6341		ahd_set_scbptr(ahd, i);
6342
6343		/* Clear the control byte. */
6344		ahd_outb(ahd, SCB_CONTROL, 0);
6345
6346		/* Set the next pointer */
6347		ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL);
6348	}
6349}
6350
6351static int
6352ahd_init_scbdata(struct ahd_softc *ahd)
6353{
6354	struct	scb_data *scb_data;
6355	int	i;
6356
6357	scb_data = &ahd->scb_data;
6358	TAILQ_INIT(&scb_data->free_scbs);
6359	for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++)
6360		LIST_INIT(&scb_data->free_scb_lists[i]);
6361	LIST_INIT(&scb_data->any_dev_free_scb_list);
6362	SLIST_INIT(&scb_data->hscb_maps);
6363	SLIST_INIT(&scb_data->sg_maps);
6364	SLIST_INIT(&scb_data->sense_maps);
6365
6366	/* Determine the number of hardware SCBs and initialize them */
6367	scb_data->maxhscbs = ahd_probe_scbs(ahd);
6368	if (scb_data->maxhscbs == 0) {
6369		printk("%s: No SCB space found\n", ahd_name(ahd));
6370		return (ENXIO);
6371	}
6372
6373	ahd_initialize_hscbs(ahd);
6374
6375	/*
6376	 * Create our DMA tags.  These tags define the kinds of device
6377	 * accessible memory allocations and memory mappings we will
6378	 * need to perform during normal operation.
6379	 *
6380	 * Unless we need to further restrict the allocation, we rely
6381	 * on the restrictions of the parent dmat, hence the common
6382	 * use of MAXADDR and MAXSIZE.
6383	 */
6384
6385	/* DMA tag for our hardware scb structures */
6386	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6387			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6388			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6389			       /*highaddr*/BUS_SPACE_MAXADDR,
6390			       /*filter*/NULL, /*filterarg*/NULL,
6391			       PAGE_SIZE, /*nsegments*/1,
6392			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6393			       /*flags*/0, &scb_data->hscb_dmat) != 0) {
6394		goto error_exit;
6395	}
6396
6397	scb_data->init_level++;
6398
6399	/* DMA tag for our S/G structures. */
6400	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8,
6401			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6402			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6403			       /*highaddr*/BUS_SPACE_MAXADDR,
6404			       /*filter*/NULL, /*filterarg*/NULL,
6405			       ahd_sglist_allocsize(ahd), /*nsegments*/1,
6406			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6407			       /*flags*/0, &scb_data->sg_dmat) != 0) {
6408		goto error_exit;
6409	}
6410#ifdef AHD_DEBUG
6411	if ((ahd_debug & AHD_SHOW_MEMORY) != 0)
6412		printk("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd),
6413		       ahd_sglist_allocsize(ahd));
6414#endif
6415
6416	scb_data->init_level++;
6417
6418	/* DMA tag for our sense buffers.  We allocate in page sized chunks */
6419	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6420			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6421			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6422			       /*highaddr*/BUS_SPACE_MAXADDR,
6423			       /*filter*/NULL, /*filterarg*/NULL,
6424			       PAGE_SIZE, /*nsegments*/1,
6425			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6426			       /*flags*/0, &scb_data->sense_dmat) != 0) {
6427		goto error_exit;
6428	}
6429
6430	scb_data->init_level++;
6431
6432	/* Perform initial CCB allocation */
6433	ahd_alloc_scbs(ahd);
6434
6435	if (scb_data->numscbs == 0) {
6436		printk("%s: ahd_init_scbdata - "
6437		       "Unable to allocate initial scbs\n",
6438		       ahd_name(ahd));
6439		goto error_exit;
6440	}
6441
6442	/*
6443	 * Note that we were successful
6444	 */
6445	return (0);
6446
6447error_exit:
6448
6449	return (ENOMEM);
6450}
6451
6452static struct scb *
6453ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag)
6454{
6455	struct scb *scb;
6456
6457	/*
6458	 * Look on the pending list.
6459	 */
6460	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
6461		if (SCB_GET_TAG(scb) == tag)
6462			return (scb);
6463	}
6464
6465	/*
6466	 * Then on all of the collision free lists.
6467	 */
6468	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6469		struct scb *list_scb;
6470
6471		list_scb = scb;
6472		do {
6473			if (SCB_GET_TAG(list_scb) == tag)
6474				return (list_scb);
6475			list_scb = LIST_NEXT(list_scb, collision_links);
6476		} while (list_scb);
6477	}
6478
6479	/*
6480	 * And finally on the generic free list.
6481	 */
6482	LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
6483		if (SCB_GET_TAG(scb) == tag)
6484			return (scb);
6485	}
6486
6487	return (NULL);
6488}
6489
6490static void
6491ahd_fini_scbdata(struct ahd_softc *ahd)
6492{
6493	struct scb_data *scb_data;
6494
6495	scb_data = &ahd->scb_data;
6496	if (scb_data == NULL)
6497		return;
6498
6499	switch (scb_data->init_level) {
6500	default:
6501	case 7:
6502	{
6503		struct map_node *sns_map;
6504
6505		while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) {
6506			SLIST_REMOVE_HEAD(&scb_data->sense_maps, links);
6507			ahd_dmamap_unload(ahd, scb_data->sense_dmat,
6508					  sns_map->dmamap);
6509			ahd_dmamem_free(ahd, scb_data->sense_dmat,
6510					sns_map->vaddr, sns_map->dmamap);
6511			kfree(sns_map);
6512		}
6513		ahd_dma_tag_destroy(ahd, scb_data->sense_dmat);
6514	}
6515		fallthrough;
6516	case 6:
6517	{
6518		struct map_node *sg_map;
6519
6520		while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) {
6521			SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
6522			ahd_dmamap_unload(ahd, scb_data->sg_dmat,
6523					  sg_map->dmamap);
6524			ahd_dmamem_free(ahd, scb_data->sg_dmat,
6525					sg_map->vaddr, sg_map->dmamap);
6526			kfree(sg_map);
6527		}
6528		ahd_dma_tag_destroy(ahd, scb_data->sg_dmat);
6529	}
6530		fallthrough;
6531	case 5:
6532	{
6533		struct map_node *hscb_map;
6534
6535		while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) {
6536			SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links);
6537			ahd_dmamap_unload(ahd, scb_data->hscb_dmat,
6538					  hscb_map->dmamap);
6539			ahd_dmamem_free(ahd, scb_data->hscb_dmat,
6540					hscb_map->vaddr, hscb_map->dmamap);
6541			kfree(hscb_map);
6542		}
6543		ahd_dma_tag_destroy(ahd, scb_data->hscb_dmat);
6544	}
6545		fallthrough;
6546	case 4:
6547	case 3:
6548	case 2:
6549	case 1:
6550	case 0:
6551		break;
6552	}
6553}
6554
6555/*
6556 * DSP filter Bypass must be enabled until the first selection
6557 * after a change in bus mode (Razor #491 and #493).
6558 */
6559static void
6560ahd_setup_iocell_workaround(struct ahd_softc *ahd)
6561{
6562	ahd_mode_state saved_modes;
6563
6564	saved_modes = ahd_save_modes(ahd);
6565	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6566	ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL)
6567	       | BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS);
6568	ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI));
6569#ifdef AHD_DEBUG
6570	if ((ahd_debug & AHD_SHOW_MISC) != 0)
6571		printk("%s: Setting up iocell workaround\n", ahd_name(ahd));
6572#endif
6573	ahd_restore_modes(ahd, saved_modes);
6574	ahd->flags &= ~AHD_HAD_FIRST_SEL;
6575}
6576
6577static void
6578ahd_iocell_first_selection(struct ahd_softc *ahd)
6579{
6580	ahd_mode_state	saved_modes;
6581	u_int		sblkctl;
6582
6583	if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0)
6584		return;
6585	saved_modes = ahd_save_modes(ahd);
6586	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6587	sblkctl = ahd_inb(ahd, SBLKCTL);
6588	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6589#ifdef AHD_DEBUG
6590	if ((ahd_debug & AHD_SHOW_MISC) != 0)
6591		printk("%s: iocell first selection\n", ahd_name(ahd));
6592#endif
6593	if ((sblkctl & ENAB40) != 0) {
6594		ahd_outb(ahd, DSPDATACTL,
6595			 ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB);
6596#ifdef AHD_DEBUG
6597		if ((ahd_debug & AHD_SHOW_MISC) != 0)
6598			printk("%s: BYPASS now disabled\n", ahd_name(ahd));
6599#endif
6600	}
6601	ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI));
6602	ahd_outb(ahd, CLRINT, CLRSCSIINT);
6603	ahd_restore_modes(ahd, saved_modes);
6604	ahd->flags |= AHD_HAD_FIRST_SEL;
6605}
6606
6607/*************************** SCB Management ***********************************/
6608static void
6609ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx)
6610{
6611	struct	scb_list *free_list;
6612	struct	scb_tailq *free_tailq;
6613	struct	scb *first_scb;
6614
6615	scb->flags |= SCB_ON_COL_LIST;
6616	AHD_SET_SCB_COL_IDX(scb, col_idx);
6617	free_list = &ahd->scb_data.free_scb_lists[col_idx];
6618	free_tailq = &ahd->scb_data.free_scbs;
6619	first_scb = LIST_FIRST(free_list);
6620	if (first_scb != NULL) {
6621		LIST_INSERT_AFTER(first_scb, scb, collision_links);
6622	} else {
6623		LIST_INSERT_HEAD(free_list, scb, collision_links);
6624		TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe);
6625	}
6626}
6627
6628static void
6629ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb)
6630{
6631	struct	scb_list *free_list;
6632	struct	scb_tailq *free_tailq;
6633	struct	scb *first_scb;
6634	u_int	col_idx;
6635
6636	scb->flags &= ~SCB_ON_COL_LIST;
6637	col_idx = AHD_GET_SCB_COL_IDX(ahd, scb);
6638	free_list = &ahd->scb_data.free_scb_lists[col_idx];
6639	free_tailq = &ahd->scb_data.free_scbs;
6640	first_scb = LIST_FIRST(free_list);
6641	if (first_scb == scb) {
6642		struct scb *next_scb;
6643
6644		/*
6645		 * Maintain order in the collision free
6646		 * lists for fairness if this device has
6647		 * other colliding tags active.
6648		 */
6649		next_scb = LIST_NEXT(scb, collision_links);
6650		if (next_scb != NULL) {
6651			TAILQ_INSERT_AFTER(free_tailq, scb,
6652					   next_scb, links.tqe);
6653		}
6654		TAILQ_REMOVE(free_tailq, scb, links.tqe);
6655	}
6656	LIST_REMOVE(scb, collision_links);
6657}
6658
6659/*
6660 * Get a free scb. If there are none, see if we can allocate a new SCB.
6661 */
6662struct scb *
6663ahd_get_scb(struct ahd_softc *ahd, u_int col_idx)
6664{
6665	struct scb *scb;
6666	int tries;
6667
6668	tries = 0;
6669look_again:
6670	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6671		if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) {
6672			ahd_rem_col_list(ahd, scb);
6673			goto found;
6674		}
6675	}
6676	if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) {
6677
6678		if (tries++ != 0)
6679			return (NULL);
6680		ahd_alloc_scbs(ahd);
6681		goto look_again;
6682	}
6683	LIST_REMOVE(scb, links.le);
6684	if (col_idx != AHD_NEVER_COL_IDX
6685	 && (scb->col_scb != NULL)
6686	 && (scb->col_scb->flags & SCB_ACTIVE) == 0) {
6687		LIST_REMOVE(scb->col_scb, links.le);
6688		ahd_add_col_list(ahd, scb->col_scb, col_idx);
6689	}
6690found:
6691	scb->flags |= SCB_ACTIVE;
6692	return (scb);
6693}
6694
6695/*
6696 * Return an SCB resource to the free list.
6697 */
6698void
6699ahd_free_scb(struct ahd_softc *ahd, struct scb *scb)
6700{
6701	/* Clean up for the next user */
6702	scb->flags = SCB_FLAG_NONE;
6703	scb->hscb->control = 0;
6704	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL;
6705
6706	if (scb->col_scb == NULL) {
6707
6708		/*
6709		 * No collision possible.  Just free normally.
6710		 */
6711		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6712				 scb, links.le);
6713	} else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) {
6714
6715		/*
6716		 * The SCB we might have collided with is on
6717		 * a free collision list.  Put both SCBs on
6718		 * the generic list.
6719		 */
6720		ahd_rem_col_list(ahd, scb->col_scb);
6721		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6722				 scb, links.le);
6723		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6724				 scb->col_scb, links.le);
6725	} else if ((scb->col_scb->flags
6726		  & (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE
6727		&& (scb->col_scb->hscb->control & TAG_ENB) != 0) {
6728
6729		/*
6730		 * The SCB we might collide with on the next allocation
6731		 * is still active in a non-packetized, tagged, context.
6732		 * Put us on the SCB collision list.
6733		 */
6734		ahd_add_col_list(ahd, scb,
6735				 AHD_GET_SCB_COL_IDX(ahd, scb->col_scb));
6736	} else {
6737		/*
6738		 * The SCB we might collide with on the next allocation
6739		 * is either active in a packetized context, or free.
6740		 * Since we can't collide, put this SCB on the generic
6741		 * free list.
6742		 */
6743		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6744				 scb, links.le);
6745	}
6746
6747	ahd_platform_scb_free(ahd, scb);
6748}
6749
6750static void
6751ahd_alloc_scbs(struct ahd_softc *ahd)
6752{
6753	struct scb_data *scb_data;
6754	struct scb	*next_scb;
6755	struct hardware_scb *hscb;
6756	struct map_node *hscb_map;
6757	struct map_node *sg_map;
6758	struct map_node *sense_map;
6759	uint8_t		*segs;
6760	uint8_t		*sense_data;
6761	dma_addr_t	 hscb_busaddr;
6762	dma_addr_t	 sg_busaddr;
6763	dma_addr_t	 sense_busaddr;
6764	int		 newcount;
6765	int		 i;
6766
6767	scb_data = &ahd->scb_data;
6768	if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC)
6769		/* Can't allocate any more */
6770		return;
6771
6772	if (scb_data->scbs_left != 0) {
6773		int offset;
6774
6775		offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left;
6776		hscb_map = SLIST_FIRST(&scb_data->hscb_maps);
6777		hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset];
6778		hscb_busaddr = hscb_map->physaddr + (offset * sizeof(*hscb));
6779	} else {
6780		hscb_map = kmalloc(sizeof(*hscb_map), GFP_ATOMIC);
6781
6782		if (hscb_map == NULL)
6783			return;
6784
6785		/* Allocate the next batch of hardware SCBs */
6786		if (ahd_dmamem_alloc(ahd, scb_data->hscb_dmat,
6787				     (void **)&hscb_map->vaddr,
6788				     BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) {
6789			kfree(hscb_map);
6790			return;
6791		}
6792
6793		SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links);
6794
6795		ahd_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap,
6796				hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6797				&hscb_map->physaddr, /*flags*/0);
6798
6799		hscb = (struct hardware_scb *)hscb_map->vaddr;
6800		hscb_busaddr = hscb_map->physaddr;
6801		scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb);
6802	}
6803
6804	if (scb_data->sgs_left != 0) {
6805		int offset;
6806
6807		offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd))
6808		       - scb_data->sgs_left) * ahd_sglist_size(ahd);
6809		sg_map = SLIST_FIRST(&scb_data->sg_maps);
6810		segs = sg_map->vaddr + offset;
6811		sg_busaddr = sg_map->physaddr + offset;
6812	} else {
6813		sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC);
6814
6815		if (sg_map == NULL)
6816			return;
6817
6818		/* Allocate the next batch of S/G lists */
6819		if (ahd_dmamem_alloc(ahd, scb_data->sg_dmat,
6820				     (void **)&sg_map->vaddr,
6821				     BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) {
6822			kfree(sg_map);
6823			return;
6824		}
6825
6826		SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
6827
6828		ahd_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap,
6829				sg_map->vaddr, ahd_sglist_allocsize(ahd),
6830				ahd_dmamap_cb, &sg_map->physaddr, /*flags*/0);
6831
6832		segs = sg_map->vaddr;
6833		sg_busaddr = sg_map->physaddr;
6834		scb_data->sgs_left =
6835		    ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd);
6836#ifdef AHD_DEBUG
6837		if (ahd_debug & AHD_SHOW_MEMORY)
6838			printk("Mapped SG data\n");
6839#endif
6840	}
6841
6842	if (scb_data->sense_left != 0) {
6843		int offset;
6844
6845		offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left);
6846		sense_map = SLIST_FIRST(&scb_data->sense_maps);
6847		sense_data = sense_map->vaddr + offset;
6848		sense_busaddr = sense_map->physaddr + offset;
6849	} else {
6850		sense_map = kmalloc(sizeof(*sense_map), GFP_ATOMIC);
6851
6852		if (sense_map == NULL)
6853			return;
6854
6855		/* Allocate the next batch of sense buffers */
6856		if (ahd_dmamem_alloc(ahd, scb_data->sense_dmat,
6857				     (void **)&sense_map->vaddr,
6858				     BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) {
6859			kfree(sense_map);
6860			return;
6861		}
6862
6863		SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links);
6864
6865		ahd_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap,
6866				sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6867				&sense_map->physaddr, /*flags*/0);
6868
6869		sense_data = sense_map->vaddr;
6870		sense_busaddr = sense_map->physaddr;
6871		scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE;
6872#ifdef AHD_DEBUG
6873		if (ahd_debug & AHD_SHOW_MEMORY)
6874			printk("Mapped sense data\n");
6875#endif
6876	}
6877
6878	newcount = min(scb_data->sense_left, scb_data->scbs_left);
6879	newcount = min(newcount, scb_data->sgs_left);
6880	newcount = min(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs));
6881	for (i = 0; i < newcount; i++) {
6882		struct scb_platform_data *pdata;
6883		u_int col_tag;
6884
6885		next_scb = kmalloc(sizeof(*next_scb), GFP_ATOMIC);
6886		if (next_scb == NULL)
6887			break;
6888
6889		pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC);
6890		if (pdata == NULL) {
6891			kfree(next_scb);
6892			break;
6893		}
6894		next_scb->platform_data = pdata;
6895		next_scb->hscb_map = hscb_map;
6896		next_scb->sg_map = sg_map;
6897		next_scb->sense_map = sense_map;
6898		next_scb->sg_list = segs;
6899		next_scb->sense_data = sense_data;
6900		next_scb->sense_busaddr = sense_busaddr;
6901		memset(hscb, 0, sizeof(*hscb));
6902		next_scb->hscb = hscb;
6903		hscb->hscb_busaddr = ahd_htole32(hscb_busaddr);
6904
6905		/*
6906		 * The sequencer always starts with the second entry.
6907		 * The first entry is embedded in the scb.
6908		 */
6909		next_scb->sg_list_busaddr = sg_busaddr;
6910		if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
6911			next_scb->sg_list_busaddr
6912			    += sizeof(struct ahd_dma64_seg);
6913		else
6914			next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg);
6915		next_scb->ahd_softc = ahd;
6916		next_scb->flags = SCB_FLAG_NONE;
6917		next_scb->hscb->tag = ahd_htole16(scb_data->numscbs);
6918		col_tag = scb_data->numscbs ^ 0x100;
6919		next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag);
6920		if (next_scb->col_scb != NULL)
6921			next_scb->col_scb->col_scb = next_scb;
6922		ahd_free_scb(ahd, next_scb);
6923		hscb++;
6924		hscb_busaddr += sizeof(*hscb);
6925		segs += ahd_sglist_size(ahd);
6926		sg_busaddr += ahd_sglist_size(ahd);
6927		sense_data += AHD_SENSE_BUFSIZE;
6928		sense_busaddr += AHD_SENSE_BUFSIZE;
6929		scb_data->numscbs++;
6930		scb_data->sense_left--;
6931		scb_data->scbs_left--;
6932		scb_data->sgs_left--;
6933	}
6934}
6935
6936void
6937ahd_controller_info(struct ahd_softc *ahd, char *buf)
6938{
6939	const char *speed;
6940	const char *type;
6941	int len;
6942
6943	len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]);
6944	buf += len;
6945
6946	speed = "Ultra320 ";
6947	if ((ahd->features & AHD_WIDE) != 0) {
6948		type = "Wide ";
6949	} else {
6950		type = "Single ";
6951	}
6952	len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ",
6953		      speed, type, ahd->channel, ahd->our_id);
6954	buf += len;
6955
6956	sprintf(buf, "%s, %d SCBs", ahd->bus_description,
6957		ahd->scb_data.maxhscbs);
6958}
6959
6960static const char *channel_strings[] = {
6961	"Primary Low",
6962	"Primary High",
6963	"Secondary Low",
6964	"Secondary High"
6965};
6966
6967static const char *termstat_strings[] = {
6968	"Terminated Correctly",
6969	"Over Terminated",
6970	"Under Terminated",
6971	"Not Configured"
6972};
6973
6974/***************************** Timer Facilities *******************************/
6975static void
6976ahd_timer_reset(struct timer_list *timer, int usec)
6977{
6978	del_timer(timer);
6979	timer->expires = jiffies + (usec * HZ)/1000000;
6980	add_timer(timer);
6981}
6982
6983/*
6984 * Start the board, ready for normal operation
6985 */
6986int
6987ahd_init(struct ahd_softc *ahd)
6988{
6989	uint8_t		*next_vaddr;
6990	dma_addr_t	 next_baddr;
6991	size_t		 driver_data_size;
6992	int		 i;
6993	int		 error;
6994	u_int		 warn_user;
6995	uint8_t		 current_sensing;
6996	uint8_t		 fstat;
6997
6998	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
6999
7000	ahd->stack_size = ahd_probe_stack_size(ahd);
7001	ahd->saved_stack = kmalloc_array(ahd->stack_size, sizeof(uint16_t),
7002					 GFP_ATOMIC);
7003	if (ahd->saved_stack == NULL)
7004		return (ENOMEM);
7005
7006	/*
7007	 * Verify that the compiler hasn't over-aggressively
7008	 * padded important structures.
7009	 */
7010	if (sizeof(struct hardware_scb) != 64)
7011		panic("Hardware SCB size is incorrect");
7012
7013#ifdef AHD_DEBUG
7014	if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0)
7015		ahd->flags |= AHD_SEQUENCER_DEBUG;
7016#endif
7017
7018	/*
7019	 * Default to allowing initiator operations.
7020	 */
7021	ahd->flags |= AHD_INITIATORROLE;
7022
7023	/*
7024	 * Only allow target mode features if this unit has them enabled.
7025	 */
7026	if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0)
7027		ahd->features &= ~AHD_TARGETMODE;
7028
7029	ahd->init_level++;
7030
7031	/*
7032	 * DMA tag for our command fifos and other data in system memory
7033	 * the card's sequencer must be able to access.  For initiator
7034	 * roles, we need to allocate space for the qoutfifo.  When providing
7035	 * for the target mode role, we must additionally provide space for
7036	 * the incoming target command fifo.
7037	 */
7038	driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo)
7039			 + sizeof(struct hardware_scb);
7040	if ((ahd->features & AHD_TARGETMODE) != 0)
7041		driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7042	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0)
7043		driver_data_size += PKT_OVERRUN_BUFSIZE;
7044	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
7045			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
7046			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
7047			       /*highaddr*/BUS_SPACE_MAXADDR,
7048			       /*filter*/NULL, /*filterarg*/NULL,
7049			       driver_data_size,
7050			       /*nsegments*/1,
7051			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
7052			       /*flags*/0, &ahd->shared_data_dmat) != 0) {
7053		return (ENOMEM);
7054	}
7055
7056	ahd->init_level++;
7057
7058	/* Allocation of driver data */
7059	if (ahd_dmamem_alloc(ahd, ahd->shared_data_dmat,
7060			     (void **)&ahd->shared_data_map.vaddr,
7061			     BUS_DMA_NOWAIT,
7062			     &ahd->shared_data_map.dmamap) != 0) {
7063		return (ENOMEM);
7064	}
7065
7066	ahd->init_level++;
7067
7068	/* And permanently map it in */
7069	ahd_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
7070			ahd->shared_data_map.vaddr, driver_data_size,
7071			ahd_dmamap_cb, &ahd->shared_data_map.physaddr,
7072			/*flags*/0);
7073	ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr;
7074	next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE];
7075	next_baddr = ahd->shared_data_map.physaddr
7076		   + AHD_QOUT_SIZE*sizeof(struct ahd_completion);
7077	if ((ahd->features & AHD_TARGETMODE) != 0) {
7078		ahd->targetcmds = (struct target_cmd *)next_vaddr;
7079		next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7080		next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7081	}
7082
7083	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
7084		ahd->overrun_buf = next_vaddr;
7085		next_vaddr += PKT_OVERRUN_BUFSIZE;
7086		next_baddr += PKT_OVERRUN_BUFSIZE;
7087	}
7088
7089	/*
7090	 * We need one SCB to serve as the "next SCB".  Since the
7091	 * tag identifier in this SCB will never be used, there is
7092	 * no point in using a valid HSCB tag from an SCB pulled from
7093	 * the standard free pool.  So, we allocate this "sentinel"
7094	 * specially from the DMA safe memory chunk used for the QOUTFIFO.
7095	 */
7096	ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr;
7097	ahd->next_queued_hscb_map = &ahd->shared_data_map;
7098	ahd->next_queued_hscb->hscb_busaddr = ahd_htole32(next_baddr);
7099
7100	ahd->init_level++;
7101
7102	/* Allocate SCB data now that buffer_dmat is initialized */
7103	if (ahd_init_scbdata(ahd) != 0)
7104		return (ENOMEM);
7105
7106	if ((ahd->flags & AHD_INITIATORROLE) == 0)
7107		ahd->flags &= ~AHD_RESET_BUS_A;
7108
7109	/*
7110	 * Before committing these settings to the chip, give
7111	 * the OSM one last chance to modify our configuration.
7112	 */
7113	ahd_platform_init(ahd);
7114
7115	/* Bring up the chip. */
7116	ahd_chip_init(ahd);
7117
7118	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7119
7120	if ((ahd->flags & AHD_CURRENT_SENSING) == 0)
7121		goto init_done;
7122
7123	/*
7124	 * Verify termination based on current draw and
7125	 * warn user if the bus is over/under terminated.
7126	 */
7127	error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL,
7128				   CURSENSE_ENB);
7129	if (error != 0) {
7130		printk("%s: current sensing timeout 1\n", ahd_name(ahd));
7131		goto init_done;
7132	}
7133	for (i = 20, fstat = FLX_FSTAT_BUSY;
7134	     (fstat & FLX_FSTAT_BUSY) != 0 && i; i--) {
7135		error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat);
7136		if (error != 0) {
7137			printk("%s: current sensing timeout 2\n",
7138			       ahd_name(ahd));
7139			goto init_done;
7140		}
7141	}
7142	if (i == 0) {
7143		printk("%s: Timedout during current-sensing test\n",
7144		       ahd_name(ahd));
7145		goto init_done;
7146	}
7147
7148	/* Latch Current Sensing status. */
7149	error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, &current_sensing);
7150	if (error != 0) {
7151		printk("%s: current sensing timeout 3\n", ahd_name(ahd));
7152		goto init_done;
7153	}
7154
7155	/* Diable current sensing. */
7156	ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
7157
7158#ifdef AHD_DEBUG
7159	if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) {
7160		printk("%s: current_sensing == 0x%x\n",
7161		       ahd_name(ahd), current_sensing);
7162	}
7163#endif
7164	warn_user = 0;
7165	for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) {
7166		u_int term_stat;
7167
7168		term_stat = (current_sensing & FLX_CSTAT_MASK);
7169		switch (term_stat) {
7170		case FLX_CSTAT_OVER:
7171		case FLX_CSTAT_UNDER:
7172			warn_user++;
7173			fallthrough;
7174		case FLX_CSTAT_INVALID:
7175		case FLX_CSTAT_OKAY:
7176			if (warn_user == 0 && bootverbose == 0)
7177				break;
7178			printk("%s: %s Channel %s\n", ahd_name(ahd),
7179			       channel_strings[i], termstat_strings[term_stat]);
7180			break;
7181		}
7182	}
7183	if (warn_user) {
7184		printk("%s: WARNING. Termination is not configured correctly.\n"
7185		       "%s: WARNING. SCSI bus operations may FAIL.\n",
7186		       ahd_name(ahd), ahd_name(ahd));
7187	}
7188init_done:
7189	ahd_restart(ahd);
7190	ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
7191	return (0);
7192}
7193
7194/*
7195 * (Re)initialize chip state after a chip reset.
7196 */
7197static void
7198ahd_chip_init(struct ahd_softc *ahd)
7199{
7200	uint32_t busaddr;
7201	u_int	 sxfrctl1;
7202	u_int	 scsiseq_template;
7203	u_int	 wait;
7204	u_int	 i;
7205	u_int	 target;
7206
7207	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7208	/*
7209	 * Take the LED out of diagnostic mode
7210	 */
7211	ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON));
7212
7213	/*
7214	 * Return HS_MAILBOX to its default value.
7215	 */
7216	ahd->hs_mailbox = 0;
7217	ahd_outb(ahd, HS_MAILBOX, 0);
7218
7219	/* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */
7220	ahd_outb(ahd, IOWNID, ahd->our_id);
7221	ahd_outb(ahd, TOWNID, ahd->our_id);
7222	sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0;
7223	sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0;
7224	if ((ahd->bugs & AHD_LONG_SETIMO_BUG)
7225	 && (ahd->seltime != STIMESEL_MIN)) {
7226		/*
7227		 * The selection timer duration is twice as long
7228		 * as it should be.  Halve it by adding "1" to
7229		 * the user specified setting.
7230		 */
7231		sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ;
7232	} else {
7233		sxfrctl1 |= ahd->seltime;
7234	}
7235
7236	ahd_outb(ahd, SXFRCTL0, DFON);
7237	ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN);
7238	ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
7239
7240	/*
7241	 * Now that termination is set, wait for up
7242	 * to 500ms for our transceivers to settle.  If
7243	 * the adapter does not have a cable attached,
7244	 * the transceivers may never settle, so don't
7245	 * complain if we fail here.
7246	 */
7247	for (wait = 10000;
7248	     (ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
7249	     wait--)
7250		ahd_delay(100);
7251
7252	/* Clear any false bus resets due to the transceivers settling */
7253	ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
7254	ahd_outb(ahd, CLRINT, CLRSCSIINT);
7255
7256	/* Initialize mode specific S/G state. */
7257	for (i = 0; i < 2; i++) {
7258		ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
7259		ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
7260		ahd_outb(ahd, SG_STATE, 0);
7261		ahd_outb(ahd, CLRSEQINTSRC, 0xFF);
7262		ahd_outb(ahd, SEQIMODE,
7263			 ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT
7264			|ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD);
7265	}
7266
7267	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
7268	ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN);
7269	ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75);
7270	ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN);
7271	ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR);
7272	if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
7273		ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE);
7274	} else {
7275		ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE);
7276	}
7277	ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS);
7278	if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX)
7279		/*
7280		 * Do not issue a target abort when a split completion
7281		 * error occurs.  Let our PCIX interrupt handler deal
7282		 * with it instead. H2A4 Razor #625
7283		 */
7284		ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS);
7285
7286	if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0)
7287		ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER);
7288
7289	/*
7290	 * Tweak IOCELL settings.
7291	 */
7292	if ((ahd->flags & AHD_HP_BOARD) != 0) {
7293		for (i = 0; i < NUMDSPS; i++) {
7294			ahd_outb(ahd, DSPSELECT, i);
7295			ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT);
7296		}
7297#ifdef AHD_DEBUG
7298		if ((ahd_debug & AHD_SHOW_MISC) != 0)
7299			printk("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd),
7300			       WRTBIASCTL_HP_DEFAULT);
7301#endif
7302	}
7303	ahd_setup_iocell_workaround(ahd);
7304
7305	/*
7306	 * Enable LQI Manager interrupts.
7307	 */
7308	ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT
7309			      | ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI
7310			      | ENLQIOVERI_LQ|ENLQIOVERI_NLQ);
7311	ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC);
7312	/*
7313	 * We choose to have the sequencer catch LQOPHCHGINPKT errors
7314	 * manually for the command phase at the start of a packetized
7315	 * selection case.  ENLQOBUSFREE should be made redundant by
7316	 * the BUSFREE interrupt, but it seems that some LQOBUSFREE
7317	 * events fail to assert the BUSFREE interrupt so we must
7318	 * also enable LQOBUSFREE interrupts.
7319	 */
7320	ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE);
7321
7322	/*
7323	 * Setup sequencer interrupt handlers.
7324	 */
7325	ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr));
7326	ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr));
7327
7328	/*
7329	 * Setup SCB Offset registers.
7330	 */
7331	if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7332		ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb,
7333			 pkt_long_lun));
7334	} else {
7335		ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun));
7336	}
7337	ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len));
7338	ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute));
7339	ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management));
7340	ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb,
7341				       shared_data.idata.cdb));
7342	ahd_outb(ahd, QNEXTPTR,
7343		 offsetof(struct hardware_scb, next_hscb_busaddr));
7344	ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET);
7345	ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control));
7346	if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7347		ahd_outb(ahd, LUNLEN,
7348			 sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1);
7349	} else {
7350		ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN);
7351	}
7352	ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1);
7353	ahd_outb(ahd, MAXCMD, 0xFF);
7354	ahd_outb(ahd, SCBAUTOPTR,
7355		 AUSCBPTR_EN | offsetof(struct hardware_scb, tag));
7356
7357	/* We haven't been enabled for target mode yet. */
7358	ahd_outb(ahd, MULTARGID, 0);
7359	ahd_outb(ahd, MULTARGID + 1, 0);
7360
7361	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7362	/* Initialize the negotiation table. */
7363	if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) {
7364		/*
7365		 * Clear the spare bytes in the neg table to avoid
7366		 * spurious parity errors.
7367		 */
7368		for (target = 0; target < AHD_NUM_TARGETS; target++) {
7369			ahd_outb(ahd, NEGOADDR, target);
7370			ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0);
7371			for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++)
7372				ahd_outb(ahd, ANNEXDAT, 0);
7373		}
7374	}
7375	for (target = 0; target < AHD_NUM_TARGETS; target++) {
7376		struct	 ahd_devinfo devinfo;
7377		struct	 ahd_initiator_tinfo *tinfo;
7378		struct	 ahd_tmode_tstate *tstate;
7379
7380		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7381					    target, &tstate);
7382		ahd_compile_devinfo(&devinfo, ahd->our_id,
7383				    target, CAM_LUN_WILDCARD,
7384				    'A', ROLE_INITIATOR);
7385		ahd_update_neg_table(ahd, &devinfo, &tinfo->curr);
7386	}
7387
7388	ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR);
7389	ahd_outb(ahd, CLRINT, CLRSCSIINT);
7390
7391#ifdef NEEDS_MORE_TESTING
7392	/*
7393	 * Always enable abort on incoming L_Qs if this feature is
7394	 * supported.  We use this to catch invalid SCB references.
7395	 */
7396	if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0)
7397		ahd_outb(ahd, LQCTL1, ABORTPENDING);
7398	else
7399#endif
7400		ahd_outb(ahd, LQCTL1, 0);
7401
7402	/* All of our queues are empty */
7403	ahd->qoutfifonext = 0;
7404	ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID;
7405	ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID);
7406	for (i = 0; i < AHD_QOUT_SIZE; i++)
7407		ahd->qoutfifo[i].valid_tag = 0;
7408	ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD);
7409
7410	ahd->qinfifonext = 0;
7411	for (i = 0; i < AHD_QIN_SIZE; i++)
7412		ahd->qinfifo[i] = SCB_LIST_NULL;
7413
7414	if ((ahd->features & AHD_TARGETMODE) != 0) {
7415		/* All target command blocks start out invalid. */
7416		for (i = 0; i < AHD_TMODE_CMDS; i++)
7417			ahd->targetcmds[i].cmd_valid = 0;
7418		ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD);
7419		ahd->tqinfifonext = 1;
7420		ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1);
7421		ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
7422	}
7423
7424	/* Initialize Scratch Ram. */
7425	ahd_outb(ahd, SEQ_FLAGS, 0);
7426	ahd_outb(ahd, SEQ_FLAGS2, 0);
7427
7428	/* We don't have any waiting selections */
7429	ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL);
7430	ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL);
7431	ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL);
7432	ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF);
7433	for (i = 0; i < AHD_NUM_TARGETS; i++)
7434		ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL);
7435
7436	/*
7437	 * Nobody is waiting to be DMAed into the QOUTFIFO.
7438	 */
7439	ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
7440	ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL);
7441	ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
7442	ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
7443	ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
7444
7445	/*
7446	 * The Freeze Count is 0.
7447	 */
7448	ahd->qfreeze_cnt = 0;
7449	ahd_outw(ahd, QFREEZE_COUNT, 0);
7450	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0);
7451
7452	/*
7453	 * Tell the sequencer where it can find our arrays in memory.
7454	 */
7455	busaddr = ahd->shared_data_map.physaddr;
7456	ahd_outl(ahd, SHARED_DATA_ADDR, busaddr);
7457	ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr);
7458
7459	/*
7460	 * Setup the allowed SCSI Sequences based on operational mode.
7461	 * If we are a target, we'll enable select in operations once
7462	 * we've had a lun enabled.
7463	 */
7464	scsiseq_template = ENAUTOATNP;
7465	if ((ahd->flags & AHD_INITIATORROLE) != 0)
7466		scsiseq_template |= ENRSELI;
7467	ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template);
7468
7469	/* There are no busy SCBs yet. */
7470	for (target = 0; target < AHD_NUM_TARGETS; target++) {
7471		int lun;
7472
7473		for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++)
7474			ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun));
7475	}
7476
7477	/*
7478	 * Initialize the group code to command length table.
7479	 * Vendor Unique codes are set to 0 so we only capture
7480	 * the first byte of the cdb.  These can be overridden
7481	 * when target mode is enabled.
7482	 */
7483	ahd_outb(ahd, CMDSIZE_TABLE, 5);
7484	ahd_outb(ahd, CMDSIZE_TABLE + 1, 9);
7485	ahd_outb(ahd, CMDSIZE_TABLE + 2, 9);
7486	ahd_outb(ahd, CMDSIZE_TABLE + 3, 0);
7487	ahd_outb(ahd, CMDSIZE_TABLE + 4, 15);
7488	ahd_outb(ahd, CMDSIZE_TABLE + 5, 11);
7489	ahd_outb(ahd, CMDSIZE_TABLE + 6, 0);
7490	ahd_outb(ahd, CMDSIZE_TABLE + 7, 0);
7491
7492	/* Tell the sequencer of our initial queue positions */
7493	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
7494	ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512);
7495	ahd->qinfifonext = 0;
7496	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
7497	ahd_set_hescb_qoff(ahd, 0);
7498	ahd_set_snscb_qoff(ahd, 0);
7499	ahd_set_sescb_qoff(ahd, 0);
7500	ahd_set_sdscb_qoff(ahd, 0);
7501
7502	/*
7503	 * Tell the sequencer which SCB will be the next one it receives.
7504	 */
7505	busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
7506	ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
7507
7508	/*
7509	 * Default to coalescing disabled.
7510	 */
7511	ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0);
7512	ahd_outw(ahd, CMDS_PENDING, 0);
7513	ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer,
7514				     ahd->int_coalescing_maxcmds,
7515				     ahd->int_coalescing_mincmds);
7516	ahd_enable_coalescing(ahd, FALSE);
7517
7518	ahd_loadseq(ahd);
7519	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7520
7521	if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
7522		u_int negodat3 = ahd_inb(ahd, NEGCONOPTS);
7523
7524		negodat3 |= ENSLOWCRC;
7525		ahd_outb(ahd, NEGCONOPTS, negodat3);
7526		negodat3 = ahd_inb(ahd, NEGCONOPTS);
7527		if (!(negodat3 & ENSLOWCRC))
7528			printk("aic79xx: failed to set the SLOWCRC bit\n");
7529		else
7530			printk("aic79xx: SLOWCRC bit set\n");
7531	}
7532}
7533
7534/*
7535 * Setup default device and controller settings.
7536 * This should only be called if our probe has
7537 * determined that no configuration data is available.
7538 */
7539int
7540ahd_default_config(struct ahd_softc *ahd)
7541{
7542	int	targ;
7543
7544	ahd->our_id = 7;
7545
7546	/*
7547	 * Allocate a tstate to house information for our
7548	 * initiator presence on the bus as well as the user
7549	 * data for any target mode initiator.
7550	 */
7551	if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7552		printk("%s: unable to allocate ahd_tmode_tstate.  "
7553		       "Failing attach\n", ahd_name(ahd));
7554		return (ENOMEM);
7555	}
7556
7557	for (targ = 0; targ < AHD_NUM_TARGETS; targ++) {
7558		struct	 ahd_devinfo devinfo;
7559		struct	 ahd_initiator_tinfo *tinfo;
7560		struct	 ahd_tmode_tstate *tstate;
7561		uint16_t target_mask;
7562
7563		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7564					    targ, &tstate);
7565		/*
7566		 * We support SPC2 and SPI4.
7567		 */
7568		tinfo->user.protocol_version = 4;
7569		tinfo->user.transport_version = 4;
7570
7571		target_mask = 0x01 << targ;
7572		ahd->user_discenable |= target_mask;
7573		tstate->discenable |= target_mask;
7574		ahd->user_tagenable |= target_mask;
7575#ifdef AHD_FORCE_160
7576		tinfo->user.period = AHD_SYNCRATE_DT;
7577#else
7578		tinfo->user.period = AHD_SYNCRATE_160;
7579#endif
7580		tinfo->user.offset = MAX_OFFSET;
7581		tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM
7582					| MSG_EXT_PPR_WR_FLOW
7583					| MSG_EXT_PPR_HOLD_MCS
7584					| MSG_EXT_PPR_IU_REQ
7585					| MSG_EXT_PPR_QAS_REQ
7586					| MSG_EXT_PPR_DT_REQ;
7587		if ((ahd->features & AHD_RTI) != 0)
7588			tinfo->user.ppr_options |= MSG_EXT_PPR_RTI;
7589
7590		tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
7591
7592		/*
7593		 * Start out Async/Narrow/Untagged and with
7594		 * conservative protocol support.
7595		 */
7596		tinfo->goal.protocol_version = 2;
7597		tinfo->goal.transport_version = 2;
7598		tinfo->curr.protocol_version = 2;
7599		tinfo->curr.transport_version = 2;
7600		ahd_compile_devinfo(&devinfo, ahd->our_id,
7601				    targ, CAM_LUN_WILDCARD,
7602				    'A', ROLE_INITIATOR);
7603		tstate->tagenable &= ~target_mask;
7604		ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7605			      AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7606		ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7607				 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7608				 /*paused*/TRUE);
7609	}
7610	return (0);
7611}
7612
7613/*
7614 * Parse device configuration information.
7615 */
7616int
7617ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc)
7618{
7619	int targ;
7620	int max_targ;
7621
7622	max_targ = sc->max_targets & CFMAXTARG;
7623	ahd->our_id = sc->brtime_id & CFSCSIID;
7624
7625	/*
7626	 * Allocate a tstate to house information for our
7627	 * initiator presence on the bus as well as the user
7628	 * data for any target mode initiator.
7629	 */
7630	if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7631		printk("%s: unable to allocate ahd_tmode_tstate.  "
7632		       "Failing attach\n", ahd_name(ahd));
7633		return (ENOMEM);
7634	}
7635
7636	for (targ = 0; targ < max_targ; targ++) {
7637		struct	 ahd_devinfo devinfo;
7638		struct	 ahd_initiator_tinfo *tinfo;
7639		struct	 ahd_transinfo *user_tinfo;
7640		struct	 ahd_tmode_tstate *tstate;
7641		uint16_t target_mask;
7642
7643		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7644					    targ, &tstate);
7645		user_tinfo = &tinfo->user;
7646
7647		/*
7648		 * We support SPC2 and SPI4.
7649		 */
7650		tinfo->user.protocol_version = 4;
7651		tinfo->user.transport_version = 4;
7652
7653		target_mask = 0x01 << targ;
7654		ahd->user_discenable &= ~target_mask;
7655		tstate->discenable &= ~target_mask;
7656		ahd->user_tagenable &= ~target_mask;
7657		if (sc->device_flags[targ] & CFDISC) {
7658			tstate->discenable |= target_mask;
7659			ahd->user_discenable |= target_mask;
7660			ahd->user_tagenable |= target_mask;
7661		} else {
7662			/*
7663			 * Cannot be packetized without disconnection.
7664			 */
7665			sc->device_flags[targ] &= ~CFPACKETIZED;
7666		}
7667
7668		user_tinfo->ppr_options = 0;
7669		user_tinfo->period = (sc->device_flags[targ] & CFXFER);
7670		if (user_tinfo->period < CFXFER_ASYNC) {
7671			if (user_tinfo->period <= AHD_PERIOD_10MHz)
7672				user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ;
7673			user_tinfo->offset = MAX_OFFSET;
7674		} else  {
7675			user_tinfo->offset = 0;
7676			user_tinfo->period = AHD_ASYNC_XFER_PERIOD;
7677		}
7678#ifdef AHD_FORCE_160
7679		if (user_tinfo->period <= AHD_SYNCRATE_160)
7680			user_tinfo->period = AHD_SYNCRATE_DT;
7681#endif
7682
7683		if ((sc->device_flags[targ] & CFPACKETIZED) != 0) {
7684			user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM
7685						|  MSG_EXT_PPR_WR_FLOW
7686						|  MSG_EXT_PPR_HOLD_MCS
7687						|  MSG_EXT_PPR_IU_REQ;
7688			if ((ahd->features & AHD_RTI) != 0)
7689				user_tinfo->ppr_options |= MSG_EXT_PPR_RTI;
7690		}
7691
7692		if ((sc->device_flags[targ] & CFQAS) != 0)
7693			user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ;
7694
7695		if ((sc->device_flags[targ] & CFWIDEB) != 0)
7696			user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT;
7697		else
7698			user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT;
7699#ifdef AHD_DEBUG
7700		if ((ahd_debug & AHD_SHOW_MISC) != 0)
7701			printk("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width,
7702			       user_tinfo->period, user_tinfo->offset,
7703			       user_tinfo->ppr_options);
7704#endif
7705		/*
7706		 * Start out Async/Narrow/Untagged and with
7707		 * conservative protocol support.
7708		 */
7709		tstate->tagenable &= ~target_mask;
7710		tinfo->goal.protocol_version = 2;
7711		tinfo->goal.transport_version = 2;
7712		tinfo->curr.protocol_version = 2;
7713		tinfo->curr.transport_version = 2;
7714		ahd_compile_devinfo(&devinfo, ahd->our_id,
7715				    targ, CAM_LUN_WILDCARD,
7716				    'A', ROLE_INITIATOR);
7717		ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7718			      AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7719		ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7720				 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7721				 /*paused*/TRUE);
7722	}
7723
7724	ahd->flags &= ~AHD_SPCHK_ENB_A;
7725	if (sc->bios_control & CFSPARITY)
7726		ahd->flags |= AHD_SPCHK_ENB_A;
7727
7728	ahd->flags &= ~AHD_RESET_BUS_A;
7729	if (sc->bios_control & CFRESETB)
7730		ahd->flags |= AHD_RESET_BUS_A;
7731
7732	ahd->flags &= ~AHD_EXTENDED_TRANS_A;
7733	if (sc->bios_control & CFEXTEND)
7734		ahd->flags |= AHD_EXTENDED_TRANS_A;
7735
7736	ahd->flags &= ~AHD_BIOS_ENABLED;
7737	if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED)
7738		ahd->flags |= AHD_BIOS_ENABLED;
7739
7740	ahd->flags &= ~AHD_STPWLEVEL_A;
7741	if ((sc->adapter_control & CFSTPWLEVEL) != 0)
7742		ahd->flags |= AHD_STPWLEVEL_A;
7743
7744	return (0);
7745}
7746
7747/*
7748 * Parse device configuration information.
7749 */
7750int
7751ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd)
7752{
7753	int error;
7754
7755	error = ahd_verify_vpd_cksum(vpd);
7756	if (error == 0)
7757		return (EINVAL);
7758	if ((vpd->bios_flags & VPDBOOTHOST) != 0)
7759		ahd->flags |= AHD_BOOT_CHANNEL;
7760	return (0);
7761}
7762
7763void
7764ahd_intr_enable(struct ahd_softc *ahd, int enable)
7765{
7766	u_int hcntrl;
7767
7768	hcntrl = ahd_inb(ahd, HCNTRL);
7769	hcntrl &= ~INTEN;
7770	ahd->pause &= ~INTEN;
7771	ahd->unpause &= ~INTEN;
7772	if (enable) {
7773		hcntrl |= INTEN;
7774		ahd->pause |= INTEN;
7775		ahd->unpause |= INTEN;
7776	}
7777	ahd_outb(ahd, HCNTRL, hcntrl);
7778}
7779
7780static void
7781ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds,
7782			     u_int mincmds)
7783{
7784	if (timer > AHD_TIMER_MAX_US)
7785		timer = AHD_TIMER_MAX_US;
7786	ahd->int_coalescing_timer = timer;
7787
7788	if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX)
7789		maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX;
7790	if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX)
7791		mincmds = AHD_INT_COALESCING_MINCMDS_MAX;
7792	ahd->int_coalescing_maxcmds = maxcmds;
7793	ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK);
7794	ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds);
7795	ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds);
7796}
7797
7798static void
7799ahd_enable_coalescing(struct ahd_softc *ahd, int enable)
7800{
7801
7802	ahd->hs_mailbox &= ~ENINT_COALESCE;
7803	if (enable)
7804		ahd->hs_mailbox |= ENINT_COALESCE;
7805	ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox);
7806	ahd_flush_device_writes(ahd);
7807	ahd_run_qoutfifo(ahd);
7808}
7809
7810/*
7811 * Ensure that the card is paused in a location
7812 * outside of all critical sections and that all
7813 * pending work is completed prior to returning.
7814 * This routine should only be called from outside
7815 * an interrupt context.
7816 */
7817void
7818ahd_pause_and_flushwork(struct ahd_softc *ahd)
7819{
7820	u_int intstat;
7821	u_int maxloops;
7822
7823	maxloops = 1000;
7824	ahd->flags |= AHD_ALL_INTERRUPTS;
7825	ahd_pause(ahd);
7826	/*
7827	 * Freeze the outgoing selections.  We do this only
7828	 * until we are safely paused without further selections
7829	 * pending.
7830	 */
7831	ahd->qfreeze_cnt--;
7832	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7833	ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN);
7834	do {
7835
7836		ahd_unpause(ahd);
7837		/*
7838		 * Give the sequencer some time to service
7839		 * any active selections.
7840		 */
7841		ahd_delay(500);
7842
7843		ahd_intr(ahd);
7844		ahd_pause(ahd);
7845		intstat = ahd_inb(ahd, INTSTAT);
7846		if ((intstat & INT_PEND) == 0) {
7847			ahd_clear_critical_section(ahd);
7848			intstat = ahd_inb(ahd, INTSTAT);
7849		}
7850	} while (--maxloops
7851	      && (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0)
7852	      && ((intstat & INT_PEND) != 0
7853	       || (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
7854	       || (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0));
7855
7856	if (maxloops == 0) {
7857		printk("Infinite interrupt loop, INTSTAT = %x",
7858		      ahd_inb(ahd, INTSTAT));
7859	}
7860	ahd->qfreeze_cnt++;
7861	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7862
7863	ahd_flush_qoutfifo(ahd);
7864
7865	ahd->flags &= ~AHD_ALL_INTERRUPTS;
7866}
7867
7868int __maybe_unused
7869ahd_suspend(struct ahd_softc *ahd)
7870{
7871	ahd_pause_and_flushwork(ahd);
7872
7873	if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
7874		ahd_unpause(ahd);
7875		return (EBUSY);
7876	}
7877	ahd_shutdown(ahd);
7878	return (0);
7879}
7880
7881void __maybe_unused
7882ahd_resume(struct ahd_softc *ahd)
7883{
7884	ahd_reset(ahd, /*reinit*/TRUE);
7885	ahd_intr_enable(ahd, TRUE);
7886	ahd_restart(ahd);
7887}
7888
7889/************************** Busy Target Table *********************************/
7890/*
7891 * Set SCBPTR to the SCB that contains the busy
7892 * table entry for TCL.  Return the offset into
7893 * the SCB that contains the entry for TCL.
7894 * saved_scbid is dereferenced and set to the
7895 * scbid that should be restored once manipualtion
7896 * of the TCL entry is complete.
7897 */
7898static inline u_int
7899ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl)
7900{
7901	/*
7902	 * Index to the SCB that contains the busy entry.
7903	 */
7904	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7905	*saved_scbid = ahd_get_scbptr(ahd);
7906	ahd_set_scbptr(ahd, TCL_LUN(tcl)
7907		     | ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4));
7908
7909	/*
7910	 * And now calculate the SCB offset to the entry.
7911	 * Each entry is 2 bytes wide, hence the
7912	 * multiplication by 2.
7913	 */
7914	return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS);
7915}
7916
7917/*
7918 * Return the untagged transaction id for a given target/channel lun.
7919 */
7920static u_int
7921ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl)
7922{
7923	u_int scbid;
7924	u_int scb_offset;
7925	u_int saved_scbptr;
7926
7927	scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7928	scbid = ahd_inw_scbram(ahd, scb_offset);
7929	ahd_set_scbptr(ahd, saved_scbptr);
7930	return (scbid);
7931}
7932
7933static void
7934ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid)
7935{
7936	u_int scb_offset;
7937	u_int saved_scbptr;
7938
7939	scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7940	ahd_outw(ahd, scb_offset, scbid);
7941	ahd_set_scbptr(ahd, saved_scbptr);
7942}
7943
7944/************************** SCB and SCB queue management **********************/
7945static int
7946ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target,
7947	      char channel, int lun, u_int tag, role_t role)
7948{
7949	int targ = SCB_GET_TARGET(ahd, scb);
7950	char chan = SCB_GET_CHANNEL(ahd, scb);
7951	int slun = SCB_GET_LUN(scb);
7952	int match;
7953
7954	match = ((chan == channel) || (channel == ALL_CHANNELS));
7955	if (match != 0)
7956		match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
7957	if (match != 0)
7958		match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
7959	if (match != 0) {
7960#ifdef AHD_TARGET_MODE
7961		int group;
7962
7963		group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
7964		if (role == ROLE_INITIATOR) {
7965			match = (group != XPT_FC_GROUP_TMODE)
7966			      && ((tag == SCB_GET_TAG(scb))
7967			       || (tag == SCB_LIST_NULL));
7968		} else if (role == ROLE_TARGET) {
7969			match = (group == XPT_FC_GROUP_TMODE)
7970			      && ((tag == scb->io_ctx->csio.tag_id)
7971			       || (tag == SCB_LIST_NULL));
7972		}
7973#else /* !AHD_TARGET_MODE */
7974		match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL));
7975#endif /* AHD_TARGET_MODE */
7976	}
7977
7978	return match;
7979}
7980
7981static void
7982ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
7983{
7984	int	target;
7985	char	channel;
7986	int	lun;
7987
7988	target = SCB_GET_TARGET(ahd, scb);
7989	lun = SCB_GET_LUN(scb);
7990	channel = SCB_GET_CHANNEL(ahd, scb);
7991
7992	ahd_search_qinfifo(ahd, target, channel, lun,
7993			   /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
7994			   CAM_REQUEUE_REQ, SEARCH_COMPLETE);
7995
7996	ahd_platform_freeze_devq(ahd, scb);
7997}
7998
7999void
8000ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb)
8001{
8002	struct scb	*prev_scb;
8003	ahd_mode_state	 saved_modes;
8004
8005	saved_modes = ahd_save_modes(ahd);
8006	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8007	prev_scb = NULL;
8008	if (ahd_qinfifo_count(ahd) != 0) {
8009		u_int prev_tag;
8010		u_int prev_pos;
8011
8012		prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1);
8013		prev_tag = ahd->qinfifo[prev_pos];
8014		prev_scb = ahd_lookup_scb(ahd, prev_tag);
8015	}
8016	ahd_qinfifo_requeue(ahd, prev_scb, scb);
8017	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8018	ahd_restore_modes(ahd, saved_modes);
8019}
8020
8021static void
8022ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb,
8023		    struct scb *scb)
8024{
8025	if (prev_scb == NULL) {
8026		uint32_t busaddr;
8027
8028		busaddr = ahd_le32toh(scb->hscb->hscb_busaddr);
8029		ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8030	} else {
8031		prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
8032		ahd_sync_scb(ahd, prev_scb,
8033			     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8034	}
8035	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
8036	ahd->qinfifonext++;
8037	scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr;
8038	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8039}
8040
8041static int
8042ahd_qinfifo_count(struct ahd_softc *ahd)
8043{
8044	u_int qinpos;
8045	u_int wrap_qinpos;
8046	u_int wrap_qinfifonext;
8047
8048	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
8049	qinpos = ahd_get_snscb_qoff(ahd);
8050	wrap_qinpos = AHD_QIN_WRAP(qinpos);
8051	wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext);
8052	if (wrap_qinfifonext >= wrap_qinpos)
8053		return (wrap_qinfifonext - wrap_qinpos);
8054	else
8055		return (wrap_qinfifonext
8056		      + ARRAY_SIZE(ahd->qinfifo) - wrap_qinpos);
8057}
8058
8059static void
8060ahd_reset_cmds_pending(struct ahd_softc *ahd)
8061{
8062	struct		scb *scb;
8063	ahd_mode_state	saved_modes;
8064	u_int		pending_cmds;
8065
8066	saved_modes = ahd_save_modes(ahd);
8067	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8068
8069	/*
8070	 * Don't count any commands as outstanding that the
8071	 * sequencer has already marked for completion.
8072	 */
8073	ahd_flush_qoutfifo(ahd);
8074
8075	pending_cmds = 0;
8076	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
8077		pending_cmds++;
8078	}
8079	ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd));
8080	ahd_restore_modes(ahd, saved_modes);
8081	ahd->flags &= ~AHD_UPDATE_PEND_CMDS;
8082}
8083
8084static void
8085ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status)
8086{
8087	cam_status ostat;
8088	cam_status cstat;
8089
8090	ostat = ahd_get_transaction_status(scb);
8091	if (ostat == CAM_REQ_INPROG)
8092		ahd_set_transaction_status(scb, status);
8093	cstat = ahd_get_transaction_status(scb);
8094	if (cstat != CAM_REQ_CMP)
8095		ahd_freeze_scb(scb);
8096	ahd_done(ahd, scb);
8097}
8098
8099int
8100ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel,
8101		   int lun, u_int tag, role_t role, uint32_t status,
8102		   ahd_search_action action)
8103{
8104	struct scb	*scb;
8105	struct scb	*mk_msg_scb;
8106	struct scb	*prev_scb;
8107	ahd_mode_state	 saved_modes;
8108	u_int		 qinstart;
8109	u_int		 qinpos;
8110	u_int		 qintail;
8111	u_int		 tid_next;
8112	u_int		 tid_prev;
8113	u_int		 scbid;
8114	u_int		 seq_flags2;
8115	u_int		 savedscbptr;
8116	uint32_t	 busaddr;
8117	int		 found;
8118	int		 targets;
8119
8120	/* Must be in CCHAN mode */
8121	saved_modes = ahd_save_modes(ahd);
8122	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8123
8124	/*
8125	 * Halt any pending SCB DMA.  The sequencer will reinitiate
8126	 * this dma if the qinfifo is not empty once we unpause.
8127	 */
8128	if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR))
8129	 == (CCARREN|CCSCBEN|CCSCBDIR)) {
8130		ahd_outb(ahd, CCSCBCTL,
8131			 ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN));
8132		while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0)
8133			;
8134	}
8135	/* Determine sequencer's position in the qinfifo. */
8136	qintail = AHD_QIN_WRAP(ahd->qinfifonext);
8137	qinstart = ahd_get_snscb_qoff(ahd);
8138	qinpos = AHD_QIN_WRAP(qinstart);
8139	found = 0;
8140	prev_scb = NULL;
8141
8142	if (action == SEARCH_PRINT) {
8143		printk("qinstart = %d qinfifonext = %d\nQINFIFO:",
8144		       qinstart, ahd->qinfifonext);
8145	}
8146
8147	/*
8148	 * Start with an empty queue.  Entries that are not chosen
8149	 * for removal will be re-added to the queue as we go.
8150	 */
8151	ahd->qinfifonext = qinstart;
8152	busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
8153	ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8154
8155	while (qinpos != qintail) {
8156		scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]);
8157		if (scb == NULL) {
8158			printk("qinpos = %d, SCB index = %d\n",
8159				qinpos, ahd->qinfifo[qinpos]);
8160			panic("Loop 1\n");
8161		}
8162
8163		if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) {
8164			/*
8165			 * We found an scb that needs to be acted on.
8166			 */
8167			found++;
8168			switch (action) {
8169			case SEARCH_COMPLETE:
8170				if ((scb->flags & SCB_ACTIVE) == 0)
8171					printk("Inactive SCB in qinfifo\n");
8172				ahd_done_with_status(ahd, scb, status);
8173				fallthrough;
8174			case SEARCH_REMOVE:
8175				break;
8176			case SEARCH_PRINT:
8177				printk(" 0x%x", ahd->qinfifo[qinpos]);
8178				fallthrough;
8179			case SEARCH_COUNT:
8180				ahd_qinfifo_requeue(ahd, prev_scb, scb);
8181				prev_scb = scb;
8182				break;
8183			}
8184		} else {
8185			ahd_qinfifo_requeue(ahd, prev_scb, scb);
8186			prev_scb = scb;
8187		}
8188		qinpos = AHD_QIN_WRAP(qinpos+1);
8189	}
8190
8191	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8192
8193	if (action == SEARCH_PRINT)
8194		printk("\nWAITING_TID_QUEUES:\n");
8195
8196	/*
8197	 * Search waiting for selection lists.  We traverse the
8198	 * list of "their ids" waiting for selection and, if
8199	 * appropriate, traverse the SCBs of each "their id"
8200	 * looking for matches.
8201	 */
8202	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8203	seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2);
8204	if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) {
8205		scbid = ahd_inw(ahd, MK_MESSAGE_SCB);
8206		mk_msg_scb = ahd_lookup_scb(ahd, scbid);
8207	} else
8208		mk_msg_scb = NULL;
8209	savedscbptr = ahd_get_scbptr(ahd);
8210	tid_next = ahd_inw(ahd, WAITING_TID_HEAD);
8211	tid_prev = SCB_LIST_NULL;
8212	targets = 0;
8213	for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) {
8214		u_int tid_head;
8215		u_int tid_tail;
8216
8217		targets++;
8218		if (targets > AHD_NUM_TARGETS)
8219			panic("TID LIST LOOP");
8220
8221		if (scbid >= ahd->scb_data.numscbs) {
8222			printk("%s: Waiting TID List inconsistency. "
8223			       "SCB index == 0x%x, yet numscbs == 0x%x.",
8224			       ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8225			ahd_dump_card_state(ahd);
8226			panic("for safety");
8227		}
8228		scb = ahd_lookup_scb(ahd, scbid);
8229		if (scb == NULL) {
8230			printk("%s: SCB = 0x%x Not Active!\n",
8231			       ahd_name(ahd), scbid);
8232			panic("Waiting TID List traversal\n");
8233		}
8234		ahd_set_scbptr(ahd, scbid);
8235		tid_next = ahd_inw_scbram(ahd, SCB_NEXT2);
8236		if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8237				  SCB_LIST_NULL, ROLE_UNKNOWN) == 0) {
8238			tid_prev = scbid;
8239			continue;
8240		}
8241
8242		/*
8243		 * We found a list of scbs that needs to be searched.
8244		 */
8245		if (action == SEARCH_PRINT)
8246			printk("       %d ( ", SCB_GET_TARGET(ahd, scb));
8247		tid_head = scbid;
8248		found += ahd_search_scb_list(ahd, target, channel,
8249					     lun, tag, role, status,
8250					     action, &tid_head, &tid_tail,
8251					     SCB_GET_TARGET(ahd, scb));
8252		/*
8253		 * Check any MK_MESSAGE SCB that is still waiting to
8254		 * enter this target's waiting for selection queue.
8255		 */
8256		if (mk_msg_scb != NULL
8257		 && ahd_match_scb(ahd, mk_msg_scb, target, channel,
8258				  lun, tag, role)) {
8259
8260			/*
8261			 * We found an scb that needs to be acted on.
8262			 */
8263			found++;
8264			switch (action) {
8265			case SEARCH_COMPLETE:
8266				if ((mk_msg_scb->flags & SCB_ACTIVE) == 0)
8267					printk("Inactive SCB pending MK_MSG\n");
8268				ahd_done_with_status(ahd, mk_msg_scb, status);
8269				fallthrough;
8270			case SEARCH_REMOVE:
8271			{
8272				u_int tail_offset;
8273
8274				printk("Removing MK_MSG scb\n");
8275
8276				/*
8277				 * Reset our tail to the tail of the
8278				 * main per-target list.
8279				 */
8280				tail_offset = WAITING_SCB_TAILS
8281				    + (2 * SCB_GET_TARGET(ahd, mk_msg_scb));
8282				ahd_outw(ahd, tail_offset, tid_tail);
8283
8284				seq_flags2 &= ~PENDING_MK_MESSAGE;
8285				ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8286				ahd_outw(ahd, CMDS_PENDING,
8287					 ahd_inw(ahd, CMDS_PENDING)-1);
8288				mk_msg_scb = NULL;
8289				break;
8290			}
8291			case SEARCH_PRINT:
8292				printk(" 0x%x", SCB_GET_TAG(scb));
8293				fallthrough;
8294			case SEARCH_COUNT:
8295				break;
8296			}
8297		}
8298
8299		if (mk_msg_scb != NULL
8300		 && SCBID_IS_NULL(tid_head)
8301		 && ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8302				  SCB_LIST_NULL, ROLE_UNKNOWN)) {
8303
8304			/*
8305			 * When removing the last SCB for a target
8306			 * queue with a pending MK_MESSAGE scb, we
8307			 * must queue the MK_MESSAGE scb.
8308			 */
8309			printk("Queueing mk_msg_scb\n");
8310			tid_head = ahd_inw(ahd, MK_MESSAGE_SCB);
8311			seq_flags2 &= ~PENDING_MK_MESSAGE;
8312			ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8313			mk_msg_scb = NULL;
8314		}
8315		if (tid_head != scbid)
8316			ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next);
8317		if (!SCBID_IS_NULL(tid_head))
8318			tid_prev = tid_head;
8319		if (action == SEARCH_PRINT)
8320			printk(")\n");
8321	}
8322
8323	/* Restore saved state. */
8324	ahd_set_scbptr(ahd, savedscbptr);
8325	ahd_restore_modes(ahd, saved_modes);
8326	return (found);
8327}
8328
8329static int
8330ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel,
8331		    int lun, u_int tag, role_t role, uint32_t status,
8332		    ahd_search_action action, u_int *list_head,
8333		    u_int *list_tail, u_int tid)
8334{
8335	struct	scb *scb;
8336	u_int	scbid;
8337	u_int	next;
8338	u_int	prev;
8339	int	found;
8340
8341	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8342	found = 0;
8343	prev = SCB_LIST_NULL;
8344	next = *list_head;
8345	*list_tail = SCB_LIST_NULL;
8346	for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) {
8347		if (scbid >= ahd->scb_data.numscbs) {
8348			printk("%s:SCB List inconsistency. "
8349			       "SCB == 0x%x, yet numscbs == 0x%x.",
8350			       ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8351			ahd_dump_card_state(ahd);
8352			panic("for safety");
8353		}
8354		scb = ahd_lookup_scb(ahd, scbid);
8355		if (scb == NULL) {
8356			printk("%s: SCB = %d Not Active!\n",
8357			       ahd_name(ahd), scbid);
8358			panic("Waiting List traversal\n");
8359		}
8360		ahd_set_scbptr(ahd, scbid);
8361		*list_tail = scbid;
8362		next = ahd_inw_scbram(ahd, SCB_NEXT);
8363		if (ahd_match_scb(ahd, scb, target, channel,
8364				  lun, SCB_LIST_NULL, role) == 0) {
8365			prev = scbid;
8366			continue;
8367		}
8368		found++;
8369		switch (action) {
8370		case SEARCH_COMPLETE:
8371			if ((scb->flags & SCB_ACTIVE) == 0)
8372				printk("Inactive SCB in Waiting List\n");
8373			ahd_done_with_status(ahd, scb, status);
8374			fallthrough;
8375		case SEARCH_REMOVE:
8376			ahd_rem_wscb(ahd, scbid, prev, next, tid);
8377			*list_tail = prev;
8378			if (SCBID_IS_NULL(prev))
8379				*list_head = next;
8380			break;
8381		case SEARCH_PRINT:
8382			printk("0x%x ", scbid);
8383			fallthrough;
8384		case SEARCH_COUNT:
8385			prev = scbid;
8386			break;
8387		}
8388		if (found > AHD_SCB_MAX)
8389			panic("SCB LIST LOOP");
8390	}
8391	if (action == SEARCH_COMPLETE
8392	 || action == SEARCH_REMOVE)
8393		ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found);
8394	return (found);
8395}
8396
8397static void
8398ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev,
8399		    u_int tid_cur, u_int tid_next)
8400{
8401	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8402
8403	if (SCBID_IS_NULL(tid_cur)) {
8404
8405		/* Bypass current TID list */
8406		if (SCBID_IS_NULL(tid_prev)) {
8407			ahd_outw(ahd, WAITING_TID_HEAD, tid_next);
8408		} else {
8409			ahd_set_scbptr(ahd, tid_prev);
8410			ahd_outw(ahd, SCB_NEXT2, tid_next);
8411		}
8412		if (SCBID_IS_NULL(tid_next))
8413			ahd_outw(ahd, WAITING_TID_TAIL, tid_prev);
8414	} else {
8415
8416		/* Stitch through tid_cur */
8417		if (SCBID_IS_NULL(tid_prev)) {
8418			ahd_outw(ahd, WAITING_TID_HEAD, tid_cur);
8419		} else {
8420			ahd_set_scbptr(ahd, tid_prev);
8421			ahd_outw(ahd, SCB_NEXT2, tid_cur);
8422		}
8423		ahd_set_scbptr(ahd, tid_cur);
8424		ahd_outw(ahd, SCB_NEXT2, tid_next);
8425
8426		if (SCBID_IS_NULL(tid_next))
8427			ahd_outw(ahd, WAITING_TID_TAIL, tid_cur);
8428	}
8429}
8430
8431/*
8432 * Manipulate the waiting for selection list and return the
8433 * scb that follows the one that we remove.
8434 */
8435static u_int
8436ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
8437	     u_int prev, u_int next, u_int tid)
8438{
8439	u_int tail_offset;
8440
8441	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8442	if (!SCBID_IS_NULL(prev)) {
8443		ahd_set_scbptr(ahd, prev);
8444		ahd_outw(ahd, SCB_NEXT, next);
8445	}
8446
8447	/*
8448	 * SCBs that have MK_MESSAGE set in them may
8449	 * cause the tail pointer to be updated without
8450	 * setting the next pointer of the previous tail.
8451	 * Only clear the tail if the removed SCB was
8452	 * the tail.
8453	 */
8454	tail_offset = WAITING_SCB_TAILS + (2 * tid);
8455	if (SCBID_IS_NULL(next)
8456	 && ahd_inw(ahd, tail_offset) == scbid)
8457		ahd_outw(ahd, tail_offset, prev);
8458
8459	ahd_add_scb_to_free_list(ahd, scbid);
8460	return (next);
8461}
8462
8463/*
8464 * Add the SCB as selected by SCBPTR onto the on chip list of
8465 * free hardware SCBs.  This list is empty/unused if we are not
8466 * performing SCB paging.
8467 */
8468static void
8469ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid)
8470{
8471/* XXX Need some other mechanism to designate "free". */
8472	/*
8473	 * Invalidate the tag so that our abort
8474	 * routines don't think it's active.
8475	ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL);
8476	 */
8477}
8478
8479/******************************** Error Handling ******************************/
8480/*
8481 * Abort all SCBs that match the given description (target/channel/lun/tag),
8482 * setting their status to the passed in status if the status has not already
8483 * been modified from CAM_REQ_INPROG.  This routine assumes that the sequencer
8484 * is paused before it is called.
8485 */
8486static int
8487ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel,
8488	       int lun, u_int tag, role_t role, uint32_t status)
8489{
8490	struct		scb *scbp;
8491	struct		scb *scbp_next;
8492	u_int		i, j;
8493	u_int		maxtarget;
8494	u_int		minlun;
8495	u_int		maxlun;
8496	int		found;
8497	ahd_mode_state	saved_modes;
8498
8499	/* restore this when we're done */
8500	saved_modes = ahd_save_modes(ahd);
8501	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8502
8503	found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL,
8504				   role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
8505
8506	/*
8507	 * Clean out the busy target table for any untagged commands.
8508	 */
8509	i = 0;
8510	maxtarget = 16;
8511	if (target != CAM_TARGET_WILDCARD) {
8512		i = target;
8513		if (channel == 'B')
8514			i += 8;
8515		maxtarget = i + 1;
8516	}
8517
8518	if (lun == CAM_LUN_WILDCARD) {
8519		minlun = 0;
8520		maxlun = AHD_NUM_LUNS_NONPKT;
8521	} else if (lun >= AHD_NUM_LUNS_NONPKT) {
8522		minlun = maxlun = 0;
8523	} else {
8524		minlun = lun;
8525		maxlun = lun + 1;
8526	}
8527
8528	if (role != ROLE_TARGET) {
8529		for (;i < maxtarget; i++) {
8530			for (j = minlun;j < maxlun; j++) {
8531				u_int scbid;
8532				u_int tcl;
8533
8534				tcl = BUILD_TCL_RAW(i, 'A', j);
8535				scbid = ahd_find_busy_tcl(ahd, tcl);
8536				scbp = ahd_lookup_scb(ahd, scbid);
8537				if (scbp == NULL
8538				 || ahd_match_scb(ahd, scbp, target, channel,
8539						  lun, tag, role) == 0)
8540					continue;
8541				ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j));
8542			}
8543		}
8544	}
8545
8546	/*
8547	 * Don't abort commands that have already completed,
8548	 * but haven't quite made it up to the host yet.
8549	 */
8550	ahd_flush_qoutfifo(ahd);
8551
8552	/*
8553	 * Go through the pending CCB list and look for
8554	 * commands for this target that are still active.
8555	 * These are other tagged commands that were
8556	 * disconnected when the reset occurred.
8557	 */
8558	scbp_next = LIST_FIRST(&ahd->pending_scbs);
8559	while (scbp_next != NULL) {
8560		scbp = scbp_next;
8561		scbp_next = LIST_NEXT(scbp, pending_links);
8562		if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) {
8563			cam_status ostat;
8564
8565			ostat = ahd_get_transaction_status(scbp);
8566			if (ostat == CAM_REQ_INPROG)
8567				ahd_set_transaction_status(scbp, status);
8568			if (ahd_get_transaction_status(scbp) != CAM_REQ_CMP)
8569				ahd_freeze_scb(scbp);
8570			if ((scbp->flags & SCB_ACTIVE) == 0)
8571				printk("Inactive SCB on pending list\n");
8572			ahd_done(ahd, scbp);
8573			found++;
8574		}
8575	}
8576	ahd_restore_modes(ahd, saved_modes);
8577	ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status);
8578	ahd->flags |= AHD_UPDATE_PEND_CMDS;
8579	return found;
8580}
8581
8582static void
8583ahd_reset_current_bus(struct ahd_softc *ahd)
8584{
8585	uint8_t scsiseq;
8586
8587	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8588	ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST);
8589	scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO);
8590	ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO);
8591	ahd_flush_device_writes(ahd);
8592	ahd_delay(AHD_BUSRESET_DELAY);
8593	/* Turn off the bus reset */
8594	ahd_outb(ahd, SCSISEQ0, scsiseq);
8595	ahd_flush_device_writes(ahd);
8596	ahd_delay(AHD_BUSRESET_DELAY);
8597	if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) {
8598		/*
8599		 * 2A Razor #474
8600		 * Certain chip state is not cleared for
8601		 * SCSI bus resets that we initiate, so
8602		 * we must reset the chip.
8603		 */
8604		ahd_reset(ahd, /*reinit*/TRUE);
8605		ahd_intr_enable(ahd, /*enable*/TRUE);
8606		AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8607	}
8608
8609	ahd_clear_intstat(ahd);
8610}
8611
8612int
8613ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset)
8614{
8615	struct	ahd_devinfo caminfo;
8616	u_int	initiator;
8617	u_int	target;
8618	u_int	max_scsiid;
8619	int	found;
8620	u_int	fifo;
8621	u_int	next_fifo;
8622	uint8_t scsiseq;
8623
8624	/*
8625	 * Check if the last bus reset is cleared
8626	 */
8627	if (ahd->flags & AHD_BUS_RESET_ACTIVE) {
8628		printk("%s: bus reset still active\n",
8629		       ahd_name(ahd));
8630		return 0;
8631	}
8632	ahd->flags |= AHD_BUS_RESET_ACTIVE;
8633
8634	ahd->pending_device = NULL;
8635
8636	ahd_compile_devinfo(&caminfo,
8637			    CAM_TARGET_WILDCARD,
8638			    CAM_TARGET_WILDCARD,
8639			    CAM_LUN_WILDCARD,
8640			    channel, ROLE_UNKNOWN);
8641	ahd_pause(ahd);
8642
8643	/* Make sure the sequencer is in a safe location. */
8644	ahd_clear_critical_section(ahd);
8645
8646	/*
8647	 * Run our command complete fifos to ensure that we perform
8648	 * completion processing on any commands that 'completed'
8649	 * before the reset occurred.
8650	 */
8651	ahd_run_qoutfifo(ahd);
8652#ifdef AHD_TARGET_MODE
8653	if ((ahd->flags & AHD_TARGETROLE) != 0) {
8654		ahd_run_tqinfifo(ahd, /*paused*/TRUE);
8655	}
8656#endif
8657	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8658
8659	/*
8660	 * Disable selections so no automatic hardware
8661	 * functions will modify chip state.
8662	 */
8663	ahd_outb(ahd, SCSISEQ0, 0);
8664	ahd_outb(ahd, SCSISEQ1, 0);
8665
8666	/*
8667	 * Safely shut down our DMA engines.  Always start with
8668	 * the FIFO that is not currently active (if any are
8669	 * actively connected).
8670	 */
8671	next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
8672	if (next_fifo > CURRFIFO_1)
8673		/* If disconneced, arbitrarily start with FIFO1. */
8674		next_fifo = fifo = 0;
8675	do {
8676		next_fifo ^= CURRFIFO_1;
8677		ahd_set_modes(ahd, next_fifo, next_fifo);
8678		ahd_outb(ahd, DFCNTRL,
8679			 ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN));
8680		while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0)
8681			ahd_delay(10);
8682		/*
8683		 * Set CURRFIFO to the now inactive channel.
8684		 */
8685		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8686		ahd_outb(ahd, DFFSTAT, next_fifo);
8687	} while (next_fifo != fifo);
8688
8689	/*
8690	 * Reset the bus if we are initiating this reset
8691	 */
8692	ahd_clear_msg_state(ahd);
8693	ahd_outb(ahd, SIMODE1,
8694		 ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST));
8695
8696	if (initiate_reset)
8697		ahd_reset_current_bus(ahd);
8698
8699	ahd_clear_intstat(ahd);
8700
8701	/*
8702	 * Clean up all the state information for the
8703	 * pending transactions on this bus.
8704	 */
8705	found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel,
8706			       CAM_LUN_WILDCARD, SCB_LIST_NULL,
8707			       ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
8708
8709	/*
8710	 * Cleanup anything left in the FIFOs.
8711	 */
8712	ahd_clear_fifo(ahd, 0);
8713	ahd_clear_fifo(ahd, 1);
8714
8715	/*
8716	 * Clear SCSI interrupt status
8717	 */
8718	ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
8719
8720	/*
8721	 * Reenable selections
8722	 */
8723	ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST);
8724	scsiseq = ahd_inb(ahd, SCSISEQ_TEMPLATE);
8725	ahd_outb(ahd, SCSISEQ1, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
8726
8727	max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
8728#ifdef AHD_TARGET_MODE
8729	/*
8730	 * Send an immediate notify ccb to all target more peripheral
8731	 * drivers affected by this action.
8732	 */
8733	for (target = 0; target <= max_scsiid; target++) {
8734		struct ahd_tmode_tstate* tstate;
8735		u_int lun;
8736
8737		tstate = ahd->enabled_targets[target];
8738		if (tstate == NULL)
8739			continue;
8740		for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
8741			struct ahd_tmode_lstate* lstate;
8742
8743			lstate = tstate->enabled_luns[lun];
8744			if (lstate == NULL)
8745				continue;
8746
8747			ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD,
8748					       EVENT_TYPE_BUS_RESET, /*arg*/0);
8749			ahd_send_lstate_events(ahd, lstate);
8750		}
8751	}
8752#endif
8753	/*
8754	 * Revert to async/narrow transfers until we renegotiate.
8755	 */
8756	for (target = 0; target <= max_scsiid; target++) {
8757
8758		if (ahd->enabled_targets[target] == NULL)
8759			continue;
8760		for (initiator = 0; initiator <= max_scsiid; initiator++) {
8761			struct ahd_devinfo devinfo;
8762
8763			ahd_compile_devinfo(&devinfo, target, initiator,
8764					    CAM_LUN_WILDCARD,
8765					    'A', ROLE_UNKNOWN);
8766			ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
8767				      AHD_TRANS_CUR, /*paused*/TRUE);
8768			ahd_set_syncrate(ahd, &devinfo, /*period*/0,
8769					 /*offset*/0, /*ppr_options*/0,
8770					 AHD_TRANS_CUR, /*paused*/TRUE);
8771		}
8772	}
8773
8774	/* Notify the XPT that a bus reset occurred */
8775	ahd_send_async(ahd, caminfo.channel, CAM_TARGET_WILDCARD,
8776		       CAM_LUN_WILDCARD, AC_BUS_RESET);
8777
8778	ahd_restart(ahd);
8779
8780	return (found);
8781}
8782
8783/**************************** Statistics Processing ***************************/
8784static void
8785ahd_stat_timer(struct timer_list *t)
8786{
8787	struct	ahd_softc *ahd = from_timer(ahd, t, stat_timer);
8788	u_long	s;
8789	int	enint_coal;
8790
8791	ahd_lock(ahd, &s);
8792
8793	enint_coal = ahd->hs_mailbox & ENINT_COALESCE;
8794	if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold)
8795		enint_coal |= ENINT_COALESCE;
8796	else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold)
8797		enint_coal &= ~ENINT_COALESCE;
8798
8799	if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) {
8800		ahd_enable_coalescing(ahd, enint_coal);
8801#ifdef AHD_DEBUG
8802		if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0)
8803			printk("%s: Interrupt coalescing "
8804			       "now %sabled. Cmds %d\n",
8805			       ahd_name(ahd),
8806			       (enint_coal & ENINT_COALESCE) ? "en" : "dis",
8807			       ahd->cmdcmplt_total);
8808#endif
8809	}
8810
8811	ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1);
8812	ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket];
8813	ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0;
8814	ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
8815	ahd_unlock(ahd, &s);
8816}
8817
8818/****************************** Status Processing *****************************/
8819
8820static void
8821ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb)
8822{
8823	struct	hardware_scb *hscb;
8824	int	paused;
8825
8826	/*
8827	 * The sequencer freezes its select-out queue
8828	 * anytime a SCSI status error occurs.  We must
8829	 * handle the error and increment our qfreeze count
8830	 * to allow the sequencer to continue.  We don't
8831	 * bother clearing critical sections here since all
8832	 * operations are on data structures that the sequencer
8833	 * is not touching once the queue is frozen.
8834	 */
8835	hscb = scb->hscb;
8836
8837	if (ahd_is_paused(ahd)) {
8838		paused = 1;
8839	} else {
8840		paused = 0;
8841		ahd_pause(ahd);
8842	}
8843
8844	/* Freeze the queue until the client sees the error. */
8845	ahd_freeze_devq(ahd, scb);
8846	ahd_freeze_scb(scb);
8847	ahd->qfreeze_cnt++;
8848	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
8849
8850	if (paused == 0)
8851		ahd_unpause(ahd);
8852
8853	/* Don't want to clobber the original sense code */
8854	if ((scb->flags & SCB_SENSE) != 0) {
8855		/*
8856		 * Clear the SCB_SENSE Flag and perform
8857		 * a normal command completion.
8858		 */
8859		scb->flags &= ~SCB_SENSE;
8860		ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
8861		ahd_done(ahd, scb);
8862		return;
8863	}
8864	ahd_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
8865	ahd_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status);
8866	switch (hscb->shared_data.istatus.scsi_status) {
8867	case STATUS_PKT_SENSE:
8868	{
8869		struct scsi_status_iu_header *siu;
8870
8871		ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD);
8872		siu = (struct scsi_status_iu_header *)scb->sense_data;
8873		ahd_set_scsi_status(scb, siu->status);
8874#ifdef AHD_DEBUG
8875		if ((ahd_debug & AHD_SHOW_SENSE) != 0) {
8876			ahd_print_path(ahd, scb);
8877			printk("SCB 0x%x Received PKT Status of 0x%x\n",
8878			       SCB_GET_TAG(scb), siu->status);
8879			printk("\tflags = 0x%x, sense len = 0x%x, "
8880			       "pktfail = 0x%x\n",
8881			       siu->flags, scsi_4btoul(siu->sense_length),
8882			       scsi_4btoul(siu->pkt_failures_length));
8883		}
8884#endif
8885		if ((siu->flags & SIU_RSPVALID) != 0) {
8886			ahd_print_path(ahd, scb);
8887			if (scsi_4btoul(siu->pkt_failures_length) < 4) {
8888				printk("Unable to parse pkt_failures\n");
8889			} else {
8890
8891				switch (SIU_PKTFAIL_CODE(siu)) {
8892				case SIU_PFC_NONE:
8893					printk("No packet failure found\n");
8894					break;
8895				case SIU_PFC_CIU_FIELDS_INVALID:
8896					printk("Invalid Command IU Field\n");
8897					break;
8898				case SIU_PFC_TMF_NOT_SUPPORTED:
8899					printk("TMF not supported\n");
8900					break;
8901				case SIU_PFC_TMF_FAILED:
8902					printk("TMF failed\n");
8903					break;
8904				case SIU_PFC_INVALID_TYPE_CODE:
8905					printk("Invalid L_Q Type code\n");
8906					break;
8907				case SIU_PFC_ILLEGAL_REQUEST:
8908					printk("Illegal request\n");
8909					break;
8910				default:
8911					break;
8912				}
8913			}
8914			if (siu->status == SAM_STAT_GOOD)
8915				ahd_set_transaction_status(scb,
8916							   CAM_REQ_CMP_ERR);
8917		}
8918		if ((siu->flags & SIU_SNSVALID) != 0) {
8919			scb->flags |= SCB_PKT_SENSE;
8920#ifdef AHD_DEBUG
8921			if ((ahd_debug & AHD_SHOW_SENSE) != 0)
8922				printk("Sense data available\n");
8923#endif
8924		}
8925		ahd_done(ahd, scb);
8926		break;
8927	}
8928	case SAM_STAT_COMMAND_TERMINATED:
8929	case SAM_STAT_CHECK_CONDITION:
8930	{
8931		struct ahd_devinfo devinfo;
8932		struct ahd_dma_seg *sg;
8933		struct scsi_sense *sc;
8934		struct ahd_initiator_tinfo *targ_info;
8935		struct ahd_tmode_tstate *tstate;
8936		struct ahd_transinfo *tinfo;
8937#ifdef AHD_DEBUG
8938		if (ahd_debug & AHD_SHOW_SENSE) {
8939			ahd_print_path(ahd, scb);
8940			printk("SCB %d: requests Check Status\n",
8941			       SCB_GET_TAG(scb));
8942		}
8943#endif
8944
8945		if (ahd_perform_autosense(scb) == 0)
8946			break;
8947
8948		ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
8949				    SCB_GET_TARGET(ahd, scb),
8950				    SCB_GET_LUN(scb),
8951				    SCB_GET_CHANNEL(ahd, scb),
8952				    ROLE_INITIATOR);
8953		targ_info = ahd_fetch_transinfo(ahd,
8954						devinfo.channel,
8955						devinfo.our_scsiid,
8956						devinfo.target,
8957						&tstate);
8958		tinfo = &targ_info->curr;
8959		sg = scb->sg_list;
8960		sc = (struct scsi_sense *)hscb->shared_data.idata.cdb;
8961		/*
8962		 * Save off the residual if there is one.
8963		 */
8964		ahd_update_residual(ahd, scb);
8965#ifdef AHD_DEBUG
8966		if (ahd_debug & AHD_SHOW_SENSE) {
8967			ahd_print_path(ahd, scb);
8968			printk("Sending Sense\n");
8969		}
8970#endif
8971		scb->sg_count = 0;
8972		sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb),
8973				  ahd_get_sense_bufsize(ahd, scb),
8974				  /*last*/TRUE);
8975		sc->opcode = REQUEST_SENSE;
8976		sc->byte2 = 0;
8977		if (tinfo->protocol_version <= SCSI_REV_2
8978		 && SCB_GET_LUN(scb) < 8)
8979			sc->byte2 = SCB_GET_LUN(scb) << 5;
8980		sc->unused[0] = 0;
8981		sc->unused[1] = 0;
8982		sc->length = ahd_get_sense_bufsize(ahd, scb);
8983		sc->control = 0;
8984
8985		/*
8986		 * We can't allow the target to disconnect.
8987		 * This will be an untagged transaction and
8988		 * having the target disconnect will make this
8989		 * transaction indestinguishable from outstanding
8990		 * tagged transactions.
8991		 */
8992		hscb->control = 0;
8993
8994		/*
8995		 * This request sense could be because the
8996		 * the device lost power or in some other
8997		 * way has lost our transfer negotiations.
8998		 * Renegotiate if appropriate.  Unit attention
8999		 * errors will be reported before any data
9000		 * phases occur.
9001		 */
9002		if (ahd_get_residual(scb) == ahd_get_transfer_length(scb)) {
9003			ahd_update_neg_request(ahd, &devinfo,
9004					       tstate, targ_info,
9005					       AHD_NEG_IF_NON_ASYNC);
9006		}
9007		if (tstate->auto_negotiate & devinfo.target_mask) {
9008			hscb->control |= MK_MESSAGE;
9009			scb->flags &=
9010			    ~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET);
9011			scb->flags |= SCB_AUTO_NEGOTIATE;
9012		}
9013		hscb->cdb_len = sizeof(*sc);
9014		ahd_setup_data_scb(ahd, scb);
9015		scb->flags |= SCB_SENSE;
9016		ahd_queue_scb(ahd, scb);
9017		break;
9018	}
9019	case SAM_STAT_GOOD:
9020		printk("%s: Interrupted for status of 0???\n",
9021		       ahd_name(ahd));
9022		fallthrough;
9023	default:
9024		ahd_done(ahd, scb);
9025		break;
9026	}
9027}
9028
9029static void
9030ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb)
9031{
9032	if (scb->hscb->shared_data.istatus.scsi_status != 0) {
9033		ahd_handle_scsi_status(ahd, scb);
9034	} else {
9035		ahd_calc_residual(ahd, scb);
9036		ahd_done(ahd, scb);
9037	}
9038}
9039
9040/*
9041 * Calculate the residual for a just completed SCB.
9042 */
9043static void
9044ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb)
9045{
9046	struct hardware_scb *hscb;
9047	struct initiator_status *spkt;
9048	uint32_t sgptr;
9049	uint32_t resid_sgptr;
9050	uint32_t resid;
9051
9052	/*
9053	 * 5 cases.
9054	 * 1) No residual.
9055	 *    SG_STATUS_VALID clear in sgptr.
9056	 * 2) Transferless command
9057	 * 3) Never performed any transfers.
9058	 *    sgptr has SG_FULL_RESID set.
9059	 * 4) No residual but target did not
9060	 *    save data pointers after the
9061	 *    last transfer, so sgptr was
9062	 *    never updated.
9063	 * 5) We have a partial residual.
9064	 *    Use residual_sgptr to determine
9065	 *    where we are.
9066	 */
9067
9068	hscb = scb->hscb;
9069	sgptr = ahd_le32toh(hscb->sgptr);
9070	if ((sgptr & SG_STATUS_VALID) == 0)
9071		/* Case 1 */
9072		return;
9073	sgptr &= ~SG_STATUS_VALID;
9074
9075	if ((sgptr & SG_LIST_NULL) != 0)
9076		/* Case 2 */
9077		return;
9078
9079	/*
9080	 * Residual fields are the same in both
9081	 * target and initiator status packets,
9082	 * so we can always use the initiator fields
9083	 * regardless of the role for this SCB.
9084	 */
9085	spkt = &hscb->shared_data.istatus;
9086	resid_sgptr = ahd_le32toh(spkt->residual_sgptr);
9087	if ((sgptr & SG_FULL_RESID) != 0) {
9088		/* Case 3 */
9089		resid = ahd_get_transfer_length(scb);
9090	} else if ((resid_sgptr & SG_LIST_NULL) != 0) {
9091		/* Case 4 */
9092		return;
9093	} else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) {
9094		ahd_print_path(ahd, scb);
9095		printk("data overrun detected Tag == 0x%x.\n",
9096		       SCB_GET_TAG(scb));
9097		ahd_freeze_devq(ahd, scb);
9098		ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
9099		ahd_freeze_scb(scb);
9100		return;
9101	} else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
9102		panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
9103		/* NOTREACHED */
9104	} else {
9105		struct ahd_dma_seg *sg;
9106
9107		/*
9108		 * Remainder of the SG where the transfer
9109		 * stopped.
9110		 */
9111		resid = ahd_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK;
9112		sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK);
9113
9114		/* The residual sg_ptr always points to the next sg */
9115		sg--;
9116
9117		/*
9118		 * Add up the contents of all residual
9119		 * SG segments that are after the SG where
9120		 * the transfer stopped.
9121		 */
9122		while ((ahd_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) {
9123			sg++;
9124			resid += ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
9125		}
9126	}
9127	if ((scb->flags & SCB_SENSE) == 0)
9128		ahd_set_residual(scb, resid);
9129	else
9130		ahd_set_sense_residual(scb, resid);
9131
9132#ifdef AHD_DEBUG
9133	if ((ahd_debug & AHD_SHOW_MISC) != 0) {
9134		ahd_print_path(ahd, scb);
9135		printk("Handled %sResidual of %d bytes\n",
9136		       (scb->flags & SCB_SENSE) ? "Sense " : "", resid);
9137	}
9138#endif
9139}
9140
9141/******************************* Target Mode **********************************/
9142#ifdef AHD_TARGET_MODE
9143/*
9144 * Add a target mode event to this lun's queue
9145 */
9146static void
9147ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate,
9148		       u_int initiator_id, u_int event_type, u_int event_arg)
9149{
9150	struct ahd_tmode_event *event;
9151	int pending;
9152
9153	xpt_freeze_devq(lstate->path, /*count*/1);
9154	if (lstate->event_w_idx >= lstate->event_r_idx)
9155		pending = lstate->event_w_idx - lstate->event_r_idx;
9156	else
9157		pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1
9158			- (lstate->event_r_idx - lstate->event_w_idx);
9159
9160	if (event_type == EVENT_TYPE_BUS_RESET
9161	 || event_type == TARGET_RESET) {
9162		/*
9163		 * Any earlier events are irrelevant, so reset our buffer.
9164		 * This has the effect of allowing us to deal with reset
9165		 * floods (an external device holding down the reset line)
9166		 * without losing the event that is really interesting.
9167		 */
9168		lstate->event_r_idx = 0;
9169		lstate->event_w_idx = 0;
9170		xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
9171	}
9172
9173	if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) {
9174		xpt_print_path(lstate->path);
9175		printk("immediate event %x:%x lost\n",
9176		       lstate->event_buffer[lstate->event_r_idx].event_type,
9177		       lstate->event_buffer[lstate->event_r_idx].event_arg);
9178		lstate->event_r_idx++;
9179		if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9180			lstate->event_r_idx = 0;
9181		xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
9182	}
9183
9184	event = &lstate->event_buffer[lstate->event_w_idx];
9185	event->initiator_id = initiator_id;
9186	event->event_type = event_type;
9187	event->event_arg = event_arg;
9188	lstate->event_w_idx++;
9189	if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9190		lstate->event_w_idx = 0;
9191}
9192
9193/*
9194 * Send any target mode events queued up waiting
9195 * for immediate notify resources.
9196 */
9197void
9198ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate)
9199{
9200	struct ccb_hdr *ccbh;
9201	struct ccb_immed_notify *inot;
9202
9203	while (lstate->event_r_idx != lstate->event_w_idx
9204	    && (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
9205		struct ahd_tmode_event *event;
9206
9207		event = &lstate->event_buffer[lstate->event_r_idx];
9208		SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
9209		inot = (struct ccb_immed_notify *)ccbh;
9210		switch (event->event_type) {
9211		case EVENT_TYPE_BUS_RESET:
9212			ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
9213			break;
9214		default:
9215			ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
9216			inot->message_args[0] = event->event_type;
9217			inot->message_args[1] = event->event_arg;
9218			break;
9219		}
9220		inot->initiator_id = event->initiator_id;
9221		inot->sense_len = 0;
9222		xpt_done((union ccb *)inot);
9223		lstate->event_r_idx++;
9224		if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9225			lstate->event_r_idx = 0;
9226	}
9227}
9228#endif
9229
9230/******************** Sequencer Program Patching/Download *********************/
9231
9232#ifdef AHD_DUMP_SEQ
9233void
9234ahd_dumpseq(struct ahd_softc* ahd)
9235{
9236	int i;
9237	int max_prog;
9238
9239	max_prog = 2048;
9240
9241	ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9242	ahd_outw(ahd, PRGMCNT, 0);
9243	for (i = 0; i < max_prog; i++) {
9244		uint8_t ins_bytes[4];
9245
9246		ahd_insb(ahd, SEQRAM, ins_bytes, 4);
9247		printk("0x%08x\n", ins_bytes[0] << 24
9248				 | ins_bytes[1] << 16
9249				 | ins_bytes[2] << 8
9250				 | ins_bytes[3]);
9251	}
9252}
9253#endif
9254
9255static void
9256ahd_loadseq(struct ahd_softc *ahd)
9257{
9258	struct	cs cs_table[NUM_CRITICAL_SECTIONS];
9259	u_int	begin_set[NUM_CRITICAL_SECTIONS];
9260	u_int	end_set[NUM_CRITICAL_SECTIONS];
9261	const struct patch *cur_patch;
9262	u_int	cs_count;
9263	u_int	cur_cs;
9264	u_int	i;
9265	int	downloaded;
9266	u_int	skip_addr;
9267	u_int	sg_prefetch_cnt;
9268	u_int	sg_prefetch_cnt_limit;
9269	u_int	sg_prefetch_align;
9270	u_int	sg_size;
9271	u_int	cacheline_mask;
9272	uint8_t	download_consts[DOWNLOAD_CONST_COUNT];
9273
9274	if (bootverbose)
9275		printk("%s: Downloading Sequencer Program...",
9276		       ahd_name(ahd));
9277
9278#if DOWNLOAD_CONST_COUNT != 8
9279#error "Download Const Mismatch"
9280#endif
9281	/*
9282	 * Start out with 0 critical sections
9283	 * that apply to this firmware load.
9284	 */
9285	cs_count = 0;
9286	cur_cs = 0;
9287	memset(begin_set, 0, sizeof(begin_set));
9288	memset(end_set, 0, sizeof(end_set));
9289
9290	/*
9291	 * Setup downloadable constant table.
9292	 *
9293	 * The computation for the S/G prefetch variables is
9294	 * a bit complicated.  We would like to always fetch
9295	 * in terms of cachelined sized increments.  However,
9296	 * if the cacheline is not an even multiple of the
9297	 * SG element size or is larger than our SG RAM, using
9298	 * just the cache size might leave us with only a portion
9299	 * of an SG element at the tail of a prefetch.  If the
9300	 * cacheline is larger than our S/G prefetch buffer less
9301	 * the size of an SG element, we may round down to a cacheline
9302	 * that doesn't contain any or all of the S/G of interest
9303	 * within the bounds of our S/G ram.  Provide variables to
9304	 * the sequencer that will allow it to handle these edge
9305	 * cases.
9306	 */
9307	/* Start by aligning to the nearest cacheline. */
9308	sg_prefetch_align = ahd->pci_cachesize;
9309	if (sg_prefetch_align == 0)
9310		sg_prefetch_align = 8;
9311	/* Round down to the nearest power of 2. */
9312	while (powerof2(sg_prefetch_align) == 0)
9313		sg_prefetch_align--;
9314
9315	cacheline_mask = sg_prefetch_align - 1;
9316
9317	/*
9318	 * If the cacheline boundary is greater than half our prefetch RAM
9319	 * we risk not being able to fetch even a single complete S/G
9320	 * segment if we align to that boundary.
9321	 */
9322	if (sg_prefetch_align > CCSGADDR_MAX/2)
9323		sg_prefetch_align = CCSGADDR_MAX/2;
9324	/* Start by fetching a single cacheline. */
9325	sg_prefetch_cnt = sg_prefetch_align;
9326	/*
9327	 * Increment the prefetch count by cachelines until
9328	 * at least one S/G element will fit.
9329	 */
9330	sg_size = sizeof(struct ahd_dma_seg);
9331	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
9332		sg_size = sizeof(struct ahd_dma64_seg);
9333	while (sg_prefetch_cnt < sg_size)
9334		sg_prefetch_cnt += sg_prefetch_align;
9335	/*
9336	 * If the cacheline is not an even multiple of
9337	 * the S/G size, we may only get a partial S/G when
9338	 * we align. Add a cacheline if this is the case.
9339	 */
9340	if ((sg_prefetch_align % sg_size) != 0
9341	 && (sg_prefetch_cnt < CCSGADDR_MAX))
9342		sg_prefetch_cnt += sg_prefetch_align;
9343	/*
9344	 * Lastly, compute a value that the sequencer can use
9345	 * to determine if the remainder of the CCSGRAM buffer
9346	 * has a full S/G element in it.
9347	 */
9348	sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1);
9349	download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
9350	download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit;
9351	download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1);
9352	download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1);
9353	download_consts[SG_SIZEOF] = sg_size;
9354	download_consts[PKT_OVERRUN_BUFOFFSET] =
9355		(ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256;
9356	download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN;
9357	download_consts[CACHELINE_MASK] = cacheline_mask;
9358	cur_patch = patches;
9359	downloaded = 0;
9360	skip_addr = 0;
9361	ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9362	ahd_outw(ahd, PRGMCNT, 0);
9363
9364	for (i = 0; i < sizeof(seqprog)/4; i++) {
9365		if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) {
9366			/*
9367			 * Don't download this instruction as it
9368			 * is in a patch that was removed.
9369			 */
9370			continue;
9371		}
9372		/*
9373		 * Move through the CS table until we find a CS
9374		 * that might apply to this instruction.
9375		 */
9376		for (; cur_cs < NUM_CRITICAL_SECTIONS; cur_cs++) {
9377			if (critical_sections[cur_cs].end <= i) {
9378				if (begin_set[cs_count] == TRUE
9379				 && end_set[cs_count] == FALSE) {
9380					cs_table[cs_count].end = downloaded;
9381					end_set[cs_count] = TRUE;
9382					cs_count++;
9383				}
9384				continue;
9385			}
9386			if (critical_sections[cur_cs].begin <= i
9387			 && begin_set[cs_count] == FALSE) {
9388				cs_table[cs_count].begin = downloaded;
9389				begin_set[cs_count] = TRUE;
9390			}
9391			break;
9392		}
9393		ahd_download_instr(ahd, i, download_consts);
9394		downloaded++;
9395	}
9396
9397	ahd->num_critical_sections = cs_count;
9398	if (cs_count != 0) {
9399
9400		cs_count *= sizeof(struct cs);
9401		ahd->critical_sections = kmemdup(cs_table, cs_count, GFP_ATOMIC);
9402		if (ahd->critical_sections == NULL)
9403			panic("ahd_loadseq: Could not malloc");
9404	}
9405	ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE);
9406
9407	if (bootverbose) {
9408		printk(" %d instructions downloaded\n", downloaded);
9409		printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
9410		       ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags);
9411	}
9412}
9413
9414static int
9415ahd_check_patch(struct ahd_softc *ahd, const struct patch **start_patch,
9416		u_int start_instr, u_int *skip_addr)
9417{
9418	const struct patch *cur_patch;
9419	const struct patch *last_patch;
9420	u_int	num_patches;
9421
9422	num_patches = ARRAY_SIZE(patches);
9423	last_patch = &patches[num_patches];
9424	cur_patch = *start_patch;
9425
9426	while (cur_patch < last_patch && start_instr == cur_patch->begin) {
9427
9428		if (cur_patch->patch_func(ahd) == 0) {
9429
9430			/* Start rejecting code */
9431			*skip_addr = start_instr + cur_patch->skip_instr;
9432			cur_patch += cur_patch->skip_patch;
9433		} else {
9434			/* Accepted this patch.  Advance to the next
9435			 * one and wait for our intruction pointer to
9436			 * hit this point.
9437			 */
9438			cur_patch++;
9439		}
9440	}
9441
9442	*start_patch = cur_patch;
9443	if (start_instr < *skip_addr)
9444		/* Still skipping */
9445		return (0);
9446
9447	return (1);
9448}
9449
9450static u_int
9451ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address)
9452{
9453	const struct patch *cur_patch;
9454	int address_offset;
9455	u_int skip_addr;
9456	u_int i;
9457
9458	address_offset = 0;
9459	cur_patch = patches;
9460	skip_addr = 0;
9461
9462	for (i = 0; i < address;) {
9463
9464		ahd_check_patch(ahd, &cur_patch, i, &skip_addr);
9465
9466		if (skip_addr > i) {
9467			int end_addr;
9468
9469			end_addr = min(address, skip_addr);
9470			address_offset += end_addr - i;
9471			i = skip_addr;
9472		} else {
9473			i++;
9474		}
9475	}
9476	return (address - address_offset);
9477}
9478
9479static void
9480ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts)
9481{
9482	union	ins_formats instr;
9483	struct	ins_format1 *fmt1_ins;
9484	struct	ins_format3 *fmt3_ins;
9485	u_int	opcode;
9486
9487	/*
9488	 * The firmware is always compiled into a little endian format.
9489	 */
9490	instr.integer = ahd_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
9491
9492	fmt1_ins = &instr.format1;
9493	fmt3_ins = NULL;
9494
9495	/* Pull the opcode */
9496	opcode = instr.format1.opcode;
9497	switch (opcode) {
9498	case AIC_OP_JMP:
9499	case AIC_OP_JC:
9500	case AIC_OP_JNC:
9501	case AIC_OP_CALL:
9502	case AIC_OP_JNE:
9503	case AIC_OP_JNZ:
9504	case AIC_OP_JE:
9505	case AIC_OP_JZ:
9506	{
9507		fmt3_ins = &instr.format3;
9508		fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address);
9509	}
9510		fallthrough;
9511	case AIC_OP_OR:
9512	case AIC_OP_AND:
9513	case AIC_OP_XOR:
9514	case AIC_OP_ADD:
9515	case AIC_OP_ADC:
9516	case AIC_OP_BMOV:
9517		if (fmt1_ins->parity != 0) {
9518			fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
9519		}
9520		fmt1_ins->parity = 0;
9521		fallthrough;
9522	case AIC_OP_ROL:
9523	{
9524		int i, count;
9525
9526		/* Calculate odd parity for the instruction */
9527		for (i = 0, count = 0; i < 31; i++) {
9528			uint32_t mask;
9529
9530			mask = 0x01 << i;
9531			if ((instr.integer & mask) != 0)
9532				count++;
9533		}
9534		if ((count & 0x01) == 0)
9535			instr.format1.parity = 1;
9536
9537		/* The sequencer is a little endian cpu */
9538		instr.integer = ahd_htole32(instr.integer);
9539		ahd_outsb(ahd, SEQRAM, instr.bytes, 4);
9540		break;
9541	}
9542	default:
9543		panic("Unknown opcode encountered in seq program");
9544		break;
9545	}
9546}
9547
9548static int
9549ahd_probe_stack_size(struct ahd_softc *ahd)
9550{
9551	int last_probe;
9552
9553	last_probe = 0;
9554	while (1) {
9555		int i;
9556
9557		/*
9558		 * We avoid using 0 as a pattern to avoid
9559		 * confusion if the stack implementation
9560		 * "back-fills" with zeros when "poping'
9561		 * entries.
9562		 */
9563		for (i = 1; i <= last_probe+1; i++) {
9564		       ahd_outb(ahd, STACK, i & 0xFF);
9565		       ahd_outb(ahd, STACK, (i >> 8) & 0xFF);
9566		}
9567
9568		/* Verify */
9569		for (i = last_probe+1; i > 0; i--) {
9570			u_int stack_entry;
9571
9572			stack_entry = ahd_inb(ahd, STACK)
9573				    |(ahd_inb(ahd, STACK) << 8);
9574			if (stack_entry != i)
9575				goto sized;
9576		}
9577		last_probe++;
9578	}
9579sized:
9580	return (last_probe);
9581}
9582
9583int
9584ahd_print_register(const ahd_reg_parse_entry_t *table, u_int num_entries,
9585		   const char *name, u_int address, u_int value,
9586		   u_int *cur_column, u_int wrap_point)
9587{
9588	int	printed;
9589	u_int	printed_mask;
9590
9591	if (cur_column != NULL && *cur_column >= wrap_point) {
9592		printk("\n");
9593		*cur_column = 0;
9594	}
9595	printed = printk("%s[0x%x]", name, value);
9596	if (table == NULL) {
9597		printed += printk(" ");
9598		*cur_column += printed;
9599		return (printed);
9600	}
9601	printed_mask = 0;
9602	while (printed_mask != 0xFF) {
9603		int entry;
9604
9605		for (entry = 0; entry < num_entries; entry++) {
9606			if (((value & table[entry].mask)
9607			  != table[entry].value)
9608			 || ((printed_mask & table[entry].mask)
9609			  == table[entry].mask))
9610				continue;
9611
9612			printed += printk("%s%s",
9613					  printed_mask == 0 ? ":(" : "|",
9614					  table[entry].name);
9615			printed_mask |= table[entry].mask;
9616
9617			break;
9618		}
9619		if (entry >= num_entries)
9620			break;
9621	}
9622	if (printed_mask != 0)
9623		printed += printk(") ");
9624	else
9625		printed += printk(" ");
9626	if (cur_column != NULL)
9627		*cur_column += printed;
9628	return (printed);
9629}
9630
9631void
9632ahd_dump_card_state(struct ahd_softc *ahd)
9633{
9634	struct scb	*scb;
9635	ahd_mode_state	 saved_modes;
9636	u_int		 dffstat;
9637	int		 paused;
9638	u_int		 scb_index;
9639	u_int		 saved_scb_index;
9640	u_int		 cur_col;
9641	int		 i;
9642
9643	if (ahd_is_paused(ahd)) {
9644		paused = 1;
9645	} else {
9646		paused = 0;
9647		ahd_pause(ahd);
9648	}
9649	saved_modes = ahd_save_modes(ahd);
9650	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9651	printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
9652	       "%s: Dumping Card State at program address 0x%x Mode 0x%x\n",
9653	       ahd_name(ahd),
9654	       ahd_inw(ahd, CURADDR),
9655	       ahd_build_mode_state(ahd, ahd->saved_src_mode,
9656				    ahd->saved_dst_mode));
9657	if (paused)
9658		printk("Card was paused\n");
9659
9660	if (ahd_check_cmdcmpltqueues(ahd))
9661		printk("Completions are pending\n");
9662
9663	/*
9664	 * Mode independent registers.
9665	 */
9666	cur_col = 0;
9667	ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50);
9668	ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50);
9669	ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50);
9670	ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50);
9671	ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50);
9672	ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50);
9673	ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50);
9674	ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50);
9675	ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50);
9676	ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50);
9677	ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50);
9678	ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50);
9679	ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50);
9680	ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50);
9681	ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50);
9682	ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50);
9683	ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50);
9684	ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50);
9685	ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50);
9686	ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT),
9687				       &cur_col, 50);
9688	ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50);
9689	ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID),
9690				    &cur_col, 50);
9691	ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50);
9692	ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50);
9693	ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50);
9694	ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50);
9695	ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50);
9696	ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50);
9697	ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50);
9698	ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50);
9699	ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50);
9700	ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50);
9701	ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50);
9702	ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50);
9703	printk("\n");
9704	printk("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x "
9705	       "CURRSCB 0x%x NEXTSCB 0x%x\n",
9706	       ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING),
9707	       ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB),
9708	       ahd_inw(ahd, NEXTSCB));
9709	cur_col = 0;
9710	/* QINFIFO */
9711	ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
9712			   CAM_LUN_WILDCARD, SCB_LIST_NULL,
9713			   ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT);
9714	saved_scb_index = ahd_get_scbptr(ahd);
9715	printk("Pending list:");
9716	i = 0;
9717	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
9718		if (i++ > AHD_SCB_MAX)
9719			break;
9720		cur_col = printk("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb),
9721				 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT));
9722		ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
9723		ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL),
9724				      &cur_col, 60);
9725		ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID),
9726				     &cur_col, 60);
9727	}
9728	printk("\nTotal %d\n", i);
9729
9730	printk("Kernel Free SCB list: ");
9731	i = 0;
9732	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
9733		struct scb *list_scb;
9734
9735		list_scb = scb;
9736		do {
9737			printk("%d ", SCB_GET_TAG(list_scb));
9738			list_scb = LIST_NEXT(list_scb, collision_links);
9739		} while (list_scb && i++ < AHD_SCB_MAX);
9740	}
9741
9742	LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
9743		if (i++ > AHD_SCB_MAX)
9744			break;
9745		printk("%d ", SCB_GET_TAG(scb));
9746	}
9747	printk("\n");
9748
9749	printk("Sequencer Complete DMA-inprog list: ");
9750	scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD);
9751	i = 0;
9752	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9753		ahd_set_scbptr(ahd, scb_index);
9754		printk("%d ", scb_index);
9755		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9756	}
9757	printk("\n");
9758
9759	printk("Sequencer Complete list: ");
9760	scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD);
9761	i = 0;
9762	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9763		ahd_set_scbptr(ahd, scb_index);
9764		printk("%d ", scb_index);
9765		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9766	}
9767	printk("\n");
9768
9769	printk("Sequencer DMA-Up and Complete list: ");
9770	scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
9771	i = 0;
9772	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9773		ahd_set_scbptr(ahd, scb_index);
9774		printk("%d ", scb_index);
9775		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9776	}
9777	printk("\n");
9778	printk("Sequencer On QFreeze and Complete list: ");
9779	scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
9780	i = 0;
9781	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9782		ahd_set_scbptr(ahd, scb_index);
9783		printk("%d ", scb_index);
9784		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9785	}
9786	printk("\n");
9787	ahd_set_scbptr(ahd, saved_scb_index);
9788	dffstat = ahd_inb(ahd, DFFSTAT);
9789	for (i = 0; i < 2; i++) {
9790#ifdef AHD_DEBUG
9791		struct scb *fifo_scb;
9792#endif
9793		u_int	    fifo_scbptr;
9794
9795		ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
9796		fifo_scbptr = ahd_get_scbptr(ahd);
9797		printk("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n",
9798		       ahd_name(ahd), i,
9799		       (dffstat & (FIFO0FREE << i)) ? "Free" : "Active",
9800		       ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr);
9801		cur_col = 0;
9802		ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50);
9803		ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50);
9804		ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50);
9805		ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50);
9806		ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW),
9807					  &cur_col, 50);
9808		ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50);
9809		ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50);
9810		ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50);
9811		ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50);
9812		if (cur_col > 50) {
9813			printk("\n");
9814			cur_col = 0;
9815		}
9816		cur_col += printk("SHADDR = 0x%x%x, SHCNT = 0x%x ",
9817				  ahd_inl(ahd, SHADDR+4),
9818				  ahd_inl(ahd, SHADDR),
9819				  (ahd_inb(ahd, SHCNT)
9820				| (ahd_inb(ahd, SHCNT + 1) << 8)
9821				| (ahd_inb(ahd, SHCNT + 2) << 16)));
9822		if (cur_col > 50) {
9823			printk("\n");
9824			cur_col = 0;
9825		}
9826		cur_col += printk("HADDR = 0x%x%x, HCNT = 0x%x ",
9827				  ahd_inl(ahd, HADDR+4),
9828				  ahd_inl(ahd, HADDR),
9829				  (ahd_inb(ahd, HCNT)
9830				| (ahd_inb(ahd, HCNT + 1) << 8)
9831				| (ahd_inb(ahd, HCNT + 2) << 16)));
9832		ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50);
9833#ifdef AHD_DEBUG
9834		if ((ahd_debug & AHD_SHOW_SG) != 0) {
9835			fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr);
9836			if (fifo_scb != NULL)
9837				ahd_dump_sglist(fifo_scb);
9838		}
9839#endif
9840	}
9841	printk("\nLQIN: ");
9842	for (i = 0; i < 20; i++)
9843		printk("0x%x ", ahd_inb(ahd, LQIN + i));
9844	printk("\n");
9845	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
9846	printk("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n",
9847	       ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE),
9848	       ahd_inb(ahd, OPTIONMODE));
9849	printk("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n",
9850	       ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT),
9851	       ahd_inb(ahd, MAXCMDCNT));
9852	printk("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n",
9853	       ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID),
9854	       ahd_inb(ahd, SAVED_LUN));
9855	ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50);
9856	printk("\n");
9857	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
9858	cur_col = 0;
9859	ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50);
9860	printk("\n");
9861	ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
9862	printk("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n",
9863	       ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX),
9864	       ahd_inw(ahd, DINDEX));
9865	printk("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n",
9866	       ahd_name(ahd), ahd_get_scbptr(ahd),
9867	       ahd_inw_scbram(ahd, SCB_NEXT),
9868	       ahd_inw_scbram(ahd, SCB_NEXT2));
9869	printk("CDB %x %x %x %x %x %x\n",
9870	       ahd_inb_scbram(ahd, SCB_CDB_STORE),
9871	       ahd_inb_scbram(ahd, SCB_CDB_STORE+1),
9872	       ahd_inb_scbram(ahd, SCB_CDB_STORE+2),
9873	       ahd_inb_scbram(ahd, SCB_CDB_STORE+3),
9874	       ahd_inb_scbram(ahd, SCB_CDB_STORE+4),
9875	       ahd_inb_scbram(ahd, SCB_CDB_STORE+5));
9876	printk("STACK:");
9877	for (i = 0; i < ahd->stack_size; i++) {
9878		ahd->saved_stack[i] =
9879		    ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8);
9880		printk(" 0x%x", ahd->saved_stack[i]);
9881	}
9882	for (i = ahd->stack_size-1; i >= 0; i--) {
9883		ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF);
9884		ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF);
9885	}
9886	printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
9887	ahd_restore_modes(ahd, saved_modes);
9888	if (paused == 0)
9889		ahd_unpause(ahd);
9890}
9891
9892#if 0
9893void
9894ahd_dump_scbs(struct ahd_softc *ahd)
9895{
9896	ahd_mode_state saved_modes;
9897	u_int	       saved_scb_index;
9898	int	       i;
9899
9900	saved_modes = ahd_save_modes(ahd);
9901	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9902	saved_scb_index = ahd_get_scbptr(ahd);
9903	for (i = 0; i < AHD_SCB_MAX; i++) {
9904		ahd_set_scbptr(ahd, i);
9905		printk("%3d", i);
9906		printk("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n",
9907		       ahd_inb_scbram(ahd, SCB_CONTROL),
9908		       ahd_inb_scbram(ahd, SCB_SCSIID),
9909		       ahd_inw_scbram(ahd, SCB_NEXT),
9910		       ahd_inw_scbram(ahd, SCB_NEXT2),
9911		       ahd_inl_scbram(ahd, SCB_SGPTR),
9912		       ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR));
9913	}
9914	printk("\n");
9915	ahd_set_scbptr(ahd, saved_scb_index);
9916	ahd_restore_modes(ahd, saved_modes);
9917}
9918#endif  /*  0  */
9919
9920/**************************** Flexport Logic **********************************/
9921/*
9922 * Read count 16bit words from 16bit word address start_addr from the
9923 * SEEPROM attached to the controller, into buf, using the controller's
9924 * SEEPROM reading state machine.  Optionally treat the data as a byte
9925 * stream in terms of byte order.
9926 */
9927int
9928ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9929		 u_int start_addr, u_int count, int bytestream)
9930{
9931	u_int cur_addr;
9932	u_int end_addr;
9933	int   error;
9934
9935	/*
9936	 * If we never make it through the loop even once,
9937	 * we were passed invalid arguments.
9938	 */
9939	error = EINVAL;
9940	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9941	end_addr = start_addr + count;
9942	for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
9943
9944		ahd_outb(ahd, SEEADR, cur_addr);
9945		ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART);
9946
9947		error = ahd_wait_seeprom(ahd);
9948		if (error)
9949			break;
9950		if (bytestream != 0) {
9951			uint8_t *bytestream_ptr;
9952
9953			bytestream_ptr = (uint8_t *)buf;
9954			*bytestream_ptr++ = ahd_inb(ahd, SEEDAT);
9955			*bytestream_ptr = ahd_inb(ahd, SEEDAT+1);
9956		} else {
9957			/*
9958			 * ahd_inw() already handles machine byte order.
9959			 */
9960			*buf = ahd_inw(ahd, SEEDAT);
9961		}
9962		buf++;
9963	}
9964	return (error);
9965}
9966
9967/*
9968 * Write count 16bit words from buf, into SEEPROM attache to the
9969 * controller starting at 16bit word address start_addr, using the
9970 * controller's SEEPROM writing state machine.
9971 */
9972int
9973ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9974		  u_int start_addr, u_int count)
9975{
9976	u_int cur_addr;
9977	u_int end_addr;
9978	int   error;
9979	int   retval;
9980
9981	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9982	error = ENOENT;
9983
9984	/* Place the chip into write-enable mode */
9985	ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR);
9986	ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART);
9987	error = ahd_wait_seeprom(ahd);
9988	if (error)
9989		return (error);
9990
9991	/*
9992	 * Write the data.  If we don't get through the loop at
9993	 * least once, the arguments were invalid.
9994	 */
9995	retval = EINVAL;
9996	end_addr = start_addr + count;
9997	for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
9998		ahd_outw(ahd, SEEDAT, *buf++);
9999		ahd_outb(ahd, SEEADR, cur_addr);
10000		ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART);
10001
10002		retval = ahd_wait_seeprom(ahd);
10003		if (retval)
10004			break;
10005	}
10006
10007	/*
10008	 * Disable writes.
10009	 */
10010	ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR);
10011	ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART);
10012	error = ahd_wait_seeprom(ahd);
10013	if (error)
10014		return (error);
10015	return (retval);
10016}
10017
10018/*
10019 * Wait ~100us for the serial eeprom to satisfy our request.
10020 */
10021static int
10022ahd_wait_seeprom(struct ahd_softc *ahd)
10023{
10024	int cnt;
10025
10026	cnt = 5000;
10027	while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt)
10028		ahd_delay(5);
10029
10030	if (cnt == 0)
10031		return (ETIMEDOUT);
10032	return (0);
10033}
10034
10035/*
10036 * Validate the two checksums in the per_channel
10037 * vital product data struct.
10038 */
10039static int
10040ahd_verify_vpd_cksum(struct vpd_config *vpd)
10041{
10042	int i;
10043	int maxaddr;
10044	uint32_t checksum;
10045	uint8_t *vpdarray;
10046
10047	vpdarray = (uint8_t *)vpd;
10048	maxaddr = offsetof(struct vpd_config, vpd_checksum);
10049	checksum = 0;
10050	for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++)
10051		checksum = checksum + vpdarray[i];
10052	if (checksum == 0
10053	 || (-checksum & 0xFF) != vpd->vpd_checksum)
10054		return (0);
10055
10056	checksum = 0;
10057	maxaddr = offsetof(struct vpd_config, checksum);
10058	for (i = offsetof(struct vpd_config, default_target_flags);
10059	     i < maxaddr; i++)
10060		checksum = checksum + vpdarray[i];
10061	if (checksum == 0
10062	 || (-checksum & 0xFF) != vpd->checksum)
10063		return (0);
10064	return (1);
10065}
10066
10067int
10068ahd_verify_cksum(struct seeprom_config *sc)
10069{
10070	int i;
10071	int maxaddr;
10072	uint32_t checksum;
10073	uint16_t *scarray;
10074
10075	maxaddr = (sizeof(*sc)/2) - 1;
10076	checksum = 0;
10077	scarray = (uint16_t *)sc;
10078
10079	for (i = 0; i < maxaddr; i++)
10080		checksum = checksum + scarray[i];
10081	if (checksum == 0
10082	 || (checksum & 0xFFFF) != sc->checksum) {
10083		return (0);
10084	} else {
10085		return (1);
10086	}
10087}
10088
10089int
10090ahd_acquire_seeprom(struct ahd_softc *ahd)
10091{
10092	/*
10093	 * We should be able to determine the SEEPROM type
10094	 * from the flexport logic, but unfortunately not
10095	 * all implementations have this logic and there is
10096	 * no programatic method for determining if the logic
10097	 * is present.
10098	 */
10099	return (1);
10100#if 0
10101	uint8_t	seetype;
10102	int	error;
10103
10104	error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype);
10105	if (error != 0
10106	    || ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE))
10107		return (0);
10108	return (1);
10109#endif
10110}
10111
10112void
10113ahd_release_seeprom(struct ahd_softc *ahd)
10114{
10115	/* Currently a no-op */
10116}
10117
10118/*
10119 * Wait at most 2 seconds for flexport arbitration to succeed.
10120 */
10121static int
10122ahd_wait_flexport(struct ahd_softc *ahd)
10123{
10124	int cnt;
10125
10126	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10127	cnt = 1000000 * 2 / 5;
10128	while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt)
10129		ahd_delay(5);
10130
10131	if (cnt == 0)
10132		return (ETIMEDOUT);
10133	return (0);
10134}
10135
10136int
10137ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value)
10138{
10139	int error;
10140
10141	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10142	if (addr > 7)
10143		panic("ahd_write_flexport: address out of range");
10144	ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10145	error = ahd_wait_flexport(ahd);
10146	if (error != 0)
10147		return (error);
10148	ahd_outb(ahd, BRDDAT, value);
10149	ahd_flush_device_writes(ahd);
10150	ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3));
10151	ahd_flush_device_writes(ahd);
10152	ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10153	ahd_flush_device_writes(ahd);
10154	ahd_outb(ahd, BRDCTL, 0);
10155	ahd_flush_device_writes(ahd);
10156	return (0);
10157}
10158
10159int
10160ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value)
10161{
10162	int	error;
10163
10164	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10165	if (addr > 7)
10166		panic("ahd_read_flexport: address out of range");
10167	ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3));
10168	error = ahd_wait_flexport(ahd);
10169	if (error != 0)
10170		return (error);
10171	*value = ahd_inb(ahd, BRDDAT);
10172	ahd_outb(ahd, BRDCTL, 0);
10173	ahd_flush_device_writes(ahd);
10174	return (0);
10175}
10176
10177/************************* Target Mode ****************************************/
10178#ifdef AHD_TARGET_MODE
10179cam_status
10180ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb,
10181		    struct ahd_tmode_tstate **tstate,
10182		    struct ahd_tmode_lstate **lstate,
10183		    int notfound_failure)
10184{
10185
10186	if ((ahd->features & AHD_TARGETMODE) == 0)
10187		return (CAM_REQ_INVALID);
10188
10189	/*
10190	 * Handle the 'black hole' device that sucks up
10191	 * requests to unattached luns on enabled targets.
10192	 */
10193	if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
10194	 && ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
10195		*tstate = NULL;
10196		*lstate = ahd->black_hole;
10197	} else {
10198		u_int max_id;
10199
10200		max_id = (ahd->features & AHD_WIDE) ? 16 : 8;
10201		if (ccb->ccb_h.target_id >= max_id)
10202			return (CAM_TID_INVALID);
10203
10204		if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS)
10205			return (CAM_LUN_INVALID);
10206
10207		*tstate = ahd->enabled_targets[ccb->ccb_h.target_id];
10208		*lstate = NULL;
10209		if (*tstate != NULL)
10210			*lstate =
10211			    (*tstate)->enabled_luns[ccb->ccb_h.target_lun];
10212	}
10213
10214	if (notfound_failure != 0 && *lstate == NULL)
10215		return (CAM_PATH_INVALID);
10216
10217	return (CAM_REQ_CMP);
10218}
10219
10220void
10221ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb)
10222{
10223#if NOT_YET
10224	struct	   ahd_tmode_tstate *tstate;
10225	struct	   ahd_tmode_lstate *lstate;
10226	struct	   ccb_en_lun *cel;
10227	cam_status status;
10228	u_int	   target;
10229	u_int	   lun;
10230	u_int	   target_mask;
10231	u_long	   s;
10232	char	   channel;
10233
10234	status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate,
10235				     /*notfound_failure*/FALSE);
10236
10237	if (status != CAM_REQ_CMP) {
10238		ccb->ccb_h.status = status;
10239		return;
10240	}
10241
10242	if ((ahd->features & AHD_MULTIROLE) != 0) {
10243		u_int	   our_id;
10244
10245		our_id = ahd->our_id;
10246		if (ccb->ccb_h.target_id != our_id) {
10247			if ((ahd->features & AHD_MULTI_TID) != 0
10248			 && (ahd->flags & AHD_INITIATORROLE) != 0) {
10249				/*
10250				 * Only allow additional targets if
10251				 * the initiator role is disabled.
10252				 * The hardware cannot handle a re-select-in
10253				 * on the initiator id during a re-select-out
10254				 * on a different target id.
10255				 */
10256				status = CAM_TID_INVALID;
10257			} else if ((ahd->flags & AHD_INITIATORROLE) != 0
10258				|| ahd->enabled_luns > 0) {
10259				/*
10260				 * Only allow our target id to change
10261				 * if the initiator role is not configured
10262				 * and there are no enabled luns which
10263				 * are attached to the currently registered
10264				 * scsi id.
10265				 */
10266				status = CAM_TID_INVALID;
10267			}
10268		}
10269	}
10270
10271	if (status != CAM_REQ_CMP) {
10272		ccb->ccb_h.status = status;
10273		return;
10274	}
10275
10276	/*
10277	 * We now have an id that is valid.
10278	 * If we aren't in target mode, switch modes.
10279	 */
10280	if ((ahd->flags & AHD_TARGETROLE) == 0
10281	 && ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
10282		u_long	s;
10283
10284		printk("Configuring Target Mode\n");
10285		ahd_lock(ahd, &s);
10286		if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
10287			ccb->ccb_h.status = CAM_BUSY;
10288			ahd_unlock(ahd, &s);
10289			return;
10290		}
10291		ahd->flags |= AHD_TARGETROLE;
10292		if ((ahd->features & AHD_MULTIROLE) == 0)
10293			ahd->flags &= ~AHD_INITIATORROLE;
10294		ahd_pause(ahd);
10295		ahd_loadseq(ahd);
10296		ahd_restart(ahd);
10297		ahd_unlock(ahd, &s);
10298	}
10299	cel = &ccb->cel;
10300	target = ccb->ccb_h.target_id;
10301	lun = ccb->ccb_h.target_lun;
10302	channel = SIM_CHANNEL(ahd, sim);
10303	target_mask = 0x01 << target;
10304	if (channel == 'B')
10305		target_mask <<= 8;
10306
10307	if (cel->enable != 0) {
10308		u_int scsiseq1;
10309
10310		/* Are we already enabled?? */
10311		if (lstate != NULL) {
10312			xpt_print_path(ccb->ccb_h.path);
10313			printk("Lun already enabled\n");
10314			ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
10315			return;
10316		}
10317
10318		if (cel->grp6_len != 0
10319		 || cel->grp7_len != 0) {
10320			/*
10321			 * Don't (yet?) support vendor
10322			 * specific commands.
10323			 */
10324			ccb->ccb_h.status = CAM_REQ_INVALID;
10325			printk("Non-zero Group Codes\n");
10326			return;
10327		}
10328
10329		/*
10330		 * Seems to be okay.
10331		 * Setup our data structures.
10332		 */
10333		if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
10334			tstate = ahd_alloc_tstate(ahd, target, channel);
10335			if (tstate == NULL) {
10336				xpt_print_path(ccb->ccb_h.path);
10337				printk("Couldn't allocate tstate\n");
10338				ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10339				return;
10340			}
10341		}
10342		lstate = kzalloc(sizeof(*lstate), GFP_ATOMIC);
10343		if (lstate == NULL) {
10344			xpt_print_path(ccb->ccb_h.path);
10345			printk("Couldn't allocate lstate\n");
10346			ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10347			return;
10348		}
10349		status = xpt_create_path(&lstate->path, /*periph*/NULL,
10350					 xpt_path_path_id(ccb->ccb_h.path),
10351					 xpt_path_target_id(ccb->ccb_h.path),
10352					 xpt_path_lun_id(ccb->ccb_h.path));
10353		if (status != CAM_REQ_CMP) {
10354			kfree(lstate);
10355			xpt_print_path(ccb->ccb_h.path);
10356			printk("Couldn't allocate path\n");
10357			ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10358			return;
10359		}
10360		SLIST_INIT(&lstate->accept_tios);
10361		SLIST_INIT(&lstate->immed_notifies);
10362		ahd_lock(ahd, &s);
10363		ahd_pause(ahd);
10364		if (target != CAM_TARGET_WILDCARD) {
10365			tstate->enabled_luns[lun] = lstate;
10366			ahd->enabled_luns++;
10367
10368			if ((ahd->features & AHD_MULTI_TID) != 0) {
10369				u_int targid_mask;
10370
10371				targid_mask = ahd_inw(ahd, TARGID);
10372				targid_mask |= target_mask;
10373				ahd_outw(ahd, TARGID, targid_mask);
10374				ahd_update_scsiid(ahd, targid_mask);
10375			} else {
10376				u_int our_id;
10377				char  channel;
10378
10379				channel = SIM_CHANNEL(ahd, sim);
10380				our_id = SIM_SCSI_ID(ahd, sim);
10381
10382				/*
10383				 * This can only happen if selections
10384				 * are not enabled
10385				 */
10386				if (target != our_id) {
10387					u_int sblkctl;
10388					char  cur_channel;
10389					int   swap;
10390
10391					sblkctl = ahd_inb(ahd, SBLKCTL);
10392					cur_channel = (sblkctl & SELBUSB)
10393						    ? 'B' : 'A';
10394					if ((ahd->features & AHD_TWIN) == 0)
10395						cur_channel = 'A';
10396					swap = cur_channel != channel;
10397					ahd->our_id = target;
10398
10399					if (swap)
10400						ahd_outb(ahd, SBLKCTL,
10401							 sblkctl ^ SELBUSB);
10402
10403					ahd_outb(ahd, SCSIID, target);
10404
10405					if (swap)
10406						ahd_outb(ahd, SBLKCTL, sblkctl);
10407				}
10408			}
10409		} else
10410			ahd->black_hole = lstate;
10411		/* Allow select-in operations */
10412		if (ahd->black_hole != NULL && ahd->enabled_luns > 0) {
10413			scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10414			scsiseq1 |= ENSELI;
10415			ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10416			scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10417			scsiseq1 |= ENSELI;
10418			ahd_outb(ahd, SCSISEQ1, scsiseq1);
10419		}
10420		ahd_unpause(ahd);
10421		ahd_unlock(ahd, &s);
10422		ccb->ccb_h.status = CAM_REQ_CMP;
10423		xpt_print_path(ccb->ccb_h.path);
10424		printk("Lun now enabled for target mode\n");
10425	} else {
10426		struct scb *scb;
10427		int i, empty;
10428
10429		if (lstate == NULL) {
10430			ccb->ccb_h.status = CAM_LUN_INVALID;
10431			return;
10432		}
10433
10434		ahd_lock(ahd, &s);
10435
10436		ccb->ccb_h.status = CAM_REQ_CMP;
10437		LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
10438			struct ccb_hdr *ccbh;
10439
10440			ccbh = &scb->io_ctx->ccb_h;
10441			if (ccbh->func_code == XPT_CONT_TARGET_IO
10442			 && !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
10443				printk("CTIO pending\n");
10444				ccb->ccb_h.status = CAM_REQ_INVALID;
10445				ahd_unlock(ahd, &s);
10446				return;
10447			}
10448		}
10449
10450		if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
10451			printk("ATIOs pending\n");
10452			ccb->ccb_h.status = CAM_REQ_INVALID;
10453		}
10454
10455		if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
10456			printk("INOTs pending\n");
10457			ccb->ccb_h.status = CAM_REQ_INVALID;
10458		}
10459
10460		if (ccb->ccb_h.status != CAM_REQ_CMP) {
10461			ahd_unlock(ahd, &s);
10462			return;
10463		}
10464
10465		xpt_print_path(ccb->ccb_h.path);
10466		printk("Target mode disabled\n");
10467		xpt_free_path(lstate->path);
10468		kfree(lstate);
10469
10470		ahd_pause(ahd);
10471		/* Can we clean up the target too? */
10472		if (target != CAM_TARGET_WILDCARD) {
10473			tstate->enabled_luns[lun] = NULL;
10474			ahd->enabled_luns--;
10475			for (empty = 1, i = 0; i < 8; i++)
10476				if (tstate->enabled_luns[i] != NULL) {
10477					empty = 0;
10478					break;
10479				}
10480
10481			if (empty) {
10482				ahd_free_tstate(ahd, target, channel,
10483						/*force*/FALSE);
10484				if (ahd->features & AHD_MULTI_TID) {
10485					u_int targid_mask;
10486
10487					targid_mask = ahd_inw(ahd, TARGID);
10488					targid_mask &= ~target_mask;
10489					ahd_outw(ahd, TARGID, targid_mask);
10490					ahd_update_scsiid(ahd, targid_mask);
10491				}
10492			}
10493		} else {
10494
10495			ahd->black_hole = NULL;
10496
10497			/*
10498			 * We can't allow selections without
10499			 * our black hole device.
10500			 */
10501			empty = TRUE;
10502		}
10503		if (ahd->enabled_luns == 0) {
10504			/* Disallow select-in */
10505			u_int scsiseq1;
10506
10507			scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10508			scsiseq1 &= ~ENSELI;
10509			ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10510			scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10511			scsiseq1 &= ~ENSELI;
10512			ahd_outb(ahd, SCSISEQ1, scsiseq1);
10513
10514			if ((ahd->features & AHD_MULTIROLE) == 0) {
10515				printk("Configuring Initiator Mode\n");
10516				ahd->flags &= ~AHD_TARGETROLE;
10517				ahd->flags |= AHD_INITIATORROLE;
10518				ahd_pause(ahd);
10519				ahd_loadseq(ahd);
10520				ahd_restart(ahd);
10521				/*
10522				 * Unpaused.  The extra unpause
10523				 * that follows is harmless.
10524				 */
10525			}
10526		}
10527		ahd_unpause(ahd);
10528		ahd_unlock(ahd, &s);
10529	}
10530#endif
10531}
10532
10533static void
10534ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask)
10535{
10536#if NOT_YET
10537	u_int scsiid_mask;
10538	u_int scsiid;
10539
10540	if ((ahd->features & AHD_MULTI_TID) == 0)
10541		panic("ahd_update_scsiid called on non-multitid unit\n");
10542
10543	/*
10544	 * Since we will rely on the TARGID mask
10545	 * for selection enables, ensure that OID
10546	 * in SCSIID is not set to some other ID
10547	 * that we don't want to allow selections on.
10548	 */
10549	if ((ahd->features & AHD_ULTRA2) != 0)
10550		scsiid = ahd_inb(ahd, SCSIID_ULTRA2);
10551	else
10552		scsiid = ahd_inb(ahd, SCSIID);
10553	scsiid_mask = 0x1 << (scsiid & OID);
10554	if ((targid_mask & scsiid_mask) == 0) {
10555		u_int our_id;
10556
10557		/* ffs counts from 1 */
10558		our_id = ffs(targid_mask);
10559		if (our_id == 0)
10560			our_id = ahd->our_id;
10561		else
10562			our_id--;
10563		scsiid &= TID;
10564		scsiid |= our_id;
10565	}
10566	if ((ahd->features & AHD_ULTRA2) != 0)
10567		ahd_outb(ahd, SCSIID_ULTRA2, scsiid);
10568	else
10569		ahd_outb(ahd, SCSIID, scsiid);
10570#endif
10571}
10572
10573static void
10574ahd_run_tqinfifo(struct ahd_softc *ahd, int paused)
10575{
10576	struct target_cmd *cmd;
10577
10578	ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD);
10579	while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) {
10580
10581		/*
10582		 * Only advance through the queue if we
10583		 * have the resources to process the command.
10584		 */
10585		if (ahd_handle_target_cmd(ahd, cmd) != 0)
10586			break;
10587
10588		cmd->cmd_valid = 0;
10589		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
10590				ahd->shared_data_map.dmamap,
10591				ahd_targetcmd_offset(ahd, ahd->tqinfifonext),
10592				sizeof(struct target_cmd),
10593				BUS_DMASYNC_PREREAD);
10594		ahd->tqinfifonext++;
10595
10596		/*
10597		 * Lazily update our position in the target mode incoming
10598		 * command queue as seen by the sequencer.
10599		 */
10600		if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
10601			u_int hs_mailbox;
10602
10603			hs_mailbox = ahd_inb(ahd, HS_MAILBOX);
10604			hs_mailbox &= ~HOST_TQINPOS;
10605			hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS;
10606			ahd_outb(ahd, HS_MAILBOX, hs_mailbox);
10607		}
10608	}
10609}
10610
10611static int
10612ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd)
10613{
10614	struct	  ahd_tmode_tstate *tstate;
10615	struct	  ahd_tmode_lstate *lstate;
10616	struct	  ccb_accept_tio *atio;
10617	uint8_t *byte;
10618	int	  initiator;
10619	int	  target;
10620	int	  lun;
10621
10622	initiator = SCSIID_TARGET(ahd, cmd->scsiid);
10623	target = SCSIID_OUR_ID(cmd->scsiid);
10624	lun    = (cmd->identify & MSG_IDENTIFY_LUNMASK);
10625
10626	byte = cmd->bytes;
10627	tstate = ahd->enabled_targets[target];
10628	lstate = NULL;
10629	if (tstate != NULL)
10630		lstate = tstate->enabled_luns[lun];
10631
10632	/*
10633	 * Commands for disabled luns go to the black hole driver.
10634	 */
10635	if (lstate == NULL)
10636		lstate = ahd->black_hole;
10637
10638	atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
10639	if (atio == NULL) {
10640		ahd->flags |= AHD_TQINFIFO_BLOCKED;
10641		/*
10642		 * Wait for more ATIOs from the peripheral driver for this lun.
10643		 */
10644		return (1);
10645	} else
10646		ahd->flags &= ~AHD_TQINFIFO_BLOCKED;
10647#ifdef AHD_DEBUG
10648	if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10649		printk("Incoming command from %d for %d:%d%s\n",
10650		       initiator, target, lun,
10651		       lstate == ahd->black_hole ? "(Black Holed)" : "");
10652#endif
10653	SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
10654
10655	if (lstate == ahd->black_hole) {
10656		/* Fill in the wildcards */
10657		atio->ccb_h.target_id = target;
10658		atio->ccb_h.target_lun = lun;
10659	}
10660
10661	/*
10662	 * Package it up and send it off to
10663	 * whomever has this lun enabled.
10664	 */
10665	atio->sense_len = 0;
10666	atio->init_id = initiator;
10667	if (byte[0] != 0xFF) {
10668		/* Tag was included */
10669		atio->tag_action = *byte++;
10670		atio->tag_id = *byte++;
10671		atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
10672	} else {
10673		atio->ccb_h.flags = 0;
10674	}
10675	byte++;
10676
10677	/* Okay.  Now determine the cdb size based on the command code */
10678	switch (*byte >> CMD_GROUP_CODE_SHIFT) {
10679	case 0:
10680		atio->cdb_len = 6;
10681		break;
10682	case 1:
10683	case 2:
10684		atio->cdb_len = 10;
10685		break;
10686	case 4:
10687		atio->cdb_len = 16;
10688		break;
10689	case 5:
10690		atio->cdb_len = 12;
10691		break;
10692	case 3:
10693	default:
10694		/* Only copy the opcode. */
10695		atio->cdb_len = 1;
10696		printk("Reserved or VU command code type encountered\n");
10697		break;
10698	}
10699
10700	memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
10701
10702	atio->ccb_h.status |= CAM_CDB_RECVD;
10703
10704	if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
10705		/*
10706		 * We weren't allowed to disconnect.
10707		 * We're hanging on the bus until a
10708		 * continue target I/O comes in response
10709		 * to this accept tio.
10710		 */
10711#ifdef AHD_DEBUG
10712		if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10713			printk("Received Immediate Command %d:%d:%d - %p\n",
10714			       initiator, target, lun, ahd->pending_device);
10715#endif
10716		ahd->pending_device = lstate;
10717		ahd_freeze_ccb((union ccb *)atio);
10718		atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
10719	}
10720	xpt_done((union ccb*)atio);
10721	return (0);
10722}
10723
10724#endif
10725