1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
4 *
5 * Copyright (c) 1995-2000 Advanced System Products, Inc.
6 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
7 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
8 * Copyright (c) 2014 Hannes Reinecke <hare@suse.de>
9 * All Rights Reserved.
10 */
11
12/*
13 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
14 * changed its name to ConnectCom Solutions, Inc.
15 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
16 */
17
18#include <linux/module.h>
19#include <linux/string.h>
20#include <linux/kernel.h>
21#include <linux/types.h>
22#include <linux/ioport.h>
23#include <linux/interrupt.h>
24#include <linux/delay.h>
25#include <linux/slab.h>
26#include <linux/mm.h>
27#include <linux/proc_fs.h>
28#include <linux/init.h>
29#include <linux/blkdev.h>
30#include <linux/isa.h>
31#include <linux/eisa.h>
32#include <linux/pci.h>
33#include <linux/spinlock.h>
34#include <linux/dma-mapping.h>
35#include <linux/firmware.h>
36#include <linux/dmapool.h>
37
38#include <asm/io.h>
39#include <asm/dma.h>
40
41#include <scsi/scsi_cmnd.h>
42#include <scsi/scsi_device.h>
43#include <scsi/scsi_tcq.h>
44#include <scsi/scsi.h>
45#include <scsi/scsi_host.h>
46
47#define DRV_NAME "advansys"
48#define ASC_VERSION "3.5"	/* AdvanSys Driver Version */
49
50/* FIXME:
51 *
52 *  1. Use scsi_transport_spi
53 *  2. advansys_info is not safe against multiple simultaneous callers
54 *  3. Add module_param to override ISA/VLB ioport array
55 */
56
57/* Enable driver /proc statistics. */
58#define ADVANSYS_STATS
59
60/* Enable driver tracing. */
61#undef ADVANSYS_DEBUG
62
63typedef unsigned char uchar;
64
65#define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
66
67#define PCI_VENDOR_ID_ASP		0x10cd
68#define PCI_DEVICE_ID_ASP_1200A		0x1100
69#define PCI_DEVICE_ID_ASP_ABP940	0x1200
70#define PCI_DEVICE_ID_ASP_ABP940U	0x1300
71#define PCI_DEVICE_ID_ASP_ABP940UW	0x2300
72#define PCI_DEVICE_ID_38C0800_REV1	0x2500
73#define PCI_DEVICE_ID_38C1600_REV1	0x2700
74
75#define PortAddr                 unsigned int	/* port address size  */
76#define inp(port)                inb(port)
77#define outp(port, byte)         outb((byte), (port))
78
79#define inpw(port)               inw(port)
80#define outpw(port, word)        outw((word), (port))
81
82#define ASC_MAX_SG_QUEUE    7
83#define ASC_MAX_SG_LIST     255
84
85#define ASC_CS_TYPE  unsigned short
86
87#define ASC_IS_EISA         (0x0002)
88#define ASC_IS_PCI          (0x0004)
89#define ASC_IS_PCI_ULTRA    (0x0104)
90#define ASC_IS_PCMCIA       (0x0008)
91#define ASC_IS_MCA          (0x0020)
92#define ASC_IS_VL           (0x0040)
93#define ASC_IS_WIDESCSI_16  (0x0100)
94#define ASC_IS_WIDESCSI_32  (0x0200)
95#define ASC_IS_BIG_ENDIAN   (0x8000)
96
97#define ASC_CHIP_MIN_VER_VL      (0x01)
98#define ASC_CHIP_MAX_VER_VL      (0x07)
99#define ASC_CHIP_MIN_VER_PCI     (0x09)
100#define ASC_CHIP_MAX_VER_PCI     (0x0F)
101#define ASC_CHIP_VER_PCI_BIT     (0x08)
102#define ASC_CHIP_VER_ASYN_BUG    (0x21)
103#define ASC_CHIP_VER_PCI             0x08
104#define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
105#define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
106#define ASC_CHIP_MIN_VER_EISA (0x41)
107#define ASC_CHIP_MAX_VER_EISA (0x47)
108#define ASC_CHIP_VER_EISA_BIT (0x40)
109#define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
110#define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
111#define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
112
113#define ASC_SCSI_ID_BITS  3
114#define ASC_SCSI_TIX_TYPE     uchar
115#define ASC_ALL_DEVICE_BIT_SET  0xFF
116#define ASC_SCSI_BIT_ID_TYPE  uchar
117#define ASC_MAX_TID       7
118#define ASC_MAX_LUN       7
119#define ASC_SCSI_WIDTH_BIT_SET  0xFF
120#define ASC_MAX_SENSE_LEN   32
121#define ASC_MIN_SENSE_LEN   14
122#define ASC_SCSI_RESET_HOLD_TIME_US  60
123
124/*
125 * Narrow boards only support 12-byte commands, while wide boards
126 * extend to 16-byte commands.
127 */
128#define ASC_MAX_CDB_LEN     12
129#define ADV_MAX_CDB_LEN     16
130
131#define MS_SDTR_LEN    0x03
132#define MS_WDTR_LEN    0x02
133
134#define ASC_SG_LIST_PER_Q   7
135#define QS_FREE        0x00
136#define QS_READY       0x01
137#define QS_DISC1       0x02
138#define QS_DISC2       0x04
139#define QS_BUSY        0x08
140#define QS_ABORTED     0x40
141#define QS_DONE        0x80
142#define QC_NO_CALLBACK   0x01
143#define QC_SG_SWAP_QUEUE 0x02
144#define QC_SG_HEAD       0x04
145#define QC_DATA_IN       0x08
146#define QC_DATA_OUT      0x10
147#define QC_URGENT        0x20
148#define QC_MSG_OUT       0x40
149#define QC_REQ_SENSE     0x80
150#define QCSG_SG_XFER_LIST  0x02
151#define QCSG_SG_XFER_MORE  0x04
152#define QCSG_SG_XFER_END   0x08
153#define QD_IN_PROGRESS       0x00
154#define QD_NO_ERROR          0x01
155#define QD_ABORTED_BY_HOST   0x02
156#define QD_WITH_ERROR        0x04
157#define QD_INVALID_REQUEST   0x80
158#define QD_INVALID_HOST_NUM  0x81
159#define QD_INVALID_DEVICE    0x82
160#define QD_ERR_INTERNAL      0xFF
161#define QHSTA_NO_ERROR               0x00
162#define QHSTA_M_SEL_TIMEOUT          0x11
163#define QHSTA_M_DATA_OVER_RUN        0x12
164#define QHSTA_M_DATA_UNDER_RUN       0x12
165#define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
166#define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
167#define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
168#define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
169#define QHSTA_D_HOST_ABORT_FAILED       0x23
170#define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
171#define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
172#define QHSTA_D_ASPI_NO_BUF_POOL        0x26
173#define QHSTA_M_WTM_TIMEOUT         0x41
174#define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
175#define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
176#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
177#define QHSTA_M_TARGET_STATUS_BUSY  0x45
178#define QHSTA_M_BAD_TAG_CODE        0x46
179#define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
180#define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
181#define QHSTA_D_LRAM_CMP_ERROR        0x81
182#define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
183#define ASC_FLAG_SCSIQ_REQ        0x01
184#define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
185#define ASC_FLAG_BIOS_ASYNC_IO    0x04
186#define ASC_FLAG_SRB_LINEAR_ADDR  0x08
187#define ASC_FLAG_WIN16            0x10
188#define ASC_FLAG_WIN32            0x20
189#define ASC_FLAG_DOS_VM_CALLBACK  0x80
190#define ASC_TAG_FLAG_EXTRA_BYTES               0x10
191#define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
192#define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
193#define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
194#define ASC_SCSIQ_CPY_BEG              4
195#define ASC_SCSIQ_SGHD_CPY_BEG         2
196#define ASC_SCSIQ_B_FWD                0
197#define ASC_SCSIQ_B_BWD                1
198#define ASC_SCSIQ_B_STATUS             2
199#define ASC_SCSIQ_B_QNO                3
200#define ASC_SCSIQ_B_CNTL               4
201#define ASC_SCSIQ_B_SG_QUEUE_CNT       5
202#define ASC_SCSIQ_D_DATA_ADDR          8
203#define ASC_SCSIQ_D_DATA_CNT          12
204#define ASC_SCSIQ_B_SENSE_LEN         20
205#define ASC_SCSIQ_DONE_INFO_BEG       22
206#define ASC_SCSIQ_D_SRBPTR            22
207#define ASC_SCSIQ_B_TARGET_IX         26
208#define ASC_SCSIQ_B_CDB_LEN           28
209#define ASC_SCSIQ_B_TAG_CODE          29
210#define ASC_SCSIQ_W_VM_ID             30
211#define ASC_SCSIQ_DONE_STATUS         32
212#define ASC_SCSIQ_HOST_STATUS         33
213#define ASC_SCSIQ_SCSI_STATUS         34
214#define ASC_SCSIQ_CDB_BEG             36
215#define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
216#define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
217#define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
218#define ASC_SCSIQ_B_SG_WK_QP          49
219#define ASC_SCSIQ_B_SG_WK_IX          50
220#define ASC_SCSIQ_W_ALT_DC1           52
221#define ASC_SCSIQ_B_LIST_CNT          6
222#define ASC_SCSIQ_B_CUR_LIST_CNT      7
223#define ASC_SGQ_B_SG_CNTL             4
224#define ASC_SGQ_B_SG_HEAD_QP          5
225#define ASC_SGQ_B_SG_LIST_CNT         6
226#define ASC_SGQ_B_SG_CUR_LIST_CNT     7
227#define ASC_SGQ_LIST_BEG              8
228#define ASC_DEF_SCSI1_QNG    4
229#define ASC_MAX_SCSI1_QNG    4
230#define ASC_DEF_SCSI2_QNG    16
231#define ASC_MAX_SCSI2_QNG    32
232#define ASC_TAG_CODE_MASK    0x23
233#define ASC_STOP_REQ_RISC_STOP      0x01
234#define ASC_STOP_ACK_RISC_STOP      0x03
235#define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
236#define ASC_STOP_CLEAN_UP_DISC_Q    0x20
237#define ASC_STOP_HOST_REQ_RISC_HALT 0x40
238#define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
239#define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
240#define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
241#define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
242#define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
243#define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
244#define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
245
246typedef struct asc_scsiq_1 {
247	uchar status;
248	uchar q_no;
249	uchar cntl;
250	uchar sg_queue_cnt;
251	uchar target_id;
252	uchar target_lun;
253	__le32 data_addr;
254	__le32 data_cnt;
255	__le32 sense_addr;
256	uchar sense_len;
257	uchar extra_bytes;
258} ASC_SCSIQ_1;
259
260typedef struct asc_scsiq_2 {
261	u32 srb_tag;
262	uchar target_ix;
263	uchar flag;
264	uchar cdb_len;
265	uchar tag_code;
266	ushort vm_id;
267} ASC_SCSIQ_2;
268
269typedef struct asc_scsiq_3 {
270	uchar done_stat;
271	uchar host_stat;
272	uchar scsi_stat;
273	uchar scsi_msg;
274} ASC_SCSIQ_3;
275
276typedef struct asc_scsiq_4 {
277	uchar cdb[ASC_MAX_CDB_LEN];
278	uchar y_first_sg_list_qp;
279	uchar y_working_sg_qp;
280	uchar y_working_sg_ix;
281	uchar y_res;
282	ushort x_req_count;
283	ushort x_reconnect_rtn;
284	__le32 x_saved_data_addr;
285	__le32 x_saved_data_cnt;
286} ASC_SCSIQ_4;
287
288typedef struct asc_q_done_info {
289	ASC_SCSIQ_2 d2;
290	ASC_SCSIQ_3 d3;
291	uchar q_status;
292	uchar q_no;
293	uchar cntl;
294	uchar sense_len;
295	uchar extra_bytes;
296	uchar res;
297	u32 remain_bytes;
298} ASC_QDONE_INFO;
299
300typedef struct asc_sg_list {
301	__le32 addr;
302	__le32 bytes;
303} ASC_SG_LIST;
304
305typedef struct asc_sg_head {
306	ushort entry_cnt;
307	ushort queue_cnt;
308	ushort entry_to_copy;
309	ushort res;
310	ASC_SG_LIST sg_list[];
311} ASC_SG_HEAD;
312
313typedef struct asc_scsi_q {
314	ASC_SCSIQ_1 q1;
315	ASC_SCSIQ_2 q2;
316	uchar *cdbptr;
317	ASC_SG_HEAD *sg_head;
318	ushort remain_sg_entry_cnt;
319	ushort next_sg_index;
320} ASC_SCSI_Q;
321
322typedef struct asc_scsi_bios_req_q {
323	ASC_SCSIQ_1 r1;
324	ASC_SCSIQ_2 r2;
325	uchar *cdbptr;
326	ASC_SG_HEAD *sg_head;
327	uchar *sense_ptr;
328	ASC_SCSIQ_3 r3;
329	uchar cdb[ASC_MAX_CDB_LEN];
330	uchar sense[ASC_MIN_SENSE_LEN];
331} ASC_SCSI_BIOS_REQ_Q;
332
333typedef struct asc_risc_q {
334	uchar fwd;
335	uchar bwd;
336	ASC_SCSIQ_1 i1;
337	ASC_SCSIQ_2 i2;
338	ASC_SCSIQ_3 i3;
339	ASC_SCSIQ_4 i4;
340} ASC_RISC_Q;
341
342typedef struct asc_sg_list_q {
343	uchar seq_no;
344	uchar q_no;
345	uchar cntl;
346	uchar sg_head_qp;
347	uchar sg_list_cnt;
348	uchar sg_cur_list_cnt;
349} ASC_SG_LIST_Q;
350
351typedef struct asc_risc_sg_list_q {
352	uchar fwd;
353	uchar bwd;
354	ASC_SG_LIST_Q sg;
355	ASC_SG_LIST sg_list[7];
356} ASC_RISC_SG_LIST_Q;
357
358#define ASCQ_ERR_Q_STATUS             0x0D
359#define ASCQ_ERR_CUR_QNG              0x17
360#define ASCQ_ERR_SG_Q_LINKS           0x18
361#define ASCQ_ERR_ISR_RE_ENTRY         0x1A
362#define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
363#define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
364
365/*
366 * Warning code values are set in ASC_DVC_VAR  'warn_code'.
367 */
368#define ASC_WARN_NO_ERROR             0x0000
369#define ASC_WARN_IO_PORT_ROTATE       0x0001
370#define ASC_WARN_EEPROM_CHKSUM        0x0002
371#define ASC_WARN_IRQ_MODIFIED         0x0004
372#define ASC_WARN_AUTO_CONFIG          0x0008
373#define ASC_WARN_CMD_QNG_CONFLICT     0x0010
374#define ASC_WARN_EEPROM_RECOVER       0x0020
375#define ASC_WARN_CFG_MSW_RECOVER      0x0040
376
377/*
378 * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
379 */
380#define ASC_IERR_NO_CARRIER		0x0001	/* No more carrier memory */
381#define ASC_IERR_MCODE_CHKSUM		0x0002	/* micro code check sum error */
382#define ASC_IERR_SET_PC_ADDR		0x0004
383#define ASC_IERR_START_STOP_CHIP	0x0008	/* start/stop chip failed */
384#define ASC_IERR_ILLEGAL_CONNECTION	0x0010	/* Illegal cable connection */
385#define ASC_IERR_SINGLE_END_DEVICE	0x0020	/* SE device on DIFF bus */
386#define ASC_IERR_REVERSED_CABLE		0x0040	/* Narrow flat cable reversed */
387#define ASC_IERR_SET_SCSI_ID		0x0080	/* set SCSI ID failed */
388#define ASC_IERR_HVD_DEVICE		0x0100	/* HVD device on LVD port */
389#define ASC_IERR_BAD_SIGNATURE		0x0200	/* signature not found */
390#define ASC_IERR_NO_BUS_TYPE		0x0400
391#define ASC_IERR_BIST_PRE_TEST		0x0800	/* BIST pre-test error */
392#define ASC_IERR_BIST_RAM_TEST		0x1000	/* BIST RAM test error */
393#define ASC_IERR_BAD_CHIPTYPE		0x2000	/* Invalid chip_type setting */
394
395#define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
396#define ASC_MIN_TAG_Q_PER_DVC   (0x04)
397#define ASC_MIN_FREE_Q        (0x02)
398#define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
399#define ASC_MAX_TOTAL_QNG 240
400#define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
401#define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
402#define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
403#define ASC_MAX_INRAM_TAG_QNG   16
404#define ASC_IOADR_GAP   0x10
405#define ASC_SYN_MAX_OFFSET         0x0F
406#define ASC_DEF_SDTR_OFFSET        0x0F
407#define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
408#define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
409
410/* The narrow chip only supports a limited selection of transfer rates.
411 * These are encoded in the range 0..7 or 0..15 depending whether the chip
412 * is Ultra-capable or not.  These tables let us convert from one to the other.
413 */
414static const unsigned char asc_syn_xfer_period[8] = {
415	25, 30, 35, 40, 50, 60, 70, 85
416};
417
418static const unsigned char asc_syn_ultra_xfer_period[16] = {
419	12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
420};
421
422typedef struct ext_msg {
423	uchar msg_type;
424	uchar msg_len;
425	uchar msg_req;
426	union {
427		struct {
428			uchar sdtr_xfer_period;
429			uchar sdtr_req_ack_offset;
430		} sdtr;
431		struct {
432			uchar wdtr_width;
433		} wdtr;
434		struct {
435			uchar mdp_b3;
436			uchar mdp_b2;
437			uchar mdp_b1;
438			uchar mdp_b0;
439		} mdp;
440	} u_ext_msg;
441	uchar res;
442} EXT_MSG;
443
444#define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
445#define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
446#define wdtr_width      u_ext_msg.wdtr.wdtr_width
447#define mdp_b3          u_ext_msg.mdp_b3
448#define mdp_b2          u_ext_msg.mdp_b2
449#define mdp_b1          u_ext_msg.mdp_b1
450#define mdp_b0          u_ext_msg.mdp_b0
451
452typedef struct asc_dvc_cfg {
453	ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
454	ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
455	ASC_SCSI_BIT_ID_TYPE disc_enable;
456	ASC_SCSI_BIT_ID_TYPE sdtr_enable;
457	uchar chip_scsi_id;
458	uchar chip_version;
459	ushort mcode_date;
460	ushort mcode_version;
461	uchar max_tag_qng[ASC_MAX_TID + 1];
462	uchar sdtr_period_offset[ASC_MAX_TID + 1];
463	uchar adapter_info[6];
464} ASC_DVC_CFG;
465
466#define ASC_DEF_DVC_CNTL       0xFFFF
467#define ASC_DEF_CHIP_SCSI_ID   7
468#define ASC_DEF_ISA_DMA_SPEED  4
469#define ASC_INIT_STATE_BEG_GET_CFG   0x0001
470#define ASC_INIT_STATE_END_GET_CFG   0x0002
471#define ASC_INIT_STATE_BEG_SET_CFG   0x0004
472#define ASC_INIT_STATE_END_SET_CFG   0x0008
473#define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
474#define ASC_INIT_STATE_END_LOAD_MC   0x0020
475#define ASC_INIT_STATE_BEG_INQUIRY   0x0040
476#define ASC_INIT_STATE_END_INQUIRY   0x0080
477#define ASC_INIT_RESET_SCSI_DONE     0x0100
478#define ASC_INIT_STATE_WITHOUT_EEP   0x8000
479#define ASC_BUG_FIX_IF_NOT_DWB       0x0001
480#define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
481#define ASC_MIN_TAGGED_CMD  7
482#define ASC_MAX_SCSI_RESET_WAIT      30
483#define ASC_OVERRUN_BSIZE		64
484
485struct asc_dvc_var;		/* Forward Declaration. */
486
487typedef struct asc_dvc_var {
488	PortAddr iop_base;
489	ushort err_code;
490	ushort dvc_cntl;
491	ushort bug_fix_cntl;
492	ushort bus_type;
493	ASC_SCSI_BIT_ID_TYPE init_sdtr;
494	ASC_SCSI_BIT_ID_TYPE sdtr_done;
495	ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
496	ASC_SCSI_BIT_ID_TYPE unit_not_ready;
497	ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
498	ASC_SCSI_BIT_ID_TYPE start_motor;
499	uchar *overrun_buf;
500	dma_addr_t overrun_dma;
501	uchar scsi_reset_wait;
502	uchar chip_no;
503	bool is_in_int;
504	uchar max_total_qng;
505	uchar cur_total_qng;
506	uchar in_critical_cnt;
507	uchar last_q_shortage;
508	ushort init_state;
509	uchar cur_dvc_qng[ASC_MAX_TID + 1];
510	uchar max_dvc_qng[ASC_MAX_TID + 1];
511	ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
512	ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
513	const uchar *sdtr_period_tbl;
514	ASC_DVC_CFG *cfg;
515	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
516	char redo_scam;
517	ushort res2;
518	uchar dos_int13_table[ASC_MAX_TID + 1];
519	unsigned int max_dma_count;
520	ASC_SCSI_BIT_ID_TYPE no_scam;
521	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
522	uchar min_sdtr_index;
523	uchar max_sdtr_index;
524	struct asc_board *drv_ptr;
525	unsigned int uc_break;
526} ASC_DVC_VAR;
527
528typedef struct asc_dvc_inq_info {
529	uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
530} ASC_DVC_INQ_INFO;
531
532typedef struct asc_cap_info {
533	u32 lba;
534	u32 blk_size;
535} ASC_CAP_INFO;
536
537typedef struct asc_cap_info_array {
538	ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
539} ASC_CAP_INFO_ARRAY;
540
541#define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
542#define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
543#define ASC_CNTL_INITIATOR         (ushort)0x0001
544#define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
545#define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
546#define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
547#define ASC_CNTL_NO_SCAM           (ushort)0x0010
548#define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
549#define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
550#define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
551#define ASC_CNTL_RESET_SCSI        (ushort)0x0200
552#define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
553#define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
554#define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
555#define ASC_CNTL_BURST_MODE        (ushort)0x2000
556#define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
557#define ASC_EEP_DVC_CFG_BEG_VL    2
558#define ASC_EEP_MAX_DVC_ADDR_VL   15
559#define ASC_EEP_DVC_CFG_BEG      32
560#define ASC_EEP_MAX_DVC_ADDR     45
561#define ASC_EEP_MAX_RETRY        20
562
563/*
564 * These macros keep the chip SCSI id  bitfields in board order. C bitfields
565 * aren't portable between big and little-endian platforms so they are not used.
566 */
567
568#define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
569#define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
570#define ASC_EEP_SET_CHIP_ID(cfg, sid) \
571   ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
572#define ASC_EEP_SET_DMA_SPD(cfg, spd) \
573   ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
574
575typedef struct asceep_config {
576	ushort cfg_lsw;
577	ushort cfg_msw;
578	uchar init_sdtr;
579	uchar disc_enable;
580	uchar use_cmd_qng;
581	uchar start_motor;
582	uchar max_total_qng;
583	uchar max_tag_qng;
584	uchar bios_scan;
585	uchar power_up_wait;
586	uchar no_scam;
587	uchar id_speed;		/* low order 4 bits is chip scsi id */
588	/* high order 4 bits is isa dma speed */
589	uchar dos_int13_table[ASC_MAX_TID + 1];
590	uchar adapter_info[6];
591	ushort cntl;
592	ushort chksum;
593} ASCEEP_CONFIG;
594
595#define ASC_EEP_CMD_READ          0x80
596#define ASC_EEP_CMD_WRITE         0x40
597#define ASC_EEP_CMD_WRITE_ABLE    0x30
598#define ASC_EEP_CMD_WRITE_DISABLE 0x00
599#define ASCV_MSGOUT_BEG         0x0000
600#define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
601#define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
602#define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
603#define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
604#define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
605#define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
606#define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
607#define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
608#define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
609#define ASCV_BREAK_ADDR           (ushort)0x0028
610#define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
611#define ASCV_BREAK_CONTROL        (ushort)0x002C
612#define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
613
614#define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
615#define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
616#define ASCV_MCODE_SIZE_W     (ushort)0x0034
617#define ASCV_STOP_CODE_B      (ushort)0x0036
618#define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
619#define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
620#define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
621#define ASCV_HALTCODE_W       (ushort)0x0040
622#define ASCV_CHKSUM_W         (ushort)0x0042
623#define ASCV_MC_DATE_W        (ushort)0x0044
624#define ASCV_MC_VER_W         (ushort)0x0046
625#define ASCV_NEXTRDY_B        (ushort)0x0048
626#define ASCV_DONENEXT_B       (ushort)0x0049
627#define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
628#define ASCV_SCSIBUSY_B       (ushort)0x004B
629#define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
630#define ASCV_CURCDB_B         (ushort)0x004D
631#define ASCV_RCLUN_B          (ushort)0x004E
632#define ASCV_BUSY_QHEAD_B     (ushort)0x004F
633#define ASCV_DISC1_QHEAD_B    (ushort)0x0050
634#define ASCV_DISC_ENABLE_B    (ushort)0x0052
635#define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
636#define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
637#define ASCV_MCODE_CNTL_B     (ushort)0x0056
638#define ASCV_NULL_TARGET_B    (ushort)0x0057
639#define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
640#define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
641#define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
642#define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
643#define ASCV_HOST_FLAG_B      (ushort)0x005D
644#define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
645#define ASCV_VER_SERIAL_B     (ushort)0x0065
646#define ASCV_HALTCODE_SAVED_W (ushort)0x0066
647#define ASCV_WTM_FLAG_B       (ushort)0x0068
648#define ASCV_RISC_FLAG_B      (ushort)0x006A
649#define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
650#define ASC_HOST_FLAG_IN_ISR        0x01
651#define ASC_HOST_FLAG_ACK_INT       0x02
652#define ASC_RISC_FLAG_GEN_INT      0x01
653#define ASC_RISC_FLAG_REQ_SG_LIST  0x02
654#define IOP_CTRL         (0x0F)
655#define IOP_STATUS       (0x0E)
656#define IOP_INT_ACK      IOP_STATUS
657#define IOP_REG_IFC      (0x0D)
658#define IOP_SYN_OFFSET    (0x0B)
659#define IOP_EXTRA_CONTROL (0x0D)
660#define IOP_REG_PC        (0x0C)
661#define IOP_RAM_ADDR      (0x0A)
662#define IOP_RAM_DATA      (0x08)
663#define IOP_EEP_DATA      (0x06)
664#define IOP_EEP_CMD       (0x07)
665#define IOP_VERSION       (0x03)
666#define IOP_CONFIG_HIGH   (0x04)
667#define IOP_CONFIG_LOW    (0x02)
668#define IOP_SIG_BYTE      (0x01)
669#define IOP_SIG_WORD      (0x00)
670#define IOP_REG_DC1      (0x0E)
671#define IOP_REG_DC0      (0x0C)
672#define IOP_REG_SB       (0x0B)
673#define IOP_REG_DA1      (0x0A)
674#define IOP_REG_DA0      (0x08)
675#define IOP_REG_SC       (0x09)
676#define IOP_DMA_SPEED    (0x07)
677#define IOP_REG_FLAG     (0x07)
678#define IOP_FIFO_H       (0x06)
679#define IOP_FIFO_L       (0x04)
680#define IOP_REG_ID       (0x05)
681#define IOP_REG_QP       (0x03)
682#define IOP_REG_IH       (0x02)
683#define IOP_REG_IX       (0x01)
684#define IOP_REG_AX       (0x00)
685#define IFC_REG_LOCK      (0x00)
686#define IFC_REG_UNLOCK    (0x09)
687#define IFC_WR_EN_FILTER  (0x10)
688#define IFC_RD_NO_EEPROM  (0x10)
689#define IFC_SLEW_RATE     (0x20)
690#define IFC_ACT_NEG       (0x40)
691#define IFC_INP_FILTER    (0x80)
692#define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
693#define SC_SEL   (uchar)(0x80)
694#define SC_BSY   (uchar)(0x40)
695#define SC_ACK   (uchar)(0x20)
696#define SC_REQ   (uchar)(0x10)
697#define SC_ATN   (uchar)(0x08)
698#define SC_IO    (uchar)(0x04)
699#define SC_CD    (uchar)(0x02)
700#define SC_MSG   (uchar)(0x01)
701#define SEC_SCSI_CTL         (uchar)(0x80)
702#define SEC_ACTIVE_NEGATE    (uchar)(0x40)
703#define SEC_SLEW_RATE        (uchar)(0x20)
704#define SEC_ENABLE_FILTER    (uchar)(0x10)
705#define ASC_HALT_EXTMSG_IN     (ushort)0x8000
706#define ASC_HALT_CHK_CONDITION (ushort)0x8100
707#define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
708#define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
709#define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
710#define ASC_HALT_SDTR_REJECTED (ushort)0x4000
711#define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
712#define ASC_MAX_QNO        0xF8
713#define ASC_DATA_SEC_BEG   (ushort)0x0080
714#define ASC_DATA_SEC_END   (ushort)0x0080
715#define ASC_CODE_SEC_BEG   (ushort)0x0080
716#define ASC_CODE_SEC_END   (ushort)0x0080
717#define ASC_QADR_BEG       (0x4000)
718#define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
719#define ASC_QADR_END       (ushort)0x7FFF
720#define ASC_QLAST_ADR      (ushort)0x7FC0
721#define ASC_QBLK_SIZE      0x40
722#define ASC_BIOS_DATA_QBEG 0xF8
723#define ASC_MIN_ACTIVE_QNO 0x01
724#define ASC_QLINK_END      0xFF
725#define ASC_EEPROM_WORDS   0x10
726#define ASC_MAX_MGS_LEN    0x10
727#define ASC_BIOS_ADDR_DEF  0xDC00
728#define ASC_BIOS_SIZE      0x3800
729#define ASC_BIOS_RAM_OFF   0x3800
730#define ASC_BIOS_RAM_SIZE  0x800
731#define ASC_BIOS_MIN_ADDR  0xC000
732#define ASC_BIOS_MAX_ADDR  0xEC00
733#define ASC_BIOS_BANK_SIZE 0x0400
734#define ASC_MCODE_START_ADDR  0x0080
735#define ASC_CFG0_HOST_INT_ON    0x0020
736#define ASC_CFG0_BIOS_ON        0x0040
737#define ASC_CFG0_VERA_BURST_ON  0x0080
738#define ASC_CFG0_SCSI_PARITY_ON 0x0800
739#define ASC_CFG1_SCSI_TARGET_ON 0x0080
740#define ASC_CFG1_LRAM_8BITS_ON  0x0800
741#define ASC_CFG_MSW_CLR_MASK    0x3080
742#define CSW_TEST1             (ASC_CS_TYPE)0x8000
743#define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
744#define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
745#define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
746#define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
747#define CSW_TEST2             (ASC_CS_TYPE)0x0400
748#define CSW_TEST3             (ASC_CS_TYPE)0x0200
749#define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
750#define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
751#define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
752#define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
753#define CSW_HALTED            (ASC_CS_TYPE)0x0010
754#define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
755#define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
756#define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
757#define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
758#define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
759#define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
760#define CIW_TEST1        (ASC_CS_TYPE)0x0200
761#define CIW_TEST2        (ASC_CS_TYPE)0x0400
762#define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
763#define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
764#define CC_CHIP_RESET   (uchar)0x80
765#define CC_SCSI_RESET   (uchar)0x40
766#define CC_HALT         (uchar)0x20
767#define CC_SINGLE_STEP  (uchar)0x10
768#define CC_DMA_ABLE     (uchar)0x08
769#define CC_TEST         (uchar)0x04
770#define CC_BANK_ONE     (uchar)0x02
771#define CC_DIAG         (uchar)0x01
772#define ASC_1000_ID0W      0x04C1
773#define ASC_1000_ID0W_FIX  0x00C1
774#define ASC_1000_ID1B      0x25
775#define ASC_EISA_REV_IOP_MASK  (0x0C83)
776#define ASC_EISA_CFG_IOP_MASK  (0x0C86)
777#define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
778#define INS_HALTINT        (ushort)0x6281
779#define INS_HALT           (ushort)0x6280
780#define INS_SINT           (ushort)0x6200
781#define INS_RFLAG_WTM      (ushort)0x7380
782#define ASC_MC_SAVE_CODE_WSIZE  0x500
783#define ASC_MC_SAVE_DATA_WSIZE  0x40
784
785typedef struct asc_mc_saved {
786	ushort data[ASC_MC_SAVE_DATA_WSIZE];
787	ushort code[ASC_MC_SAVE_CODE_WSIZE];
788} ASC_MC_SAVED;
789
790#define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
791#define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
792#define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
793#define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
794#define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
795#define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
796#define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
797#define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
798#define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
799#define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
800#define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
801#define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
802#define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
803#define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
804#define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
805#define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
806#define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
807#define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
808#define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
809#define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
810#define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
811#define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
812#define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
813#define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
814#define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
815#define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
816#define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
817#define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
818#define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
819#define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
820#define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
821#define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
822#define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
823#define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
824#define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
825#define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
826#define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
827#define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
828#define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
829#define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
830#define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
831#define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
832#define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
833#define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
834#define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
835#define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
836#define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
837#define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
838#define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
839#define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
840#define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
841#define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
842#define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
843#define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
844#define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
845#define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
846#define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
847#define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
848#define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
849#define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
850#define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
851#define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
852#define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
853#define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
854#define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
855#define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
856#define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
857
858#define AdvPortAddr  void __iomem *	/* Virtual memory address size */
859
860/*
861 * Define Adv Library required memory access macros.
862 */
863#define ADV_MEM_READB(addr) readb(addr)
864#define ADV_MEM_READW(addr) readw(addr)
865#define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
866#define ADV_MEM_WRITEW(addr, word) writew(word, addr)
867#define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
868
869/*
870 * Define total number of simultaneous maximum element scatter-gather
871 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
872 * maximum number of outstanding commands per wide host adapter. Each
873 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
874 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
875 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
876 * structures or 255 scatter-gather elements.
877 */
878#define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
879
880/*
881 * Define maximum number of scatter-gather elements per request.
882 */
883#define ADV_MAX_SG_LIST         255
884#define NO_OF_SG_PER_BLOCK              15
885
886#define ADV_EEP_DVC_CFG_BEGIN           (0x00)
887#define ADV_EEP_DVC_CFG_END             (0x15)
888#define ADV_EEP_DVC_CTL_BEGIN           (0x16)	/* location of OEM name */
889#define ADV_EEP_MAX_WORD_ADDR           (0x1E)
890
891#define ADV_EEP_DELAY_MS                100
892
893#define ADV_EEPROM_BIG_ENDIAN          0x8000	/* EEPROM Bit 15 */
894#define ADV_EEPROM_BIOS_ENABLE         0x4000	/* EEPROM Bit 14 */
895/*
896 * For the ASC3550 Bit 13 is Termination Polarity control bit.
897 * For later ICs Bit 13 controls whether the CIS (Card Information
898 * Service Section) is loaded from EEPROM.
899 */
900#define ADV_EEPROM_TERM_POL            0x2000	/* EEPROM Bit 13 */
901#define ADV_EEPROM_CIS_LD              0x2000	/* EEPROM Bit 13 */
902/*
903 * ASC38C1600 Bit 11
904 *
905 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
906 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
907 * Function 0 will specify INT B.
908 *
909 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
910 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
911 * Function 1 will specify INT A.
912 */
913#define ADV_EEPROM_INTAB               0x0800	/* EEPROM Bit 11 */
914
915typedef struct adveep_3550_config {
916	/* Word Offset, Description */
917
918	ushort cfg_lsw;		/* 00 power up initialization */
919	/*  bit 13 set - Term Polarity Control */
920	/*  bit 14 set - BIOS Enable */
921	/*  bit 15 set - Big Endian Mode */
922	ushort cfg_msw;		/* 01 unused      */
923	ushort disc_enable;	/* 02 disconnect enable */
924	ushort wdtr_able;	/* 03 Wide DTR able */
925	ushort sdtr_able;	/* 04 Synchronous DTR able */
926	ushort start_motor;	/* 05 send start up motor */
927	ushort tagqng_able;	/* 06 tag queuing able */
928	ushort bios_scan;	/* 07 BIOS device control */
929	ushort scam_tolerant;	/* 08 no scam */
930
931	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
932	uchar bios_boot_delay;	/*    power up wait */
933
934	uchar scsi_reset_delay;	/* 10 reset delay */
935	uchar bios_id_lun;	/*    first boot device scsi id & lun */
936	/*    high nibble is lun */
937	/*    low nibble is scsi id */
938
939	uchar termination;	/* 11 0 - automatic */
940	/*    1 - low off / high off */
941	/*    2 - low off / high on */
942	/*    3 - low on  / high on */
943	/*    There is no low on  / high off */
944
945	uchar reserved1;	/*    reserved byte (not used) */
946
947	ushort bios_ctrl;	/* 12 BIOS control bits */
948	/*  bit 0  BIOS don't act as initiator. */
949	/*  bit 1  BIOS > 1 GB support */
950	/*  bit 2  BIOS > 2 Disk Support */
951	/*  bit 3  BIOS don't support removables */
952	/*  bit 4  BIOS support bootable CD */
953	/*  bit 5  BIOS scan enabled */
954	/*  bit 6  BIOS support multiple LUNs */
955	/*  bit 7  BIOS display of message */
956	/*  bit 8  SCAM disabled */
957	/*  bit 9  Reset SCSI bus during init. */
958	/*  bit 10 */
959	/*  bit 11 No verbose initialization. */
960	/*  bit 12 SCSI parity enabled */
961	/*  bit 13 */
962	/*  bit 14 */
963	/*  bit 15 */
964	ushort ultra_able;	/* 13 ULTRA speed able */
965	ushort reserved2;	/* 14 reserved */
966	uchar max_host_qng;	/* 15 maximum host queuing */
967	uchar max_dvc_qng;	/*    maximum per device queuing */
968	ushort dvc_cntl;	/* 16 control bit for driver */
969	ushort bug_fix;		/* 17 control bit for bug fix */
970	ushort serial_number_word1;	/* 18 Board serial number word 1 */
971	ushort serial_number_word2;	/* 19 Board serial number word 2 */
972	ushort serial_number_word3;	/* 20 Board serial number word 3 */
973	ushort check_sum;	/* 21 EEP check sum */
974	uchar oem_name[16];	/* 22 OEM name */
975	ushort dvc_err_code;	/* 30 last device driver error code */
976	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
977	ushort adv_err_addr;	/* 32 last uc error address */
978	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
979	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
980	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
981	ushort num_of_err;	/* 36 number of error */
982} ADVEEP_3550_CONFIG;
983
984typedef struct adveep_38C0800_config {
985	/* Word Offset, Description */
986
987	ushort cfg_lsw;		/* 00 power up initialization */
988	/*  bit 13 set - Load CIS */
989	/*  bit 14 set - BIOS Enable */
990	/*  bit 15 set - Big Endian Mode */
991	ushort cfg_msw;		/* 01 unused      */
992	ushort disc_enable;	/* 02 disconnect enable */
993	ushort wdtr_able;	/* 03 Wide DTR able */
994	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
995	ushort start_motor;	/* 05 send start up motor */
996	ushort tagqng_able;	/* 06 tag queuing able */
997	ushort bios_scan;	/* 07 BIOS device control */
998	ushort scam_tolerant;	/* 08 no scam */
999
1000	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1001	uchar bios_boot_delay;	/*    power up wait */
1002
1003	uchar scsi_reset_delay;	/* 10 reset delay */
1004	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1005	/*    high nibble is lun */
1006	/*    low nibble is scsi id */
1007
1008	uchar termination_se;	/* 11 0 - automatic */
1009	/*    1 - low off / high off */
1010	/*    2 - low off / high on */
1011	/*    3 - low on  / high on */
1012	/*    There is no low on  / high off */
1013
1014	uchar termination_lvd;	/* 11 0 - automatic */
1015	/*    1 - low off / high off */
1016	/*    2 - low off / high on */
1017	/*    3 - low on  / high on */
1018	/*    There is no low on  / high off */
1019
1020	ushort bios_ctrl;	/* 12 BIOS control bits */
1021	/*  bit 0  BIOS don't act as initiator. */
1022	/*  bit 1  BIOS > 1 GB support */
1023	/*  bit 2  BIOS > 2 Disk Support */
1024	/*  bit 3  BIOS don't support removables */
1025	/*  bit 4  BIOS support bootable CD */
1026	/*  bit 5  BIOS scan enabled */
1027	/*  bit 6  BIOS support multiple LUNs */
1028	/*  bit 7  BIOS display of message */
1029	/*  bit 8  SCAM disabled */
1030	/*  bit 9  Reset SCSI bus during init. */
1031	/*  bit 10 */
1032	/*  bit 11 No verbose initialization. */
1033	/*  bit 12 SCSI parity enabled */
1034	/*  bit 13 */
1035	/*  bit 14 */
1036	/*  bit 15 */
1037	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1038	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1039	uchar max_host_qng;	/* 15 maximum host queueing */
1040	uchar max_dvc_qng;	/*    maximum per device queuing */
1041	ushort dvc_cntl;	/* 16 control bit for driver */
1042	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1043	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1044	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1045	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1046	ushort check_sum;	/* 21 EEP check sum */
1047	uchar oem_name[16];	/* 22 OEM name */
1048	ushort dvc_err_code;	/* 30 last device driver error code */
1049	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1050	ushort adv_err_addr;	/* 32 last uc error address */
1051	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1052	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1053	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1054	ushort reserved36;	/* 36 reserved */
1055	ushort reserved37;	/* 37 reserved */
1056	ushort reserved38;	/* 38 reserved */
1057	ushort reserved39;	/* 39 reserved */
1058	ushort reserved40;	/* 40 reserved */
1059	ushort reserved41;	/* 41 reserved */
1060	ushort reserved42;	/* 42 reserved */
1061	ushort reserved43;	/* 43 reserved */
1062	ushort reserved44;	/* 44 reserved */
1063	ushort reserved45;	/* 45 reserved */
1064	ushort reserved46;	/* 46 reserved */
1065	ushort reserved47;	/* 47 reserved */
1066	ushort reserved48;	/* 48 reserved */
1067	ushort reserved49;	/* 49 reserved */
1068	ushort reserved50;	/* 50 reserved */
1069	ushort reserved51;	/* 51 reserved */
1070	ushort reserved52;	/* 52 reserved */
1071	ushort reserved53;	/* 53 reserved */
1072	ushort reserved54;	/* 54 reserved */
1073	ushort reserved55;	/* 55 reserved */
1074	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1075	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1076	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1077	ushort subsysid;	/* 59 SubSystem ID */
1078	ushort reserved60;	/* 60 reserved */
1079	ushort reserved61;	/* 61 reserved */
1080	ushort reserved62;	/* 62 reserved */
1081	ushort reserved63;	/* 63 reserved */
1082} ADVEEP_38C0800_CONFIG;
1083
1084typedef struct adveep_38C1600_config {
1085	/* Word Offset, Description */
1086
1087	ushort cfg_lsw;		/* 00 power up initialization */
1088	/*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1089	/*       clear - Func. 0 INTA, Func. 1 INTB */
1090	/*  bit 13 set - Load CIS */
1091	/*  bit 14 set - BIOS Enable */
1092	/*  bit 15 set - Big Endian Mode */
1093	ushort cfg_msw;		/* 01 unused */
1094	ushort disc_enable;	/* 02 disconnect enable */
1095	ushort wdtr_able;	/* 03 Wide DTR able */
1096	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1097	ushort start_motor;	/* 05 send start up motor */
1098	ushort tagqng_able;	/* 06 tag queuing able */
1099	ushort bios_scan;	/* 07 BIOS device control */
1100	ushort scam_tolerant;	/* 08 no scam */
1101
1102	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1103	uchar bios_boot_delay;	/*    power up wait */
1104
1105	uchar scsi_reset_delay;	/* 10 reset delay */
1106	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1107	/*    high nibble is lun */
1108	/*    low nibble is scsi id */
1109
1110	uchar termination_se;	/* 11 0 - automatic */
1111	/*    1 - low off / high off */
1112	/*    2 - low off / high on */
1113	/*    3 - low on  / high on */
1114	/*    There is no low on  / high off */
1115
1116	uchar termination_lvd;	/* 11 0 - automatic */
1117	/*    1 - low off / high off */
1118	/*    2 - low off / high on */
1119	/*    3 - low on  / high on */
1120	/*    There is no low on  / high off */
1121
1122	ushort bios_ctrl;	/* 12 BIOS control bits */
1123	/*  bit 0  BIOS don't act as initiator. */
1124	/*  bit 1  BIOS > 1 GB support */
1125	/*  bit 2  BIOS > 2 Disk Support */
1126	/*  bit 3  BIOS don't support removables */
1127	/*  bit 4  BIOS support bootable CD */
1128	/*  bit 5  BIOS scan enabled */
1129	/*  bit 6  BIOS support multiple LUNs */
1130	/*  bit 7  BIOS display of message */
1131	/*  bit 8  SCAM disabled */
1132	/*  bit 9  Reset SCSI bus during init. */
1133	/*  bit 10 Basic Integrity Checking disabled */
1134	/*  bit 11 No verbose initialization. */
1135	/*  bit 12 SCSI parity enabled */
1136	/*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1137	/*  bit 14 */
1138	/*  bit 15 */
1139	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1140	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1141	uchar max_host_qng;	/* 15 maximum host queueing */
1142	uchar max_dvc_qng;	/*    maximum per device queuing */
1143	ushort dvc_cntl;	/* 16 control bit for driver */
1144	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1145	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1146	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1147	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1148	ushort check_sum;	/* 21 EEP check sum */
1149	uchar oem_name[16];	/* 22 OEM name */
1150	ushort dvc_err_code;	/* 30 last device driver error code */
1151	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1152	ushort adv_err_addr;	/* 32 last uc error address */
1153	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1154	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1155	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1156	ushort reserved36;	/* 36 reserved */
1157	ushort reserved37;	/* 37 reserved */
1158	ushort reserved38;	/* 38 reserved */
1159	ushort reserved39;	/* 39 reserved */
1160	ushort reserved40;	/* 40 reserved */
1161	ushort reserved41;	/* 41 reserved */
1162	ushort reserved42;	/* 42 reserved */
1163	ushort reserved43;	/* 43 reserved */
1164	ushort reserved44;	/* 44 reserved */
1165	ushort reserved45;	/* 45 reserved */
1166	ushort reserved46;	/* 46 reserved */
1167	ushort reserved47;	/* 47 reserved */
1168	ushort reserved48;	/* 48 reserved */
1169	ushort reserved49;	/* 49 reserved */
1170	ushort reserved50;	/* 50 reserved */
1171	ushort reserved51;	/* 51 reserved */
1172	ushort reserved52;	/* 52 reserved */
1173	ushort reserved53;	/* 53 reserved */
1174	ushort reserved54;	/* 54 reserved */
1175	ushort reserved55;	/* 55 reserved */
1176	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1177	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1178	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1179	ushort subsysid;	/* 59 SubSystem ID */
1180	ushort reserved60;	/* 60 reserved */
1181	ushort reserved61;	/* 61 reserved */
1182	ushort reserved62;	/* 62 reserved */
1183	ushort reserved63;	/* 63 reserved */
1184} ADVEEP_38C1600_CONFIG;
1185
1186/*
1187 * EEPROM Commands
1188 */
1189#define ASC_EEP_CMD_DONE             0x0200
1190
1191/* bios_ctrl */
1192#define BIOS_CTRL_BIOS               0x0001
1193#define BIOS_CTRL_EXTENDED_XLAT      0x0002
1194#define BIOS_CTRL_GT_2_DISK          0x0004
1195#define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1196#define BIOS_CTRL_BOOTABLE_CD        0x0010
1197#define BIOS_CTRL_MULTIPLE_LUN       0x0040
1198#define BIOS_CTRL_DISPLAY_MSG        0x0080
1199#define BIOS_CTRL_NO_SCAM            0x0100
1200#define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1201#define BIOS_CTRL_INIT_VERBOSE       0x0800
1202#define BIOS_CTRL_SCSI_PARITY        0x1000
1203#define BIOS_CTRL_AIPP_DIS           0x2000
1204
1205#define ADV_3550_MEMSIZE   0x2000	/* 8 KB Internal Memory */
1206
1207#define ADV_38C0800_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1208
1209/*
1210 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1211 * a special 16K Adv Library and Microcode version. After the issue is
1212 * resolved, should restore 32K support.
1213 *
1214 * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1215 */
1216#define ADV_38C1600_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1217
1218/*
1219 * Byte I/O register address from base of 'iop_base'.
1220 */
1221#define IOPB_INTR_STATUS_REG    0x00
1222#define IOPB_CHIP_ID_1          0x01
1223#define IOPB_INTR_ENABLES       0x02
1224#define IOPB_CHIP_TYPE_REV      0x03
1225#define IOPB_RES_ADDR_4         0x04
1226#define IOPB_RES_ADDR_5         0x05
1227#define IOPB_RAM_DATA           0x06
1228#define IOPB_RES_ADDR_7         0x07
1229#define IOPB_FLAG_REG           0x08
1230#define IOPB_RES_ADDR_9         0x09
1231#define IOPB_RISC_CSR           0x0A
1232#define IOPB_RES_ADDR_B         0x0B
1233#define IOPB_RES_ADDR_C         0x0C
1234#define IOPB_RES_ADDR_D         0x0D
1235#define IOPB_SOFT_OVER_WR       0x0E
1236#define IOPB_RES_ADDR_F         0x0F
1237#define IOPB_MEM_CFG            0x10
1238#define IOPB_RES_ADDR_11        0x11
1239#define IOPB_GPIO_DATA          0x12
1240#define IOPB_RES_ADDR_13        0x13
1241#define IOPB_FLASH_PAGE         0x14
1242#define IOPB_RES_ADDR_15        0x15
1243#define IOPB_GPIO_CNTL          0x16
1244#define IOPB_RES_ADDR_17        0x17
1245#define IOPB_FLASH_DATA         0x18
1246#define IOPB_RES_ADDR_19        0x19
1247#define IOPB_RES_ADDR_1A        0x1A
1248#define IOPB_RES_ADDR_1B        0x1B
1249#define IOPB_RES_ADDR_1C        0x1C
1250#define IOPB_RES_ADDR_1D        0x1D
1251#define IOPB_RES_ADDR_1E        0x1E
1252#define IOPB_RES_ADDR_1F        0x1F
1253#define IOPB_DMA_CFG0           0x20
1254#define IOPB_DMA_CFG1           0x21
1255#define IOPB_TICKLE             0x22
1256#define IOPB_DMA_REG_WR         0x23
1257#define IOPB_SDMA_STATUS        0x24
1258#define IOPB_SCSI_BYTE_CNT      0x25
1259#define IOPB_HOST_BYTE_CNT      0x26
1260#define IOPB_BYTE_LEFT_TO_XFER  0x27
1261#define IOPB_BYTE_TO_XFER_0     0x28
1262#define IOPB_BYTE_TO_XFER_1     0x29
1263#define IOPB_BYTE_TO_XFER_2     0x2A
1264#define IOPB_BYTE_TO_XFER_3     0x2B
1265#define IOPB_ACC_GRP            0x2C
1266#define IOPB_RES_ADDR_2D        0x2D
1267#define IOPB_DEV_ID             0x2E
1268#define IOPB_RES_ADDR_2F        0x2F
1269#define IOPB_SCSI_DATA          0x30
1270#define IOPB_RES_ADDR_31        0x31
1271#define IOPB_RES_ADDR_32        0x32
1272#define IOPB_SCSI_DATA_HSHK     0x33
1273#define IOPB_SCSI_CTRL          0x34
1274#define IOPB_RES_ADDR_35        0x35
1275#define IOPB_RES_ADDR_36        0x36
1276#define IOPB_RES_ADDR_37        0x37
1277#define IOPB_RAM_BIST           0x38
1278#define IOPB_PLL_TEST           0x39
1279#define IOPB_PCI_INT_CFG        0x3A
1280#define IOPB_RES_ADDR_3B        0x3B
1281#define IOPB_RFIFO_CNT          0x3C
1282#define IOPB_RES_ADDR_3D        0x3D
1283#define IOPB_RES_ADDR_3E        0x3E
1284#define IOPB_RES_ADDR_3F        0x3F
1285
1286/*
1287 * Word I/O register address from base of 'iop_base'.
1288 */
1289#define IOPW_CHIP_ID_0          0x00	/* CID0  */
1290#define IOPW_CTRL_REG           0x02	/* CC    */
1291#define IOPW_RAM_ADDR           0x04	/* LA    */
1292#define IOPW_RAM_DATA           0x06	/* LD    */
1293#define IOPW_RES_ADDR_08        0x08
1294#define IOPW_RISC_CSR           0x0A	/* CSR   */
1295#define IOPW_SCSI_CFG0          0x0C	/* CFG0  */
1296#define IOPW_SCSI_CFG1          0x0E	/* CFG1  */
1297#define IOPW_RES_ADDR_10        0x10
1298#define IOPW_SEL_MASK           0x12	/* SM    */
1299#define IOPW_RES_ADDR_14        0x14
1300#define IOPW_FLASH_ADDR         0x16	/* FA    */
1301#define IOPW_RES_ADDR_18        0x18
1302#define IOPW_EE_CMD             0x1A	/* EC    */
1303#define IOPW_EE_DATA            0x1C	/* ED    */
1304#define IOPW_SFIFO_CNT          0x1E	/* SFC   */
1305#define IOPW_RES_ADDR_20        0x20
1306#define IOPW_Q_BASE             0x22	/* QB    */
1307#define IOPW_QP                 0x24	/* QP    */
1308#define IOPW_IX                 0x26	/* IX    */
1309#define IOPW_SP                 0x28	/* SP    */
1310#define IOPW_PC                 0x2A	/* PC    */
1311#define IOPW_RES_ADDR_2C        0x2C
1312#define IOPW_RES_ADDR_2E        0x2E
1313#define IOPW_SCSI_DATA          0x30	/* SD    */
1314#define IOPW_SCSI_DATA_HSHK     0x32	/* SDH   */
1315#define IOPW_SCSI_CTRL          0x34	/* SC    */
1316#define IOPW_HSHK_CFG           0x36	/* HCFG  */
1317#define IOPW_SXFR_STATUS        0x36	/* SXS   */
1318#define IOPW_SXFR_CNTL          0x38	/* SXL   */
1319#define IOPW_SXFR_CNTH          0x3A	/* SXH   */
1320#define IOPW_RES_ADDR_3C        0x3C
1321#define IOPW_RFIFO_DATA         0x3E	/* RFD   */
1322
1323/*
1324 * Doubleword I/O register address from base of 'iop_base'.
1325 */
1326#define IOPDW_RES_ADDR_0         0x00
1327#define IOPDW_RAM_DATA           0x04
1328#define IOPDW_RES_ADDR_8         0x08
1329#define IOPDW_RES_ADDR_C         0x0C
1330#define IOPDW_RES_ADDR_10        0x10
1331#define IOPDW_COMMA              0x14
1332#define IOPDW_COMMB              0x18
1333#define IOPDW_RES_ADDR_1C        0x1C
1334#define IOPDW_SDMA_ADDR0         0x20
1335#define IOPDW_SDMA_ADDR1         0x24
1336#define IOPDW_SDMA_COUNT         0x28
1337#define IOPDW_SDMA_ERROR         0x2C
1338#define IOPDW_RDMA_ADDR0         0x30
1339#define IOPDW_RDMA_ADDR1         0x34
1340#define IOPDW_RDMA_COUNT         0x38
1341#define IOPDW_RDMA_ERROR         0x3C
1342
1343#define ADV_CHIP_ID_BYTE         0x25
1344#define ADV_CHIP_ID_WORD         0x04C1
1345
1346#define ADV_INTR_ENABLE_HOST_INTR                   0x01
1347#define ADV_INTR_ENABLE_SEL_INTR                    0x02
1348#define ADV_INTR_ENABLE_DPR_INTR                    0x04
1349#define ADV_INTR_ENABLE_RTA_INTR                    0x08
1350#define ADV_INTR_ENABLE_RMA_INTR                    0x10
1351#define ADV_INTR_ENABLE_RST_INTR                    0x20
1352#define ADV_INTR_ENABLE_DPE_INTR                    0x40
1353#define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1354
1355#define ADV_INTR_STATUS_INTRA            0x01
1356#define ADV_INTR_STATUS_INTRB            0x02
1357#define ADV_INTR_STATUS_INTRC            0x04
1358
1359#define ADV_RISC_CSR_STOP           (0x0000)
1360#define ADV_RISC_TEST_COND          (0x2000)
1361#define ADV_RISC_CSR_RUN            (0x4000)
1362#define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1363
1364#define ADV_CTRL_REG_HOST_INTR      0x0100
1365#define ADV_CTRL_REG_SEL_INTR       0x0200
1366#define ADV_CTRL_REG_DPR_INTR       0x0400
1367#define ADV_CTRL_REG_RTA_INTR       0x0800
1368#define ADV_CTRL_REG_RMA_INTR       0x1000
1369#define ADV_CTRL_REG_RES_BIT14      0x2000
1370#define ADV_CTRL_REG_DPE_INTR       0x4000
1371#define ADV_CTRL_REG_POWER_DONE     0x8000
1372#define ADV_CTRL_REG_ANY_INTR       0xFF00
1373
1374#define ADV_CTRL_REG_CMD_RESET             0x00C6
1375#define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1376#define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1377#define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1378#define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1379
1380#define ADV_TICKLE_NOP                      0x00
1381#define ADV_TICKLE_A                        0x01
1382#define ADV_TICKLE_B                        0x02
1383#define ADV_TICKLE_C                        0x03
1384
1385#define AdvIsIntPending(port) \
1386    (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1387
1388/*
1389 * SCSI_CFG0 Register bit definitions
1390 */
1391#define TIMER_MODEAB    0xC000	/* Watchdog, Second, and Select. Timer Ctrl. */
1392#define PARITY_EN       0x2000	/* Enable SCSI Parity Error detection */
1393#define EVEN_PARITY     0x1000	/* Select Even Parity */
1394#define WD_LONG         0x0800	/* Watchdog Interval, 1: 57 min, 0: 13 sec */
1395#define QUEUE_128       0x0400	/* Queue Size, 1: 128 byte, 0: 64 byte */
1396#define PRIM_MODE       0x0100	/* Primitive SCSI mode */
1397#define SCAM_EN         0x0080	/* Enable SCAM selection */
1398#define SEL_TMO_LONG    0x0040	/* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1399#define CFRM_ID         0x0020	/* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1400#define OUR_ID_EN       0x0010	/* Enable OUR_ID bits */
1401#define OUR_ID          0x000F	/* SCSI ID */
1402
1403/*
1404 * SCSI_CFG1 Register bit definitions
1405 */
1406#define BIG_ENDIAN      0x8000	/* Enable Big Endian Mode MIO:15, EEP:15 */
1407#define TERM_POL        0x2000	/* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1408#define SLEW_RATE       0x1000	/* SCSI output buffer slew rate */
1409#define FILTER_SEL      0x0C00	/* Filter Period Selection */
1410#define  FLTR_DISABLE    0x0000	/* Input Filtering Disabled */
1411#define  FLTR_11_TO_20NS 0x0800	/* Input Filtering 11ns to 20ns */
1412#define  FLTR_21_TO_39NS 0x0C00	/* Input Filtering 21ns to 39ns */
1413#define ACTIVE_DBL      0x0200	/* Disable Active Negation */
1414#define DIFF_MODE       0x0100	/* SCSI differential Mode (Read-Only) */
1415#define DIFF_SENSE      0x0080	/* 1: No SE cables, 0: SE cable (Read-Only) */
1416#define TERM_CTL_SEL    0x0040	/* Enable TERM_CTL_H and TERM_CTL_L */
1417#define TERM_CTL        0x0030	/* External SCSI Termination Bits */
1418#define  TERM_CTL_H      0x0020	/* Enable External SCSI Upper Termination */
1419#define  TERM_CTL_L      0x0010	/* Enable External SCSI Lower Termination */
1420#define CABLE_DETECT    0x000F	/* External SCSI Cable Connection Status */
1421
1422/*
1423 * Addendum for ASC-38C0800 Chip
1424 *
1425 * The ASC-38C1600 Chip uses the same definitions except that the
1426 * bus mode override bits [12:10] have been moved to byte register
1427 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1428 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1429 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1430 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1431 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1432 */
1433#define DIS_TERM_DRV    0x4000	/* 1: Read c_det[3:0], 0: cannot read */
1434#define HVD_LVD_SE      0x1C00	/* Device Detect Bits */
1435#define  HVD             0x1000	/* HVD Device Detect */
1436#define  LVD             0x0800	/* LVD Device Detect */
1437#define  SE              0x0400	/* SE Device Detect */
1438#define TERM_LVD        0x00C0	/* LVD Termination Bits */
1439#define  TERM_LVD_HI     0x0080	/* Enable LVD Upper Termination */
1440#define  TERM_LVD_LO     0x0040	/* Enable LVD Lower Termination */
1441#define TERM_SE         0x0030	/* SE Termination Bits */
1442#define  TERM_SE_HI      0x0020	/* Enable SE Upper Termination */
1443#define  TERM_SE_LO      0x0010	/* Enable SE Lower Termination */
1444#define C_DET_LVD       0x000C	/* LVD Cable Detect Bits */
1445#define  C_DET3          0x0008	/* Cable Detect for LVD External Wide */
1446#define  C_DET2          0x0004	/* Cable Detect for LVD Internal Wide */
1447#define C_DET_SE        0x0003	/* SE Cable Detect Bits */
1448#define  C_DET1          0x0002	/* Cable Detect for SE Internal Wide */
1449#define  C_DET0          0x0001	/* Cable Detect for SE Internal Narrow */
1450
1451#define CABLE_ILLEGAL_A 0x7
1452    /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1453
1454#define CABLE_ILLEGAL_B 0xB
1455    /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1456
1457/*
1458 * MEM_CFG Register bit definitions
1459 */
1460#define BIOS_EN         0x40	/* BIOS Enable MIO:14,EEP:14 */
1461#define FAST_EE_CLK     0x20	/* Diagnostic Bit */
1462#define RAM_SZ          0x1C	/* Specify size of RAM to RISC */
1463#define  RAM_SZ_2KB      0x00	/* 2 KB */
1464#define  RAM_SZ_4KB      0x04	/* 4 KB */
1465#define  RAM_SZ_8KB      0x08	/* 8 KB */
1466#define  RAM_SZ_16KB     0x0C	/* 16 KB */
1467#define  RAM_SZ_32KB     0x10	/* 32 KB */
1468#define  RAM_SZ_64KB     0x14	/* 64 KB */
1469
1470/*
1471 * DMA_CFG0 Register bit definitions
1472 *
1473 * This register is only accessible to the host.
1474 */
1475#define BC_THRESH_ENB   0x80	/* PCI DMA Start Conditions */
1476#define FIFO_THRESH     0x70	/* PCI DMA FIFO Threshold */
1477#define  FIFO_THRESH_16B  0x00	/* 16 bytes */
1478#define  FIFO_THRESH_32B  0x20	/* 32 bytes */
1479#define  FIFO_THRESH_48B  0x30	/* 48 bytes */
1480#define  FIFO_THRESH_64B  0x40	/* 64 bytes */
1481#define  FIFO_THRESH_80B  0x50	/* 80 bytes (default) */
1482#define  FIFO_THRESH_96B  0x60	/* 96 bytes */
1483#define  FIFO_THRESH_112B 0x70	/* 112 bytes */
1484#define START_CTL       0x0C	/* DMA start conditions */
1485#define  START_CTL_TH    0x00	/* Wait threshold level (default) */
1486#define  START_CTL_ID    0x04	/* Wait SDMA/SBUS idle */
1487#define  START_CTL_THID  0x08	/* Wait threshold and SDMA/SBUS idle */
1488#define  START_CTL_EMFU  0x0C	/* Wait SDMA FIFO empty/full */
1489#define READ_CMD        0x03	/* Memory Read Method */
1490#define  READ_CMD_MR     0x00	/* Memory Read */
1491#define  READ_CMD_MRL    0x02	/* Memory Read Long */
1492#define  READ_CMD_MRM    0x03	/* Memory Read Multiple (default) */
1493
1494/*
1495 * ASC-38C0800 RAM BIST Register bit definitions
1496 */
1497#define RAM_TEST_MODE         0x80
1498#define PRE_TEST_MODE         0x40
1499#define NORMAL_MODE           0x00
1500#define RAM_TEST_DONE         0x10
1501#define RAM_TEST_STATUS       0x0F
1502#define  RAM_TEST_HOST_ERROR   0x08
1503#define  RAM_TEST_INTRAM_ERROR 0x04
1504#define  RAM_TEST_RISC_ERROR   0x02
1505#define  RAM_TEST_SCSI_ERROR   0x01
1506#define  RAM_TEST_SUCCESS      0x00
1507#define PRE_TEST_VALUE        0x05
1508#define NORMAL_VALUE          0x00
1509
1510/*
1511 * ASC38C1600 Definitions
1512 *
1513 * IOPB_PCI_INT_CFG Bit Field Definitions
1514 */
1515
1516#define INTAB_LD        0x80	/* Value loaded from EEPROM Bit 11. */
1517
1518/*
1519 * Bit 1 can be set to change the interrupt for the Function to operate in
1520 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1521 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1522 * mode, otherwise the operating mode is undefined.
1523 */
1524#define TOTEMPOLE       0x02
1525
1526/*
1527 * Bit 0 can be used to change the Int Pin for the Function. The value is
1528 * 0 by default for both Functions with Function 0 using INT A and Function
1529 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1530 * INT A is used.
1531 *
1532 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1533 * value specified in the PCI Configuration Space.
1534 */
1535#define INTAB           0x01
1536
1537/*
1538 * Adv Library Status Definitions
1539 */
1540#define ADV_TRUE        1
1541#define ADV_FALSE       0
1542#define ADV_SUCCESS     1
1543#define ADV_BUSY        0
1544#define ADV_ERROR       (-1)
1545
1546/*
1547 * ADV_DVC_VAR 'warn_code' values
1548 */
1549#define ASC_WARN_BUSRESET_ERROR         0x0001	/* SCSI Bus Reset error */
1550#define ASC_WARN_EEPROM_CHKSUM          0x0002	/* EEP check sum error */
1551#define ASC_WARN_EEPROM_TERMINATION     0x0004	/* EEP termination bad field */
1552#define ASC_WARN_ERROR                  0xFFFF	/* ADV_ERROR return */
1553
1554#define ADV_MAX_TID                     15	/* max. target identifier */
1555#define ADV_MAX_LUN                     7	/* max. logical unit number */
1556
1557/*
1558 * Fixed locations of microcode operating variables.
1559 */
1560#define ASC_MC_CODE_BEGIN_ADDR          0x0028	/* microcode start address */
1561#define ASC_MC_CODE_END_ADDR            0x002A	/* microcode end address */
1562#define ASC_MC_CODE_CHK_SUM             0x002C	/* microcode code checksum */
1563#define ASC_MC_VERSION_DATE             0x0038	/* microcode version */
1564#define ASC_MC_VERSION_NUM              0x003A	/* microcode number */
1565#define ASC_MC_BIOSMEM                  0x0040	/* BIOS RISC Memory Start */
1566#define ASC_MC_BIOSLEN                  0x0050	/* BIOS RISC Memory Length */
1567#define ASC_MC_BIOS_SIGNATURE           0x0058	/* BIOS Signature 0x55AA */
1568#define ASC_MC_BIOS_VERSION             0x005A	/* BIOS Version (2 bytes) */
1569#define ASC_MC_SDTR_SPEED1              0x0090	/* SDTR Speed for TID 0-3 */
1570#define ASC_MC_SDTR_SPEED2              0x0092	/* SDTR Speed for TID 4-7 */
1571#define ASC_MC_SDTR_SPEED3              0x0094	/* SDTR Speed for TID 8-11 */
1572#define ASC_MC_SDTR_SPEED4              0x0096	/* SDTR Speed for TID 12-15 */
1573#define ASC_MC_CHIP_TYPE                0x009A
1574#define ASC_MC_INTRB_CODE               0x009B
1575#define ASC_MC_WDTR_ABLE                0x009C
1576#define ASC_MC_SDTR_ABLE                0x009E
1577#define ASC_MC_TAGQNG_ABLE              0x00A0
1578#define ASC_MC_DISC_ENABLE              0x00A2
1579#define ASC_MC_IDLE_CMD_STATUS          0x00A4
1580#define ASC_MC_IDLE_CMD                 0x00A6
1581#define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1582#define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1583#define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1584#define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1585#define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1586#define ASC_MC_SDTR_DONE                0x00B6
1587#define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1588#define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1589#define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1590#define ASC_MC_CONTROL_FLAG             0x0122	/* Microcode control flag. */
1591#define ASC_MC_WDTR_DONE                0x0124
1592#define ASC_MC_CAM_MODE_MASK            0x015E	/* CAM mode TID bitmask. */
1593#define ASC_MC_ICQ                      0x0160
1594#define ASC_MC_IRQ                      0x0164
1595#define ASC_MC_PPR_ABLE                 0x017A
1596
1597/*
1598 * BIOS LRAM variable absolute offsets.
1599 */
1600#define BIOS_CODESEG    0x54
1601#define BIOS_CODELEN    0x56
1602#define BIOS_SIGNATURE  0x58
1603#define BIOS_VERSION    0x5A
1604
1605/*
1606 * Microcode Control Flags
1607 *
1608 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1609 * and handled by the microcode.
1610 */
1611#define CONTROL_FLAG_IGNORE_PERR        0x0001	/* Ignore DMA Parity Errors */
1612#define CONTROL_FLAG_ENABLE_AIPP        0x0002	/* Enabled AIPP checking. */
1613
1614/*
1615 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1616 */
1617#define HSHK_CFG_WIDE_XFR       0x8000
1618#define HSHK_CFG_RATE           0x0F00
1619#define HSHK_CFG_OFFSET         0x001F
1620
1621#define ASC_DEF_MAX_HOST_QNG    0xFD	/* Max. number of host commands (253) */
1622#define ASC_DEF_MIN_HOST_QNG    0x10	/* Min. number of host commands (16) */
1623#define ASC_DEF_MAX_DVC_QNG     0x3F	/* Max. number commands per device (63) */
1624#define ASC_DEF_MIN_DVC_QNG     0x04	/* Min. number commands per device (4) */
1625
1626#define ASC_QC_DATA_CHECK  0x01	/* Require ASC_QC_DATA_OUT set or clear. */
1627#define ASC_QC_DATA_OUT    0x02	/* Data out DMA transfer. */
1628#define ASC_QC_START_MOTOR 0x04	/* Send auto-start motor before request. */
1629#define ASC_QC_NO_OVERRUN  0x08	/* Don't report overrun. */
1630#define ASC_QC_FREEZE_TIDQ 0x10	/* Freeze TID queue after request. XXX TBD */
1631
1632#define ASC_QSC_NO_DISC     0x01	/* Don't allow disconnect for request. */
1633#define ASC_QSC_NO_TAGMSG   0x02	/* Don't allow tag queuing for request. */
1634#define ASC_QSC_NO_SYNC     0x04	/* Don't use Synch. transfer on request. */
1635#define ASC_QSC_NO_WIDE     0x08	/* Don't use Wide transfer on request. */
1636#define ASC_QSC_REDO_DTR    0x10	/* Renegotiate WDTR/SDTR before request. */
1637/*
1638 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1639 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1640 */
1641#define ASC_QSC_HEAD_TAG    0x40	/* Use Head Tag Message (0x21). */
1642#define ASC_QSC_ORDERED_TAG 0x80	/* Use Ordered Tag Message (0x22). */
1643
1644/*
1645 * All fields here are accessed by the board microcode and need to be
1646 * little-endian.
1647 */
1648typedef struct adv_carr_t {
1649	__le32 carr_va;	/* Carrier Virtual Address */
1650	__le32 carr_pa;	/* Carrier Physical Address */
1651	__le32 areq_vpa;	/* ADV_SCSI_REQ_Q Virtual or Physical Address */
1652	/*
1653	 * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1654	 *
1655	 * next_vpa [3:1]             Reserved Bits
1656	 * next_vpa [0]               Done Flag set in Response Queue.
1657	 */
1658	__le32 next_vpa;
1659} ADV_CARR_T;
1660
1661/*
1662 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1663 */
1664#define ADV_NEXT_VPA_MASK       0xFFFFFFF0
1665
1666#define ADV_RQ_DONE             0x00000001
1667#define ADV_RQ_GOOD             0x00000002
1668#define ADV_CQ_STOPPER          0x00000000
1669
1670#define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK)
1671
1672/*
1673 * Each carrier is 64 bytes, and we need three additional
1674 * carrier for icq, irq, and the termination carrier.
1675 */
1676#define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3)
1677
1678#define ADV_CARRIER_BUFSIZE \
1679	(ADV_CARRIER_COUNT * sizeof(ADV_CARR_T))
1680
1681#define ADV_CHIP_ASC3550          0x01	/* Ultra-Wide IC */
1682#define ADV_CHIP_ASC38C0800       0x02	/* Ultra2-Wide/LVD IC */
1683#define ADV_CHIP_ASC38C1600       0x03	/* Ultra3-Wide/LVD2 IC */
1684
1685/*
1686 * Adapter temporary configuration structure
1687 *
1688 * This structure can be discarded after initialization. Don't add
1689 * fields here needed after initialization.
1690 *
1691 * Field naming convention:
1692 *
1693 *  *_enable indicates the field enables or disables a feature. The
1694 *  value of the field is never reset.
1695 */
1696typedef struct adv_dvc_cfg {
1697	ushort disc_enable;	/* enable disconnection */
1698	uchar chip_version;	/* chip version */
1699	uchar termination;	/* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1700	ushort control_flag;	/* Microcode Control Flag */
1701	ushort mcode_date;	/* Microcode date */
1702	ushort mcode_version;	/* Microcode version */
1703	ushort serial1;		/* EEPROM serial number word 1 */
1704	ushort serial2;		/* EEPROM serial number word 2 */
1705	ushort serial3;		/* EEPROM serial number word 3 */
1706} ADV_DVC_CFG;
1707
1708struct adv_dvc_var;
1709struct adv_scsi_req_q;
1710
1711typedef struct adv_sg_block {
1712	uchar reserved1;
1713	uchar reserved2;
1714	uchar reserved3;
1715	uchar sg_cnt;		/* Valid entries in block. */
1716	__le32 sg_ptr;	/* Pointer to next sg block. */
1717	struct {
1718		__le32 sg_addr;	/* SG element address. */
1719		__le32 sg_count;	/* SG element count. */
1720	} sg_list[NO_OF_SG_PER_BLOCK];
1721} ADV_SG_BLOCK;
1722
1723/*
1724 * ADV_SCSI_REQ_Q - microcode request structure
1725 *
1726 * All fields in this structure up to byte 60 are used by the microcode.
1727 * The microcode makes assumptions about the size and ordering of fields
1728 * in this structure. Do not change the structure definition here without
1729 * coordinating the change with the microcode.
1730 *
1731 * All fields accessed by microcode must be maintained in little_endian
1732 * order.
1733 */
1734typedef struct adv_scsi_req_q {
1735	uchar cntl;		/* Ucode flags and state (ASC_MC_QC_*). */
1736	uchar target_cmd;
1737	uchar target_id;	/* Device target identifier. */
1738	uchar target_lun;	/* Device target logical unit number. */
1739	__le32 data_addr;	/* Data buffer physical address. */
1740	__le32 data_cnt;	/* Data count. Ucode sets to residual. */
1741	__le32 sense_addr;
1742	__le32 carr_pa;
1743	uchar mflag;
1744	uchar sense_len;
1745	uchar cdb_len;		/* SCSI CDB length. Must <= 16 bytes. */
1746	uchar scsi_cntl;
1747	uchar done_status;	/* Completion status. */
1748	uchar scsi_status;	/* SCSI status byte. */
1749	uchar host_status;	/* Ucode host status. */
1750	uchar sg_working_ix;
1751	uchar cdb[12];		/* SCSI CDB bytes 0-11. */
1752	__le32 sg_real_addr;	/* SG list physical address. */
1753	__le32 scsiq_rptr;
1754	uchar cdb16[4];		/* SCSI CDB bytes 12-15. */
1755	__le32 scsiq_ptr;
1756	__le32 carr_va;
1757	/*
1758	 * End of microcode structure - 60 bytes. The rest of the structure
1759	 * is used by the Adv Library and ignored by the microcode.
1760	 */
1761	u32 srb_tag;
1762	ADV_SG_BLOCK *sg_list_ptr;	/* SG list virtual address. */
1763} ADV_SCSI_REQ_Q;
1764
1765/*
1766 * The following two structures are used to process Wide Board requests.
1767 *
1768 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1769 * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the
1770 * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points
1771 * to the Mid-Level SCSI request structure.
1772 *
1773 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1774 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1775 * up to 255 scatter-gather elements may be used per request or
1776 * ADV_SCSI_REQ_Q.
1777 *
1778 * Both structures must be 32 byte aligned.
1779 */
1780typedef struct adv_sgblk {
1781	ADV_SG_BLOCK sg_block;	/* Sgblock structure. */
1782	dma_addr_t sg_addr;	/* Physical address */
1783	struct adv_sgblk *next_sgblkp;	/* Next scatter-gather structure. */
1784} adv_sgblk_t;
1785
1786typedef struct adv_req {
1787	ADV_SCSI_REQ_Q scsi_req_q;	/* Adv Library request structure. */
1788	uchar align[24];	/* Request structure padding. */
1789	struct scsi_cmnd *cmndp;	/* Mid-Level SCSI command pointer. */
1790	dma_addr_t req_addr;
1791	adv_sgblk_t *sgblkp;	/* Adv Library scatter-gather pointer. */
1792} adv_req_t __aligned(32);
1793
1794/*
1795 * Adapter operation variable structure.
1796 *
1797 * One structure is required per host adapter.
1798 *
1799 * Field naming convention:
1800 *
1801 *  *_able indicates both whether a feature should be enabled or disabled
1802 *  and whether a device is capable of the feature. At initialization
1803 *  this field may be set, but later if a device is found to be incapable
1804 *  of the feature, the field is cleared.
1805 */
1806typedef struct adv_dvc_var {
1807	AdvPortAddr iop_base;	/* I/O port address */
1808	ushort err_code;	/* fatal error code */
1809	ushort bios_ctrl;	/* BIOS control word, EEPROM word 12 */
1810	ushort wdtr_able;	/* try WDTR for a device */
1811	ushort sdtr_able;	/* try SDTR for a device */
1812	ushort ultra_able;	/* try SDTR Ultra speed for a device */
1813	ushort sdtr_speed1;	/* EEPROM SDTR Speed for TID 0-3   */
1814	ushort sdtr_speed2;	/* EEPROM SDTR Speed for TID 4-7   */
1815	ushort sdtr_speed3;	/* EEPROM SDTR Speed for TID 8-11  */
1816	ushort sdtr_speed4;	/* EEPROM SDTR Speed for TID 12-15 */
1817	ushort tagqng_able;	/* try tagged queuing with a device */
1818	ushort ppr_able;	/* PPR message capable per TID bitmask. */
1819	uchar max_dvc_qng;	/* maximum number of tagged commands per device */
1820	ushort start_motor;	/* start motor command allowed */
1821	uchar scsi_reset_wait;	/* delay in seconds after scsi bus reset */
1822	uchar chip_no;		/* should be assigned by caller */
1823	uchar max_host_qng;	/* maximum number of Q'ed command allowed */
1824	ushort no_scam;		/* scam_tolerant of EEPROM */
1825	struct asc_board *drv_ptr;	/* driver pointer to private structure */
1826	uchar chip_scsi_id;	/* chip SCSI target ID */
1827	uchar chip_type;
1828	uchar bist_err_code;
1829	ADV_CARR_T *carrier;
1830	ADV_CARR_T *carr_freelist;	/* Carrier free list. */
1831	dma_addr_t carrier_addr;
1832	ADV_CARR_T *icq_sp;	/* Initiator command queue stopper pointer. */
1833	ADV_CARR_T *irq_sp;	/* Initiator response queue stopper pointer. */
1834	ushort carr_pending_cnt;	/* Count of pending carriers. */
1835	/*
1836	 * Note: The following fields will not be used after initialization. The
1837	 * driver may discard the buffer after initialization is done.
1838	 */
1839	ADV_DVC_CFG *cfg;	/* temporary configuration structure  */
1840} ADV_DVC_VAR;
1841
1842/*
1843 * Microcode idle loop commands
1844 */
1845#define IDLE_CMD_COMPLETED           0
1846#define IDLE_CMD_STOP_CHIP           0x0001
1847#define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1848#define IDLE_CMD_SEND_INT            0x0004
1849#define IDLE_CMD_ABORT               0x0008
1850#define IDLE_CMD_DEVICE_RESET        0x0010
1851#define IDLE_CMD_SCSI_RESET_START    0x0020	/* Assert SCSI Bus Reset */
1852#define IDLE_CMD_SCSI_RESET_END      0x0040	/* Deassert SCSI Bus Reset */
1853#define IDLE_CMD_SCSIREQ             0x0080
1854
1855#define IDLE_CMD_STATUS_SUCCESS      0x0001
1856#define IDLE_CMD_STATUS_FAILURE      0x0002
1857
1858/*
1859 * AdvSendIdleCmd() flag definitions.
1860 */
1861#define ADV_NOWAIT     0x01
1862
1863/*
1864 * Wait loop time out values.
1865 */
1866#define SCSI_WAIT_100_MSEC           100UL	/* 100 milliseconds */
1867#define SCSI_US_PER_MSEC             1000	/* microseconds per millisecond */
1868#define SCSI_MAX_RETRY               10	/* retry count */
1869
1870#define ADV_ASYNC_RDMA_FAILURE          0x01	/* Fatal RDMA failure. */
1871#define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02	/* Detected SCSI Bus Reset. */
1872#define ADV_ASYNC_CARRIER_READY_FAILURE 0x03	/* Carrier Ready failure. */
1873#define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04	/* RDMAed-in data invalid. */
1874
1875#define ADV_HOST_SCSI_BUS_RESET      0x80	/* Host Initiated SCSI Bus Reset. */
1876
1877/* Read byte from a register. */
1878#define AdvReadByteRegister(iop_base, reg_off) \
1879     (ADV_MEM_READB((iop_base) + (reg_off)))
1880
1881/* Write byte to a register. */
1882#define AdvWriteByteRegister(iop_base, reg_off, byte) \
1883     (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1884
1885/* Read word (2 bytes) from a register. */
1886#define AdvReadWordRegister(iop_base, reg_off) \
1887     (ADV_MEM_READW((iop_base) + (reg_off)))
1888
1889/* Write word (2 bytes) to a register. */
1890#define AdvWriteWordRegister(iop_base, reg_off, word) \
1891     (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
1892
1893/* Write dword (4 bytes) to a register. */
1894#define AdvWriteDWordRegister(iop_base, reg_off, dword) \
1895     (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
1896
1897/* Read byte from LRAM. */
1898#define AdvReadByteLram(iop_base, addr, byte) \
1899do { \
1900    ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1901    (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
1902} while (0)
1903
1904/* Write byte to LRAM. */
1905#define AdvWriteByteLram(iop_base, addr, byte) \
1906    (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1907     ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
1908
1909/* Read word (2 bytes) from LRAM. */
1910#define AdvReadWordLram(iop_base, addr, word) \
1911do { \
1912    ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1913    (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
1914} while (0)
1915
1916/* Write word (2 bytes) to LRAM. */
1917#define AdvWriteWordLram(iop_base, addr, word) \
1918    (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1919     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1920
1921/* Write little-endian double word (4 bytes) to LRAM */
1922/* Because of unspecified C language ordering don't use auto-increment. */
1923#define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
1924    ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1925      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1926                     cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
1927     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
1928      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1929                     cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
1930
1931/* Read word (2 bytes) from LRAM assuming that the address is already set. */
1932#define AdvReadWordAutoIncLram(iop_base) \
1933     (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
1934
1935/* Write word (2 bytes) to LRAM assuming that the address is already set. */
1936#define AdvWriteWordAutoIncLram(iop_base, word) \
1937     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1938
1939/*
1940 * Define macro to check for Condor signature.
1941 *
1942 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
1943 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
1944 */
1945#define AdvFindSignature(iop_base) \
1946    (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
1947    ADV_CHIP_ID_BYTE) && \
1948     (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
1949    ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
1950
1951/*
1952 * Define macro to Return the version number of the chip at 'iop_base'.
1953 *
1954 * The second parameter 'bus_type' is currently unused.
1955 */
1956#define AdvGetChipVersion(iop_base, bus_type) \
1957    AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
1958
1959/*
1960 * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must
1961 * match the ADV_SCSI_REQ_Q 'srb_tag' field.
1962 *
1963 * If the request has not yet been sent to the device it will simply be
1964 * aborted from RISC memory. If the request is disconnected it will be
1965 * aborted on reselection by sending an Abort Message to the target ID.
1966 *
1967 * Return value:
1968 *      ADV_TRUE(1) - Queue was successfully aborted.
1969 *      ADV_FALSE(0) - Queue was not found on the active queue list.
1970 */
1971#define AdvAbortQueue(asc_dvc, srb_tag) \
1972     AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
1973		    (ADV_DCNT) (srb_tag))
1974
1975/*
1976 * Send a Bus Device Reset Message to the specified target ID.
1977 *
1978 * All outstanding commands will be purged if sending the
1979 * Bus Device Reset Message is successful.
1980 *
1981 * Return Value:
1982 *      ADV_TRUE(1) - All requests on the target are purged.
1983 *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
1984 *                     are not purged.
1985 */
1986#define AdvResetDevice(asc_dvc, target_id) \
1987     AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET,	\
1988		    (ADV_DCNT) (target_id))
1989
1990/*
1991 * SCSI Wide Type definition.
1992 */
1993#define ADV_SCSI_BIT_ID_TYPE   ushort
1994
1995/*
1996 * AdvInitScsiTarget() 'cntl_flag' options.
1997 */
1998#define ADV_SCAN_LUN           0x01
1999#define ADV_CAPINFO_NOLUN      0x02
2000
2001/*
2002 * Convert target id to target id bit mask.
2003 */
2004#define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2005
2006/*
2007 * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2008 */
2009
2010#define QD_NO_STATUS         0x00	/* Request not completed yet. */
2011#define QD_NO_ERROR          0x01
2012#define QD_ABORTED_BY_HOST   0x02
2013#define QD_WITH_ERROR        0x04
2014
2015#define QHSTA_NO_ERROR              0x00
2016#define QHSTA_M_SEL_TIMEOUT         0x11
2017#define QHSTA_M_DATA_OVER_RUN       0x12
2018#define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2019#define QHSTA_M_QUEUE_ABORTED       0x15
2020#define QHSTA_M_SXFR_SDMA_ERR       0x16	/* SXFR_STATUS SCSI DMA Error */
2021#define QHSTA_M_SXFR_SXFR_PERR      0x17	/* SXFR_STATUS SCSI Bus Parity Error */
2022#define QHSTA_M_RDMA_PERR           0x18	/* RISC PCI DMA parity error */
2023#define QHSTA_M_SXFR_OFF_UFLW       0x19	/* SXFR_STATUS Offset Underflow */
2024#define QHSTA_M_SXFR_OFF_OFLW       0x20	/* SXFR_STATUS Offset Overflow */
2025#define QHSTA_M_SXFR_WD_TMO         0x21	/* SXFR_STATUS Watchdog Timeout */
2026#define QHSTA_M_SXFR_DESELECTED     0x22	/* SXFR_STATUS Deselected */
2027/* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2028#define QHSTA_M_SXFR_XFR_OFLW       0x12	/* SXFR_STATUS Transfer Overflow */
2029#define QHSTA_M_SXFR_XFR_PH_ERR     0x24	/* SXFR_STATUS Transfer Phase Error */
2030#define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25	/* SXFR_STATUS Unknown Error */
2031#define QHSTA_M_SCSI_BUS_RESET      0x30	/* Request aborted from SBR */
2032#define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31	/* Request aborted from unsol. SBR */
2033#define QHSTA_M_BUS_DEVICE_RESET    0x32	/* Request aborted from BDR */
2034#define QHSTA_M_DIRECTION_ERR       0x35	/* Data Phase mismatch */
2035#define QHSTA_M_DIRECTION_ERR_HUNG  0x36	/* Data Phase mismatch and bus hang */
2036#define QHSTA_M_WTM_TIMEOUT         0x41
2037#define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2038#define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2039#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2040#define QHSTA_M_INVALID_DEVICE      0x45	/* Bad target ID */
2041#define QHSTA_M_FROZEN_TIDQ         0x46	/* TID Queue frozen. */
2042#define QHSTA_M_SGBACKUP_ERROR      0x47	/* Scatter-Gather backup error */
2043
2044/* Return the address that is aligned at the next doubleword >= to 'addr'. */
2045#define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2046
2047/*
2048 * Total contiguous memory needed for driver SG blocks.
2049 *
2050 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2051 * number of scatter-gather elements the driver supports in a
2052 * single request.
2053 */
2054
2055#define ADV_SG_LIST_MAX_BYTE_SIZE \
2056         (sizeof(ADV_SG_BLOCK) * \
2057          ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2058
2059/* struct asc_board flags */
2060#define ASC_IS_WIDE_BOARD       0x04	/* AdvanSys Wide Board */
2061
2062#define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2063
2064#define NO_ISA_DMA              0xff	/* No ISA DMA Channel Used */
2065
2066#define ASC_INFO_SIZE           128	/* advansys_info() line size */
2067
2068/* Asc Library return codes */
2069#define ASC_TRUE        1
2070#define ASC_FALSE       0
2071#define ASC_NOERROR     1
2072#define ASC_BUSY        0
2073#define ASC_ERROR       (-1)
2074
2075#define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2076#ifndef ADVANSYS_STATS
2077#define ASC_STATS_ADD(shost, counter, count)
2078#else /* ADVANSYS_STATS */
2079#define ASC_STATS_ADD(shost, counter, count) \
2080	(((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2081#endif /* ADVANSYS_STATS */
2082
2083/* If the result wraps when calculating tenths, return 0. */
2084#define ASC_TENTHS(num, den) \
2085    (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2086    0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2087
2088/*
2089 * Display a message to the console.
2090 */
2091#define ASC_PRINT(s) \
2092    { \
2093        printk("advansys: "); \
2094        printk(s); \
2095    }
2096
2097#define ASC_PRINT1(s, a1) \
2098    { \
2099        printk("advansys: "); \
2100        printk((s), (a1)); \
2101    }
2102
2103#define ASC_PRINT2(s, a1, a2) \
2104    { \
2105        printk("advansys: "); \
2106        printk((s), (a1), (a2)); \
2107    }
2108
2109#define ASC_PRINT3(s, a1, a2, a3) \
2110    { \
2111        printk("advansys: "); \
2112        printk((s), (a1), (a2), (a3)); \
2113    }
2114
2115#define ASC_PRINT4(s, a1, a2, a3, a4) \
2116    { \
2117        printk("advansys: "); \
2118        printk((s), (a1), (a2), (a3), (a4)); \
2119    }
2120
2121#ifndef ADVANSYS_DEBUG
2122
2123#define ASC_DBG(lvl, s...)
2124#define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2125#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2126#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2127#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2128#define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2129#define ASC_DBG_PRT_HEX(lvl, name, start, length)
2130#define ASC_DBG_PRT_CDB(lvl, cdb, len)
2131#define ASC_DBG_PRT_SENSE(lvl, sense, len)
2132#define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2133
2134#else /* ADVANSYS_DEBUG */
2135
2136/*
2137 * Debugging Message Levels:
2138 * 0: Errors Only
2139 * 1: High-Level Tracing
2140 * 2-N: Verbose Tracing
2141 */
2142
2143#define ASC_DBG(lvl, format, arg...) {					\
2144	if (asc_dbglvl >= (lvl))					\
2145		printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,		\
2146			__func__ , ## arg);				\
2147}
2148
2149#define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2150    { \
2151        if (asc_dbglvl >= (lvl)) { \
2152            asc_prt_scsi_host(s); \
2153        } \
2154    }
2155
2156#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2157    { \
2158        if (asc_dbglvl >= (lvl)) { \
2159            asc_prt_asc_scsi_q(scsiqp); \
2160        } \
2161    }
2162
2163#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2164    { \
2165        if (asc_dbglvl >= (lvl)) { \
2166            asc_prt_asc_qdone_info(qdone); \
2167        } \
2168    }
2169
2170#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2171    { \
2172        if (asc_dbglvl >= (lvl)) { \
2173            asc_prt_adv_scsi_req_q(scsiqp); \
2174        } \
2175    }
2176
2177#define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2178    { \
2179        if (asc_dbglvl >= (lvl)) { \
2180            asc_prt_hex((name), (start), (length)); \
2181        } \
2182    }
2183
2184#define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2185        ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2186
2187#define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2188        ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2189
2190#define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2191        ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2192#endif /* ADVANSYS_DEBUG */
2193
2194#ifdef ADVANSYS_STATS
2195
2196/* Per board statistics structure */
2197struct asc_stats {
2198	/* Driver Entrypoint Statistics */
2199	unsigned int queuecommand;	/* # calls to advansys_queuecommand() */
2200	unsigned int reset;		/* # calls to advansys_eh_bus_reset() */
2201	unsigned int biosparam;	/* # calls to advansys_biosparam() */
2202	unsigned int interrupt;	/* # advansys_interrupt() calls */
2203	unsigned int callback;	/* # calls to asc/adv_isr_callback() */
2204	unsigned int done;		/* # calls to request's scsi_done function */
2205	unsigned int build_error;	/* # asc/adv_build_req() ASC_ERROR returns. */
2206	unsigned int adv_build_noreq;	/* # adv_build_req() adv_req_t alloc. fail. */
2207	unsigned int adv_build_nosg;	/* # adv_build_req() adv_sgblk_t alloc. fail. */
2208	/* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2209	unsigned int exe_noerror;	/* # ASC_NOERROR returns. */
2210	unsigned int exe_busy;	/* # ASC_BUSY returns. */
2211	unsigned int exe_error;	/* # ASC_ERROR returns. */
2212	unsigned int exe_unknown;	/* # unknown returns. */
2213	/* Data Transfer Statistics */
2214	unsigned int xfer_cnt;	/* # I/O requests received */
2215	unsigned int xfer_elem;	/* # scatter-gather elements */
2216	unsigned int xfer_sect;	/* # 512-byte blocks */
2217};
2218#endif /* ADVANSYS_STATS */
2219
2220/*
2221 * Structure allocated for each board.
2222 *
2223 * This structure is allocated by scsi_host_alloc() at the end
2224 * of the 'Scsi_Host' structure starting at the 'hostdata'
2225 * field. It is guaranteed to be allocated from DMA-able memory.
2226 */
2227struct asc_board {
2228	struct device *dev;
2229	struct Scsi_Host *shost;
2230	uint flags;		/* Board flags */
2231	unsigned int irq;
2232	union {
2233		ASC_DVC_VAR asc_dvc_var;	/* Narrow board */
2234		ADV_DVC_VAR adv_dvc_var;	/* Wide board */
2235	} dvc_var;
2236	union {
2237		ASC_DVC_CFG asc_dvc_cfg;	/* Narrow board */
2238		ADV_DVC_CFG adv_dvc_cfg;	/* Wide board */
2239	} dvc_cfg;
2240	ushort asc_n_io_port;	/* Number I/O ports. */
2241	ADV_SCSI_BIT_ID_TYPE init_tidmask;	/* Target init./valid mask */
2242	ushort reqcnt[ADV_MAX_TID + 1];	/* Starvation request count */
2243	ADV_SCSI_BIT_ID_TYPE queue_full;	/* Queue full mask */
2244	ushort queue_full_cnt[ADV_MAX_TID + 1];	/* Queue full count */
2245	union {
2246		ASCEEP_CONFIG asc_eep;	/* Narrow EEPROM config. */
2247		ADVEEP_3550_CONFIG adv_3550_eep;	/* 3550 EEPROM config. */
2248		ADVEEP_38C0800_CONFIG adv_38C0800_eep;	/* 38C0800 EEPROM config. */
2249		ADVEEP_38C1600_CONFIG adv_38C1600_eep;	/* 38C1600 EEPROM config. */
2250	} eep_config;
2251	/* /proc/scsi/advansys/[0...] */
2252#ifdef ADVANSYS_STATS
2253	struct asc_stats asc_stats;	/* Board statistics */
2254#endif				/* ADVANSYS_STATS */
2255	/*
2256	 * The following fields are used only for Narrow Boards.
2257	 */
2258	uchar sdtr_data[ASC_MAX_TID + 1];	/* SDTR information */
2259	/*
2260	 * The following fields are used only for Wide Boards.
2261	 */
2262	void __iomem *ioremap_addr;	/* I/O Memory remap address. */
2263	ushort ioport;		/* I/O Port address. */
2264	adv_req_t *adv_reqp;	/* Request structures. */
2265	dma_addr_t adv_reqp_addr;
2266	size_t adv_reqp_size;
2267	struct dma_pool *adv_sgblk_pool;	/* Scatter-gather structures. */
2268	ushort bios_signature;	/* BIOS Signature. */
2269	ushort bios_version;	/* BIOS Version. */
2270	ushort bios_codeseg;	/* BIOS Code Segment. */
2271	ushort bios_codelen;	/* BIOS Code Segment Length. */
2272};
2273
2274#define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2275							dvc_var.asc_dvc_var)
2276#define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2277							dvc_var.adv_dvc_var)
2278#define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2279
2280struct advansys_cmd {
2281	dma_addr_t dma_handle;
2282};
2283
2284static struct advansys_cmd *advansys_cmd(struct scsi_cmnd *cmd)
2285{
2286	return scsi_cmd_priv(cmd);
2287}
2288
2289#ifdef ADVANSYS_DEBUG
2290static int asc_dbglvl = 3;
2291
2292/*
2293 * asc_prt_asc_dvc_var()
2294 */
2295static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2296{
2297	printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2298
2299	printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2300	       "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2301
2302	printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2303		(unsigned)h->init_sdtr);
2304
2305	printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2306	       "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2307	       (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2308	       (unsigned)h->chip_no);
2309
2310	printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2311	       "%u,\n", (unsigned)h->queue_full_or_busy,
2312	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2313
2314	printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2315	       "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2316	       (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2317	       (unsigned)h->in_critical_cnt);
2318
2319	printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2320	       "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2321	       (unsigned)h->init_state, (unsigned)h->no_scam,
2322	       (unsigned)h->pci_fix_asyn_xfer);
2323
2324	printk(" cfg 0x%lx\n", (ulong)h->cfg);
2325}
2326
2327/*
2328 * asc_prt_asc_dvc_cfg()
2329 */
2330static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2331{
2332	printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2333
2334	printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2335	       h->can_tagged_qng, h->cmd_qng_enabled);
2336	printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2337	       h->disc_enable, h->sdtr_enable);
2338
2339	printk(" chip_scsi_id %d, chip_version %d,\n",
2340	       h->chip_scsi_id, h->chip_version);
2341
2342	printk(" mcode_date 0x%x, mcode_version %d\n",
2343		h->mcode_date, h->mcode_version);
2344}
2345
2346/*
2347 * asc_prt_adv_dvc_var()
2348 *
2349 * Display an ADV_DVC_VAR structure.
2350 */
2351static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2352{
2353	printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2354
2355	printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2356	       (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2357
2358	printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2359	       (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2360
2361	printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2362	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2363
2364	printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n",
2365	       (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2366	       h->carr_freelist);
2367
2368	printk("  icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp);
2369
2370	printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2371	       (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2372
2373	printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2374	       (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2375}
2376
2377/*
2378 * asc_prt_adv_dvc_cfg()
2379 *
2380 * Display an ADV_DVC_CFG structure.
2381 */
2382static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2383{
2384	printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2385
2386	printk("  disc_enable 0x%x, termination 0x%x\n",
2387	       h->disc_enable, h->termination);
2388
2389	printk("  chip_version 0x%x, mcode_date 0x%x\n",
2390	       h->chip_version, h->mcode_date);
2391
2392	printk("  mcode_version 0x%x, control_flag 0x%x\n",
2393	       h->mcode_version, h->control_flag);
2394}
2395
2396/*
2397 * asc_prt_scsi_host()
2398 */
2399static void asc_prt_scsi_host(struct Scsi_Host *s)
2400{
2401	struct asc_board *boardp = shost_priv(s);
2402
2403	printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2404	printk(" host_busy %d, host_no %d,\n",
2405	       scsi_host_busy(s), s->host_no);
2406
2407	printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2408	       (ulong)s->base, (ulong)s->io_port, boardp->irq);
2409
2410	printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2411	       s->dma_channel, s->this_id, s->can_queue);
2412
2413	printk(" cmd_per_lun %d, sg_tablesize %d\n",
2414	       s->cmd_per_lun, s->sg_tablesize);
2415
2416	if (ASC_NARROW_BOARD(boardp)) {
2417		asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2418		asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2419	} else {
2420		asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2421		asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2422	}
2423}
2424
2425/*
2426 * asc_prt_hex()
2427 *
2428 * Print hexadecimal output in 4 byte groupings 32 bytes
2429 * or 8 double-words per line.
2430 */
2431static void asc_prt_hex(char *f, uchar *s, int l)
2432{
2433	int i;
2434	int j;
2435	int k;
2436	int m;
2437
2438	printk("%s: (%d bytes)\n", f, l);
2439
2440	for (i = 0; i < l; i += 32) {
2441
2442		/* Display a maximum of 8 double-words per line. */
2443		if ((k = (l - i) / 4) >= 8) {
2444			k = 8;
2445			m = 0;
2446		} else {
2447			m = (l - i) % 4;
2448		}
2449
2450		for (j = 0; j < k; j++) {
2451			printk(" %2.2X%2.2X%2.2X%2.2X",
2452			       (unsigned)s[i + (j * 4)],
2453			       (unsigned)s[i + (j * 4) + 1],
2454			       (unsigned)s[i + (j * 4) + 2],
2455			       (unsigned)s[i + (j * 4) + 3]);
2456		}
2457
2458		switch (m) {
2459		case 0:
2460		default:
2461			break;
2462		case 1:
2463			printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2464			break;
2465		case 2:
2466			printk(" %2.2X%2.2X",
2467			       (unsigned)s[i + (j * 4)],
2468			       (unsigned)s[i + (j * 4) + 1]);
2469			break;
2470		case 3:
2471			printk(" %2.2X%2.2X%2.2X",
2472			       (unsigned)s[i + (j * 4) + 1],
2473			       (unsigned)s[i + (j * 4) + 2],
2474			       (unsigned)s[i + (j * 4) + 3]);
2475			break;
2476		}
2477
2478		printk("\n");
2479	}
2480}
2481
2482/*
2483 * asc_prt_asc_scsi_q()
2484 */
2485static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2486{
2487	ASC_SG_HEAD *sgp;
2488	int i;
2489
2490	printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2491
2492	printk
2493	    (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n",
2494	     q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag,
2495	     q->q2.tag_code);
2496
2497	printk
2498	    (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2499	     (ulong)le32_to_cpu(q->q1.data_addr),
2500	     (ulong)le32_to_cpu(q->q1.data_cnt),
2501	     (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2502
2503	printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2504	       (ulong)q->cdbptr, q->q2.cdb_len,
2505	       (ulong)q->sg_head, q->q1.sg_queue_cnt);
2506
2507	if (q->sg_head) {
2508		sgp = q->sg_head;
2509		printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2510		printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2511		       sgp->queue_cnt);
2512		for (i = 0; i < sgp->entry_cnt; i++) {
2513			printk(" [%u]: addr 0x%lx, bytes %lu\n",
2514			       i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2515			       (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2516		}
2517
2518	}
2519}
2520
2521/*
2522 * asc_prt_asc_qdone_info()
2523 */
2524static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2525{
2526	printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2527	printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n",
2528	       q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len,
2529	       q->d2.tag_code);
2530	printk
2531	    (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2532	     q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2533}
2534
2535/*
2536 * asc_prt_adv_sgblock()
2537 *
2538 * Display an ADV_SG_BLOCK structure.
2539 */
2540static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2541{
2542	int i;
2543
2544	printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2545	       (ulong)b, sgblockno);
2546	printk("  sg_cnt %u, sg_ptr 0x%x\n",
2547	       b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr));
2548	BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2549	if (b->sg_ptr != 0)
2550		BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2551	for (i = 0; i < b->sg_cnt; i++) {
2552		printk("  [%u]: sg_addr 0x%x, sg_count 0x%x\n",
2553		       i, (u32)le32_to_cpu(b->sg_list[i].sg_addr),
2554		       (u32)le32_to_cpu(b->sg_list[i].sg_count));
2555	}
2556}
2557
2558/*
2559 * asc_prt_adv_scsi_req_q()
2560 *
2561 * Display an ADV_SCSI_REQ_Q structure.
2562 */
2563static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2564{
2565	int sg_blk_cnt;
2566	struct adv_sg_block *sg_ptr;
2567	adv_sgblk_t *sgblkp;
2568
2569	printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2570
2571	printk("  target_id %u, target_lun %u, srb_tag 0x%x\n",
2572	       q->target_id, q->target_lun, q->srb_tag);
2573
2574	printk("  cntl 0x%x, data_addr 0x%lx\n",
2575	       q->cntl, (ulong)le32_to_cpu(q->data_addr));
2576
2577	printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2578	       (ulong)le32_to_cpu(q->data_cnt),
2579	       (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2580
2581	printk
2582	    ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2583	     q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2584
2585	printk("  sg_working_ix 0x%x, target_cmd %u\n",
2586	       q->sg_working_ix, q->target_cmd);
2587
2588	printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2589	       (ulong)le32_to_cpu(q->scsiq_rptr),
2590	       (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2591
2592	/* Display the request's ADV_SG_BLOCK structures. */
2593	if (q->sg_list_ptr != NULL) {
2594		sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block);
2595		sg_blk_cnt = 0;
2596		while (sgblkp) {
2597			sg_ptr = &sgblkp->sg_block;
2598			asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2599			if (sg_ptr->sg_ptr == 0) {
2600				break;
2601			}
2602			sgblkp = sgblkp->next_sgblkp;
2603			sg_blk_cnt++;
2604		}
2605	}
2606}
2607#endif /* ADVANSYS_DEBUG */
2608
2609/*
2610 * advansys_info()
2611 *
2612 * Return suitable for printing on the console with the argument
2613 * adapter's configuration information.
2614 *
2615 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2616 * otherwise the static 'info' array will be overrun.
2617 */
2618static const char *advansys_info(struct Scsi_Host *shost)
2619{
2620	static char info[ASC_INFO_SIZE];
2621	struct asc_board *boardp = shost_priv(shost);
2622	ASC_DVC_VAR *asc_dvc_varp;
2623	ADV_DVC_VAR *adv_dvc_varp;
2624	char *busname;
2625	char *widename = NULL;
2626
2627	if (ASC_NARROW_BOARD(boardp)) {
2628		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2629		ASC_DBG(1, "begin\n");
2630
2631		if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2632			busname = "VL";
2633		} else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2634			busname = "EISA";
2635		} else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2636			if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2637			    == ASC_IS_PCI_ULTRA) {
2638				busname = "PCI Ultra";
2639			} else {
2640				busname = "PCI";
2641			}
2642		} else {
2643			busname = "?";
2644			shost_printk(KERN_ERR, shost, "unknown bus "
2645				"type %d\n", asc_dvc_varp->bus_type);
2646		}
2647		sprintf(info,
2648			"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2649			ASC_VERSION, busname, (ulong)shost->io_port,
2650			(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2651			boardp->irq);
2652	} else {
2653		/*
2654		 * Wide Adapter Information
2655		 *
2656		 * Memory-mapped I/O is used instead of I/O space to access
2657		 * the adapter, but display the I/O Port range. The Memory
2658		 * I/O address is displayed through the driver /proc file.
2659		 */
2660		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2661		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2662			widename = "Ultra-Wide";
2663		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2664			widename = "Ultra2-Wide";
2665		} else {
2666			widename = "Ultra3-Wide";
2667		}
2668		sprintf(info,
2669			"AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2670			ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2671			(ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2672	}
2673	BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2674	ASC_DBG(1, "end\n");
2675	return info;
2676}
2677
2678#ifdef CONFIG_PROC_FS
2679
2680/*
2681 * asc_prt_board_devices()
2682 *
2683 * Print driver information for devices attached to the board.
2684 */
2685static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2686{
2687	struct asc_board *boardp = shost_priv(shost);
2688	int chip_scsi_id;
2689	int i;
2690
2691	seq_printf(m,
2692		   "\nDevice Information for AdvanSys SCSI Host %d:\n",
2693		   shost->host_no);
2694
2695	if (ASC_NARROW_BOARD(boardp)) {
2696		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2697	} else {
2698		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2699	}
2700
2701	seq_puts(m, "Target IDs Detected:");
2702	for (i = 0; i <= ADV_MAX_TID; i++) {
2703		if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2704			seq_printf(m, " %X,", i);
2705	}
2706	seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2707}
2708
2709/*
2710 * Display Wide Board BIOS Information.
2711 */
2712static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2713{
2714	struct asc_board *boardp = shost_priv(shost);
2715	ushort major, minor, letter;
2716
2717	seq_puts(m, "\nROM BIOS Version: ");
2718
2719	/*
2720	 * If the BIOS saved a valid signature, then fill in
2721	 * the BIOS code segment base address.
2722	 */
2723	if (boardp->bios_signature != 0x55AA) {
2724		seq_puts(m, "Disabled or Pre-3.1\n"
2725			"BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2726			"can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2727	} else {
2728		major = (boardp->bios_version >> 12) & 0xF;
2729		minor = (boardp->bios_version >> 8) & 0xF;
2730		letter = (boardp->bios_version & 0xFF);
2731
2732		seq_printf(m, "%d.%d%c\n",
2733				   major, minor,
2734				   letter >= 26 ? '?' : letter + 'A');
2735		/*
2736		 * Current available ROM BIOS release is 3.1I for UW
2737		 * and 3.2I for U2W. This code doesn't differentiate
2738		 * UW and U2W boards.
2739		 */
2740		if (major < 3 || (major <= 3 && minor < 1) ||
2741		    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2742			seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2743				"ftp://ftp.connectcom.net/pub\n");
2744		}
2745	}
2746}
2747
2748/*
2749 * Add serial number to information bar if signature AAh
2750 * is found in at bit 15-9 (7 bits) of word 1.
2751 *
2752 * Serial Number consists fo 12 alpha-numeric digits.
2753 *
2754 *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
2755 *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
2756 *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
2757 *       5 - Product revision (A-J)    Word0:  "         "
2758 *
2759 *           Signature                 Word1: 15-9 (7 bits)
2760 *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2761 *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
2762 *
2763 *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2764 *
2765 * Note 1: Only production cards will have a serial number.
2766 *
2767 * Note 2: Signature is most significant 7 bits (0xFE).
2768 *
2769 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2770 */
2771static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2772{
2773	ushort w, num;
2774
2775	if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2776		return ASC_FALSE;
2777	} else {
2778		/*
2779		 * First word - 6 digits.
2780		 */
2781		w = serialnum[0];
2782
2783		/* Product type - 1st digit. */
2784		if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2785			/* Product type is P=Prototype */
2786			*cp += 0x8;
2787		}
2788		cp++;
2789
2790		/* Manufacturing location - 2nd digit. */
2791		*cp++ = 'A' + ((w & 0x1C00) >> 10);
2792
2793		/* Product ID - 3rd, 4th digits. */
2794		num = w & 0x3FF;
2795		*cp++ = '0' + (num / 100);
2796		num %= 100;
2797		*cp++ = '0' + (num / 10);
2798
2799		/* Product revision - 5th digit. */
2800		*cp++ = 'A' + (num % 10);
2801
2802		/*
2803		 * Second word
2804		 */
2805		w = serialnum[1];
2806
2807		/*
2808		 * Year - 6th digit.
2809		 *
2810		 * If bit 15 of third word is set, then the
2811		 * last digit of the year is greater than 7.
2812		 */
2813		if (serialnum[2] & 0x8000) {
2814			*cp++ = '8' + ((w & 0x1C0) >> 6);
2815		} else {
2816			*cp++ = '0' + ((w & 0x1C0) >> 6);
2817		}
2818
2819		/* Week of year - 7th, 8th digits. */
2820		num = w & 0x003F;
2821		*cp++ = '0' + num / 10;
2822		num %= 10;
2823		*cp++ = '0' + num;
2824
2825		/*
2826		 * Third word
2827		 */
2828		w = serialnum[2] & 0x7FFF;
2829
2830		/* Serial number - 9th digit. */
2831		*cp++ = 'A' + (w / 1000);
2832
2833		/* 10th, 11th, 12th digits. */
2834		num = w % 1000;
2835		*cp++ = '0' + num / 100;
2836		num %= 100;
2837		*cp++ = '0' + num / 10;
2838		num %= 10;
2839		*cp++ = '0' + num;
2840
2841		*cp = '\0';	/* Null Terminate the string. */
2842		return ASC_TRUE;
2843	}
2844}
2845
2846/*
2847 * asc_prt_asc_board_eeprom()
2848 *
2849 * Print board EEPROM configuration.
2850 */
2851static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2852{
2853	struct asc_board *boardp = shost_priv(shost);
2854	ASCEEP_CONFIG *ep;
2855	int i;
2856	uchar serialstr[13];
2857
2858	ep = &boardp->eep_config.asc_eep;
2859
2860	seq_printf(m,
2861		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2862		   shost->host_no);
2863
2864	if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
2865	    == ASC_TRUE)
2866		seq_printf(m, " Serial Number: %s\n", serialstr);
2867	else if (ep->adapter_info[5] == 0xBB)
2868		seq_puts(m,
2869			 " Default Settings Used for EEPROM-less Adapter.\n");
2870	else
2871		seq_puts(m, " Serial Number Signature Not Present.\n");
2872
2873	seq_printf(m,
2874		   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2875		   ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
2876		   ep->max_tag_qng);
2877
2878	seq_printf(m,
2879		   " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
2880
2881	seq_puts(m, " Target ID:           ");
2882	for (i = 0; i <= ASC_MAX_TID; i++)
2883		seq_printf(m, " %d", i);
2884
2885	seq_puts(m, "\n Disconnects:         ");
2886	for (i = 0; i <= ASC_MAX_TID; i++)
2887		seq_printf(m, " %c",
2888			   (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2889
2890	seq_puts(m, "\n Command Queuing:     ");
2891	for (i = 0; i <= ASC_MAX_TID; i++)
2892		seq_printf(m, " %c",
2893			   (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2894
2895	seq_puts(m, "\n Start Motor:         ");
2896	for (i = 0; i <= ASC_MAX_TID; i++)
2897		seq_printf(m, " %c",
2898			   (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2899
2900	seq_puts(m, "\n Synchronous Transfer:");
2901	for (i = 0; i <= ASC_MAX_TID; i++)
2902		seq_printf(m, " %c",
2903			   (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2904	seq_putc(m, '\n');
2905}
2906
2907/*
2908 * asc_prt_adv_board_eeprom()
2909 *
2910 * Print board EEPROM configuration.
2911 */
2912static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2913{
2914	struct asc_board *boardp = shost_priv(shost);
2915	ADV_DVC_VAR *adv_dvc_varp;
2916	int i;
2917	char *termstr;
2918	uchar serialstr[13];
2919	ADVEEP_3550_CONFIG *ep_3550 = NULL;
2920	ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
2921	ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
2922	ushort word;
2923	ushort *wordp;
2924	ushort sdtr_speed = 0;
2925
2926	adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2927	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2928		ep_3550 = &boardp->eep_config.adv_3550_eep;
2929	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2930		ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
2931	} else {
2932		ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
2933	}
2934
2935	seq_printf(m,
2936		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2937		   shost->host_no);
2938
2939	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2940		wordp = &ep_3550->serial_number_word1;
2941	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2942		wordp = &ep_38C0800->serial_number_word1;
2943	} else {
2944		wordp = &ep_38C1600->serial_number_word1;
2945	}
2946
2947	if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
2948		seq_printf(m, " Serial Number: %s\n", serialstr);
2949	else
2950		seq_puts(m, " Serial Number Signature Not Present.\n");
2951
2952	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2953		seq_printf(m,
2954			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2955			   ep_3550->adapter_scsi_id,
2956			   ep_3550->max_host_qng, ep_3550->max_dvc_qng);
2957	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
2958		seq_printf(m,
2959			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2960			   ep_38C0800->adapter_scsi_id,
2961			   ep_38C0800->max_host_qng,
2962			   ep_38C0800->max_dvc_qng);
2963	else
2964		seq_printf(m,
2965			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2966			   ep_38C1600->adapter_scsi_id,
2967			   ep_38C1600->max_host_qng,
2968			   ep_38C1600->max_dvc_qng);
2969	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2970		word = ep_3550->termination;
2971	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2972		word = ep_38C0800->termination_lvd;
2973	} else {
2974		word = ep_38C1600->termination_lvd;
2975	}
2976	switch (word) {
2977	case 1:
2978		termstr = "Low Off/High Off";
2979		break;
2980	case 2:
2981		termstr = "Low Off/High On";
2982		break;
2983	case 3:
2984		termstr = "Low On/High On";
2985		break;
2986	default:
2987	case 0:
2988		termstr = "Automatic";
2989		break;
2990	}
2991
2992	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2993		seq_printf(m,
2994			   " termination: %u (%s), bios_ctrl: 0x%x\n",
2995			   ep_3550->termination, termstr,
2996			   ep_3550->bios_ctrl);
2997	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
2998		seq_printf(m,
2999			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3000			   ep_38C0800->termination_lvd, termstr,
3001			   ep_38C0800->bios_ctrl);
3002	else
3003		seq_printf(m,
3004			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3005			   ep_38C1600->termination_lvd, termstr,
3006			   ep_38C1600->bios_ctrl);
3007
3008	seq_puts(m, " Target ID:           ");
3009	for (i = 0; i <= ADV_MAX_TID; i++)
3010		seq_printf(m, " %X", i);
3011	seq_putc(m, '\n');
3012
3013	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3014		word = ep_3550->disc_enable;
3015	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3016		word = ep_38C0800->disc_enable;
3017	} else {
3018		word = ep_38C1600->disc_enable;
3019	}
3020	seq_puts(m, " Disconnects:         ");
3021	for (i = 0; i <= ADV_MAX_TID; i++)
3022		seq_printf(m, " %c",
3023			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3024	seq_putc(m, '\n');
3025
3026	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3027		word = ep_3550->tagqng_able;
3028	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3029		word = ep_38C0800->tagqng_able;
3030	} else {
3031		word = ep_38C1600->tagqng_able;
3032	}
3033	seq_puts(m, " Command Queuing:     ");
3034	for (i = 0; i <= ADV_MAX_TID; i++)
3035		seq_printf(m, " %c",
3036			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3037	seq_putc(m, '\n');
3038
3039	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3040		word = ep_3550->start_motor;
3041	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3042		word = ep_38C0800->start_motor;
3043	} else {
3044		word = ep_38C1600->start_motor;
3045	}
3046	seq_puts(m, " Start Motor:         ");
3047	for (i = 0; i <= ADV_MAX_TID; i++)
3048		seq_printf(m, " %c",
3049			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3050	seq_putc(m, '\n');
3051
3052	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3053		seq_puts(m, " Synchronous Transfer:");
3054		for (i = 0; i <= ADV_MAX_TID; i++)
3055			seq_printf(m, " %c",
3056				   (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3057				   'Y' : 'N');
3058		seq_putc(m, '\n');
3059	}
3060
3061	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3062		seq_puts(m, " Ultra Transfer:      ");
3063		for (i = 0; i <= ADV_MAX_TID; i++)
3064			seq_printf(m, " %c",
3065				   (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3066				   ? 'Y' : 'N');
3067		seq_putc(m, '\n');
3068	}
3069
3070	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3071		word = ep_3550->wdtr_able;
3072	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3073		word = ep_38C0800->wdtr_able;
3074	} else {
3075		word = ep_38C1600->wdtr_able;
3076	}
3077	seq_puts(m, " Wide Transfer:       ");
3078	for (i = 0; i <= ADV_MAX_TID; i++)
3079		seq_printf(m, " %c",
3080			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3081	seq_putc(m, '\n');
3082
3083	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3084	    adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3085		seq_puts(m, " Synchronous Transfer Speed (Mhz):\n  ");
3086		for (i = 0; i <= ADV_MAX_TID; i++) {
3087			char *speed_str;
3088
3089			if (i == 0) {
3090				sdtr_speed = adv_dvc_varp->sdtr_speed1;
3091			} else if (i == 4) {
3092				sdtr_speed = adv_dvc_varp->sdtr_speed2;
3093			} else if (i == 8) {
3094				sdtr_speed = adv_dvc_varp->sdtr_speed3;
3095			} else if (i == 12) {
3096				sdtr_speed = adv_dvc_varp->sdtr_speed4;
3097			}
3098			switch (sdtr_speed & ADV_MAX_TID) {
3099			case 0:
3100				speed_str = "Off";
3101				break;
3102			case 1:
3103				speed_str = "  5";
3104				break;
3105			case 2:
3106				speed_str = " 10";
3107				break;
3108			case 3:
3109				speed_str = " 20";
3110				break;
3111			case 4:
3112				speed_str = " 40";
3113				break;
3114			case 5:
3115				speed_str = " 80";
3116				break;
3117			default:
3118				speed_str = "Unk";
3119				break;
3120			}
3121			seq_printf(m, "%X:%s ", i, speed_str);
3122			if (i == 7)
3123				seq_puts(m, "\n  ");
3124			sdtr_speed >>= 4;
3125		}
3126		seq_putc(m, '\n');
3127	}
3128}
3129
3130/*
3131 * asc_prt_driver_conf()
3132 */
3133static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3134{
3135	struct asc_board *boardp = shost_priv(shost);
3136
3137	seq_printf(m,
3138		"\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3139		shost->host_no);
3140
3141	seq_printf(m,
3142		   " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n",
3143		   scsi_host_busy(shost), shost->max_id,
3144		   shost->max_lun, shost->max_channel);
3145
3146	seq_printf(m,
3147		   " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3148		   shost->unique_id, shost->can_queue, shost->this_id,
3149		   shost->sg_tablesize, shost->cmd_per_lun);
3150
3151	seq_printf(m,
3152		   " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3153		   boardp->flags, shost->last_reset, jiffies,
3154		   boardp->asc_n_io_port);
3155
3156	seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3157}
3158
3159/*
3160 * asc_prt_asc_board_info()
3161 *
3162 * Print dynamic board configuration information.
3163 */
3164static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3165{
3166	struct asc_board *boardp = shost_priv(shost);
3167	int chip_scsi_id;
3168	ASC_DVC_VAR *v;
3169	ASC_DVC_CFG *c;
3170	int i;
3171	int renegotiate = 0;
3172
3173	v = &boardp->dvc_var.asc_dvc_var;
3174	c = &boardp->dvc_cfg.asc_dvc_cfg;
3175	chip_scsi_id = c->chip_scsi_id;
3176
3177	seq_printf(m,
3178		   "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3179		   shost->host_no);
3180
3181	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3182		   "mcode_version 0x%x, err_code %u\n",
3183		   c->chip_version, c->mcode_date, c->mcode_version,
3184		   v->err_code);
3185
3186	/* Current number of commands waiting for the host. */
3187	seq_printf(m,
3188		   " Total Command Pending: %d\n", v->cur_total_qng);
3189
3190	seq_puts(m, " Command Queuing:");
3191	for (i = 0; i <= ASC_MAX_TID; i++) {
3192		if ((chip_scsi_id == i) ||
3193		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3194			continue;
3195		}
3196		seq_printf(m, " %X:%c",
3197			   i,
3198			   (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3199	}
3200
3201	/* Current number of commands waiting for a device. */
3202	seq_puts(m, "\n Command Queue Pending:");
3203	for (i = 0; i <= ASC_MAX_TID; i++) {
3204		if ((chip_scsi_id == i) ||
3205		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3206			continue;
3207		}
3208		seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3209	}
3210
3211	/* Current limit on number of commands that can be sent to a device. */
3212	seq_puts(m, "\n Command Queue Limit:");
3213	for (i = 0; i <= ASC_MAX_TID; i++) {
3214		if ((chip_scsi_id == i) ||
3215		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3216			continue;
3217		}
3218		seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3219	}
3220
3221	/* Indicate whether the device has returned queue full status. */
3222	seq_puts(m, "\n Command Queue Full:");
3223	for (i = 0; i <= ASC_MAX_TID; i++) {
3224		if ((chip_scsi_id == i) ||
3225		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3226			continue;
3227		}
3228		if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3229			seq_printf(m, " %X:Y-%d",
3230				   i, boardp->queue_full_cnt[i]);
3231		else
3232			seq_printf(m, " %X:N", i);
3233	}
3234
3235	seq_puts(m, "\n Synchronous Transfer:");
3236	for (i = 0; i <= ASC_MAX_TID; i++) {
3237		if ((chip_scsi_id == i) ||
3238		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3239			continue;
3240		}
3241		seq_printf(m, " %X:%c",
3242			   i,
3243			   (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3244	}
3245	seq_putc(m, '\n');
3246
3247	for (i = 0; i <= ASC_MAX_TID; i++) {
3248		uchar syn_period_ix;
3249
3250		if ((chip_scsi_id == i) ||
3251		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3252		    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3253			continue;
3254		}
3255
3256		seq_printf(m, "  %X:", i);
3257
3258		if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3259			seq_puts(m, " Asynchronous");
3260		} else {
3261			syn_period_ix =
3262			    (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3263							   1);
3264
3265			seq_printf(m,
3266				   " Transfer Period Factor: %d (%d.%d Mhz),",
3267				   v->sdtr_period_tbl[syn_period_ix],
3268				   250 / v->sdtr_period_tbl[syn_period_ix],
3269				   ASC_TENTHS(250,
3270					      v->sdtr_period_tbl[syn_period_ix]));
3271
3272			seq_printf(m, " REQ/ACK Offset: %d",
3273				   boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3274		}
3275
3276		if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3277			seq_puts(m, "*\n");
3278			renegotiate = 1;
3279		} else {
3280			seq_putc(m, '\n');
3281		}
3282	}
3283
3284	if (renegotiate) {
3285		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3286	}
3287}
3288
3289/*
3290 * asc_prt_adv_board_info()
3291 *
3292 * Print dynamic board configuration information.
3293 */
3294static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3295{
3296	struct asc_board *boardp = shost_priv(shost);
3297	int i;
3298	ADV_DVC_VAR *v;
3299	ADV_DVC_CFG *c;
3300	AdvPortAddr iop_base;
3301	ushort chip_scsi_id;
3302	ushort lramword;
3303	uchar lrambyte;
3304	ushort tagqng_able;
3305	ushort sdtr_able, wdtr_able;
3306	ushort wdtr_done, sdtr_done;
3307	ushort period = 0;
3308	int renegotiate = 0;
3309
3310	v = &boardp->dvc_var.adv_dvc_var;
3311	c = &boardp->dvc_cfg.adv_dvc_cfg;
3312	iop_base = v->iop_base;
3313	chip_scsi_id = v->chip_scsi_id;
3314
3315	seq_printf(m,
3316		   "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3317		   shost->host_no);
3318
3319	seq_printf(m,
3320		   " iop_base 0x%p, cable_detect: %X, err_code %u\n",
3321		   v->iop_base,
3322		   AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3323		   v->err_code);
3324
3325	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3326		   "mcode_version 0x%x\n", c->chip_version,
3327		   c->mcode_date, c->mcode_version);
3328
3329	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3330	seq_puts(m, " Queuing Enabled:");
3331	for (i = 0; i <= ADV_MAX_TID; i++) {
3332		if ((chip_scsi_id == i) ||
3333		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3334			continue;
3335		}
3336
3337		seq_printf(m, " %X:%c",
3338			   i,
3339			   (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3340	}
3341
3342	seq_puts(m, "\n Queue Limit:");
3343	for (i = 0; i <= ADV_MAX_TID; i++) {
3344		if ((chip_scsi_id == i) ||
3345		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3346			continue;
3347		}
3348
3349		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3350				lrambyte);
3351
3352		seq_printf(m, " %X:%d", i, lrambyte);
3353	}
3354
3355	seq_puts(m, "\n Command Pending:");
3356	for (i = 0; i <= ADV_MAX_TID; i++) {
3357		if ((chip_scsi_id == i) ||
3358		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3359			continue;
3360		}
3361
3362		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3363				lrambyte);
3364
3365		seq_printf(m, " %X:%d", i, lrambyte);
3366	}
3367	seq_putc(m, '\n');
3368
3369	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3370	seq_puts(m, " Wide Enabled:");
3371	for (i = 0; i <= ADV_MAX_TID; i++) {
3372		if ((chip_scsi_id == i) ||
3373		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3374			continue;
3375		}
3376
3377		seq_printf(m, " %X:%c",
3378			   i,
3379			   (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3380	}
3381	seq_putc(m, '\n');
3382
3383	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3384	seq_puts(m, " Transfer Bit Width:");
3385	for (i = 0; i <= ADV_MAX_TID; i++) {
3386		if ((chip_scsi_id == i) ||
3387		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3388			continue;
3389		}
3390
3391		AdvReadWordLram(iop_base,
3392				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3393				lramword);
3394
3395		seq_printf(m, " %X:%d",
3396			   i, (lramword & 0x8000) ? 16 : 8);
3397
3398		if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3399		    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3400			seq_putc(m, '*');
3401			renegotiate = 1;
3402		}
3403	}
3404	seq_putc(m, '\n');
3405
3406	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3407	seq_puts(m, " Synchronous Enabled:");
3408	for (i = 0; i <= ADV_MAX_TID; i++) {
3409		if ((chip_scsi_id == i) ||
3410		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3411			continue;
3412		}
3413
3414		seq_printf(m, " %X:%c",
3415			   i,
3416			   (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3417	}
3418	seq_putc(m, '\n');
3419
3420	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3421	for (i = 0; i <= ADV_MAX_TID; i++) {
3422
3423		AdvReadWordLram(iop_base,
3424				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3425				lramword);
3426		lramword &= ~0x8000;
3427
3428		if ((chip_scsi_id == i) ||
3429		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3430		    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3431			continue;
3432		}
3433
3434		seq_printf(m, "  %X:", i);
3435
3436		if ((lramword & 0x1F) == 0) {	/* Check for REQ/ACK Offset 0. */
3437			seq_puts(m, " Asynchronous");
3438		} else {
3439			seq_puts(m, " Transfer Period Factor: ");
3440
3441			if ((lramword & 0x1F00) == 0x1100) {	/* 80 Mhz */
3442				seq_puts(m, "9 (80.0 Mhz),");
3443			} else if ((lramword & 0x1F00) == 0x1000) {	/* 40 Mhz */
3444				seq_puts(m, "10 (40.0 Mhz),");
3445			} else {	/* 20 Mhz or below. */
3446
3447				period = (((lramword >> 8) * 25) + 50) / 4;
3448
3449				if (period == 0) {	/* Should never happen. */
3450					seq_printf(m, "%d (? Mhz), ", period);
3451				} else {
3452					seq_printf(m,
3453						   "%d (%d.%d Mhz),",
3454						   period, 250 / period,
3455						   ASC_TENTHS(250, period));
3456				}
3457			}
3458
3459			seq_printf(m, " REQ/ACK Offset: %d",
3460				   lramword & 0x1F);
3461		}
3462
3463		if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3464			seq_puts(m, "*\n");
3465			renegotiate = 1;
3466		} else {
3467			seq_putc(m, '\n');
3468		}
3469	}
3470
3471	if (renegotiate) {
3472		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3473	}
3474}
3475
3476#ifdef ADVANSYS_STATS
3477/*
3478 * asc_prt_board_stats()
3479 */
3480static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3481{
3482	struct asc_board *boardp = shost_priv(shost);
3483	struct asc_stats *s = &boardp->asc_stats;
3484
3485	seq_printf(m,
3486		   "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3487		   shost->host_no);
3488
3489	seq_printf(m,
3490		   " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3491		   s->queuecommand, s->reset, s->biosparam,
3492		   s->interrupt);
3493
3494	seq_printf(m,
3495		   " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3496		   s->callback, s->done, s->build_error,
3497		   s->adv_build_noreq, s->adv_build_nosg);
3498
3499	seq_printf(m,
3500		   " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3501		   s->exe_noerror, s->exe_busy, s->exe_error,
3502		   s->exe_unknown);
3503
3504	/*
3505	 * Display data transfer statistics.
3506	 */
3507	if (s->xfer_cnt > 0) {
3508		seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3509			   s->xfer_cnt, s->xfer_elem);
3510
3511		seq_printf(m, "xfer_bytes %u.%01u kb\n",
3512			   s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3513
3514		/* Scatter gather transfer statistics */
3515		seq_printf(m, " avg_num_elem %u.%01u, ",
3516			   s->xfer_elem / s->xfer_cnt,
3517			   ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3518
3519		seq_printf(m, "avg_elem_size %u.%01u kb, ",
3520			   (s->xfer_sect / 2) / s->xfer_elem,
3521			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3522
3523		seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3524			   (s->xfer_sect / 2) / s->xfer_cnt,
3525			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3526	}
3527}
3528#endif /* ADVANSYS_STATS */
3529
3530/*
3531 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3532 *
3533 * m: seq_file to print into
3534 * shost: Scsi_Host
3535 *
3536 * Return the number of bytes read from or written to a
3537 * /proc/scsi/advansys/[0...] file.
3538 */
3539static int
3540advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3541{
3542	struct asc_board *boardp = shost_priv(shost);
3543
3544	ASC_DBG(1, "begin\n");
3545
3546	/*
3547	 * User read of /proc/scsi/advansys/[0...] file.
3548	 */
3549
3550	/*
3551	 * Get board configuration information.
3552	 *
3553	 * advansys_info() returns the board string from its own static buffer.
3554	 */
3555	/* Copy board information. */
3556	seq_printf(m, "%s\n", (char *)advansys_info(shost));
3557	/*
3558	 * Display Wide Board BIOS Information.
3559	 */
3560	if (!ASC_NARROW_BOARD(boardp))
3561		asc_prt_adv_bios(m, shost);
3562
3563	/*
3564	 * Display driver information for each device attached to the board.
3565	 */
3566	asc_prt_board_devices(m, shost);
3567
3568	/*
3569	 * Display EEPROM configuration for the board.
3570	 */
3571	if (ASC_NARROW_BOARD(boardp))
3572		asc_prt_asc_board_eeprom(m, shost);
3573	else
3574		asc_prt_adv_board_eeprom(m, shost);
3575
3576	/*
3577	 * Display driver configuration and information for the board.
3578	 */
3579	asc_prt_driver_conf(m, shost);
3580
3581#ifdef ADVANSYS_STATS
3582	/*
3583	 * Display driver statistics for the board.
3584	 */
3585	asc_prt_board_stats(m, shost);
3586#endif /* ADVANSYS_STATS */
3587
3588	/*
3589	 * Display Asc Library dynamic configuration information
3590	 * for the board.
3591	 */
3592	if (ASC_NARROW_BOARD(boardp))
3593		asc_prt_asc_board_info(m, shost);
3594	else
3595		asc_prt_adv_board_info(m, shost);
3596	return 0;
3597}
3598#endif /* CONFIG_PROC_FS */
3599
3600static void asc_scsi_done(struct scsi_cmnd *scp)
3601{
3602	scsi_dma_unmap(scp);
3603	ASC_STATS(scp->device->host, done);
3604	scsi_done(scp);
3605}
3606
3607static void AscSetBank(PortAddr iop_base, uchar bank)
3608{
3609	uchar val;
3610
3611	val = AscGetChipControl(iop_base) &
3612	    (~
3613	     (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3614	      CC_CHIP_RESET));
3615	if (bank == 1) {
3616		val |= CC_BANK_ONE;
3617	} else if (bank == 2) {
3618		val |= CC_DIAG | CC_BANK_ONE;
3619	} else {
3620		val &= ~CC_BANK_ONE;
3621	}
3622	AscSetChipControl(iop_base, val);
3623}
3624
3625static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3626{
3627	AscSetBank(iop_base, 1);
3628	AscWriteChipIH(iop_base, ins_code);
3629	AscSetBank(iop_base, 0);
3630}
3631
3632static int AscStartChip(PortAddr iop_base)
3633{
3634	AscSetChipControl(iop_base, 0);
3635	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3636		return (0);
3637	}
3638	return (1);
3639}
3640
3641static bool AscStopChip(PortAddr iop_base)
3642{
3643	uchar cc_val;
3644
3645	cc_val =
3646	    AscGetChipControl(iop_base) &
3647	    (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3648	AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3649	AscSetChipIH(iop_base, INS_HALT);
3650	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3651	if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3652		return false;
3653	}
3654	return true;
3655}
3656
3657static bool AscIsChipHalted(PortAddr iop_base)
3658{
3659	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3660		if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3661			return true;
3662		}
3663	}
3664	return false;
3665}
3666
3667static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3668{
3669	PortAddr iop_base;
3670	int i = 10;
3671
3672	iop_base = asc_dvc->iop_base;
3673	while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3674	       && (i-- > 0)) {
3675		mdelay(100);
3676	}
3677	AscStopChip(iop_base);
3678	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3679	udelay(60);
3680	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3681	AscSetChipIH(iop_base, INS_HALT);
3682	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3683	AscSetChipControl(iop_base, CC_HALT);
3684	mdelay(200);
3685	AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3686	AscSetChipStatus(iop_base, 0);
3687	return (AscIsChipHalted(iop_base));
3688}
3689
3690static int AscFindSignature(PortAddr iop_base)
3691{
3692	ushort sig_word;
3693
3694	ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3695		 iop_base, AscGetChipSignatureByte(iop_base));
3696	if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3697		ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3698			 iop_base, AscGetChipSignatureWord(iop_base));
3699		sig_word = AscGetChipSignatureWord(iop_base);
3700		if ((sig_word == (ushort)ASC_1000_ID0W) ||
3701		    (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3702			return (1);
3703		}
3704	}
3705	return (0);
3706}
3707
3708static void AscEnableInterrupt(PortAddr iop_base)
3709{
3710	ushort cfg;
3711
3712	cfg = AscGetChipCfgLsw(iop_base);
3713	AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3714}
3715
3716static void AscDisableInterrupt(PortAddr iop_base)
3717{
3718	ushort cfg;
3719
3720	cfg = AscGetChipCfgLsw(iop_base);
3721	AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3722}
3723
3724static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3725{
3726	unsigned char byte_data;
3727	unsigned short word_data;
3728
3729	if (isodd_word(addr)) {
3730		AscSetChipLramAddr(iop_base, addr - 1);
3731		word_data = AscGetChipLramData(iop_base);
3732		byte_data = (word_data >> 8) & 0xFF;
3733	} else {
3734		AscSetChipLramAddr(iop_base, addr);
3735		word_data = AscGetChipLramData(iop_base);
3736		byte_data = word_data & 0xFF;
3737	}
3738	return byte_data;
3739}
3740
3741static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3742{
3743	ushort word_data;
3744
3745	AscSetChipLramAddr(iop_base, addr);
3746	word_data = AscGetChipLramData(iop_base);
3747	return (word_data);
3748}
3749
3750static void
3751AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3752{
3753	int i;
3754
3755	AscSetChipLramAddr(iop_base, s_addr);
3756	for (i = 0; i < words; i++) {
3757		AscSetChipLramData(iop_base, set_wval);
3758	}
3759}
3760
3761static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
3762{
3763	AscSetChipLramAddr(iop_base, addr);
3764	AscSetChipLramData(iop_base, word_val);
3765}
3766
3767static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
3768{
3769	ushort word_data;
3770
3771	if (isodd_word(addr)) {
3772		addr--;
3773		word_data = AscReadLramWord(iop_base, addr);
3774		word_data &= 0x00FF;
3775		word_data |= (((ushort)byte_val << 8) & 0xFF00);
3776	} else {
3777		word_data = AscReadLramWord(iop_base, addr);
3778		word_data &= 0xFF00;
3779		word_data |= ((ushort)byte_val & 0x00FF);
3780	}
3781	AscWriteLramWord(iop_base, addr, word_data);
3782}
3783
3784/*
3785 * Copy 2 bytes to LRAM.
3786 *
3787 * The source data is assumed to be in little-endian order in memory
3788 * and is maintained in little-endian order when written to LRAM.
3789 */
3790static void
3791AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
3792			const uchar *s_buffer, int words)
3793{
3794	int i;
3795
3796	AscSetChipLramAddr(iop_base, s_addr);
3797	for (i = 0; i < 2 * words; i += 2) {
3798		/*
3799		 * On a little-endian system the second argument below
3800		 * produces a little-endian ushort which is written to
3801		 * LRAM in little-endian order. On a big-endian system
3802		 * the second argument produces a big-endian ushort which
3803		 * is "transparently" byte-swapped by outpw() and written
3804		 * in little-endian order to LRAM.
3805		 */
3806		outpw(iop_base + IOP_RAM_DATA,
3807		      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
3808	}
3809}
3810
3811/*
3812 * Copy 4 bytes to LRAM.
3813 *
3814 * The source data is assumed to be in little-endian order in memory
3815 * and is maintained in little-endian order when written to LRAM.
3816 */
3817static void
3818AscMemDWordCopyPtrToLram(PortAddr iop_base,
3819			 ushort s_addr, uchar *s_buffer, int dwords)
3820{
3821	int i;
3822
3823	AscSetChipLramAddr(iop_base, s_addr);
3824	for (i = 0; i < 4 * dwords; i += 4) {
3825		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);	/* LSW */
3826		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);	/* MSW */
3827	}
3828}
3829
3830/*
3831 * Copy 2 bytes from LRAM.
3832 *
3833 * The source data is assumed to be in little-endian order in LRAM
3834 * and is maintained in little-endian order when written to memory.
3835 */
3836static void
3837AscMemWordCopyPtrFromLram(PortAddr iop_base,
3838			  ushort s_addr, uchar *d_buffer, int words)
3839{
3840	int i;
3841	ushort word;
3842
3843	AscSetChipLramAddr(iop_base, s_addr);
3844	for (i = 0; i < 2 * words; i += 2) {
3845		word = inpw(iop_base + IOP_RAM_DATA);
3846		d_buffer[i] = word & 0xff;
3847		d_buffer[i + 1] = (word >> 8) & 0xff;
3848	}
3849}
3850
3851static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
3852{
3853	u32 sum = 0;
3854	int i;
3855
3856	for (i = 0; i < words; i++, s_addr += 2) {
3857		sum += AscReadLramWord(iop_base, s_addr);
3858	}
3859	return (sum);
3860}
3861
3862static void AscInitLram(ASC_DVC_VAR *asc_dvc)
3863{
3864	uchar i;
3865	ushort s_addr;
3866	PortAddr iop_base;
3867
3868	iop_base = asc_dvc->iop_base;
3869	AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
3870			  (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
3871				    64) >> 1));
3872	i = ASC_MIN_ACTIVE_QNO;
3873	s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
3874	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3875			 (uchar)(i + 1));
3876	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3877			 (uchar)(asc_dvc->max_total_qng));
3878	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3879			 (uchar)i);
3880	i++;
3881	s_addr += ASC_QBLK_SIZE;
3882	for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
3883		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3884				 (uchar)(i + 1));
3885		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3886				 (uchar)(i - 1));
3887		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3888				 (uchar)i);
3889	}
3890	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3891			 (uchar)ASC_QLINK_END);
3892	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3893			 (uchar)(asc_dvc->max_total_qng - 1));
3894	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3895			 (uchar)asc_dvc->max_total_qng);
3896	i++;
3897	s_addr += ASC_QBLK_SIZE;
3898	for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
3899	     i++, s_addr += ASC_QBLK_SIZE) {
3900		AscWriteLramByte(iop_base,
3901				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
3902		AscWriteLramByte(iop_base,
3903				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
3904		AscWriteLramByte(iop_base,
3905				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
3906	}
3907}
3908
3909static u32
3910AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
3911		 const uchar *mcode_buf, ushort mcode_size)
3912{
3913	u32 chksum;
3914	ushort mcode_word_size;
3915	ushort mcode_chksum;
3916
3917	/* Write the microcode buffer starting at LRAM address 0. */
3918	mcode_word_size = (ushort)(mcode_size >> 1);
3919	AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
3920	AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
3921
3922	chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
3923	ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
3924	mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
3925						 (ushort)ASC_CODE_SEC_BEG,
3926						 (ushort)((mcode_size -
3927							   s_addr - (ushort)
3928							   ASC_CODE_SEC_BEG) /
3929							  2));
3930	ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
3931	AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
3932	AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
3933	return chksum;
3934}
3935
3936static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
3937{
3938	PortAddr iop_base;
3939	int i;
3940	ushort lram_addr;
3941
3942	iop_base = asc_dvc->iop_base;
3943	AscPutRiscVarFreeQHead(iop_base, 1);
3944	AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3945	AscPutVarFreeQHead(iop_base, 1);
3946	AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3947	AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
3948			 (uchar)((int)asc_dvc->max_total_qng + 1));
3949	AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
3950			 (uchar)((int)asc_dvc->max_total_qng + 2));
3951	AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
3952			 asc_dvc->max_total_qng);
3953	AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
3954	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
3955	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
3956	AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
3957	AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
3958	AscPutQDoneInProgress(iop_base, 0);
3959	lram_addr = ASC_QADR_BEG;
3960	for (i = 0; i < 32; i++, lram_addr += 2) {
3961		AscWriteLramWord(iop_base, lram_addr, 0);
3962	}
3963}
3964
3965static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
3966{
3967	int i;
3968	int warn_code;
3969	PortAddr iop_base;
3970	__le32 phy_addr;
3971	__le32 phy_size;
3972	struct asc_board *board = asc_dvc_to_board(asc_dvc);
3973
3974	iop_base = asc_dvc->iop_base;
3975	warn_code = 0;
3976	for (i = 0; i <= ASC_MAX_TID; i++) {
3977		AscPutMCodeInitSDTRAtID(iop_base, i,
3978					asc_dvc->cfg->sdtr_period_offset[i]);
3979	}
3980
3981	AscInitQLinkVar(asc_dvc);
3982	AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
3983			 asc_dvc->cfg->disc_enable);
3984	AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
3985			 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
3986
3987	/* Ensure overrun buffer is aligned on an 8 byte boundary. */
3988	BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
3989	asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
3990					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
3991	if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
3992		warn_code = -ENOMEM;
3993		goto err_dma_map;
3994	}
3995	phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
3996	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
3997				 (uchar *)&phy_addr, 1);
3998	phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
3999	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4000				 (uchar *)&phy_size, 1);
4001
4002	asc_dvc->cfg->mcode_date =
4003	    AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4004	asc_dvc->cfg->mcode_version =
4005	    AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4006
4007	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4008	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4009		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4010		warn_code = -EINVAL;
4011		goto err_mcode_start;
4012	}
4013	if (AscStartChip(iop_base) != 1) {
4014		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4015		warn_code = -EIO;
4016		goto err_mcode_start;
4017	}
4018
4019	return warn_code;
4020
4021err_mcode_start:
4022	dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4023			 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4024err_dma_map:
4025	asc_dvc->overrun_dma = 0;
4026	return warn_code;
4027}
4028
4029static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4030{
4031	const struct firmware *fw;
4032	const char fwname[] = "advansys/mcode.bin";
4033	int err;
4034	unsigned long chksum;
4035	int warn_code;
4036	PortAddr iop_base;
4037
4038	iop_base = asc_dvc->iop_base;
4039	warn_code = 0;
4040	if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4041	    !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4042		AscResetChipAndScsiBus(asc_dvc);
4043		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4044	}
4045	asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4046	if (asc_dvc->err_code != 0)
4047		return ASC_ERROR;
4048	if (!AscFindSignature(asc_dvc->iop_base)) {
4049		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4050		return warn_code;
4051	}
4052	AscDisableInterrupt(iop_base);
4053	AscInitLram(asc_dvc);
4054
4055	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4056	if (err) {
4057		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4058		       fwname, err);
4059		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4060		return err;
4061	}
4062	if (fw->size < 4) {
4063		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4064		       fw->size, fwname);
4065		release_firmware(fw);
4066		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4067		return -EINVAL;
4068	}
4069	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4070		 (fw->data[1] << 8) | fw->data[0];
4071	ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4072	if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4073			     fw->size - 4) != chksum) {
4074		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4075		release_firmware(fw);
4076		return warn_code;
4077	}
4078	release_firmware(fw);
4079	warn_code |= AscInitMicroCodeVar(asc_dvc);
4080	if (!asc_dvc->overrun_dma)
4081		return warn_code;
4082	asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4083	AscEnableInterrupt(iop_base);
4084	return warn_code;
4085}
4086
4087/*
4088 * Load the Microcode
4089 *
4090 * Write the microcode image to RISC memory starting at address 0.
4091 *
4092 * The microcode is stored compressed in the following format:
4093 *
4094 *  254 word (508 byte) table indexed by byte code followed
4095 *  by the following byte codes:
4096 *
4097 *    1-Byte Code:
4098 *      00: Emit word 0 in table.
4099 *      01: Emit word 1 in table.
4100 *      .
4101 *      FD: Emit word 253 in table.
4102 *
4103 *    Multi-Byte Code:
4104 *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4105 *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4106 *
4107 * Returns 0 or an error if the checksum doesn't match
4108 */
4109static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4110			    int size, int memsize, int chksum)
4111{
4112	int i, j, end, len = 0;
4113	u32 sum;
4114
4115	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4116
4117	for (i = 253 * 2; i < size; i++) {
4118		if (buf[i] == 0xff) {
4119			unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4120			for (j = 0; j < buf[i + 1]; j++) {
4121				AdvWriteWordAutoIncLram(iop_base, word);
4122				len += 2;
4123			}
4124			i += 3;
4125		} else if (buf[i] == 0xfe) {
4126			unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4127			AdvWriteWordAutoIncLram(iop_base, word);
4128			i += 2;
4129			len += 2;
4130		} else {
4131			unsigned int off = buf[i] * 2;
4132			unsigned short word = (buf[off + 1] << 8) | buf[off];
4133			AdvWriteWordAutoIncLram(iop_base, word);
4134			len += 2;
4135		}
4136	}
4137
4138	end = len;
4139
4140	while (len < memsize) {
4141		AdvWriteWordAutoIncLram(iop_base, 0);
4142		len += 2;
4143	}
4144
4145	/* Verify the microcode checksum. */
4146	sum = 0;
4147	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4148
4149	for (len = 0; len < end; len += 2) {
4150		sum += AdvReadWordAutoIncLram(iop_base);
4151	}
4152
4153	if (sum != chksum)
4154		return ASC_IERR_MCODE_CHKSUM;
4155
4156	return 0;
4157}
4158
4159static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc)
4160{
4161	off_t carr_offset = 0, next_offset;
4162	dma_addr_t carr_paddr;
4163	int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i;
4164
4165	for (i = 0; i < carr_num; i++) {
4166		carr_offset = i * sizeof(ADV_CARR_T);
4167		/* Get physical address of the carrier 'carrp'. */
4168		carr_paddr = adv_dvc->carrier_addr + carr_offset;
4169
4170		adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr);
4171		adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset);
4172		adv_dvc->carrier[i].areq_vpa = 0;
4173		next_offset = carr_offset + sizeof(ADV_CARR_T);
4174		if (i == carr_num)
4175			next_offset = ~0;
4176		adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset);
4177	}
4178	/*
4179	 * We cannot have a carrier with 'carr_va' of '0', as
4180	 * a reference to this carrier would be interpreted as
4181	 * list termination.
4182	 * So start at carrier 1 with the freelist.
4183	 */
4184	adv_dvc->carr_freelist = &adv_dvc->carrier[1];
4185}
4186
4187static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset)
4188{
4189	int index;
4190
4191	BUG_ON(offset > ADV_CARRIER_BUFSIZE);
4192
4193	index = offset / sizeof(ADV_CARR_T);
4194	return &adv_dvc->carrier[index];
4195}
4196
4197static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc)
4198{
4199	ADV_CARR_T *carrp = adv_dvc->carr_freelist;
4200	u32 next_vpa = le32_to_cpu(carrp->next_vpa);
4201
4202	if (next_vpa == 0 || next_vpa == ~0) {
4203		ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa);
4204		return NULL;
4205	}
4206
4207	adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa);
4208	/*
4209	 * insert stopper carrier to terminate list
4210	 */
4211	carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER);
4212
4213	return carrp;
4214}
4215
4216/*
4217 * 'offset' is the index in the request pointer array
4218 */
4219static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset)
4220{
4221	struct asc_board *boardp = adv_dvc->drv_ptr;
4222
4223	BUG_ON(offset > adv_dvc->max_host_qng);
4224	return &boardp->adv_reqp[offset];
4225}
4226
4227/*
4228 * Send an idle command to the chip and wait for completion.
4229 *
4230 * Command completion is polled for once per microsecond.
4231 *
4232 * The function can be called from anywhere including an interrupt handler.
4233 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4234 * functions to prevent reentrancy.
4235 *
4236 * Return Values:
4237 *   ADV_TRUE - command completed successfully
4238 *   ADV_FALSE - command failed
4239 *   ADV_ERROR - command timed out
4240 */
4241static int
4242AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4243	       ushort idle_cmd, u32 idle_cmd_parameter)
4244{
4245	int result, i, j;
4246	AdvPortAddr iop_base;
4247
4248	iop_base = asc_dvc->iop_base;
4249
4250	/*
4251	 * Clear the idle command status which is set by the microcode
4252	 * to a non-zero value to indicate when the command is completed.
4253	 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4254	 */
4255	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4256
4257	/*
4258	 * Write the idle command value after the idle command parameter
4259	 * has been written to avoid a race condition. If the order is not
4260	 * followed, the microcode may process the idle command before the
4261	 * parameters have been written to LRAM.
4262	 */
4263	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4264				cpu_to_le32(idle_cmd_parameter));
4265	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4266
4267	/*
4268	 * Tickle the RISC to tell it to process the idle command.
4269	 */
4270	AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4271	if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4272		/*
4273		 * Clear the tickle value. In the ASC-3550 the RISC flag
4274		 * command 'clr_tickle_b' does not work unless the host
4275		 * value is cleared.
4276		 */
4277		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4278	}
4279
4280	/* Wait for up to 100 millisecond for the idle command to timeout. */
4281	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4282		/* Poll once each microsecond for command completion. */
4283		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4284			AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4285					result);
4286			if (result != 0)
4287				return result;
4288			udelay(1);
4289		}
4290	}
4291
4292	BUG();		/* The idle command should never timeout. */
4293	return ADV_ERROR;
4294}
4295
4296/*
4297 * Reset SCSI Bus and purge all outstanding requests.
4298 *
4299 * Return Value:
4300 *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
4301 *      ADV_FALSE(0) -  Microcode command failed.
4302 *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4303 *                      may be hung which requires driver recovery.
4304 */
4305static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4306{
4307	int status;
4308
4309	/*
4310	 * Send the SCSI Bus Reset idle start idle command which asserts
4311	 * the SCSI Bus Reset signal.
4312	 */
4313	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4314	if (status != ADV_TRUE) {
4315		return status;
4316	}
4317
4318	/*
4319	 * Delay for the specified SCSI Bus Reset hold time.
4320	 *
4321	 * The hold time delay is done on the host because the RISC has no
4322	 * microsecond accurate timer.
4323	 */
4324	udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4325
4326	/*
4327	 * Send the SCSI Bus Reset end idle command which de-asserts
4328	 * the SCSI Bus Reset signal and purges any pending requests.
4329	 */
4330	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4331	if (status != ADV_TRUE) {
4332		return status;
4333	}
4334
4335	mdelay(asc_dvc->scsi_reset_wait * 1000);	/* XXX: msleep? */
4336
4337	return status;
4338}
4339
4340/*
4341 * Initialize the ASC-3550.
4342 *
4343 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4344 *
4345 * For a non-fatal error return a warning code. If there are no warnings
4346 * then 0 is returned.
4347 *
4348 * Needed after initialization for error recovery.
4349 */
4350static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4351{
4352	const struct firmware *fw;
4353	const char fwname[] = "advansys/3550.bin";
4354	AdvPortAddr iop_base;
4355	ushort warn_code;
4356	int begin_addr;
4357	int end_addr;
4358	ushort code_sum;
4359	int word;
4360	int i;
4361	int err;
4362	unsigned long chksum;
4363	ushort scsi_cfg1;
4364	uchar tid;
4365	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
4366	ushort wdtr_able = 0, sdtr_able, tagqng_able;
4367	uchar max_cmd[ADV_MAX_TID + 1];
4368
4369	/* If there is already an error, don't continue. */
4370	if (asc_dvc->err_code != 0)
4371		return ADV_ERROR;
4372
4373	/*
4374	 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4375	 */
4376	if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4377		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4378		return ADV_ERROR;
4379	}
4380
4381	warn_code = 0;
4382	iop_base = asc_dvc->iop_base;
4383
4384	/*
4385	 * Save the RISC memory BIOS region before writing the microcode.
4386	 * The BIOS may already be loaded and using its RISC LRAM region
4387	 * so its region must be saved and restored.
4388	 *
4389	 * Note: This code makes the assumption, which is currently true,
4390	 * that a chip reset does not clear RISC LRAM.
4391	 */
4392	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4393		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4394				bios_mem[i]);
4395	}
4396
4397	/*
4398	 * Save current per TID negotiated values.
4399	 */
4400	if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4401		ushort bios_version, major, minor;
4402
4403		bios_version =
4404		    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4405		major = (bios_version >> 12) & 0xF;
4406		minor = (bios_version >> 8) & 0xF;
4407		if (major < 3 || (major == 3 && minor == 1)) {
4408			/* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4409			AdvReadWordLram(iop_base, 0x120, wdtr_able);
4410		} else {
4411			AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4412		}
4413	}
4414	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4415	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4416	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4417		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4418				max_cmd[tid]);
4419	}
4420
4421	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4422	if (err) {
4423		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4424		       fwname, err);
4425		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4426		return err;
4427	}
4428	if (fw->size < 4) {
4429		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4430		       fw->size, fwname);
4431		release_firmware(fw);
4432		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4433		return -EINVAL;
4434	}
4435	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4436		 (fw->data[1] << 8) | fw->data[0];
4437	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4438					     fw->size - 4, ADV_3550_MEMSIZE,
4439					     chksum);
4440	release_firmware(fw);
4441	if (asc_dvc->err_code)
4442		return ADV_ERROR;
4443
4444	/*
4445	 * Restore the RISC memory BIOS region.
4446	 */
4447	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4448		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4449				 bios_mem[i]);
4450	}
4451
4452	/*
4453	 * Calculate and write the microcode code checksum to the microcode
4454	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4455	 */
4456	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4457	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4458	code_sum = 0;
4459	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4460	for (word = begin_addr; word < end_addr; word += 2) {
4461		code_sum += AdvReadWordAutoIncLram(iop_base);
4462	}
4463	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4464
4465	/*
4466	 * Read and save microcode version and date.
4467	 */
4468	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4469			asc_dvc->cfg->mcode_date);
4470	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4471			asc_dvc->cfg->mcode_version);
4472
4473	/*
4474	 * Set the chip type to indicate the ASC3550.
4475	 */
4476	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4477
4478	/*
4479	 * If the PCI Configuration Command Register "Parity Error Response
4480	 * Control" Bit was clear (0), then set the microcode variable
4481	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4482	 * to ignore DMA parity errors.
4483	 */
4484	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4485		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4486		word |= CONTROL_FLAG_IGNORE_PERR;
4487		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4488	}
4489
4490	/*
4491	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4492	 * threshold of 128 bytes. This register is only accessible to the host.
4493	 */
4494	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4495			     START_CTL_EMFU | READ_CMD_MRM);
4496
4497	/*
4498	 * Microcode operating variables for WDTR, SDTR, and command tag
4499	 * queuing will be set in slave_configure() based on what a
4500	 * device reports it is capable of in Inquiry byte 7.
4501	 *
4502	 * If SCSI Bus Resets have been disabled, then directly set
4503	 * SDTR and WDTR from the EEPROM configuration. This will allow
4504	 * the BIOS and warm boot to work without a SCSI bus hang on
4505	 * the Inquiry caused by host and target mismatched DTR values.
4506	 * Without the SCSI Bus Reset, before an Inquiry a device can't
4507	 * be assumed to be in Asynchronous, Narrow mode.
4508	 */
4509	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4510		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4511				 asc_dvc->wdtr_able);
4512		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4513				 asc_dvc->sdtr_able);
4514	}
4515
4516	/*
4517	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4518	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4519	 * bitmask. These values determine the maximum SDTR speed negotiated
4520	 * with a device.
4521	 *
4522	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4523	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4524	 * without determining here whether the device supports SDTR.
4525	 *
4526	 * 4-bit speed  SDTR speed name
4527	 * ===========  ===============
4528	 * 0000b (0x0)  SDTR disabled
4529	 * 0001b (0x1)  5 Mhz
4530	 * 0010b (0x2)  10 Mhz
4531	 * 0011b (0x3)  20 Mhz (Ultra)
4532	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
4533	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
4534	 * 0110b (0x6)  Undefined
4535	 * .
4536	 * 1111b (0xF)  Undefined
4537	 */
4538	word = 0;
4539	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4540		if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4541			/* Set Ultra speed for TID 'tid'. */
4542			word |= (0x3 << (4 * (tid % 4)));
4543		} else {
4544			/* Set Fast speed for TID 'tid'. */
4545			word |= (0x2 << (4 * (tid % 4)));
4546		}
4547		if (tid == 3) {	/* Check if done with sdtr_speed1. */
4548			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4549			word = 0;
4550		} else if (tid == 7) {	/* Check if done with sdtr_speed2. */
4551			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4552			word = 0;
4553		} else if (tid == 11) {	/* Check if done with sdtr_speed3. */
4554			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4555			word = 0;
4556		} else if (tid == 15) {	/* Check if done with sdtr_speed4. */
4557			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4558			/* End of loop. */
4559		}
4560	}
4561
4562	/*
4563	 * Set microcode operating variable for the disconnect per TID bitmask.
4564	 */
4565	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4566			 asc_dvc->cfg->disc_enable);
4567
4568	/*
4569	 * Set SCSI_CFG0 Microcode Default Value.
4570	 *
4571	 * The microcode will set the SCSI_CFG0 register using this value
4572	 * after it is started below.
4573	 */
4574	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4575			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4576			 asc_dvc->chip_scsi_id);
4577
4578	/*
4579	 * Determine SCSI_CFG1 Microcode Default Value.
4580	 *
4581	 * The microcode will set the SCSI_CFG1 register using this value
4582	 * after it is started below.
4583	 */
4584
4585	/* Read current SCSI_CFG1 Register value. */
4586	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4587
4588	/*
4589	 * If all three connectors are in use, return an error.
4590	 */
4591	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4592	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4593		asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4594		return ADV_ERROR;
4595	}
4596
4597	/*
4598	 * If the internal narrow cable is reversed all of the SCSI_CTRL
4599	 * register signals will be set. Check for and return an error if
4600	 * this condition is found.
4601	 */
4602	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4603		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4604		return ADV_ERROR;
4605	}
4606
4607	/*
4608	 * If this is a differential board and a single-ended device
4609	 * is attached to one of the connectors, return an error.
4610	 */
4611	if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4612		asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4613		return ADV_ERROR;
4614	}
4615
4616	/*
4617	 * If automatic termination control is enabled, then set the
4618	 * termination value based on a table listed in a_condor.h.
4619	 *
4620	 * If manual termination was specified with an EEPROM setting
4621	 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4622	 * is ready to be 'ored' into SCSI_CFG1.
4623	 */
4624	if (asc_dvc->cfg->termination == 0) {
4625		/*
4626		 * The software always controls termination by setting TERM_CTL_SEL.
4627		 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4628		 */
4629		asc_dvc->cfg->termination |= TERM_CTL_SEL;
4630
4631		switch (scsi_cfg1 & CABLE_DETECT) {
4632			/* TERM_CTL_H: on, TERM_CTL_L: on */
4633		case 0x3:
4634		case 0x7:
4635		case 0xB:
4636		case 0xD:
4637		case 0xE:
4638		case 0xF:
4639			asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4640			break;
4641
4642			/* TERM_CTL_H: on, TERM_CTL_L: off */
4643		case 0x1:
4644		case 0x5:
4645		case 0x9:
4646		case 0xA:
4647		case 0xC:
4648			asc_dvc->cfg->termination |= TERM_CTL_H;
4649			break;
4650
4651			/* TERM_CTL_H: off, TERM_CTL_L: off */
4652		case 0x2:
4653		case 0x6:
4654			break;
4655		}
4656	}
4657
4658	/*
4659	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4660	 */
4661	scsi_cfg1 &= ~TERM_CTL;
4662
4663	/*
4664	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4665	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4666	 * referenced, because the hardware internally inverts
4667	 * the Termination High and Low bits if TERM_POL is set.
4668	 */
4669	scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4670
4671	/*
4672	 * Set SCSI_CFG1 Microcode Default Value
4673	 *
4674	 * Set filter value and possibly modified termination control
4675	 * bits in the Microcode SCSI_CFG1 Register Value.
4676	 *
4677	 * The microcode will set the SCSI_CFG1 register using this value
4678	 * after it is started below.
4679	 */
4680	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4681			 FLTR_DISABLE | scsi_cfg1);
4682
4683	/*
4684	 * Set MEM_CFG Microcode Default Value
4685	 *
4686	 * The microcode will set the MEM_CFG register using this value
4687	 * after it is started below.
4688	 *
4689	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4690	 * are defined.
4691	 *
4692	 * ASC-3550 has 8KB internal memory.
4693	 */
4694	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4695			 BIOS_EN | RAM_SZ_8KB);
4696
4697	/*
4698	 * Set SEL_MASK Microcode Default Value
4699	 *
4700	 * The microcode will set the SEL_MASK register using this value
4701	 * after it is started below.
4702	 */
4703	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4704			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4705
4706	AdvBuildCarrierFreelist(asc_dvc);
4707
4708	/*
4709	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4710	 */
4711
4712	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
4713	if (!asc_dvc->icq_sp) {
4714		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4715		return ADV_ERROR;
4716	}
4717
4718	/*
4719	 * Set RISC ICQ physical address start value.
4720	 */
4721	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4722
4723	/*
4724	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4725	 */
4726	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
4727	if (!asc_dvc->irq_sp) {
4728		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4729		return ADV_ERROR;
4730	}
4731
4732	/*
4733	 * Set RISC IRQ physical address start value.
4734	 */
4735	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4736	asc_dvc->carr_pending_cnt = 0;
4737
4738	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4739			     (ADV_INTR_ENABLE_HOST_INTR |
4740			      ADV_INTR_ENABLE_GLOBAL_INTR));
4741
4742	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4743	AdvWriteWordRegister(iop_base, IOPW_PC, word);
4744
4745	/* finally, finally, gentlemen, start your engine */
4746	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4747
4748	/*
4749	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4750	 * Resets should be performed. The RISC has to be running
4751	 * to issue a SCSI Bus Reset.
4752	 */
4753	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4754		/*
4755		 * If the BIOS Signature is present in memory, restore the
4756		 * BIOS Handshake Configuration Table and do not perform
4757		 * a SCSI Bus Reset.
4758		 */
4759		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4760		    0x55AA) {
4761			/*
4762			 * Restore per TID negotiated values.
4763			 */
4764			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4765			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4766			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4767					 tagqng_able);
4768			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4769				AdvWriteByteLram(iop_base,
4770						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
4771						 max_cmd[tid]);
4772			}
4773		} else {
4774			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
4775				warn_code = ASC_WARN_BUSRESET_ERROR;
4776			}
4777		}
4778	}
4779
4780	return warn_code;
4781}
4782
4783/*
4784 * Initialize the ASC-38C0800.
4785 *
4786 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4787 *
4788 * For a non-fatal error return a warning code. If there are no warnings
4789 * then 0 is returned.
4790 *
4791 * Needed after initialization for error recovery.
4792 */
4793static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
4794{
4795	const struct firmware *fw;
4796	const char fwname[] = "advansys/38C0800.bin";
4797	AdvPortAddr iop_base;
4798	ushort warn_code;
4799	int begin_addr;
4800	int end_addr;
4801	ushort code_sum;
4802	int word;
4803	int i;
4804	int err;
4805	unsigned long chksum;
4806	ushort scsi_cfg1;
4807	uchar byte;
4808	uchar tid;
4809	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
4810	ushort wdtr_able, sdtr_able, tagqng_able;
4811	uchar max_cmd[ADV_MAX_TID + 1];
4812
4813	/* If there is already an error, don't continue. */
4814	if (asc_dvc->err_code != 0)
4815		return ADV_ERROR;
4816
4817	/*
4818	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
4819	 */
4820	if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
4821		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4822		return ADV_ERROR;
4823	}
4824
4825	warn_code = 0;
4826	iop_base = asc_dvc->iop_base;
4827
4828	/*
4829	 * Save the RISC memory BIOS region before writing the microcode.
4830	 * The BIOS may already be loaded and using its RISC LRAM region
4831	 * so its region must be saved and restored.
4832	 *
4833	 * Note: This code makes the assumption, which is currently true,
4834	 * that a chip reset does not clear RISC LRAM.
4835	 */
4836	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4837		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4838				bios_mem[i]);
4839	}
4840
4841	/*
4842	 * Save current per TID negotiated values.
4843	 */
4844	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4845	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4846	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4847	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4848		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4849				max_cmd[tid]);
4850	}
4851
4852	/*
4853	 * RAM BIST (RAM Built-In Self Test)
4854	 *
4855	 * Address : I/O base + offset 0x38h register (byte).
4856	 * Function: Bit 7-6(RW) : RAM mode
4857	 *                          Normal Mode   : 0x00
4858	 *                          Pre-test Mode : 0x40
4859	 *                          RAM Test Mode : 0x80
4860	 *           Bit 5       : unused
4861	 *           Bit 4(RO)   : Done bit
4862	 *           Bit 3-0(RO) : Status
4863	 *                          Host Error    : 0x08
4864	 *                          Int_RAM Error : 0x04
4865	 *                          RISC Error    : 0x02
4866	 *                          SCSI Error    : 0x01
4867	 *                          No Error      : 0x00
4868	 *
4869	 * Note: RAM BIST code should be put right here, before loading the
4870	 * microcode and after saving the RISC memory BIOS region.
4871	 */
4872
4873	/*
4874	 * LRAM Pre-test
4875	 *
4876	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
4877	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
4878	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
4879	 * to NORMAL_MODE, return an error too.
4880	 */
4881	for (i = 0; i < 2; i++) {
4882		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
4883		mdelay(10);	/* Wait for 10ms before reading back. */
4884		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4885		if ((byte & RAM_TEST_DONE) == 0
4886		    || (byte & 0x0F) != PRE_TEST_VALUE) {
4887			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4888			return ADV_ERROR;
4889		}
4890
4891		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4892		mdelay(10);	/* Wait for 10ms before reading back. */
4893		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
4894		    != NORMAL_VALUE) {
4895			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4896			return ADV_ERROR;
4897		}
4898	}
4899
4900	/*
4901	 * LRAM Test - It takes about 1.5 ms to run through the test.
4902	 *
4903	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
4904	 * If Done bit not set or Status not 0, save register byte, set the
4905	 * err_code, and return an error.
4906	 */
4907	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
4908	mdelay(10);	/* Wait for 10ms before checking status. */
4909
4910	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4911	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
4912		/* Get here if Done bit not set or Status not 0. */
4913		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
4914		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
4915		return ADV_ERROR;
4916	}
4917
4918	/* We need to reset back to normal mode after LRAM test passes. */
4919	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4920
4921	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4922	if (err) {
4923		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4924		       fwname, err);
4925		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4926		return err;
4927	}
4928	if (fw->size < 4) {
4929		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4930		       fw->size, fwname);
4931		release_firmware(fw);
4932		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4933		return -EINVAL;
4934	}
4935	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4936		 (fw->data[1] << 8) | fw->data[0];
4937	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4938					     fw->size - 4, ADV_38C0800_MEMSIZE,
4939					     chksum);
4940	release_firmware(fw);
4941	if (asc_dvc->err_code)
4942		return ADV_ERROR;
4943
4944	/*
4945	 * Restore the RISC memory BIOS region.
4946	 */
4947	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4948		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4949				 bios_mem[i]);
4950	}
4951
4952	/*
4953	 * Calculate and write the microcode code checksum to the microcode
4954	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4955	 */
4956	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4957	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4958	code_sum = 0;
4959	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4960	for (word = begin_addr; word < end_addr; word += 2) {
4961		code_sum += AdvReadWordAutoIncLram(iop_base);
4962	}
4963	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4964
4965	/*
4966	 * Read microcode version and date.
4967	 */
4968	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4969			asc_dvc->cfg->mcode_date);
4970	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4971			asc_dvc->cfg->mcode_version);
4972
4973	/*
4974	 * Set the chip type to indicate the ASC38C0800.
4975	 */
4976	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
4977
4978	/*
4979	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
4980	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
4981	 * cable detection and then we are able to read C_DET[3:0].
4982	 *
4983	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
4984	 * Microcode Default Value' section below.
4985	 */
4986	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4987	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
4988			     scsi_cfg1 | DIS_TERM_DRV);
4989
4990	/*
4991	 * If the PCI Configuration Command Register "Parity Error Response
4992	 * Control" Bit was clear (0), then set the microcode variable
4993	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4994	 * to ignore DMA parity errors.
4995	 */
4996	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4997		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4998		word |= CONTROL_FLAG_IGNORE_PERR;
4999		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5000	}
5001
5002	/*
5003	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5004	 * bits for the default FIFO threshold.
5005	 *
5006	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5007	 *
5008	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5009	 */
5010	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5011			     BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5012			     READ_CMD_MRM);
5013
5014	/*
5015	 * Microcode operating variables for WDTR, SDTR, and command tag
5016	 * queuing will be set in slave_configure() based on what a
5017	 * device reports it is capable of in Inquiry byte 7.
5018	 *
5019	 * If SCSI Bus Resets have been disabled, then directly set
5020	 * SDTR and WDTR from the EEPROM configuration. This will allow
5021	 * the BIOS and warm boot to work without a SCSI bus hang on
5022	 * the Inquiry caused by host and target mismatched DTR values.
5023	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5024	 * be assumed to be in Asynchronous, Narrow mode.
5025	 */
5026	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5027		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5028				 asc_dvc->wdtr_able);
5029		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5030				 asc_dvc->sdtr_able);
5031	}
5032
5033	/*
5034	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5035	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5036	 * configuration values.
5037	 *
5038	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5039	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5040	 * without determining here whether the device supports SDTR.
5041	 */
5042	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5043			 asc_dvc->cfg->disc_enable);
5044	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5045	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5046	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5047	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5048
5049	/*
5050	 * Set SCSI_CFG0 Microcode Default Value.
5051	 *
5052	 * The microcode will set the SCSI_CFG0 register using this value
5053	 * after it is started below.
5054	 */
5055	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5056			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5057			 asc_dvc->chip_scsi_id);
5058
5059	/*
5060	 * Determine SCSI_CFG1 Microcode Default Value.
5061	 *
5062	 * The microcode will set the SCSI_CFG1 register using this value
5063	 * after it is started below.
5064	 */
5065
5066	/* Read current SCSI_CFG1 Register value. */
5067	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5068
5069	/*
5070	 * If the internal narrow cable is reversed all of the SCSI_CTRL
5071	 * register signals will be set. Check for and return an error if
5072	 * this condition is found.
5073	 */
5074	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5075		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5076		return ADV_ERROR;
5077	}
5078
5079	/*
5080	 * All kind of combinations of devices attached to one of four
5081	 * connectors are acceptable except HVD device attached. For example,
5082	 * LVD device can be attached to SE connector while SE device attached
5083	 * to LVD connector.  If LVD device attached to SE connector, it only
5084	 * runs up to Ultra speed.
5085	 *
5086	 * If an HVD device is attached to one of LVD connectors, return an
5087	 * error.  However, there is no way to detect HVD device attached to
5088	 * SE connectors.
5089	 */
5090	if (scsi_cfg1 & HVD) {
5091		asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5092		return ADV_ERROR;
5093	}
5094
5095	/*
5096	 * If either SE or LVD automatic termination control is enabled, then
5097	 * set the termination value based on a table listed in a_condor.h.
5098	 *
5099	 * If manual termination was specified with an EEPROM setting then
5100	 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5101	 * to be 'ored' into SCSI_CFG1.
5102	 */
5103	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5104		/* SE automatic termination control is enabled. */
5105		switch (scsi_cfg1 & C_DET_SE) {
5106			/* TERM_SE_HI: on, TERM_SE_LO: on */
5107		case 0x1:
5108		case 0x2:
5109		case 0x3:
5110			asc_dvc->cfg->termination |= TERM_SE;
5111			break;
5112
5113			/* TERM_SE_HI: on, TERM_SE_LO: off */
5114		case 0x0:
5115			asc_dvc->cfg->termination |= TERM_SE_HI;
5116			break;
5117		}
5118	}
5119
5120	if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5121		/* LVD automatic termination control is enabled. */
5122		switch (scsi_cfg1 & C_DET_LVD) {
5123			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
5124		case 0x4:
5125		case 0x8:
5126		case 0xC:
5127			asc_dvc->cfg->termination |= TERM_LVD;
5128			break;
5129
5130			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
5131		case 0x0:
5132			break;
5133		}
5134	}
5135
5136	/*
5137	 * Clear any set TERM_SE and TERM_LVD bits.
5138	 */
5139	scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5140
5141	/*
5142	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5143	 */
5144	scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5145
5146	/*
5147	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5148	 * bits and set possibly modified termination control bits in the
5149	 * Microcode SCSI_CFG1 Register Value.
5150	 */
5151	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5152
5153	/*
5154	 * Set SCSI_CFG1 Microcode Default Value
5155	 *
5156	 * Set possibly modified termination control and reset DIS_TERM_DRV
5157	 * bits in the Microcode SCSI_CFG1 Register Value.
5158	 *
5159	 * The microcode will set the SCSI_CFG1 register using this value
5160	 * after it is started below.
5161	 */
5162	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5163
5164	/*
5165	 * Set MEM_CFG Microcode Default Value
5166	 *
5167	 * The microcode will set the MEM_CFG register using this value
5168	 * after it is started below.
5169	 *
5170	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5171	 * are defined.
5172	 *
5173	 * ASC-38C0800 has 16KB internal memory.
5174	 */
5175	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5176			 BIOS_EN | RAM_SZ_16KB);
5177
5178	/*
5179	 * Set SEL_MASK Microcode Default Value
5180	 *
5181	 * The microcode will set the SEL_MASK register using this value
5182	 * after it is started below.
5183	 */
5184	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5185			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5186
5187	AdvBuildCarrierFreelist(asc_dvc);
5188
5189	/*
5190	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5191	 */
5192
5193	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5194	if (!asc_dvc->icq_sp) {
5195		ASC_DBG(0, "Failed to get ICQ carrier\n");
5196		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5197		return ADV_ERROR;
5198	}
5199
5200	/*
5201	 * Set RISC ICQ physical address start value.
5202	 * carr_pa is LE, must be native before write
5203	 */
5204	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5205
5206	/*
5207	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5208	 */
5209	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5210	if (!asc_dvc->irq_sp) {
5211		ASC_DBG(0, "Failed to get IRQ carrier\n");
5212		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5213		return ADV_ERROR;
5214	}
5215
5216	/*
5217	 * Set RISC IRQ physical address start value.
5218	 *
5219	 * carr_pa is LE, must be native before write *
5220	 */
5221	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5222	asc_dvc->carr_pending_cnt = 0;
5223
5224	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5225			     (ADV_INTR_ENABLE_HOST_INTR |
5226			      ADV_INTR_ENABLE_GLOBAL_INTR));
5227
5228	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5229	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5230
5231	/* finally, finally, gentlemen, start your engine */
5232	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5233
5234	/*
5235	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5236	 * Resets should be performed. The RISC has to be running
5237	 * to issue a SCSI Bus Reset.
5238	 */
5239	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5240		/*
5241		 * If the BIOS Signature is present in memory, restore the
5242		 * BIOS Handshake Configuration Table and do not perform
5243		 * a SCSI Bus Reset.
5244		 */
5245		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5246		    0x55AA) {
5247			/*
5248			 * Restore per TID negotiated values.
5249			 */
5250			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5251			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5252			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5253					 tagqng_able);
5254			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5255				AdvWriteByteLram(iop_base,
5256						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5257						 max_cmd[tid]);
5258			}
5259		} else {
5260			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5261				warn_code = ASC_WARN_BUSRESET_ERROR;
5262			}
5263		}
5264	}
5265
5266	return warn_code;
5267}
5268
5269/*
5270 * Initialize the ASC-38C1600.
5271 *
5272 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5273 *
5274 * For a non-fatal error return a warning code. If there are no warnings
5275 * then 0 is returned.
5276 *
5277 * Needed after initialization for error recovery.
5278 */
5279static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5280{
5281	const struct firmware *fw;
5282	const char fwname[] = "advansys/38C1600.bin";
5283	AdvPortAddr iop_base;
5284	ushort warn_code;
5285	int begin_addr;
5286	int end_addr;
5287	ushort code_sum;
5288	long word;
5289	int i;
5290	int err;
5291	unsigned long chksum;
5292	ushort scsi_cfg1;
5293	uchar byte;
5294	uchar tid;
5295	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
5296	ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5297	uchar max_cmd[ASC_MAX_TID + 1];
5298
5299	/* If there is already an error, don't continue. */
5300	if (asc_dvc->err_code != 0) {
5301		return ADV_ERROR;
5302	}
5303
5304	/*
5305	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5306	 */
5307	if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5308		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5309		return ADV_ERROR;
5310	}
5311
5312	warn_code = 0;
5313	iop_base = asc_dvc->iop_base;
5314
5315	/*
5316	 * Save the RISC memory BIOS region before writing the microcode.
5317	 * The BIOS may already be loaded and using its RISC LRAM region
5318	 * so its region must be saved and restored.
5319	 *
5320	 * Note: This code makes the assumption, which is currently true,
5321	 * that a chip reset does not clear RISC LRAM.
5322	 */
5323	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5324		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5325				bios_mem[i]);
5326	}
5327
5328	/*
5329	 * Save current per TID negotiated values.
5330	 */
5331	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5332	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5333	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5334	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5335	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5336		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5337				max_cmd[tid]);
5338	}
5339
5340	/*
5341	 * RAM BIST (Built-In Self Test)
5342	 *
5343	 * Address : I/O base + offset 0x38h register (byte).
5344	 * Function: Bit 7-6(RW) : RAM mode
5345	 *                          Normal Mode   : 0x00
5346	 *                          Pre-test Mode : 0x40
5347	 *                          RAM Test Mode : 0x80
5348	 *           Bit 5       : unused
5349	 *           Bit 4(RO)   : Done bit
5350	 *           Bit 3-0(RO) : Status
5351	 *                          Host Error    : 0x08
5352	 *                          Int_RAM Error : 0x04
5353	 *                          RISC Error    : 0x02
5354	 *                          SCSI Error    : 0x01
5355	 *                          No Error      : 0x00
5356	 *
5357	 * Note: RAM BIST code should be put right here, before loading the
5358	 * microcode and after saving the RISC memory BIOS region.
5359	 */
5360
5361	/*
5362	 * LRAM Pre-test
5363	 *
5364	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5365	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5366	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5367	 * to NORMAL_MODE, return an error too.
5368	 */
5369	for (i = 0; i < 2; i++) {
5370		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5371		mdelay(10);	/* Wait for 10ms before reading back. */
5372		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5373		if ((byte & RAM_TEST_DONE) == 0
5374		    || (byte & 0x0F) != PRE_TEST_VALUE) {
5375			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5376			return ADV_ERROR;
5377		}
5378
5379		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5380		mdelay(10);	/* Wait for 10ms before reading back. */
5381		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5382		    != NORMAL_VALUE) {
5383			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5384			return ADV_ERROR;
5385		}
5386	}
5387
5388	/*
5389	 * LRAM Test - It takes about 1.5 ms to run through the test.
5390	 *
5391	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5392	 * If Done bit not set or Status not 0, save register byte, set the
5393	 * err_code, and return an error.
5394	 */
5395	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5396	mdelay(10);	/* Wait for 10ms before checking status. */
5397
5398	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5399	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5400		/* Get here if Done bit not set or Status not 0. */
5401		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
5402		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5403		return ADV_ERROR;
5404	}
5405
5406	/* We need to reset back to normal mode after LRAM test passes. */
5407	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5408
5409	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5410	if (err) {
5411		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5412		       fwname, err);
5413		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5414		return err;
5415	}
5416	if (fw->size < 4) {
5417		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5418		       fw->size, fwname);
5419		release_firmware(fw);
5420		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5421		return -EINVAL;
5422	}
5423	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5424		 (fw->data[1] << 8) | fw->data[0];
5425	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5426					     fw->size - 4, ADV_38C1600_MEMSIZE,
5427					     chksum);
5428	release_firmware(fw);
5429	if (asc_dvc->err_code)
5430		return ADV_ERROR;
5431
5432	/*
5433	 * Restore the RISC memory BIOS region.
5434	 */
5435	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5436		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5437				 bios_mem[i]);
5438	}
5439
5440	/*
5441	 * Calculate and write the microcode code checksum to the microcode
5442	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5443	 */
5444	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5445	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5446	code_sum = 0;
5447	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5448	for (word = begin_addr; word < end_addr; word += 2) {
5449		code_sum += AdvReadWordAutoIncLram(iop_base);
5450	}
5451	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5452
5453	/*
5454	 * Read microcode version and date.
5455	 */
5456	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5457			asc_dvc->cfg->mcode_date);
5458	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5459			asc_dvc->cfg->mcode_version);
5460
5461	/*
5462	 * Set the chip type to indicate the ASC38C1600.
5463	 */
5464	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5465
5466	/*
5467	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5468	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5469	 * cable detection and then we are able to read C_DET[3:0].
5470	 *
5471	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5472	 * Microcode Default Value' section below.
5473	 */
5474	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5475	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5476			     scsi_cfg1 | DIS_TERM_DRV);
5477
5478	/*
5479	 * If the PCI Configuration Command Register "Parity Error Response
5480	 * Control" Bit was clear (0), then set the microcode variable
5481	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5482	 * to ignore DMA parity errors.
5483	 */
5484	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5485		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5486		word |= CONTROL_FLAG_IGNORE_PERR;
5487		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5488	}
5489
5490	/*
5491	 * If the BIOS control flag AIPP (Asynchronous Information
5492	 * Phase Protection) disable bit is not set, then set the firmware
5493	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5494	 * AIPP checking and encoding.
5495	 */
5496	if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5497		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5498		word |= CONTROL_FLAG_ENABLE_AIPP;
5499		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5500	}
5501
5502	/*
5503	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5504	 * and START_CTL_TH [3:2].
5505	 */
5506	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5507			     FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5508
5509	/*
5510	 * Microcode operating variables for WDTR, SDTR, and command tag
5511	 * queuing will be set in slave_configure() based on what a
5512	 * device reports it is capable of in Inquiry byte 7.
5513	 *
5514	 * If SCSI Bus Resets have been disabled, then directly set
5515	 * SDTR and WDTR from the EEPROM configuration. This will allow
5516	 * the BIOS and warm boot to work without a SCSI bus hang on
5517	 * the Inquiry caused by host and target mismatched DTR values.
5518	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5519	 * be assumed to be in Asynchronous, Narrow mode.
5520	 */
5521	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5522		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5523				 asc_dvc->wdtr_able);
5524		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5525				 asc_dvc->sdtr_able);
5526	}
5527
5528	/*
5529	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5530	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5531	 * configuration values.
5532	 *
5533	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5534	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5535	 * without determining here whether the device supports SDTR.
5536	 */
5537	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5538			 asc_dvc->cfg->disc_enable);
5539	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5540	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5541	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5542	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5543
5544	/*
5545	 * Set SCSI_CFG0 Microcode Default Value.
5546	 *
5547	 * The microcode will set the SCSI_CFG0 register using this value
5548	 * after it is started below.
5549	 */
5550	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5551			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5552			 asc_dvc->chip_scsi_id);
5553
5554	/*
5555	 * Calculate SCSI_CFG1 Microcode Default Value.
5556	 *
5557	 * The microcode will set the SCSI_CFG1 register using this value
5558	 * after it is started below.
5559	 *
5560	 * Each ASC-38C1600 function has only two cable detect bits.
5561	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5562	 */
5563	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5564
5565	/*
5566	 * If the cable is reversed all of the SCSI_CTRL register signals
5567	 * will be set. Check for and return an error if this condition is
5568	 * found.
5569	 */
5570	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5571		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5572		return ADV_ERROR;
5573	}
5574
5575	/*
5576	 * Each ASC-38C1600 function has two connectors. Only an HVD device
5577	 * can not be connected to either connector. An LVD device or SE device
5578	 * may be connected to either connecor. If an SE device is connected,
5579	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5580	 *
5581	 * If an HVD device is attached, return an error.
5582	 */
5583	if (scsi_cfg1 & HVD) {
5584		asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5585		return ADV_ERROR;
5586	}
5587
5588	/*
5589	 * Each function in the ASC-38C1600 uses only the SE cable detect and
5590	 * termination because there are two connectors for each function. Each
5591	 * function may use either LVD or SE mode. Corresponding the SE automatic
5592	 * termination control EEPROM bits are used for each function. Each
5593	 * function has its own EEPROM. If SE automatic control is enabled for
5594	 * the function, then set the termination value based on a table listed
5595	 * in a_condor.h.
5596	 *
5597	 * If manual termination is specified in the EEPROM for the function,
5598	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5599	 * ready to be 'ored' into SCSI_CFG1.
5600	 */
5601	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5602		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5603		/* SE automatic termination control is enabled. */
5604		switch (scsi_cfg1 & C_DET_SE) {
5605			/* TERM_SE_HI: on, TERM_SE_LO: on */
5606		case 0x1:
5607		case 0x2:
5608		case 0x3:
5609			asc_dvc->cfg->termination |= TERM_SE;
5610			break;
5611
5612		case 0x0:
5613			if (PCI_FUNC(pdev->devfn) == 0) {
5614				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5615			} else {
5616				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5617				asc_dvc->cfg->termination |= TERM_SE_HI;
5618			}
5619			break;
5620		}
5621	}
5622
5623	/*
5624	 * Clear any set TERM_SE bits.
5625	 */
5626	scsi_cfg1 &= ~TERM_SE;
5627
5628	/*
5629	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5630	 */
5631	scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5632
5633	/*
5634	 * Clear Big Endian and Terminator Polarity bits and set possibly
5635	 * modified termination control bits in the Microcode SCSI_CFG1
5636	 * Register Value.
5637	 *
5638	 * Big Endian bit is not used even on big endian machines.
5639	 */
5640	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5641
5642	/*
5643	 * Set SCSI_CFG1 Microcode Default Value
5644	 *
5645	 * Set possibly modified termination control bits in the Microcode
5646	 * SCSI_CFG1 Register Value.
5647	 *
5648	 * The microcode will set the SCSI_CFG1 register using this value
5649	 * after it is started below.
5650	 */
5651	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5652
5653	/*
5654	 * Set MEM_CFG Microcode Default Value
5655	 *
5656	 * The microcode will set the MEM_CFG register using this value
5657	 * after it is started below.
5658	 *
5659	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5660	 * are defined.
5661	 *
5662	 * ASC-38C1600 has 32KB internal memory.
5663	 *
5664	 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5665	 * out a special 16K Adv Library and Microcode version. After the issue
5666	 * resolved, we should turn back to the 32K support. Both a_condor.h and
5667	 * mcode.sas files also need to be updated.
5668	 *
5669	 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5670	 *  BIOS_EN | RAM_SZ_32KB);
5671	 */
5672	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5673			 BIOS_EN | RAM_SZ_16KB);
5674
5675	/*
5676	 * Set SEL_MASK Microcode Default Value
5677	 *
5678	 * The microcode will set the SEL_MASK register using this value
5679	 * after it is started below.
5680	 */
5681	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5682			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5683
5684	AdvBuildCarrierFreelist(asc_dvc);
5685
5686	/*
5687	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5688	 */
5689	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5690	if (!asc_dvc->icq_sp) {
5691		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5692		return ADV_ERROR;
5693	}
5694
5695	/*
5696	 * Set RISC ICQ physical address start value. Initialize the
5697	 * COMMA register to the same value otherwise the RISC will
5698	 * prematurely detect a command is available.
5699	 */
5700	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5701	AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5702			      le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5703
5704	/*
5705	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5706	 */
5707	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5708	if (!asc_dvc->irq_sp) {
5709		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5710		return ADV_ERROR;
5711	}
5712
5713	/*
5714	 * Set RISC IRQ physical address start value.
5715	 */
5716	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5717	asc_dvc->carr_pending_cnt = 0;
5718
5719	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5720			     (ADV_INTR_ENABLE_HOST_INTR |
5721			      ADV_INTR_ENABLE_GLOBAL_INTR));
5722	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5723	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5724
5725	/* finally, finally, gentlemen, start your engine */
5726	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5727
5728	/*
5729	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5730	 * Resets should be performed. The RISC has to be running
5731	 * to issue a SCSI Bus Reset.
5732	 */
5733	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5734		/*
5735		 * If the BIOS Signature is present in memory, restore the
5736		 * per TID microcode operating variables.
5737		 */
5738		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5739		    0x55AA) {
5740			/*
5741			 * Restore per TID negotiated values.
5742			 */
5743			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5744			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5745			AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5746			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5747					 tagqng_able);
5748			for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5749				AdvWriteByteLram(iop_base,
5750						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5751						 max_cmd[tid]);
5752			}
5753		} else {
5754			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5755				warn_code = ASC_WARN_BUSRESET_ERROR;
5756			}
5757		}
5758	}
5759
5760	return warn_code;
5761}
5762
5763/*
5764 * Reset chip and SCSI Bus.
5765 *
5766 * Return Value:
5767 *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
5768 *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
5769 */
5770static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
5771{
5772	int status;
5773	ushort wdtr_able, sdtr_able, tagqng_able;
5774	ushort ppr_able = 0;
5775	uchar tid, max_cmd[ADV_MAX_TID + 1];
5776	AdvPortAddr iop_base;
5777	ushort bios_sig;
5778
5779	iop_base = asc_dvc->iop_base;
5780
5781	/*
5782	 * Save current per TID negotiated values.
5783	 */
5784	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5785	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5786	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5787		AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5788	}
5789	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5790	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5791		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5792				max_cmd[tid]);
5793	}
5794
5795	/*
5796	 * Force the AdvInitAsc3550/38C0800Driver() function to
5797	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
5798	 * The initialization functions assumes a SCSI Bus Reset is not
5799	 * needed if the BIOS signature word is present.
5800	 */
5801	AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5802	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
5803
5804	/*
5805	 * Stop chip and reset it.
5806	 */
5807	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
5808	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
5809	mdelay(100);
5810	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
5811			     ADV_CTRL_REG_CMD_WR_IO_REG);
5812
5813	/*
5814	 * Reset Adv Library error code, if any, and try
5815	 * re-initializing the chip.
5816	 */
5817	asc_dvc->err_code = 0;
5818	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5819		status = AdvInitAsc38C1600Driver(asc_dvc);
5820	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
5821		status = AdvInitAsc38C0800Driver(asc_dvc);
5822	} else {
5823		status = AdvInitAsc3550Driver(asc_dvc);
5824	}
5825
5826	/* Translate initialization return value to status value. */
5827	if (status == 0) {
5828		status = ADV_TRUE;
5829	} else {
5830		status = ADV_FALSE;
5831	}
5832
5833	/*
5834	 * Restore the BIOS signature word.
5835	 */
5836	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5837
5838	/*
5839	 * Restore per TID negotiated values.
5840	 */
5841	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5842	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5843	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5844		AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5845	}
5846	AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5847	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5848		AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5849				 max_cmd[tid]);
5850	}
5851
5852	return status;
5853}
5854
5855/*
5856 * adv_async_callback() - Adv Library asynchronous event callback function.
5857 */
5858static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
5859{
5860	switch (code) {
5861	case ADV_ASYNC_SCSI_BUS_RESET_DET:
5862		/*
5863		 * The firmware detected a SCSI Bus reset.
5864		 */
5865		ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
5866		break;
5867
5868	case ADV_ASYNC_RDMA_FAILURE:
5869		/*
5870		 * Handle RDMA failure by resetting the SCSI Bus and
5871		 * possibly the chip if it is unresponsive. Log the error
5872		 * with a unique code.
5873		 */
5874		ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
5875		AdvResetChipAndSB(adv_dvc_varp);
5876		break;
5877
5878	case ADV_HOST_SCSI_BUS_RESET:
5879		/*
5880		 * Host generated SCSI bus reset occurred.
5881		 */
5882		ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
5883		break;
5884
5885	default:
5886		ASC_DBG(0, "unknown code 0x%x\n", code);
5887		break;
5888	}
5889}
5890
5891/*
5892 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
5893 *
5894 * Callback function for the Wide SCSI Adv Library.
5895 */
5896static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
5897{
5898	struct asc_board *boardp = adv_dvc_varp->drv_ptr;
5899	adv_req_t *reqp;
5900	adv_sgblk_t *sgblkp;
5901	struct scsi_cmnd *scp;
5902	u32 resid_cnt;
5903	dma_addr_t sense_addr;
5904
5905	ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n",
5906		adv_dvc_varp, scsiqp);
5907	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
5908
5909	/*
5910	 * Get the adv_req_t structure for the command that has been
5911	 * completed. The adv_req_t structure actually contains the
5912	 * completed ADV_SCSI_REQ_Q structure.
5913	 */
5914	scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag);
5915
5916	ASC_DBG(1, "scp 0x%p\n", scp);
5917	if (scp == NULL) {
5918		ASC_PRINT
5919		    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
5920		return;
5921	}
5922	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
5923
5924	reqp = (adv_req_t *)scp->host_scribble;
5925	ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
5926	if (reqp == NULL) {
5927		ASC_PRINT("adv_isr_callback: reqp is NULL\n");
5928		return;
5929	}
5930	/*
5931	 * Remove backreferences to avoid duplicate
5932	 * command completions.
5933	 */
5934	scp->host_scribble = NULL;
5935	reqp->cmndp = NULL;
5936
5937	ASC_STATS(boardp->shost, callback);
5938	ASC_DBG(1, "shost 0x%p\n", boardp->shost);
5939
5940	sense_addr = le32_to_cpu(scsiqp->sense_addr);
5941	dma_unmap_single(boardp->dev, sense_addr,
5942			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
5943
5944	/*
5945	 * 'done_status' contains the command's ending status.
5946	 */
5947	scp->result = 0;
5948	switch (scsiqp->done_status) {
5949	case QD_NO_ERROR:
5950		ASC_DBG(2, "QD_NO_ERROR\n");
5951
5952		/*
5953		 * Check for an underrun condition.
5954		 *
5955		 * If there was no error and an underrun condition, then
5956		 * then return the number of underrun bytes.
5957		 */
5958		resid_cnt = le32_to_cpu(scsiqp->data_cnt);
5959		if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
5960		    resid_cnt <= scsi_bufflen(scp)) {
5961			ASC_DBG(1, "underrun condition %lu bytes\n",
5962				 (ulong)resid_cnt);
5963			scsi_set_resid(scp, resid_cnt);
5964		}
5965		break;
5966
5967	case QD_WITH_ERROR:
5968		ASC_DBG(2, "QD_WITH_ERROR\n");
5969		switch (scsiqp->host_status) {
5970		case QHSTA_NO_ERROR:
5971			set_status_byte(scp, scsiqp->scsi_status);
5972			if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
5973				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
5974				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
5975						  SCSI_SENSE_BUFFERSIZE);
5976			}
5977			break;
5978
5979		default:
5980			/* Some other QHSTA error occurred. */
5981			ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
5982			set_host_byte(scp, DID_BAD_TARGET);
5983			break;
5984		}
5985		break;
5986
5987	case QD_ABORTED_BY_HOST:
5988		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
5989		set_status_byte(scp, scsiqp->scsi_status);
5990		set_host_byte(scp, DID_ABORT);
5991		break;
5992
5993	default:
5994		ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
5995		set_status_byte(scp, scsiqp->scsi_status);
5996		set_host_byte(scp, DID_ERROR);
5997		break;
5998	}
5999
6000	/*
6001	 * If the 'init_tidmask' bit isn't already set for the target and the
6002	 * current request finished normally, then set the bit for the target
6003	 * to indicate that a device is present.
6004	 */
6005	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6006	    scsiqp->done_status == QD_NO_ERROR &&
6007	    scsiqp->host_status == QHSTA_NO_ERROR) {
6008		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6009	}
6010
6011	asc_scsi_done(scp);
6012
6013	/*
6014	 * Free all 'adv_sgblk_t' structures allocated for the request.
6015	 */
6016	while ((sgblkp = reqp->sgblkp) != NULL) {
6017		/* Remove 'sgblkp' from the request list. */
6018		reqp->sgblkp = sgblkp->next_sgblkp;
6019
6020		dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
6021			      sgblkp->sg_addr);
6022	}
6023
6024	ASC_DBG(1, "done\n");
6025}
6026
6027/*
6028 * Adv Library Interrupt Service Routine
6029 *
6030 *  This function is called by a driver's interrupt service routine.
6031 *  The function disables and re-enables interrupts.
6032 *
6033 *  When a microcode idle command is completed, the ADV_DVC_VAR
6034 *  'idle_cmd_done' field is set to ADV_TRUE.
6035 *
6036 *  Note: AdvISR() can be called when interrupts are disabled or even
6037 *  when there is no hardware interrupt condition present. It will
6038 *  always check for completed idle commands and microcode requests.
6039 *  This is an important feature that shouldn't be changed because it
6040 *  allows commands to be completed from polling mode loops.
6041 *
6042 * Return:
6043 *   ADV_TRUE(1) - interrupt was pending
6044 *   ADV_FALSE(0) - no interrupt was pending
6045 */
6046static int AdvISR(ADV_DVC_VAR *asc_dvc)
6047{
6048	AdvPortAddr iop_base;
6049	uchar int_stat;
6050	ADV_CARR_T *free_carrp;
6051	__le32 irq_next_vpa;
6052	ADV_SCSI_REQ_Q *scsiq;
6053	adv_req_t *reqp;
6054
6055	iop_base = asc_dvc->iop_base;
6056
6057	/* Reading the register clears the interrupt. */
6058	int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6059
6060	if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6061			 ADV_INTR_STATUS_INTRC)) == 0) {
6062		return ADV_FALSE;
6063	}
6064
6065	/*
6066	 * Notify the driver of an asynchronous microcode condition by
6067	 * calling the adv_async_callback function. The function
6068	 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6069	 */
6070	if (int_stat & ADV_INTR_STATUS_INTRB) {
6071		uchar intrb_code;
6072
6073		AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6074
6075		if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6076		    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6077			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6078			    asc_dvc->carr_pending_cnt != 0) {
6079				AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6080						     ADV_TICKLE_A);
6081				if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6082					AdvWriteByteRegister(iop_base,
6083							     IOPB_TICKLE,
6084							     ADV_TICKLE_NOP);
6085				}
6086			}
6087		}
6088
6089		adv_async_callback(asc_dvc, intrb_code);
6090	}
6091
6092	/*
6093	 * Check if the IRQ stopper carrier contains a completed request.
6094	 */
6095	while (((irq_next_vpa =
6096		 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) {
6097		/*
6098		 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6099		 * The RISC will have set 'areq_vpa' to a virtual address.
6100		 *
6101		 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr
6102		 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6103		 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr'
6104		 * in AdvExeScsiQueue().
6105		 */
6106		u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa);
6107		ASC_DBG(1, "irq_sp %p areq_vpa %u\n",
6108			asc_dvc->irq_sp, pa_offset);
6109		reqp = adv_get_reqp(asc_dvc, pa_offset);
6110		scsiq = &reqp->scsi_req_q;
6111
6112		/*
6113		 * Request finished with good status and the queue was not
6114		 * DMAed to host memory by the firmware. Set all status fields
6115		 * to indicate good status.
6116		 */
6117		if ((irq_next_vpa & ADV_RQ_GOOD) != 0) {
6118			scsiq->done_status = QD_NO_ERROR;
6119			scsiq->host_status = scsiq->scsi_status = 0;
6120			scsiq->data_cnt = 0L;
6121		}
6122
6123		/*
6124		 * Advance the stopper pointer to the next carrier
6125		 * ignoring the lower four bits. Free the previous
6126		 * stopper carrier.
6127		 */
6128		free_carrp = asc_dvc->irq_sp;
6129		asc_dvc->irq_sp = adv_get_carrier(asc_dvc,
6130						  ADV_GET_CARRP(irq_next_vpa));
6131
6132		free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va;
6133		asc_dvc->carr_freelist = free_carrp;
6134		asc_dvc->carr_pending_cnt--;
6135
6136		/*
6137		 * Clear request microcode control flag.
6138		 */
6139		scsiq->cntl = 0;
6140
6141		/*
6142		 * Notify the driver of the completed request by passing
6143		 * the ADV_SCSI_REQ_Q pointer to its callback function.
6144		 */
6145		adv_isr_callback(asc_dvc, scsiq);
6146		/*
6147		 * Note: After the driver callback function is called, 'scsiq'
6148		 * can no longer be referenced.
6149		 *
6150		 * Fall through and continue processing other completed
6151		 * requests...
6152		 */
6153	}
6154	return ADV_TRUE;
6155}
6156
6157static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6158{
6159	if (asc_dvc->err_code == 0) {
6160		asc_dvc->err_code = err_code;
6161		AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6162				 err_code);
6163	}
6164	return err_code;
6165}
6166
6167static void AscAckInterrupt(PortAddr iop_base)
6168{
6169	uchar host_flag;
6170	uchar risc_flag;
6171	ushort loop;
6172
6173	loop = 0;
6174	do {
6175		risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6176		if (loop++ > 0x7FFF) {
6177			break;
6178		}
6179	} while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6180	host_flag =
6181	    AscReadLramByte(iop_base,
6182			    ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6183	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6184			 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6185	AscSetChipStatus(iop_base, CIW_INT_ACK);
6186	loop = 0;
6187	while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6188		AscSetChipStatus(iop_base, CIW_INT_ACK);
6189		if (loop++ > 3) {
6190			break;
6191		}
6192	}
6193	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6194}
6195
6196static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6197{
6198	const uchar *period_table;
6199	int max_index;
6200	int min_index;
6201	int i;
6202
6203	period_table = asc_dvc->sdtr_period_tbl;
6204	max_index = (int)asc_dvc->max_sdtr_index;
6205	min_index = (int)asc_dvc->min_sdtr_index;
6206	if ((syn_time <= period_table[max_index])) {
6207		for (i = min_index; i < (max_index - 1); i++) {
6208			if (syn_time <= period_table[i]) {
6209				return (uchar)i;
6210			}
6211		}
6212		return (uchar)max_index;
6213	} else {
6214		return (uchar)(max_index + 1);
6215	}
6216}
6217
6218static uchar
6219AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6220{
6221	PortAddr iop_base = asc_dvc->iop_base;
6222	uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6223	EXT_MSG sdtr_buf = {
6224		.msg_type = EXTENDED_MESSAGE,
6225		.msg_len = MS_SDTR_LEN,
6226		.msg_req = EXTENDED_SDTR,
6227		.xfer_period = sdtr_period,
6228		.req_ack_offset = sdtr_offset,
6229	};
6230	sdtr_offset &= ASC_SYN_MAX_OFFSET;
6231
6232	if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6233		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6234					(uchar *)&sdtr_buf,
6235					sizeof(EXT_MSG) >> 1);
6236		return ((sdtr_period_index << 4) | sdtr_offset);
6237	} else {
6238		sdtr_buf.req_ack_offset = 0;
6239		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6240					(uchar *)&sdtr_buf,
6241					sizeof(EXT_MSG) >> 1);
6242		return 0;
6243	}
6244}
6245
6246static uchar
6247AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6248{
6249	uchar byte;
6250	uchar sdtr_period_ix;
6251
6252	sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6253	if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6254		return 0xFF;
6255	byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6256	return byte;
6257}
6258
6259static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6260{
6261	ASC_SCSI_BIT_ID_TYPE org_id;
6262	int i;
6263	bool sta = true;
6264
6265	AscSetBank(iop_base, 1);
6266	org_id = AscReadChipDvcID(iop_base);
6267	for (i = 0; i <= ASC_MAX_TID; i++) {
6268		if (org_id == (0x01 << i))
6269			break;
6270	}
6271	org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6272	AscWriteChipDvcID(iop_base, id);
6273	if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6274		AscSetBank(iop_base, 0);
6275		AscSetChipSyn(iop_base, sdtr_data);
6276		if (AscGetChipSyn(iop_base) != sdtr_data) {
6277			sta = false;
6278		}
6279	} else {
6280		sta = false;
6281	}
6282	AscSetBank(iop_base, 1);
6283	AscWriteChipDvcID(iop_base, org_id);
6284	AscSetBank(iop_base, 0);
6285	return (sta);
6286}
6287
6288static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6289{
6290	AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6291	AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6292}
6293
6294static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6295{
6296	EXT_MSG ext_msg;
6297	EXT_MSG out_msg;
6298	ushort halt_q_addr;
6299	bool sdtr_accept;
6300	ushort int_halt_code;
6301	ASC_SCSI_BIT_ID_TYPE scsi_busy;
6302	ASC_SCSI_BIT_ID_TYPE target_id;
6303	PortAddr iop_base;
6304	uchar tag_code;
6305	uchar q_status;
6306	uchar halt_qp;
6307	uchar sdtr_data;
6308	uchar target_ix;
6309	uchar q_cntl, tid_no;
6310	uchar cur_dvc_qng;
6311	uchar asyn_sdtr;
6312	uchar scsi_status;
6313	struct asc_board *boardp;
6314
6315	BUG_ON(!asc_dvc->drv_ptr);
6316	boardp = asc_dvc->drv_ptr;
6317
6318	iop_base = asc_dvc->iop_base;
6319	int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6320
6321	halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6322	halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6323	target_ix = AscReadLramByte(iop_base,
6324				    (ushort)(halt_q_addr +
6325					     (ushort)ASC_SCSIQ_B_TARGET_IX));
6326	q_cntl = AscReadLramByte(iop_base,
6327			    (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6328	tid_no = ASC_TIX_TO_TID(target_ix);
6329	target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6330	if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6331		asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6332	} else {
6333		asyn_sdtr = 0;
6334	}
6335	if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6336		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6337			AscSetChipSDTR(iop_base, 0, tid_no);
6338			boardp->sdtr_data[tid_no] = 0;
6339		}
6340		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6341		return;
6342	} else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6343		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6344			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6345			boardp->sdtr_data[tid_no] = asyn_sdtr;
6346		}
6347		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6348		return;
6349	} else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6350		AscMemWordCopyPtrFromLram(iop_base,
6351					  ASCV_MSGIN_BEG,
6352					  (uchar *)&ext_msg,
6353					  sizeof(EXT_MSG) >> 1);
6354
6355		if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6356		    ext_msg.msg_req == EXTENDED_SDTR &&
6357		    ext_msg.msg_len == MS_SDTR_LEN) {
6358			sdtr_accept = true;
6359			if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6360
6361				sdtr_accept = false;
6362				ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6363			}
6364			if ((ext_msg.xfer_period <
6365			     asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6366			    || (ext_msg.xfer_period >
6367				asc_dvc->sdtr_period_tbl[asc_dvc->
6368							 max_sdtr_index])) {
6369				sdtr_accept = false;
6370				ext_msg.xfer_period =
6371				    asc_dvc->sdtr_period_tbl[asc_dvc->
6372							     min_sdtr_index];
6373			}
6374			if (sdtr_accept) {
6375				sdtr_data =
6376				    AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6377						   ext_msg.req_ack_offset);
6378				if (sdtr_data == 0xFF) {
6379
6380					q_cntl |= QC_MSG_OUT;
6381					asc_dvc->init_sdtr &= ~target_id;
6382					asc_dvc->sdtr_done &= ~target_id;
6383					AscSetChipSDTR(iop_base, asyn_sdtr,
6384						       tid_no);
6385					boardp->sdtr_data[tid_no] = asyn_sdtr;
6386				}
6387			}
6388			if (ext_msg.req_ack_offset == 0) {
6389
6390				q_cntl &= ~QC_MSG_OUT;
6391				asc_dvc->init_sdtr &= ~target_id;
6392				asc_dvc->sdtr_done &= ~target_id;
6393				AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6394			} else {
6395				if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6396					q_cntl &= ~QC_MSG_OUT;
6397					asc_dvc->sdtr_done |= target_id;
6398					asc_dvc->init_sdtr |= target_id;
6399					asc_dvc->pci_fix_asyn_xfer &=
6400					    ~target_id;
6401					sdtr_data =
6402					    AscCalSDTRData(asc_dvc,
6403							   ext_msg.xfer_period,
6404							   ext_msg.
6405							   req_ack_offset);
6406					AscSetChipSDTR(iop_base, sdtr_data,
6407						       tid_no);
6408					boardp->sdtr_data[tid_no] = sdtr_data;
6409				} else {
6410					q_cntl |= QC_MSG_OUT;
6411					AscMsgOutSDTR(asc_dvc,
6412						      ext_msg.xfer_period,
6413						      ext_msg.req_ack_offset);
6414					asc_dvc->pci_fix_asyn_xfer &=
6415					    ~target_id;
6416					sdtr_data =
6417					    AscCalSDTRData(asc_dvc,
6418							   ext_msg.xfer_period,
6419							   ext_msg.
6420							   req_ack_offset);
6421					AscSetChipSDTR(iop_base, sdtr_data,
6422						       tid_no);
6423					boardp->sdtr_data[tid_no] = sdtr_data;
6424					asc_dvc->sdtr_done |= target_id;
6425					asc_dvc->init_sdtr |= target_id;
6426				}
6427			}
6428
6429			AscWriteLramByte(iop_base,
6430					 (ushort)(halt_q_addr +
6431						  (ushort)ASC_SCSIQ_B_CNTL),
6432					 q_cntl);
6433			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6434			return;
6435		} else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6436			   ext_msg.msg_req == EXTENDED_WDTR &&
6437			   ext_msg.msg_len == MS_WDTR_LEN) {
6438
6439			ext_msg.wdtr_width = 0;
6440			AscMemWordCopyPtrToLram(iop_base,
6441						ASCV_MSGOUT_BEG,
6442						(uchar *)&ext_msg,
6443						sizeof(EXT_MSG) >> 1);
6444			q_cntl |= QC_MSG_OUT;
6445			AscWriteLramByte(iop_base,
6446					 (ushort)(halt_q_addr +
6447						  (ushort)ASC_SCSIQ_B_CNTL),
6448					 q_cntl);
6449			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6450			return;
6451		} else {
6452
6453			ext_msg.msg_type = MESSAGE_REJECT;
6454			AscMemWordCopyPtrToLram(iop_base,
6455						ASCV_MSGOUT_BEG,
6456						(uchar *)&ext_msg,
6457						sizeof(EXT_MSG) >> 1);
6458			q_cntl |= QC_MSG_OUT;
6459			AscWriteLramByte(iop_base,
6460					 (ushort)(halt_q_addr +
6461						  (ushort)ASC_SCSIQ_B_CNTL),
6462					 q_cntl);
6463			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6464			return;
6465		}
6466	} else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6467
6468		q_cntl |= QC_REQ_SENSE;
6469
6470		if ((asc_dvc->init_sdtr & target_id) != 0) {
6471
6472			asc_dvc->sdtr_done &= ~target_id;
6473
6474			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6475			q_cntl |= QC_MSG_OUT;
6476			AscMsgOutSDTR(asc_dvc,
6477				      asc_dvc->
6478				      sdtr_period_tbl[(sdtr_data >> 4) &
6479						      (uchar)(asc_dvc->
6480							      max_sdtr_index -
6481							      1)],
6482				      (uchar)(sdtr_data & (uchar)
6483					      ASC_SYN_MAX_OFFSET));
6484		}
6485
6486		AscWriteLramByte(iop_base,
6487				 (ushort)(halt_q_addr +
6488					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6489
6490		tag_code = AscReadLramByte(iop_base,
6491					   (ushort)(halt_q_addr + (ushort)
6492						    ASC_SCSIQ_B_TAG_CODE));
6493		tag_code &= 0xDC;
6494		if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6495		    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6496		    ) {
6497
6498			tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6499				     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6500
6501		}
6502		AscWriteLramByte(iop_base,
6503				 (ushort)(halt_q_addr +
6504					  (ushort)ASC_SCSIQ_B_TAG_CODE),
6505				 tag_code);
6506
6507		q_status = AscReadLramByte(iop_base,
6508					   (ushort)(halt_q_addr + (ushort)
6509						    ASC_SCSIQ_B_STATUS));
6510		q_status |= (QS_READY | QS_BUSY);
6511		AscWriteLramByte(iop_base,
6512				 (ushort)(halt_q_addr +
6513					  (ushort)ASC_SCSIQ_B_STATUS),
6514				 q_status);
6515
6516		scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6517		scsi_busy &= ~target_id;
6518		AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6519
6520		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6521		return;
6522	} else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6523
6524		AscMemWordCopyPtrFromLram(iop_base,
6525					  ASCV_MSGOUT_BEG,
6526					  (uchar *)&out_msg,
6527					  sizeof(EXT_MSG) >> 1);
6528
6529		if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6530		    (out_msg.msg_len == MS_SDTR_LEN) &&
6531		    (out_msg.msg_req == EXTENDED_SDTR)) {
6532
6533			asc_dvc->init_sdtr &= ~target_id;
6534			asc_dvc->sdtr_done &= ~target_id;
6535			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6536			boardp->sdtr_data[tid_no] = asyn_sdtr;
6537		}
6538		q_cntl &= ~QC_MSG_OUT;
6539		AscWriteLramByte(iop_base,
6540				 (ushort)(halt_q_addr +
6541					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6542		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6543		return;
6544	} else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6545
6546		scsi_status = AscReadLramByte(iop_base,
6547					      (ushort)((ushort)halt_q_addr +
6548						       (ushort)
6549						       ASC_SCSIQ_SCSI_STATUS));
6550		cur_dvc_qng =
6551		    AscReadLramByte(iop_base,
6552				    (ushort)((ushort)ASC_QADR_BEG +
6553					     (ushort)target_ix));
6554		if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6555
6556			scsi_busy = AscReadLramByte(iop_base,
6557						    (ushort)ASCV_SCSIBUSY_B);
6558			scsi_busy |= target_id;
6559			AscWriteLramByte(iop_base,
6560					 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6561			asc_dvc->queue_full_or_busy |= target_id;
6562
6563			if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6564				if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6565					cur_dvc_qng -= 1;
6566					asc_dvc->max_dvc_qng[tid_no] =
6567					    cur_dvc_qng;
6568
6569					AscWriteLramByte(iop_base,
6570							 (ushort)((ushort)
6571								  ASCV_MAX_DVC_QNG_BEG
6572								  + (ushort)
6573								  tid_no),
6574							 cur_dvc_qng);
6575
6576					/*
6577					 * Set the device queue depth to the
6578					 * number of active requests when the
6579					 * QUEUE FULL condition was encountered.
6580					 */
6581					boardp->queue_full |= target_id;
6582					boardp->queue_full_cnt[tid_no] =
6583					    cur_dvc_qng;
6584				}
6585			}
6586		}
6587		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6588		return;
6589	}
6590	return;
6591}
6592
6593/*
6594 * void
6595 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6596 *
6597 * Calling/Exit State:
6598 *    none
6599 *
6600 * Description:
6601 *     Input an ASC_QDONE_INFO structure from the chip
6602 */
6603static void
6604DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6605{
6606	int i;
6607	ushort word;
6608
6609	AscSetChipLramAddr(iop_base, s_addr);
6610	for (i = 0; i < 2 * words; i += 2) {
6611		if (i == 10) {
6612			continue;
6613		}
6614		word = inpw(iop_base + IOP_RAM_DATA);
6615		inbuf[i] = word & 0xff;
6616		inbuf[i + 1] = (word >> 8) & 0xff;
6617	}
6618	ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
6619}
6620
6621static uchar
6622_AscCopyLramScsiDoneQ(PortAddr iop_base,
6623		      ushort q_addr,
6624		      ASC_QDONE_INFO *scsiq, unsigned int max_dma_count)
6625{
6626	ushort _val;
6627	uchar sg_queue_cnt;
6628
6629	DvcGetQinfo(iop_base,
6630		    q_addr + ASC_SCSIQ_DONE_INFO_BEG,
6631		    (uchar *)scsiq,
6632		    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
6633
6634	_val = AscReadLramWord(iop_base,
6635			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
6636	scsiq->q_status = (uchar)_val;
6637	scsiq->q_no = (uchar)(_val >> 8);
6638	_val = AscReadLramWord(iop_base,
6639			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6640	scsiq->cntl = (uchar)_val;
6641	sg_queue_cnt = (uchar)(_val >> 8);
6642	_val = AscReadLramWord(iop_base,
6643			       (ushort)(q_addr +
6644					(ushort)ASC_SCSIQ_B_SENSE_LEN));
6645	scsiq->sense_len = (uchar)_val;
6646	scsiq->extra_bytes = (uchar)(_val >> 8);
6647
6648	/*
6649	 * Read high word of remain bytes from alternate location.
6650	 */
6651	scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base,
6652						     (ushort)(q_addr +
6653							      (ushort)
6654							      ASC_SCSIQ_W_ALT_DC1)))
6655			       << 16);
6656	/*
6657	 * Read low word of remain bytes from original location.
6658	 */
6659	scsiq->remain_bytes += AscReadLramWord(iop_base,
6660					       (ushort)(q_addr + (ushort)
6661							ASC_SCSIQ_DW_REMAIN_XFER_CNT));
6662
6663	scsiq->remain_bytes &= max_dma_count;
6664	return sg_queue_cnt;
6665}
6666
6667/*
6668 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
6669 *
6670 * Interrupt callback function for the Narrow SCSI Asc Library.
6671 */
6672static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
6673{
6674	struct asc_board *boardp = asc_dvc_varp->drv_ptr;
6675	u32 srb_tag;
6676	struct scsi_cmnd *scp;
6677
6678	ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
6679	ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
6680
6681	/*
6682	 * Decrease the srb_tag by 1 to find the SCSI command
6683	 */
6684	srb_tag = qdonep->d2.srb_tag - 1;
6685	scp = scsi_host_find_tag(boardp->shost, srb_tag);
6686	if (!scp)
6687		return;
6688
6689	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6690
6691	ASC_STATS(boardp->shost, callback);
6692
6693	dma_unmap_single(boardp->dev, advansys_cmd(scp)->dma_handle,
6694			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
6695	/*
6696	 * 'qdonep' contains the command's ending status.
6697	 */
6698	scp->result = 0;
6699	switch (qdonep->d3.done_stat) {
6700	case QD_NO_ERROR:
6701		ASC_DBG(2, "QD_NO_ERROR\n");
6702
6703		/*
6704		 * Check for an underrun condition.
6705		 *
6706		 * If there was no error and an underrun condition, then
6707		 * return the number of underrun bytes.
6708		 */
6709		if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
6710		    qdonep->remain_bytes <= scsi_bufflen(scp)) {
6711			ASC_DBG(1, "underrun condition %u bytes\n",
6712				 (unsigned)qdonep->remain_bytes);
6713			scsi_set_resid(scp, qdonep->remain_bytes);
6714		}
6715		break;
6716
6717	case QD_WITH_ERROR:
6718		ASC_DBG(2, "QD_WITH_ERROR\n");
6719		switch (qdonep->d3.host_stat) {
6720		case QHSTA_NO_ERROR:
6721			set_status_byte(scp, qdonep->d3.scsi_stat);
6722			if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
6723				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6724				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6725						  SCSI_SENSE_BUFFERSIZE);
6726			}
6727			break;
6728
6729		default:
6730			/* QHSTA error occurred */
6731			ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
6732			set_host_byte(scp, DID_BAD_TARGET);
6733			break;
6734		}
6735		break;
6736
6737	case QD_ABORTED_BY_HOST:
6738		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6739		set_status_byte(scp, qdonep->d3.scsi_stat);
6740		set_host_byte(scp, DID_ABORT);
6741		break;
6742
6743	default:
6744		ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
6745		set_status_byte(scp, qdonep->d3.scsi_stat);
6746		set_host_byte(scp, DID_ERROR);
6747		break;
6748	}
6749
6750	/*
6751	 * If the 'init_tidmask' bit isn't already set for the target and the
6752	 * current request finished normally, then set the bit for the target
6753	 * to indicate that a device is present.
6754	 */
6755	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6756	    qdonep->d3.done_stat == QD_NO_ERROR &&
6757	    qdonep->d3.host_stat == QHSTA_NO_ERROR) {
6758		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6759	}
6760
6761	asc_scsi_done(scp);
6762}
6763
6764static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
6765{
6766	uchar next_qp;
6767	uchar n_q_used;
6768	uchar sg_list_qp;
6769	uchar sg_queue_cnt;
6770	uchar q_cnt;
6771	uchar done_q_tail;
6772	uchar tid_no;
6773	ASC_SCSI_BIT_ID_TYPE scsi_busy;
6774	ASC_SCSI_BIT_ID_TYPE target_id;
6775	PortAddr iop_base;
6776	ushort q_addr;
6777	ushort sg_q_addr;
6778	uchar cur_target_qng;
6779	ASC_QDONE_INFO scsiq_buf;
6780	ASC_QDONE_INFO *scsiq;
6781	bool false_overrun;
6782
6783	iop_base = asc_dvc->iop_base;
6784	n_q_used = 1;
6785	scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
6786	done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
6787	q_addr = ASC_QNO_TO_QADDR(done_q_tail);
6788	next_qp = AscReadLramByte(iop_base,
6789				  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
6790	if (next_qp != ASC_QLINK_END) {
6791		AscPutVarDoneQTail(iop_base, next_qp);
6792		q_addr = ASC_QNO_TO_QADDR(next_qp);
6793		sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
6794						     asc_dvc->max_dma_count);
6795		AscWriteLramByte(iop_base,
6796				 (ushort)(q_addr +
6797					  (ushort)ASC_SCSIQ_B_STATUS),
6798				 (uchar)(scsiq->
6799					 q_status & (uchar)~(QS_READY |
6800							     QS_ABORTED)));
6801		tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
6802		target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
6803		if ((scsiq->cntl & QC_SG_HEAD) != 0) {
6804			sg_q_addr = q_addr;
6805			sg_list_qp = next_qp;
6806			for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
6807				sg_list_qp = AscReadLramByte(iop_base,
6808							     (ushort)(sg_q_addr
6809								      + (ushort)
6810								      ASC_SCSIQ_B_FWD));
6811				sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
6812				if (sg_list_qp == ASC_QLINK_END) {
6813					AscSetLibErrorCode(asc_dvc,
6814							   ASCQ_ERR_SG_Q_LINKS);
6815					scsiq->d3.done_stat = QD_WITH_ERROR;
6816					scsiq->d3.host_stat =
6817					    QHSTA_D_QDONE_SG_LIST_CORRUPTED;
6818					goto FATAL_ERR_QDONE;
6819				}
6820				AscWriteLramByte(iop_base,
6821						 (ushort)(sg_q_addr + (ushort)
6822							  ASC_SCSIQ_B_STATUS),
6823						 QS_FREE);
6824			}
6825			n_q_used = sg_queue_cnt + 1;
6826			AscPutVarDoneQTail(iop_base, sg_list_qp);
6827		}
6828		if (asc_dvc->queue_full_or_busy & target_id) {
6829			cur_target_qng = AscReadLramByte(iop_base,
6830							 (ushort)((ushort)
6831								  ASC_QADR_BEG
6832								  + (ushort)
6833								  scsiq->d2.
6834								  target_ix));
6835			if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
6836				scsi_busy = AscReadLramByte(iop_base, (ushort)
6837							    ASCV_SCSIBUSY_B);
6838				scsi_busy &= ~target_id;
6839				AscWriteLramByte(iop_base,
6840						 (ushort)ASCV_SCSIBUSY_B,
6841						 scsi_busy);
6842				asc_dvc->queue_full_or_busy &= ~target_id;
6843			}
6844		}
6845		if (asc_dvc->cur_total_qng >= n_q_used) {
6846			asc_dvc->cur_total_qng -= n_q_used;
6847			if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
6848				asc_dvc->cur_dvc_qng[tid_no]--;
6849			}
6850		} else {
6851			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
6852			scsiq->d3.done_stat = QD_WITH_ERROR;
6853			goto FATAL_ERR_QDONE;
6854		}
6855		if ((scsiq->d2.srb_tag == 0UL) ||
6856		    ((scsiq->q_status & QS_ABORTED) != 0)) {
6857			return (0x11);
6858		} else if (scsiq->q_status == QS_DONE) {
6859			/*
6860			 * This is also curious.
6861			 * false_overrun will _always_ be set to 'false'
6862			 */
6863			false_overrun = false;
6864			if (scsiq->extra_bytes != 0) {
6865				scsiq->remain_bytes += scsiq->extra_bytes;
6866			}
6867			if (scsiq->d3.done_stat == QD_WITH_ERROR) {
6868				if (scsiq->d3.host_stat ==
6869				    QHSTA_M_DATA_OVER_RUN) {
6870					if ((scsiq->
6871					     cntl & (QC_DATA_IN | QC_DATA_OUT))
6872					    == 0) {
6873						scsiq->d3.done_stat =
6874						    QD_NO_ERROR;
6875						scsiq->d3.host_stat =
6876						    QHSTA_NO_ERROR;
6877					} else if (false_overrun) {
6878						scsiq->d3.done_stat =
6879						    QD_NO_ERROR;
6880						scsiq->d3.host_stat =
6881						    QHSTA_NO_ERROR;
6882					}
6883				} else if (scsiq->d3.host_stat ==
6884					   QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
6885					AscStopChip(iop_base);
6886					AscSetChipControl(iop_base,
6887							  (uchar)(CC_SCSI_RESET
6888								  | CC_HALT));
6889					udelay(60);
6890					AscSetChipControl(iop_base, CC_HALT);
6891					AscSetChipStatus(iop_base,
6892							 CIW_CLR_SCSI_RESET_INT);
6893					AscSetChipStatus(iop_base, 0);
6894					AscSetChipControl(iop_base, 0);
6895				}
6896			}
6897			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6898				asc_isr_callback(asc_dvc, scsiq);
6899			} else {
6900				if ((AscReadLramByte(iop_base,
6901						     (ushort)(q_addr + (ushort)
6902							      ASC_SCSIQ_CDB_BEG))
6903				     == START_STOP)) {
6904					asc_dvc->unit_not_ready &= ~target_id;
6905					if (scsiq->d3.done_stat != QD_NO_ERROR) {
6906						asc_dvc->start_motor &=
6907						    ~target_id;
6908					}
6909				}
6910			}
6911			return (1);
6912		} else {
6913			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
6914 FATAL_ERR_QDONE:
6915			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6916				asc_isr_callback(asc_dvc, scsiq);
6917			}
6918			return (0x80);
6919		}
6920	}
6921	return (0);
6922}
6923
6924static int AscISR(ASC_DVC_VAR *asc_dvc)
6925{
6926	ASC_CS_TYPE chipstat;
6927	PortAddr iop_base;
6928	ushort saved_ram_addr;
6929	uchar ctrl_reg;
6930	uchar saved_ctrl_reg;
6931	int int_pending;
6932	int status;
6933	uchar host_flag;
6934
6935	iop_base = asc_dvc->iop_base;
6936	int_pending = ASC_FALSE;
6937
6938	if (AscIsIntPending(iop_base) == 0)
6939		return int_pending;
6940
6941	if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
6942		return ASC_ERROR;
6943	}
6944	if (asc_dvc->in_critical_cnt != 0) {
6945		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
6946		return ASC_ERROR;
6947	}
6948	if (asc_dvc->is_in_int) {
6949		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
6950		return ASC_ERROR;
6951	}
6952	asc_dvc->is_in_int = true;
6953	ctrl_reg = AscGetChipControl(iop_base);
6954	saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
6955				       CC_SINGLE_STEP | CC_DIAG | CC_TEST));
6956	chipstat = AscGetChipStatus(iop_base);
6957	if (chipstat & CSW_SCSI_RESET_LATCH) {
6958		if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
6959			int i = 10;
6960			int_pending = ASC_TRUE;
6961			asc_dvc->sdtr_done = 0;
6962			saved_ctrl_reg &= (uchar)(~CC_HALT);
6963			while ((AscGetChipStatus(iop_base) &
6964				CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
6965				mdelay(100);
6966			}
6967			AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
6968			AscSetChipControl(iop_base, CC_HALT);
6969			AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
6970			AscSetChipStatus(iop_base, 0);
6971			chipstat = AscGetChipStatus(iop_base);
6972		}
6973	}
6974	saved_ram_addr = AscGetChipLramAddr(iop_base);
6975	host_flag = AscReadLramByte(iop_base,
6976				    ASCV_HOST_FLAG_B) &
6977	    (uchar)(~ASC_HOST_FLAG_IN_ISR);
6978	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6979			 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
6980	if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
6981		AscAckInterrupt(iop_base);
6982		int_pending = ASC_TRUE;
6983		if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
6984			AscIsrChipHalted(asc_dvc);
6985			saved_ctrl_reg &= (uchar)(~CC_HALT);
6986		} else {
6987			if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
6988				while (((status =
6989					 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
6990				}
6991			} else {
6992				do {
6993					if ((status =
6994					     AscIsrQDone(asc_dvc)) == 1) {
6995						break;
6996					}
6997				} while (status == 0x11);
6998			}
6999			if ((status & 0x80) != 0)
7000				int_pending = ASC_ERROR;
7001		}
7002	}
7003	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7004	AscSetChipLramAddr(iop_base, saved_ram_addr);
7005	AscSetChipControl(iop_base, saved_ctrl_reg);
7006	asc_dvc->is_in_int = false;
7007	return int_pending;
7008}
7009
7010/*
7011 * advansys_reset()
7012 *
7013 * Reset the host associated with the command 'scp'.
7014 *
7015 * This function runs its own thread. Interrupts must be blocked but
7016 * sleeping is allowed and no locking other than for host structures is
7017 * required. Returns SUCCESS or FAILED.
7018 */
7019static int advansys_reset(struct scsi_cmnd *scp)
7020{
7021	struct Scsi_Host *shost = scp->device->host;
7022	struct asc_board *boardp = shost_priv(shost);
7023	unsigned long flags;
7024	int status;
7025	int ret = SUCCESS;
7026
7027	ASC_DBG(1, "0x%p\n", scp);
7028
7029	ASC_STATS(shost, reset);
7030
7031	scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n");
7032
7033	if (ASC_NARROW_BOARD(boardp)) {
7034		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7035
7036		/* Reset the chip and SCSI bus. */
7037		ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7038		status = AscInitAsc1000Driver(asc_dvc);
7039
7040		/* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7041		if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7042			scmd_printk(KERN_INFO, scp, "SCSI host reset error: "
7043				    "0x%x, status: 0x%x\n", asc_dvc->err_code,
7044				    status);
7045			ret = FAILED;
7046		} else if (status) {
7047			scmd_printk(KERN_INFO, scp, "SCSI host reset warning: "
7048				    "0x%x\n", status);
7049		} else {
7050			scmd_printk(KERN_INFO, scp, "SCSI host reset "
7051				    "successful\n");
7052		}
7053
7054		ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7055	} else {
7056		/*
7057		 * If the suggest reset bus flags are set, then reset the bus.
7058		 * Otherwise only reset the device.
7059		 */
7060		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7061
7062		/*
7063		 * Reset the chip and SCSI bus.
7064		 */
7065		ASC_DBG(1, "before AdvResetChipAndSB()\n");
7066		switch (AdvResetChipAndSB(adv_dvc)) {
7067		case ASC_TRUE:
7068			scmd_printk(KERN_INFO, scp, "SCSI host reset "
7069				    "successful\n");
7070			break;
7071		case ASC_FALSE:
7072		default:
7073			scmd_printk(KERN_INFO, scp, "SCSI host reset error\n");
7074			ret = FAILED;
7075			break;
7076		}
7077		spin_lock_irqsave(shost->host_lock, flags);
7078		AdvISR(adv_dvc);
7079		spin_unlock_irqrestore(shost->host_lock, flags);
7080	}
7081
7082	ASC_DBG(1, "ret %d\n", ret);
7083
7084	return ret;
7085}
7086
7087/*
7088 * advansys_biosparam()
7089 *
7090 * Translate disk drive geometry if the "BIOS greater than 1 GB"
7091 * support is enabled for a drive.
7092 *
7093 * ip (information pointer) is an int array with the following definition:
7094 * ip[0]: heads
7095 * ip[1]: sectors
7096 * ip[2]: cylinders
7097 */
7098static int
7099advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7100		   sector_t capacity, int ip[])
7101{
7102	struct asc_board *boardp = shost_priv(sdev->host);
7103
7104	ASC_DBG(1, "begin\n");
7105	ASC_STATS(sdev->host, biosparam);
7106	if (ASC_NARROW_BOARD(boardp)) {
7107		if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7108		     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7109			ip[0] = 255;
7110			ip[1] = 63;
7111		} else {
7112			ip[0] = 64;
7113			ip[1] = 32;
7114		}
7115	} else {
7116		if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7117		     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7118			ip[0] = 255;
7119			ip[1] = 63;
7120		} else {
7121			ip[0] = 64;
7122			ip[1] = 32;
7123		}
7124	}
7125	ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7126	ASC_DBG(1, "end\n");
7127	return 0;
7128}
7129
7130/*
7131 * First-level interrupt handler.
7132 *
7133 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7134 */
7135static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7136{
7137	struct Scsi_Host *shost = dev_id;
7138	struct asc_board *boardp = shost_priv(shost);
7139	irqreturn_t result = IRQ_NONE;
7140	unsigned long flags;
7141
7142	ASC_DBG(2, "boardp 0x%p\n", boardp);
7143	spin_lock_irqsave(shost->host_lock, flags);
7144	if (ASC_NARROW_BOARD(boardp)) {
7145		if (AscIsIntPending(shost->io_port)) {
7146			result = IRQ_HANDLED;
7147			ASC_STATS(shost, interrupt);
7148			ASC_DBG(1, "before AscISR()\n");
7149			AscISR(&boardp->dvc_var.asc_dvc_var);
7150		}
7151	} else {
7152		ASC_DBG(1, "before AdvISR()\n");
7153		if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7154			result = IRQ_HANDLED;
7155			ASC_STATS(shost, interrupt);
7156		}
7157	}
7158	spin_unlock_irqrestore(shost->host_lock, flags);
7159
7160	ASC_DBG(1, "end\n");
7161	return result;
7162}
7163
7164static bool AscHostReqRiscHalt(PortAddr iop_base)
7165{
7166	int count = 0;
7167	bool sta = false;
7168	uchar saved_stop_code;
7169
7170	if (AscIsChipHalted(iop_base))
7171		return true;
7172	saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7173	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7174			 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7175	do {
7176		if (AscIsChipHalted(iop_base)) {
7177			sta = true;
7178			break;
7179		}
7180		mdelay(100);
7181	} while (count++ < 20);
7182	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7183	return sta;
7184}
7185
7186static bool
7187AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7188{
7189	bool sta = false;
7190
7191	if (AscHostReqRiscHalt(iop_base)) {
7192		sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7193		AscStartChip(iop_base);
7194	}
7195	return sta;
7196}
7197
7198static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7199{
7200	char type = sdev->type;
7201	ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7202
7203	if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7204		return;
7205	if (asc_dvc->init_sdtr & tid_bits)
7206		return;
7207
7208	if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7209		asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7210
7211	asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7212	if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7213	    (type == TYPE_ROM) || (type == TYPE_TAPE))
7214		asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7215
7216	if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7217		AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7218					ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7219}
7220
7221static void
7222advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7223{
7224	ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7225	ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7226
7227	if (sdev->lun == 0) {
7228		ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7229		if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7230			asc_dvc->init_sdtr |= tid_bit;
7231		} else {
7232			asc_dvc->init_sdtr &= ~tid_bit;
7233		}
7234
7235		if (orig_init_sdtr != asc_dvc->init_sdtr)
7236			AscAsyncFix(asc_dvc, sdev);
7237	}
7238
7239	if (sdev->tagged_supported) {
7240		if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7241			if (sdev->lun == 0) {
7242				asc_dvc->cfg->can_tagged_qng |= tid_bit;
7243				asc_dvc->use_tagged_qng |= tid_bit;
7244			}
7245			scsi_change_queue_depth(sdev,
7246						asc_dvc->max_dvc_qng[sdev->id]);
7247		}
7248	} else {
7249		if (sdev->lun == 0) {
7250			asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7251			asc_dvc->use_tagged_qng &= ~tid_bit;
7252		}
7253	}
7254
7255	if ((sdev->lun == 0) &&
7256	    (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7257		AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7258				 asc_dvc->cfg->disc_enable);
7259		AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7260				 asc_dvc->use_tagged_qng);
7261		AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7262				 asc_dvc->cfg->can_tagged_qng);
7263
7264		asc_dvc->max_dvc_qng[sdev->id] =
7265					asc_dvc->cfg->max_tag_qng[sdev->id];
7266		AscWriteLramByte(asc_dvc->iop_base,
7267				 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7268				 asc_dvc->max_dvc_qng[sdev->id]);
7269	}
7270}
7271
7272/*
7273 * Wide Transfers
7274 *
7275 * If the EEPROM enabled WDTR for the device and the device supports wide
7276 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7277 * write the new value to the microcode.
7278 */
7279static void
7280advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7281{
7282	unsigned short cfg_word;
7283	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7284	if ((cfg_word & tidmask) != 0)
7285		return;
7286
7287	cfg_word |= tidmask;
7288	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7289
7290	/*
7291	 * Clear the microcode SDTR and WDTR negotiation done indicators for
7292	 * the target to cause it to negotiate with the new setting set above.
7293	 * WDTR when accepted causes the target to enter asynchronous mode, so
7294	 * SDTR must be negotiated.
7295	 */
7296	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7297	cfg_word &= ~tidmask;
7298	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7299	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7300	cfg_word &= ~tidmask;
7301	AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7302}
7303
7304/*
7305 * Synchronous Transfers
7306 *
7307 * If the EEPROM enabled SDTR for the device and the device
7308 * supports synchronous transfers, then turn on the device's
7309 * 'sdtr_able' bit. Write the new value to the microcode.
7310 */
7311static void
7312advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7313{
7314	unsigned short cfg_word;
7315	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7316	if ((cfg_word & tidmask) != 0)
7317		return;
7318
7319	cfg_word |= tidmask;
7320	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7321
7322	/*
7323	 * Clear the microcode "SDTR negotiation" done indicator for the
7324	 * target to cause it to negotiate with the new setting set above.
7325	 */
7326	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7327	cfg_word &= ~tidmask;
7328	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7329}
7330
7331/*
7332 * PPR (Parallel Protocol Request) Capable
7333 *
7334 * If the device supports DT mode, then it must be PPR capable.
7335 * The PPR message will be used in place of the SDTR and WDTR
7336 * messages to negotiate synchronous speed and offset, transfer
7337 * width, and protocol options.
7338 */
7339static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7340				AdvPortAddr iop_base, unsigned short tidmask)
7341{
7342	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7343	adv_dvc->ppr_able |= tidmask;
7344	AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7345}
7346
7347static void
7348advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7349{
7350	AdvPortAddr iop_base = adv_dvc->iop_base;
7351	unsigned short tidmask = 1 << sdev->id;
7352
7353	if (sdev->lun == 0) {
7354		/*
7355		 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7356		 * is enabled in the EEPROM and the device supports the
7357		 * feature, then enable it in the microcode.
7358		 */
7359
7360		if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7361			advansys_wide_enable_wdtr(iop_base, tidmask);
7362		if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7363			advansys_wide_enable_sdtr(iop_base, tidmask);
7364		if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7365			advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7366
7367		/*
7368		 * Tag Queuing is disabled for the BIOS which runs in polled
7369		 * mode and would see no benefit from Tag Queuing. Also by
7370		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7371		 * bugs will at least work with the BIOS.
7372		 */
7373		if ((adv_dvc->tagqng_able & tidmask) &&
7374		    sdev->tagged_supported) {
7375			unsigned short cfg_word;
7376			AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7377			cfg_word |= tidmask;
7378			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7379					 cfg_word);
7380			AdvWriteByteLram(iop_base,
7381					 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7382					 adv_dvc->max_dvc_qng);
7383		}
7384	}
7385
7386	if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
7387		scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
7388}
7389
7390/*
7391 * Set the number of commands to queue per device for the
7392 * specified host adapter.
7393 */
7394static int advansys_slave_configure(struct scsi_device *sdev)
7395{
7396	struct asc_board *boardp = shost_priv(sdev->host);
7397
7398	if (ASC_NARROW_BOARD(boardp))
7399		advansys_narrow_slave_configure(sdev,
7400						&boardp->dvc_var.asc_dvc_var);
7401	else
7402		advansys_wide_slave_configure(sdev,
7403						&boardp->dvc_var.adv_dvc_var);
7404
7405	return 0;
7406}
7407
7408static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp)
7409{
7410	struct asc_board *board = shost_priv(scp->device->host);
7411	struct advansys_cmd *acmd = advansys_cmd(scp);
7412
7413	acmd->dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7414					SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7415	if (dma_mapping_error(board->dev, acmd->dma_handle)) {
7416		ASC_DBG(1, "failed to map sense buffer\n");
7417		return 0;
7418	}
7419	return cpu_to_le32(acmd->dma_handle);
7420}
7421
7422static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7423			struct asc_scsi_q *asc_scsi_q)
7424{
7425	struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7426	int use_sg;
7427	u32 srb_tag;
7428
7429	memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7430
7431	/*
7432	 * Set the srb_tag to the command tag + 1, as
7433	 * srb_tag '0' is used internally by the chip.
7434	 */
7435	srb_tag = scsi_cmd_to_rq(scp)->tag + 1;
7436	asc_scsi_q->q2.srb_tag = srb_tag;
7437
7438	/*
7439	 * Build the ASC_SCSI_Q request.
7440	 */
7441	asc_scsi_q->cdbptr = &scp->cmnd[0];
7442	asc_scsi_q->q2.cdb_len = scp->cmd_len;
7443	asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7444	asc_scsi_q->q1.target_lun = scp->device->lun;
7445	asc_scsi_q->q2.target_ix =
7446	    ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7447	asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp);
7448	asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7449	if (!asc_scsi_q->q1.sense_addr)
7450		return ASC_BUSY;
7451
7452	/*
7453	 * If there are any outstanding requests for the current target,
7454	 * then every 255th request send an ORDERED request. This heuristic
7455	 * tries to retain the benefit of request sorting while preventing
7456	 * request starvation. 255 is the max number of tags or pending commands
7457	 * a device may have outstanding.
7458	 *
7459	 * The request count is incremented below for every successfully
7460	 * started request.
7461	 *
7462	 */
7463	if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7464	    (boardp->reqcnt[scp->device->id] % 255) == 0) {
7465		asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
7466	} else {
7467		asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
7468	}
7469
7470	/* Build ASC_SCSI_Q */
7471	use_sg = scsi_dma_map(scp);
7472	if (use_sg < 0) {
7473		ASC_DBG(1, "failed to map sglist\n");
7474		return ASC_BUSY;
7475	} else if (use_sg > 0) {
7476		int sgcnt;
7477		struct scatterlist *slp;
7478		struct asc_sg_head *asc_sg_head;
7479
7480		if (use_sg > scp->device->host->sg_tablesize) {
7481			scmd_printk(KERN_ERR, scp, "use_sg %d > "
7482				"sg_tablesize %d\n", use_sg,
7483				scp->device->host->sg_tablesize);
7484			scsi_dma_unmap(scp);
7485			set_host_byte(scp, DID_ERROR);
7486			return ASC_ERROR;
7487		}
7488
7489		asc_sg_head = kzalloc(struct_size(asc_sg_head, sg_list, use_sg),
7490				      GFP_ATOMIC);
7491		if (!asc_sg_head) {
7492			scsi_dma_unmap(scp);
7493			set_host_byte(scp, DID_SOFT_ERROR);
7494			return ASC_ERROR;
7495		}
7496
7497		asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7498		asc_scsi_q->sg_head = asc_sg_head;
7499		asc_scsi_q->q1.data_cnt = 0;
7500		asc_scsi_q->q1.data_addr = 0;
7501		/* This is a byte value, otherwise it would need to be swapped. */
7502		asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7503		ASC_STATS_ADD(scp->device->host, xfer_elem,
7504			      asc_sg_head->entry_cnt);
7505
7506		/*
7507		 * Convert scatter-gather list into ASC_SG_HEAD list.
7508		 */
7509		scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7510			asc_sg_head->sg_list[sgcnt].addr =
7511			    cpu_to_le32(sg_dma_address(slp));
7512			asc_sg_head->sg_list[sgcnt].bytes =
7513			    cpu_to_le32(sg_dma_len(slp));
7514			ASC_STATS_ADD(scp->device->host, xfer_sect,
7515				      DIV_ROUND_UP(sg_dma_len(slp), 512));
7516		}
7517	}
7518
7519	ASC_STATS(scp->device->host, xfer_cnt);
7520
7521	ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7522	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7523
7524	return ASC_NOERROR;
7525}
7526
7527/*
7528 * Build scatter-gather list for Adv Library (Wide Board).
7529 *
7530 * Additional ADV_SG_BLOCK structures will need to be allocated
7531 * if the total number of scatter-gather elements exceeds
7532 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7533 * assumed to be physically contiguous.
7534 *
7535 * Return:
7536 *      ADV_SUCCESS(1) - SG List successfully created
7537 *      ADV_ERROR(-1) - SG List creation failed
7538 */
7539static int
7540adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp,
7541	       ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg)
7542{
7543	adv_sgblk_t *sgblkp, *prev_sgblkp;
7544	struct scatterlist *slp;
7545	int sg_elem_cnt;
7546	ADV_SG_BLOCK *sg_block, *prev_sg_block;
7547	dma_addr_t sgblk_paddr;
7548	int i;
7549
7550	slp = scsi_sglist(scp);
7551	sg_elem_cnt = use_sg;
7552	prev_sgblkp = NULL;
7553	prev_sg_block = NULL;
7554	reqp->sgblkp = NULL;
7555
7556	for (;;) {
7557		/*
7558		 * Allocate a 'adv_sgblk_t' structure from the board free
7559		 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7560		 * (15) scatter-gather elements.
7561		 */
7562		sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC,
7563					&sgblk_paddr);
7564		if (!sgblkp) {
7565			ASC_DBG(1, "no free adv_sgblk_t\n");
7566			ASC_STATS(scp->device->host, adv_build_nosg);
7567
7568			/*
7569			 * Allocation failed. Free 'adv_sgblk_t' structures
7570			 * already allocated for the request.
7571			 */
7572			while ((sgblkp = reqp->sgblkp) != NULL) {
7573				/* Remove 'sgblkp' from the request list. */
7574				reqp->sgblkp = sgblkp->next_sgblkp;
7575				sgblkp->next_sgblkp = NULL;
7576				dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
7577					      sgblkp->sg_addr);
7578			}
7579			return ASC_BUSY;
7580		}
7581		/* Complete 'adv_sgblk_t' board allocation. */
7582		sgblkp->sg_addr = sgblk_paddr;
7583		sgblkp->next_sgblkp = NULL;
7584		sg_block = &sgblkp->sg_block;
7585
7586		/*
7587		 * Check if this is the first 'adv_sgblk_t' for the
7588		 * request.
7589		 */
7590		if (reqp->sgblkp == NULL) {
7591			/* Request's first scatter-gather block. */
7592			reqp->sgblkp = sgblkp;
7593
7594			/*
7595			 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
7596			 * address pointers.
7597			 */
7598			scsiqp->sg_list_ptr = sg_block;
7599			scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr);
7600		} else {
7601			/* Request's second or later scatter-gather block. */
7602			prev_sgblkp->next_sgblkp = sgblkp;
7603
7604			/*
7605			 * Point the previous ADV_SG_BLOCK structure to
7606			 * the newly allocated ADV_SG_BLOCK structure.
7607			 */
7608			prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr);
7609		}
7610
7611		for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
7612			sg_block->sg_list[i].sg_addr =
7613					cpu_to_le32(sg_dma_address(slp));
7614			sg_block->sg_list[i].sg_count =
7615					cpu_to_le32(sg_dma_len(slp));
7616			ASC_STATS_ADD(scp->device->host, xfer_sect,
7617				      DIV_ROUND_UP(sg_dma_len(slp), 512));
7618
7619			if (--sg_elem_cnt == 0) {
7620				/*
7621				 * Last ADV_SG_BLOCK and scatter-gather entry.
7622				 */
7623				sg_block->sg_cnt = i + 1;
7624				sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
7625				return ADV_SUCCESS;
7626			}
7627			slp = sg_next(slp);
7628		}
7629		sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
7630		prev_sg_block = sg_block;
7631		prev_sgblkp = sgblkp;
7632	}
7633}
7634
7635/*
7636 * Build a request structure for the Adv Library (Wide Board).
7637 *
7638 * If an adv_req_t can not be allocated to issue the request,
7639 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
7640 *
7641 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the
7642 * microcode for DMA addresses or math operations are byte swapped
7643 * to little-endian order.
7644 */
7645static int
7646adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7647	      adv_req_t **adv_reqpp)
7648{
7649	u32 srb_tag = scsi_cmd_to_rq(scp)->tag;
7650	adv_req_t *reqp;
7651	ADV_SCSI_REQ_Q *scsiqp;
7652	int ret;
7653	int use_sg;
7654	dma_addr_t sense_addr;
7655
7656	/*
7657	 * Allocate an adv_req_t structure from the board to execute
7658	 * the command.
7659	 */
7660	reqp = &boardp->adv_reqp[srb_tag];
7661	if (reqp->cmndp && reqp->cmndp != scp ) {
7662		ASC_DBG(1, "no free adv_req_t\n");
7663		ASC_STATS(scp->device->host, adv_build_noreq);
7664		return ASC_BUSY;
7665	}
7666
7667	reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t));
7668
7669	scsiqp = &reqp->scsi_req_q;
7670
7671	/*
7672	 * Initialize the structure.
7673	 */
7674	scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
7675
7676	/*
7677	 * Set the srb_tag to the command tag.
7678	 */
7679	scsiqp->srb_tag = srb_tag;
7680
7681	/*
7682	 * Set 'host_scribble' to point to the adv_req_t structure.
7683	 */
7684	reqp->cmndp = scp;
7685	scp->host_scribble = (void *)reqp;
7686
7687	/*
7688	 * Build the ADV_SCSI_REQ_Q request.
7689	 */
7690
7691	/* Set CDB length and copy it to the request structure.  */
7692	scsiqp->cdb_len = scp->cmd_len;
7693	/* Copy first 12 CDB bytes to cdb[]. */
7694	memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12);
7695	/* Copy last 4 CDB bytes, if present, to cdb16[]. */
7696	if (scp->cmd_len > 12) {
7697		int cdb16_len = scp->cmd_len - 12;
7698
7699		memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len);
7700	}
7701
7702	scsiqp->target_id = scp->device->id;
7703	scsiqp->target_lun = scp->device->lun;
7704
7705	sense_addr = dma_map_single(boardp->dev, scp->sense_buffer,
7706				    SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7707	if (dma_mapping_error(boardp->dev, sense_addr)) {
7708		ASC_DBG(1, "failed to map sense buffer\n");
7709		ASC_STATS(scp->device->host, adv_build_noreq);
7710		return ASC_BUSY;
7711	}
7712	scsiqp->sense_addr = cpu_to_le32(sense_addr);
7713	scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
7714
7715	/* Build ADV_SCSI_REQ_Q */
7716
7717	use_sg = scsi_dma_map(scp);
7718	if (use_sg < 0) {
7719		ASC_DBG(1, "failed to map SG list\n");
7720		ASC_STATS(scp->device->host, adv_build_noreq);
7721		return ASC_BUSY;
7722	} else if (use_sg == 0) {
7723		/* Zero-length transfer */
7724		reqp->sgblkp = NULL;
7725		scsiqp->data_cnt = 0;
7726
7727		scsiqp->data_addr = 0;
7728		scsiqp->sg_list_ptr = NULL;
7729		scsiqp->sg_real_addr = 0;
7730	} else {
7731		if (use_sg > ADV_MAX_SG_LIST) {
7732			scmd_printk(KERN_ERR, scp, "use_sg %d > "
7733				   "ADV_MAX_SG_LIST %d\n", use_sg,
7734				   scp->device->host->sg_tablesize);
7735			scsi_dma_unmap(scp);
7736			set_host_byte(scp, DID_ERROR);
7737			reqp->cmndp = NULL;
7738			scp->host_scribble = NULL;
7739
7740			return ASC_ERROR;
7741		}
7742
7743		scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
7744
7745		ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg);
7746		if (ret != ADV_SUCCESS) {
7747			scsi_dma_unmap(scp);
7748			set_host_byte(scp, DID_ERROR);
7749			reqp->cmndp = NULL;
7750			scp->host_scribble = NULL;
7751
7752			return ret;
7753		}
7754
7755		ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
7756	}
7757
7758	ASC_STATS(scp->device->host, xfer_cnt);
7759
7760	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
7761	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7762
7763	*adv_reqpp = reqp;
7764
7765	return ASC_NOERROR;
7766}
7767
7768static int AscSgListToQueue(int sg_list)
7769{
7770	int n_sg_list_qs;
7771
7772	n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
7773	if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
7774		n_sg_list_qs++;
7775	return n_sg_list_qs + 1;
7776}
7777
7778static uint
7779AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
7780{
7781	uint cur_used_qs;
7782	uint cur_free_qs;
7783	ASC_SCSI_BIT_ID_TYPE target_id;
7784	uchar tid_no;
7785
7786	target_id = ASC_TIX_TO_TARGET_ID(target_ix);
7787	tid_no = ASC_TIX_TO_TID(target_ix);
7788	if ((asc_dvc->unit_not_ready & target_id) ||
7789	    (asc_dvc->queue_full_or_busy & target_id)) {
7790		return 0;
7791	}
7792	if (n_qs == 1) {
7793		cur_used_qs = (uint) asc_dvc->cur_total_qng +
7794		    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
7795	} else {
7796		cur_used_qs = (uint) asc_dvc->cur_total_qng +
7797		    (uint) ASC_MIN_FREE_Q;
7798	}
7799	if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
7800		cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
7801		if (asc_dvc->cur_dvc_qng[tid_no] >=
7802		    asc_dvc->max_dvc_qng[tid_no]) {
7803			return 0;
7804		}
7805		return cur_free_qs;
7806	}
7807	if (n_qs > 1) {
7808		if ((n_qs > asc_dvc->last_q_shortage)
7809		    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
7810			asc_dvc->last_q_shortage = n_qs;
7811		}
7812	}
7813	return 0;
7814}
7815
7816static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
7817{
7818	ushort q_addr;
7819	uchar next_qp;
7820	uchar q_status;
7821
7822	q_addr = ASC_QNO_TO_QADDR(free_q_head);
7823	q_status = (uchar)AscReadLramByte(iop_base,
7824					  (ushort)(q_addr +
7825						   ASC_SCSIQ_B_STATUS));
7826	next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
7827	if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
7828		return next_qp;
7829	return ASC_QLINK_END;
7830}
7831
7832static uchar
7833AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
7834{
7835	uchar i;
7836
7837	for (i = 0; i < n_free_q; i++) {
7838		free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
7839		if (free_q_head == ASC_QLINK_END)
7840			break;
7841	}
7842	return free_q_head;
7843}
7844
7845/*
7846 * void
7847 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7848 *
7849 * Calling/Exit State:
7850 *    none
7851 *
7852 * Description:
7853 *     Output an ASC_SCSI_Q structure to the chip
7854 */
7855static void
7856DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7857{
7858	int i;
7859
7860	ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
7861	AscSetChipLramAddr(iop_base, s_addr);
7862	for (i = 0; i < 2 * words; i += 2) {
7863		if (i == 4 || i == 20) {
7864			continue;
7865		}
7866		outpw(iop_base + IOP_RAM_DATA,
7867		      ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
7868	}
7869}
7870
7871static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7872{
7873	ushort q_addr;
7874	uchar tid_no;
7875	uchar sdtr_data;
7876	uchar syn_period_ix;
7877	uchar syn_offset;
7878	PortAddr iop_base;
7879
7880	iop_base = asc_dvc->iop_base;
7881	if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
7882	    ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
7883		tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
7884		sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7885		syn_period_ix =
7886		    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
7887		syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
7888		AscMsgOutSDTR(asc_dvc,
7889			      asc_dvc->sdtr_period_tbl[syn_period_ix],
7890			      syn_offset);
7891		scsiq->q1.cntl |= QC_MSG_OUT;
7892	}
7893	q_addr = ASC_QNO_TO_QADDR(q_no);
7894	if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
7895		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
7896	}
7897	scsiq->q1.status = QS_FREE;
7898	AscMemWordCopyPtrToLram(iop_base,
7899				q_addr + ASC_SCSIQ_CDB_BEG,
7900				(uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
7901
7902	DvcPutScsiQ(iop_base,
7903		    q_addr + ASC_SCSIQ_CPY_BEG,
7904		    (uchar *)&scsiq->q1.cntl,
7905		    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
7906	AscWriteLramWord(iop_base,
7907			 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
7908			 (ushort)(((ushort)scsiq->q1.
7909				   q_no << 8) | (ushort)QS_READY));
7910	return 1;
7911}
7912
7913static int
7914AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7915{
7916	int sta;
7917	int i;
7918	ASC_SG_HEAD *sg_head;
7919	ASC_SG_LIST_Q scsi_sg_q;
7920	__le32 saved_data_addr;
7921	__le32 saved_data_cnt;
7922	PortAddr iop_base;
7923	ushort sg_list_dwords;
7924	ushort sg_index;
7925	ushort sg_entry_cnt;
7926	ushort q_addr;
7927	uchar next_qp;
7928
7929	iop_base = asc_dvc->iop_base;
7930	sg_head = scsiq->sg_head;
7931	saved_data_addr = scsiq->q1.data_addr;
7932	saved_data_cnt = scsiq->q1.data_cnt;
7933	scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
7934	scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
7935	/*
7936	 * Set sg_entry_cnt to be the number of SG elements that
7937	 * will fit in the allocated SG queues. It is minus 1, because
7938	 * the first SG element is handled above.
7939	 */
7940	sg_entry_cnt = sg_head->entry_cnt - 1;
7941
7942	if (sg_entry_cnt != 0) {
7943		scsiq->q1.cntl |= QC_SG_HEAD;
7944		q_addr = ASC_QNO_TO_QADDR(q_no);
7945		sg_index = 1;
7946		scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
7947		scsi_sg_q.sg_head_qp = q_no;
7948		scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
7949		for (i = 0; i < sg_head->queue_cnt; i++) {
7950			scsi_sg_q.seq_no = i + 1;
7951			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
7952				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
7953				sg_entry_cnt -= ASC_SG_LIST_PER_Q;
7954				if (i == 0) {
7955					scsi_sg_q.sg_list_cnt =
7956					    ASC_SG_LIST_PER_Q;
7957					scsi_sg_q.sg_cur_list_cnt =
7958					    ASC_SG_LIST_PER_Q;
7959				} else {
7960					scsi_sg_q.sg_list_cnt =
7961					    ASC_SG_LIST_PER_Q - 1;
7962					scsi_sg_q.sg_cur_list_cnt =
7963					    ASC_SG_LIST_PER_Q - 1;
7964				}
7965			} else {
7966				scsi_sg_q.cntl |= QCSG_SG_XFER_END;
7967				sg_list_dwords = sg_entry_cnt << 1;
7968				if (i == 0) {
7969					scsi_sg_q.sg_list_cnt = sg_entry_cnt;
7970					scsi_sg_q.sg_cur_list_cnt =
7971					    sg_entry_cnt;
7972				} else {
7973					scsi_sg_q.sg_list_cnt =
7974					    sg_entry_cnt - 1;
7975					scsi_sg_q.sg_cur_list_cnt =
7976					    sg_entry_cnt - 1;
7977				}
7978				sg_entry_cnt = 0;
7979			}
7980			next_qp = AscReadLramByte(iop_base,
7981						  (ushort)(q_addr +
7982							   ASC_SCSIQ_B_FWD));
7983			scsi_sg_q.q_no = next_qp;
7984			q_addr = ASC_QNO_TO_QADDR(next_qp);
7985			AscMemWordCopyPtrToLram(iop_base,
7986						q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
7987						(uchar *)&scsi_sg_q,
7988						sizeof(ASC_SG_LIST_Q) >> 1);
7989			AscMemDWordCopyPtrToLram(iop_base,
7990						 q_addr + ASC_SGQ_LIST_BEG,
7991						 (uchar *)&sg_head->
7992						 sg_list[sg_index],
7993						 sg_list_dwords);
7994			sg_index += ASC_SG_LIST_PER_Q;
7995			scsiq->next_sg_index = sg_index;
7996		}
7997	} else {
7998		scsiq->q1.cntl &= ~QC_SG_HEAD;
7999	}
8000	sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8001	scsiq->q1.data_addr = saved_data_addr;
8002	scsiq->q1.data_cnt = saved_data_cnt;
8003	return (sta);
8004}
8005
8006static int
8007AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8008{
8009	PortAddr iop_base;
8010	uchar free_q_head;
8011	uchar next_qp;
8012	uchar tid_no;
8013	uchar target_ix;
8014	int sta;
8015
8016	iop_base = asc_dvc->iop_base;
8017	target_ix = scsiq->q2.target_ix;
8018	tid_no = ASC_TIX_TO_TID(target_ix);
8019	sta = 0;
8020	free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8021	if (n_q_required > 1) {
8022		next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8023						    (uchar)n_q_required);
8024		if (next_qp != ASC_QLINK_END) {
8025			asc_dvc->last_q_shortage = 0;
8026			scsiq->sg_head->queue_cnt = n_q_required - 1;
8027			scsiq->q1.q_no = free_q_head;
8028			sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8029						     free_q_head);
8030		}
8031	} else if (n_q_required == 1) {
8032		next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8033		if (next_qp != ASC_QLINK_END) {
8034			scsiq->q1.q_no = free_q_head;
8035			sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8036		}
8037	}
8038	if (sta == 1) {
8039		AscPutVarFreeQHead(iop_base, next_qp);
8040		asc_dvc->cur_total_qng += n_q_required;
8041		asc_dvc->cur_dvc_qng[tid_no]++;
8042	}
8043	return sta;
8044}
8045
8046#define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
8047static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8048	INQUIRY,
8049	REQUEST_SENSE,
8050	READ_CAPACITY,
8051	READ_TOC,
8052	MODE_SELECT,
8053	MODE_SENSE,
8054	MODE_SELECT_10,
8055	MODE_SENSE_10,
8056	0xFF,
8057	0xFF,
8058	0xFF,
8059	0xFF,
8060	0xFF,
8061	0xFF,
8062	0xFF,
8063	0xFF
8064};
8065
8066static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8067{
8068	PortAddr iop_base;
8069	int sta;
8070	int n_q_required;
8071	bool disable_syn_offset_one_fix;
8072	int i;
8073	u32 addr;
8074	ushort sg_entry_cnt = 0;
8075	ushort sg_entry_cnt_minus_one = 0;
8076	uchar target_ix;
8077	uchar tid_no;
8078	uchar sdtr_data;
8079	uchar extra_bytes;
8080	uchar scsi_cmd;
8081	uchar disable_cmd;
8082	ASC_SG_HEAD *sg_head;
8083	unsigned long data_cnt;
8084
8085	iop_base = asc_dvc->iop_base;
8086	sg_head = scsiq->sg_head;
8087	if (asc_dvc->err_code != 0)
8088		return ASC_ERROR;
8089	scsiq->q1.q_no = 0;
8090	if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8091		scsiq->q1.extra_bytes = 0;
8092	}
8093	sta = 0;
8094	target_ix = scsiq->q2.target_ix;
8095	tid_no = ASC_TIX_TO_TID(target_ix);
8096	n_q_required = 1;
8097	if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8098		if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8099			asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8100			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8101			AscMsgOutSDTR(asc_dvc,
8102				      asc_dvc->
8103				      sdtr_period_tbl[(sdtr_data >> 4) &
8104						      (uchar)(asc_dvc->
8105							      max_sdtr_index -
8106							      1)],
8107				      (uchar)(sdtr_data & (uchar)
8108					      ASC_SYN_MAX_OFFSET));
8109			scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8110		}
8111	}
8112	if (asc_dvc->in_critical_cnt != 0) {
8113		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8114		return ASC_ERROR;
8115	}
8116	asc_dvc->in_critical_cnt++;
8117	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8118		if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8119			asc_dvc->in_critical_cnt--;
8120			return ASC_ERROR;
8121		}
8122		if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8123			asc_dvc->in_critical_cnt--;
8124			return ASC_ERROR;
8125		}
8126		if (sg_entry_cnt == 1) {
8127			scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8128			scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8129			scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8130		}
8131		sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8132	}
8133	scsi_cmd = scsiq->cdbptr[0];
8134	disable_syn_offset_one_fix = false;
8135	if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8136	    !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8137		if (scsiq->q1.cntl & QC_SG_HEAD) {
8138			data_cnt = 0;
8139			for (i = 0; i < sg_entry_cnt; i++) {
8140				data_cnt += le32_to_cpu(sg_head->sg_list[i].
8141							bytes);
8142			}
8143		} else {
8144			data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8145		}
8146		if (data_cnt != 0UL) {
8147			if (data_cnt < 512UL) {
8148				disable_syn_offset_one_fix = true;
8149			} else {
8150				for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8151				     i++) {
8152					disable_cmd =
8153					    _syn_offset_one_disable_cmd[i];
8154					if (disable_cmd == 0xFF) {
8155						break;
8156					}
8157					if (scsi_cmd == disable_cmd) {
8158						disable_syn_offset_one_fix =
8159						    true;
8160						break;
8161					}
8162				}
8163			}
8164		}
8165	}
8166	if (disable_syn_offset_one_fix) {
8167		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8168		scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8169				       ASC_TAG_FLAG_DISABLE_DISCONNECT);
8170	} else {
8171		scsiq->q2.tag_code &= 0x27;
8172	}
8173	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8174		if (asc_dvc->bug_fix_cntl) {
8175			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8176				if ((scsi_cmd == READ_6) ||
8177				    (scsi_cmd == READ_10)) {
8178					addr = le32_to_cpu(sg_head->
8179								   sg_list
8180								   [sg_entry_cnt_minus_one].
8181								   addr) +
8182						le32_to_cpu(sg_head->
8183								  sg_list
8184								  [sg_entry_cnt_minus_one].
8185								  bytes);
8186					extra_bytes =
8187					    (uchar)((ushort)addr & 0x0003);
8188					if ((extra_bytes != 0)
8189					    &&
8190					    ((scsiq->q2.
8191					      tag_code &
8192					      ASC_TAG_FLAG_EXTRA_BYTES)
8193					     == 0)) {
8194						scsiq->q2.tag_code |=
8195						    ASC_TAG_FLAG_EXTRA_BYTES;
8196						scsiq->q1.extra_bytes =
8197						    extra_bytes;
8198						data_cnt =
8199						    le32_to_cpu(sg_head->
8200								sg_list
8201								[sg_entry_cnt_minus_one].
8202								bytes);
8203						data_cnt -= extra_bytes;
8204						sg_head->
8205						    sg_list
8206						    [sg_entry_cnt_minus_one].
8207						    bytes =
8208						    cpu_to_le32(data_cnt);
8209					}
8210				}
8211			}
8212		}
8213		sg_head->entry_to_copy = sg_head->entry_cnt;
8214		n_q_required = AscSgListToQueue(sg_entry_cnt);
8215		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8216		     (uint) n_q_required)
8217		    || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8218			if ((sta =
8219			     AscSendScsiQueue(asc_dvc, scsiq,
8220					      n_q_required)) == 1) {
8221				asc_dvc->in_critical_cnt--;
8222				return (sta);
8223			}
8224		}
8225	} else {
8226		if (asc_dvc->bug_fix_cntl) {
8227			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8228				if ((scsi_cmd == READ_6) ||
8229				    (scsi_cmd == READ_10)) {
8230					addr =
8231					    le32_to_cpu(scsiq->q1.data_addr) +
8232					    le32_to_cpu(scsiq->q1.data_cnt);
8233					extra_bytes =
8234					    (uchar)((ushort)addr & 0x0003);
8235					if ((extra_bytes != 0)
8236					    &&
8237					    ((scsiq->q2.
8238					      tag_code &
8239					      ASC_TAG_FLAG_EXTRA_BYTES)
8240					     == 0)) {
8241						data_cnt =
8242						    le32_to_cpu(scsiq->q1.
8243								data_cnt);
8244						if (((ushort)data_cnt & 0x01FF)
8245						    == 0) {
8246							scsiq->q2.tag_code |=
8247							    ASC_TAG_FLAG_EXTRA_BYTES;
8248							data_cnt -= extra_bytes;
8249							scsiq->q1.data_cnt =
8250							    cpu_to_le32
8251							    (data_cnt);
8252							scsiq->q1.extra_bytes =
8253							    extra_bytes;
8254						}
8255					}
8256				}
8257			}
8258		}
8259		n_q_required = 1;
8260		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8261		    ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8262			if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8263						    n_q_required)) == 1) {
8264				asc_dvc->in_critical_cnt--;
8265				return (sta);
8266			}
8267		}
8268	}
8269	asc_dvc->in_critical_cnt--;
8270	return (sta);
8271}
8272
8273/*
8274 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8275 *
8276 *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8277 *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
8278 *   RISC to notify it a new command is ready to be executed.
8279 *
8280 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8281 * set to SCSI_MAX_RETRY.
8282 *
8283 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode
8284 * for DMA addresses or math operations are byte swapped to little-endian
8285 * order.
8286 *
8287 * Return:
8288 *      ADV_SUCCESS(1) - The request was successfully queued.
8289 *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
8290 *                       request completes.
8291 *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
8292 *                       host IC error.
8293 */
8294static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp)
8295{
8296	AdvPortAddr iop_base;
8297	ADV_CARR_T *new_carrp;
8298	ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q;
8299
8300	/*
8301	 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8302	 */
8303	if (scsiq->target_id > ADV_MAX_TID) {
8304		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8305		scsiq->done_status = QD_WITH_ERROR;
8306		return ADV_ERROR;
8307	}
8308
8309	iop_base = asc_dvc->iop_base;
8310
8311	/*
8312	 * Allocate a carrier ensuring at least one carrier always
8313	 * remains on the freelist and initialize fields.
8314	 */
8315	new_carrp = adv_get_next_carrier(asc_dvc);
8316	if (!new_carrp) {
8317		ASC_DBG(1, "No free carriers\n");
8318		return ADV_BUSY;
8319	}
8320
8321	asc_dvc->carr_pending_cnt++;
8322
8323	/* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8324	scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag);
8325	scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr);
8326
8327	scsiq->carr_va = asc_dvc->icq_sp->carr_va;
8328	scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8329
8330	/*
8331	 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8332	 * the microcode. The newly allocated stopper will become the new
8333	 * stopper.
8334	 */
8335	asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr;
8336
8337	/*
8338	 * Set the 'next_vpa' pointer for the old stopper to be the
8339	 * physical address of the new stopper. The RISC can only
8340	 * follow physical addresses.
8341	 */
8342	asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8343
8344	/*
8345	 * Set the host adapter stopper pointer to point to the new carrier.
8346	 */
8347	asc_dvc->icq_sp = new_carrp;
8348
8349	if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8350	    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8351		/*
8352		 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8353		 */
8354		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8355		if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8356			/*
8357			 * Clear the tickle value. In the ASC-3550 the RISC flag
8358			 * command 'clr_tickle_a' does not work unless the host
8359			 * value is cleared.
8360			 */
8361			AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8362					     ADV_TICKLE_NOP);
8363		}
8364	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8365		/*
8366		 * Notify the RISC a carrier is ready by writing the physical
8367		 * address of the new carrier stopper to the COMMA register.
8368		 */
8369		AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8370				      le32_to_cpu(new_carrp->carr_pa));
8371	}
8372
8373	return ADV_SUCCESS;
8374}
8375
8376/*
8377 * Execute a single 'struct scsi_cmnd'.
8378 */
8379static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8380{
8381	int ret, err_code;
8382	struct asc_board *boardp = shost_priv(scp->device->host);
8383
8384	ASC_DBG(1, "scp 0x%p\n", scp);
8385
8386	if (ASC_NARROW_BOARD(boardp)) {
8387		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8388		struct asc_scsi_q asc_scsi_q;
8389
8390		ret = asc_build_req(boardp, scp, &asc_scsi_q);
8391		if (ret != ASC_NOERROR) {
8392			ASC_STATS(scp->device->host, build_error);
8393			return ret;
8394		}
8395
8396		ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8397		kfree(asc_scsi_q.sg_head);
8398		err_code = asc_dvc->err_code;
8399	} else {
8400		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8401		adv_req_t *adv_reqp;
8402
8403		switch (adv_build_req(boardp, scp, &adv_reqp)) {
8404		case ASC_NOERROR:
8405			ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8406			break;
8407		case ASC_BUSY:
8408			ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8409			/*
8410			 * The asc_stats fields 'adv_build_noreq' and
8411			 * 'adv_build_nosg' count wide board busy conditions.
8412			 * They are updated in adv_build_req and
8413			 * adv_get_sglist, respectively.
8414			 */
8415			return ASC_BUSY;
8416		case ASC_ERROR:
8417		default:
8418			ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8419			ASC_STATS(scp->device->host, build_error);
8420			return ASC_ERROR;
8421		}
8422
8423		ret = AdvExeScsiQueue(adv_dvc, adv_reqp);
8424		err_code = adv_dvc->err_code;
8425	}
8426
8427	switch (ret) {
8428	case ASC_NOERROR:
8429		ASC_STATS(scp->device->host, exe_noerror);
8430		/*
8431		 * Increment monotonically increasing per device
8432		 * successful request counter. Wrapping doesn't matter.
8433		 */
8434		boardp->reqcnt[scp->device->id]++;
8435		ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8436		break;
8437	case ASC_BUSY:
8438		ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n");
8439		ASC_STATS(scp->device->host, exe_busy);
8440		break;
8441	case ASC_ERROR:
8442		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8443			"err_code 0x%x\n", err_code);
8444		ASC_STATS(scp->device->host, exe_error);
8445		set_host_byte(scp, DID_ERROR);
8446		break;
8447	default:
8448		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8449			"err_code 0x%x\n", err_code);
8450		ASC_STATS(scp->device->host, exe_unknown);
8451		set_host_byte(scp, DID_ERROR);
8452		break;
8453	}
8454
8455	ASC_DBG(1, "end\n");
8456	return ret;
8457}
8458
8459/*
8460 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8461 *
8462 * This function always returns 0. Command return status is saved
8463 * in the 'scp' result field.
8464 */
8465static int advansys_queuecommand_lck(struct scsi_cmnd *scp)
8466{
8467	struct Scsi_Host *shost = scp->device->host;
8468	int asc_res, result = 0;
8469
8470	ASC_STATS(shost, queuecommand);
8471
8472	asc_res = asc_execute_scsi_cmnd(scp);
8473
8474	switch (asc_res) {
8475	case ASC_NOERROR:
8476		break;
8477	case ASC_BUSY:
8478		result = SCSI_MLQUEUE_HOST_BUSY;
8479		break;
8480	case ASC_ERROR:
8481	default:
8482		asc_scsi_done(scp);
8483		break;
8484	}
8485
8486	return result;
8487}
8488
8489static DEF_SCSI_QCMD(advansys_queuecommand)
8490
8491static ushort AscGetEisaChipCfg(PortAddr iop_base)
8492{
8493	PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8494	    (PortAddr) (ASC_EISA_CFG_IOP_MASK);
8495	return inpw(eisa_cfg_iop);
8496}
8497
8498/*
8499 * Return the BIOS address of the adapter at the specified
8500 * I/O port and with the specified bus type.
8501 */
8502static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
8503					    unsigned short bus_type)
8504{
8505	unsigned short cfg_lsw;
8506	unsigned short bios_addr;
8507
8508	/*
8509	 * The PCI BIOS is re-located by the motherboard BIOS. Because
8510	 * of this the driver can not determine where a PCI BIOS is
8511	 * loaded and executes.
8512	 */
8513	if (bus_type & ASC_IS_PCI)
8514		return 0;
8515
8516	if ((bus_type & ASC_IS_EISA) != 0) {
8517		cfg_lsw = AscGetEisaChipCfg(iop_base);
8518		cfg_lsw &= 0x000F;
8519		bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
8520		return bios_addr;
8521	}
8522
8523	cfg_lsw = AscGetChipCfgLsw(iop_base);
8524	bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
8525	return bios_addr;
8526}
8527
8528static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
8529{
8530	ushort cfg_lsw;
8531
8532	if (AscGetChipScsiID(iop_base) == new_host_id) {
8533		return (new_host_id);
8534	}
8535	cfg_lsw = AscGetChipCfgLsw(iop_base);
8536	cfg_lsw &= 0xF8FF;
8537	cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
8538	AscSetChipCfgLsw(iop_base, cfg_lsw);
8539	return (AscGetChipScsiID(iop_base));
8540}
8541
8542static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
8543{
8544	unsigned char sc;
8545
8546	AscSetBank(iop_base, 1);
8547	sc = inp(iop_base + IOP_REG_SC);
8548	AscSetBank(iop_base, 0);
8549	return sc;
8550}
8551
8552static unsigned char AscGetChipVersion(PortAddr iop_base,
8553				       unsigned short bus_type)
8554{
8555	if (bus_type & ASC_IS_EISA) {
8556		PortAddr eisa_iop;
8557		unsigned char revision;
8558		eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8559		    (PortAddr) ASC_EISA_REV_IOP_MASK;
8560		revision = inp(eisa_iop);
8561		return ASC_CHIP_MIN_VER_EISA - 1 + revision;
8562	}
8563	return AscGetChipVerNo(iop_base);
8564}
8565
8566static int AscStopQueueExe(PortAddr iop_base)
8567{
8568	int count = 0;
8569
8570	if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
8571		AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8572				 ASC_STOP_REQ_RISC_STOP);
8573		do {
8574			if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
8575			    ASC_STOP_ACK_RISC_STOP) {
8576				return (1);
8577			}
8578			mdelay(100);
8579		} while (count++ < 20);
8580	}
8581	return (0);
8582}
8583
8584static unsigned int AscGetMaxDmaCount(ushort bus_type)
8585{
8586	if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
8587		return ASC_MAX_VL_DMA_COUNT;
8588	return ASC_MAX_PCI_DMA_COUNT;
8589}
8590
8591static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
8592{
8593	int i;
8594	PortAddr iop_base;
8595	uchar chip_version;
8596
8597	iop_base = asc_dvc->iop_base;
8598	asc_dvc->err_code = 0;
8599	if ((asc_dvc->bus_type &
8600	     (ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
8601		asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
8602	}
8603	AscSetChipControl(iop_base, CC_HALT);
8604	AscSetChipStatus(iop_base, 0);
8605	asc_dvc->bug_fix_cntl = 0;
8606	asc_dvc->pci_fix_asyn_xfer = 0;
8607	asc_dvc->pci_fix_asyn_xfer_always = 0;
8608	/* asc_dvc->init_state initialized in AscInitGetConfig(). */
8609	asc_dvc->sdtr_done = 0;
8610	asc_dvc->cur_total_qng = 0;
8611	asc_dvc->is_in_int = false;
8612	asc_dvc->in_critical_cnt = 0;
8613	asc_dvc->last_q_shortage = 0;
8614	asc_dvc->use_tagged_qng = 0;
8615	asc_dvc->no_scam = 0;
8616	asc_dvc->unit_not_ready = 0;
8617	asc_dvc->queue_full_or_busy = 0;
8618	asc_dvc->redo_scam = 0;
8619	asc_dvc->res2 = 0;
8620	asc_dvc->min_sdtr_index = 0;
8621	asc_dvc->cfg->can_tagged_qng = 0;
8622	asc_dvc->cfg->cmd_qng_enabled = 0;
8623	asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
8624	asc_dvc->init_sdtr = 0;
8625	asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
8626	asc_dvc->scsi_reset_wait = 3;
8627	asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
8628	asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
8629	asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
8630	asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
8631	asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
8632	chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
8633	asc_dvc->cfg->chip_version = chip_version;
8634	asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
8635	asc_dvc->max_sdtr_index = 7;
8636	if ((asc_dvc->bus_type & ASC_IS_PCI) &&
8637	    (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
8638		asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
8639		asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
8640		asc_dvc->max_sdtr_index = 15;
8641		if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
8642			AscSetExtraControl(iop_base,
8643					   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8644		} else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
8645			AscSetExtraControl(iop_base,
8646					   (SEC_ACTIVE_NEGATE |
8647					    SEC_ENABLE_FILTER));
8648		}
8649	}
8650	if (asc_dvc->bus_type == ASC_IS_PCI) {
8651		AscSetExtraControl(iop_base,
8652				   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8653	}
8654
8655	for (i = 0; i <= ASC_MAX_TID; i++) {
8656		asc_dvc->cur_dvc_qng[i] = 0;
8657		asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
8658		asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
8659		asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
8660		asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
8661	}
8662}
8663
8664static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
8665{
8666	int retry;
8667
8668	for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
8669		unsigned char read_back;
8670		AscSetChipEEPCmd(iop_base, cmd_reg);
8671		mdelay(1);
8672		read_back = AscGetChipEEPCmd(iop_base);
8673		if (read_back == cmd_reg)
8674			return 1;
8675	}
8676	return 0;
8677}
8678
8679static void AscWaitEEPRead(void)
8680{
8681	mdelay(1);
8682}
8683
8684static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
8685{
8686	ushort read_wval;
8687	uchar cmd_reg;
8688
8689	AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8690	AscWaitEEPRead();
8691	cmd_reg = addr | ASC_EEP_CMD_READ;
8692	AscWriteEEPCmdReg(iop_base, cmd_reg);
8693	AscWaitEEPRead();
8694	read_wval = AscGetChipEEPData(iop_base);
8695	AscWaitEEPRead();
8696	return read_wval;
8697}
8698
8699static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8700			      ushort bus_type)
8701{
8702	ushort wval;
8703	ushort sum;
8704	ushort *wbuf;
8705	int cfg_beg;
8706	int cfg_end;
8707	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8708	int s_addr;
8709
8710	wbuf = (ushort *)cfg_buf;
8711	sum = 0;
8712	/* Read two config words; Byte-swapping done by AscReadEEPWord(). */
8713	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8714		*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8715		sum += *wbuf;
8716	}
8717	if (bus_type & ASC_IS_VL) {
8718		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8719		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8720	} else {
8721		cfg_beg = ASC_EEP_DVC_CFG_BEG;
8722		cfg_end = ASC_EEP_MAX_DVC_ADDR;
8723	}
8724	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8725		wval = AscReadEEPWord(iop_base, (uchar)s_addr);
8726		if (s_addr <= uchar_end_in_config) {
8727			/*
8728			 * Swap all char fields - must unswap bytes already swapped
8729			 * by AscReadEEPWord().
8730			 */
8731			*wbuf = le16_to_cpu(wval);
8732		} else {
8733			/* Don't swap word field at the end - cntl field. */
8734			*wbuf = wval;
8735		}
8736		sum += wval;	/* Checksum treats all EEPROM data as words. */
8737	}
8738	/*
8739	 * Read the checksum word which will be compared against 'sum'
8740	 * by the caller. Word field already swapped.
8741	 */
8742	*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8743	return sum;
8744}
8745
8746static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
8747{
8748	PortAddr iop_base;
8749	ushort q_addr;
8750	ushort saved_word;
8751	int sta;
8752
8753	iop_base = asc_dvc->iop_base;
8754	sta = 0;
8755	q_addr = ASC_QNO_TO_QADDR(241);
8756	saved_word = AscReadLramWord(iop_base, q_addr);
8757	AscSetChipLramAddr(iop_base, q_addr);
8758	AscSetChipLramData(iop_base, 0x55AA);
8759	mdelay(10);
8760	AscSetChipLramAddr(iop_base, q_addr);
8761	if (AscGetChipLramData(iop_base) == 0x55AA) {
8762		sta = 1;
8763		AscWriteLramWord(iop_base, q_addr, saved_word);
8764	}
8765	return (sta);
8766}
8767
8768static void AscWaitEEPWrite(void)
8769{
8770	mdelay(20);
8771}
8772
8773static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
8774{
8775	ushort read_back;
8776	int retry;
8777
8778	retry = 0;
8779	while (true) {
8780		AscSetChipEEPData(iop_base, data_reg);
8781		mdelay(1);
8782		read_back = AscGetChipEEPData(iop_base);
8783		if (read_back == data_reg) {
8784			return (1);
8785		}
8786		if (retry++ > ASC_EEP_MAX_RETRY) {
8787			return (0);
8788		}
8789	}
8790}
8791
8792static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
8793{
8794	ushort read_wval;
8795
8796	read_wval = AscReadEEPWord(iop_base, addr);
8797	if (read_wval != word_val) {
8798		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
8799		AscWaitEEPRead();
8800		AscWriteEEPDataReg(iop_base, word_val);
8801		AscWaitEEPRead();
8802		AscWriteEEPCmdReg(iop_base,
8803				  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
8804		AscWaitEEPWrite();
8805		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8806		AscWaitEEPRead();
8807		return (AscReadEEPWord(iop_base, addr));
8808	}
8809	return (read_wval);
8810}
8811
8812static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8813			       ushort bus_type)
8814{
8815	int n_error;
8816	ushort *wbuf;
8817	ushort word;
8818	ushort sum;
8819	int s_addr;
8820	int cfg_beg;
8821	int cfg_end;
8822	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8823
8824	wbuf = (ushort *)cfg_buf;
8825	n_error = 0;
8826	sum = 0;
8827	/* Write two config words; AscWriteEEPWord() will swap bytes. */
8828	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8829		sum += *wbuf;
8830		if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
8831			n_error++;
8832		}
8833	}
8834	if (bus_type & ASC_IS_VL) {
8835		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8836		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8837	} else {
8838		cfg_beg = ASC_EEP_DVC_CFG_BEG;
8839		cfg_end = ASC_EEP_MAX_DVC_ADDR;
8840	}
8841	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8842		if (s_addr <= uchar_end_in_config) {
8843			/*
8844			 * This is a char field. Swap char fields before they are
8845			 * swapped again by AscWriteEEPWord().
8846			 */
8847			word = cpu_to_le16(*wbuf);
8848			if (word !=
8849			    AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
8850				n_error++;
8851			}
8852		} else {
8853			/* Don't swap word field at the end - cntl field. */
8854			if (*wbuf !=
8855			    AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
8856				n_error++;
8857			}
8858		}
8859		sum += *wbuf;	/* Checksum calculated from word values. */
8860	}
8861	/* Write checksum word. It will be swapped by AscWriteEEPWord(). */
8862	*wbuf = sum;
8863	if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
8864		n_error++;
8865	}
8866
8867	/* Read EEPROM back again. */
8868	wbuf = (ushort *)cfg_buf;
8869	/*
8870	 * Read two config words; Byte-swapping done by AscReadEEPWord().
8871	 */
8872	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8873		if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
8874			n_error++;
8875		}
8876	}
8877	if (bus_type & ASC_IS_VL) {
8878		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8879		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8880	} else {
8881		cfg_beg = ASC_EEP_DVC_CFG_BEG;
8882		cfg_end = ASC_EEP_MAX_DVC_ADDR;
8883	}
8884	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8885		if (s_addr <= uchar_end_in_config) {
8886			/*
8887			 * Swap all char fields. Must unswap bytes already swapped
8888			 * by AscReadEEPWord().
8889			 */
8890			word =
8891			    le16_to_cpu(AscReadEEPWord
8892					(iop_base, (uchar)s_addr));
8893		} else {
8894			/* Don't swap word field at the end - cntl field. */
8895			word = AscReadEEPWord(iop_base, (uchar)s_addr);
8896		}
8897		if (*wbuf != word) {
8898			n_error++;
8899		}
8900	}
8901	/* Read checksum; Byte swapping not needed. */
8902	if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
8903		n_error++;
8904	}
8905	return n_error;
8906}
8907
8908static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8909			   ushort bus_type)
8910{
8911	int retry;
8912	int n_error;
8913
8914	retry = 0;
8915	while (true) {
8916		if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
8917						   bus_type)) == 0) {
8918			break;
8919		}
8920		if (++retry > ASC_EEP_MAX_RETRY) {
8921			break;
8922		}
8923	}
8924	return n_error;
8925}
8926
8927static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
8928{
8929	ASCEEP_CONFIG eep_config_buf;
8930	ASCEEP_CONFIG *eep_config;
8931	PortAddr iop_base;
8932	ushort chksum;
8933	ushort warn_code;
8934	ushort cfg_msw, cfg_lsw;
8935	int i;
8936	int write_eep = 0;
8937
8938	iop_base = asc_dvc->iop_base;
8939	warn_code = 0;
8940	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
8941	AscStopQueueExe(iop_base);
8942	if ((AscStopChip(iop_base)) ||
8943	    (AscGetChipScsiCtrl(iop_base) != 0)) {
8944		asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
8945		AscResetChipAndScsiBus(asc_dvc);
8946		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
8947	}
8948	if (!AscIsChipHalted(iop_base)) {
8949		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
8950		return (warn_code);
8951	}
8952	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
8953	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
8954		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
8955		return (warn_code);
8956	}
8957	eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
8958	cfg_msw = AscGetChipCfgMsw(iop_base);
8959	cfg_lsw = AscGetChipCfgLsw(iop_base);
8960	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
8961		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
8962		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
8963		AscSetChipCfgMsw(iop_base, cfg_msw);
8964	}
8965	chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
8966	ASC_DBG(1, "chksum 0x%x\n", chksum);
8967	if (chksum == 0) {
8968		chksum = 0xaa55;
8969	}
8970	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
8971		warn_code |= ASC_WARN_AUTO_CONFIG;
8972		if (asc_dvc->cfg->chip_version == 3) {
8973			if (eep_config->cfg_lsw != cfg_lsw) {
8974				warn_code |= ASC_WARN_EEPROM_RECOVER;
8975				eep_config->cfg_lsw =
8976				    AscGetChipCfgLsw(iop_base);
8977			}
8978			if (eep_config->cfg_msw != cfg_msw) {
8979				warn_code |= ASC_WARN_EEPROM_RECOVER;
8980				eep_config->cfg_msw =
8981				    AscGetChipCfgMsw(iop_base);
8982			}
8983		}
8984	}
8985	eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
8986	eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
8987	ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
8988	if (chksum != eep_config->chksum) {
8989		if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
8990		    ASC_CHIP_VER_PCI_ULTRA_3050) {
8991			ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
8992			eep_config->init_sdtr = 0xFF;
8993			eep_config->disc_enable = 0xFF;
8994			eep_config->start_motor = 0xFF;
8995			eep_config->use_cmd_qng = 0;
8996			eep_config->max_total_qng = 0xF0;
8997			eep_config->max_tag_qng = 0x20;
8998			eep_config->cntl = 0xBFFF;
8999			ASC_EEP_SET_CHIP_ID(eep_config, 7);
9000			eep_config->no_scam = 0;
9001			eep_config->adapter_info[0] = 0;
9002			eep_config->adapter_info[1] = 0;
9003			eep_config->adapter_info[2] = 0;
9004			eep_config->adapter_info[3] = 0;
9005			eep_config->adapter_info[4] = 0;
9006			/* Indicate EEPROM-less board. */
9007			eep_config->adapter_info[5] = 0xBB;
9008		} else {
9009			ASC_PRINT
9010			    ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9011			write_eep = 1;
9012			warn_code |= ASC_WARN_EEPROM_CHKSUM;
9013		}
9014	}
9015	asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9016	asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9017	asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9018	asc_dvc->start_motor = eep_config->start_motor;
9019	asc_dvc->dvc_cntl = eep_config->cntl;
9020	asc_dvc->no_scam = eep_config->no_scam;
9021	asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9022	asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9023	asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9024	asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9025	asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9026	asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9027	if (!AscTestExternalLram(asc_dvc)) {
9028		if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9029		     ASC_IS_PCI_ULTRA)) {
9030			eep_config->max_total_qng =
9031			    ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9032			eep_config->max_tag_qng =
9033			    ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9034		} else {
9035			eep_config->cfg_msw |= 0x0800;
9036			cfg_msw |= 0x0800;
9037			AscSetChipCfgMsw(iop_base, cfg_msw);
9038			eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9039			eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9040		}
9041	} else {
9042	}
9043	if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9044		eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9045	}
9046	if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9047		eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9048	}
9049	if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9050		eep_config->max_tag_qng = eep_config->max_total_qng;
9051	}
9052	if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9053		eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9054	}
9055	asc_dvc->max_total_qng = eep_config->max_total_qng;
9056	if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9057	    eep_config->use_cmd_qng) {
9058		eep_config->disc_enable = eep_config->use_cmd_qng;
9059		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9060	}
9061	ASC_EEP_SET_CHIP_ID(eep_config,
9062			    ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9063	asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9064	if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9065	    !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9066		asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9067	}
9068
9069	for (i = 0; i <= ASC_MAX_TID; i++) {
9070		asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9071		asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9072		asc_dvc->cfg->sdtr_period_offset[i] =
9073		    (uchar)(ASC_DEF_SDTR_OFFSET |
9074			    (asc_dvc->min_sdtr_index << 4));
9075	}
9076	eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9077	if (write_eep) {
9078		if ((i = AscSetEEPConfig(iop_base, eep_config,
9079				     asc_dvc->bus_type)) != 0) {
9080			ASC_PRINT1
9081			    ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9082			     i);
9083		} else {
9084			ASC_PRINT
9085			    ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9086		}
9087	}
9088	return (warn_code);
9089}
9090
9091static int AscInitGetConfig(struct Scsi_Host *shost)
9092{
9093	struct asc_board *board = shost_priv(shost);
9094	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9095	unsigned short warn_code = 0;
9096
9097	asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9098	if (asc_dvc->err_code != 0)
9099		return asc_dvc->err_code;
9100
9101	if (AscFindSignature(asc_dvc->iop_base)) {
9102		AscInitAscDvcVar(asc_dvc);
9103		warn_code = AscInitFromEEP(asc_dvc);
9104		asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9105		if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9106			asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9107	} else {
9108		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9109	}
9110
9111	switch (warn_code) {
9112	case 0:	/* No error */
9113		break;
9114	case ASC_WARN_IO_PORT_ROTATE:
9115		shost_printk(KERN_WARNING, shost, "I/O port address "
9116				"modified\n");
9117		break;
9118	case ASC_WARN_AUTO_CONFIG:
9119		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9120				"enabled\n");
9121		break;
9122	case ASC_WARN_EEPROM_CHKSUM:
9123		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9124		break;
9125	case ASC_WARN_IRQ_MODIFIED:
9126		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9127		break;
9128	case ASC_WARN_CMD_QNG_CONFLICT:
9129		shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9130				"disconnects\n");
9131		break;
9132	default:
9133		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9134				warn_code);
9135		break;
9136	}
9137
9138	if (asc_dvc->err_code != 0)
9139		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9140			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9141
9142	return asc_dvc->err_code;
9143}
9144
9145static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9146{
9147	struct asc_board *board = shost_priv(shost);
9148	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9149	PortAddr iop_base = asc_dvc->iop_base;
9150	unsigned short cfg_msw;
9151	unsigned short warn_code = 0;
9152
9153	asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9154	if (asc_dvc->err_code != 0)
9155		return asc_dvc->err_code;
9156	if (!AscFindSignature(asc_dvc->iop_base)) {
9157		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9158		return asc_dvc->err_code;
9159	}
9160
9161	cfg_msw = AscGetChipCfgMsw(iop_base);
9162	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9163		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9164		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9165		AscSetChipCfgMsw(iop_base, cfg_msw);
9166	}
9167	if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9168	    asc_dvc->cfg->cmd_qng_enabled) {
9169		asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9170		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9171	}
9172	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9173		warn_code |= ASC_WARN_AUTO_CONFIG;
9174	}
9175#ifdef CONFIG_PCI
9176	if (asc_dvc->bus_type & ASC_IS_PCI) {
9177		cfg_msw &= 0xFFC0;
9178		AscSetChipCfgMsw(iop_base, cfg_msw);
9179		if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9180		} else {
9181			if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9182			    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9183				asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9184				asc_dvc->bug_fix_cntl |=
9185				    ASC_BUG_FIX_ASYN_USE_SYN;
9186			}
9187		}
9188	} else
9189#endif /* CONFIG_PCI */
9190	if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9191	    asc_dvc->cfg->chip_scsi_id) {
9192		asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9193	}
9194
9195	asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9196
9197	switch (warn_code) {
9198	case 0:	/* No error. */
9199		break;
9200	case ASC_WARN_IO_PORT_ROTATE:
9201		shost_printk(KERN_WARNING, shost, "I/O port address "
9202				"modified\n");
9203		break;
9204	case ASC_WARN_AUTO_CONFIG:
9205		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9206				"enabled\n");
9207		break;
9208	case ASC_WARN_EEPROM_CHKSUM:
9209		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9210		break;
9211	case ASC_WARN_IRQ_MODIFIED:
9212		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9213		break;
9214	case ASC_WARN_CMD_QNG_CONFLICT:
9215		shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9216				"disconnects\n");
9217		break;
9218	default:
9219		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9220				warn_code);
9221		break;
9222	}
9223
9224	if (asc_dvc->err_code != 0)
9225		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9226			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9227
9228	return asc_dvc->err_code;
9229}
9230
9231/*
9232 * EEPROM Configuration.
9233 *
9234 * All drivers should use this structure to set the default EEPROM
9235 * configuration. The BIOS now uses this structure when it is built.
9236 * Additional structure information can be found in a_condor.h where
9237 * the structure is defined.
9238 *
9239 * The *_Field_IsChar structs are needed to correct for endianness.
9240 * These values are read from the board 16 bits at a time directly
9241 * into the structs. Because some fields are char, the values will be
9242 * in the wrong order. The *_Field_IsChar tells when to flip the
9243 * bytes. Data read and written to PCI memory is automatically swapped
9244 * on big-endian platforms so char fields read as words are actually being
9245 * unswapped on big-endian platforms.
9246 */
9247#ifdef CONFIG_PCI
9248static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9249	ADV_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
9250	0x0000,			/* cfg_msw */
9251	0xFFFF,			/* disc_enable */
9252	0xFFFF,			/* wdtr_able */
9253	0xFFFF,			/* sdtr_able */
9254	0xFFFF,			/* start_motor */
9255	0xFFFF,			/* tagqng_able */
9256	0xFFFF,			/* bios_scan */
9257	0,			/* scam_tolerant */
9258	7,			/* adapter_scsi_id */
9259	0,			/* bios_boot_delay */
9260	3,			/* scsi_reset_delay */
9261	0,			/* bios_id_lun */
9262	0,			/* termination */
9263	0,			/* reserved1 */
9264	0xFFE7,			/* bios_ctrl */
9265	0xFFFF,			/* ultra_able */
9266	0,			/* reserved2 */
9267	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
9268	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
9269	0,			/* dvc_cntl */
9270	0,			/* bug_fix */
9271	0,			/* serial_number_word1 */
9272	0,			/* serial_number_word2 */
9273	0,			/* serial_number_word3 */
9274	0,			/* check_sum */
9275	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9276	,			/* oem_name[16] */
9277	0,			/* dvc_err_code */
9278	0,			/* adv_err_code */
9279	0,			/* adv_err_addr */
9280	0,			/* saved_dvc_err_code */
9281	0,			/* saved_adv_err_code */
9282	0,			/* saved_adv_err_addr */
9283	0			/* num_of_err */
9284};
9285
9286static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9287	0,			/* cfg_lsw */
9288	0,			/* cfg_msw */
9289	0,			/* -disc_enable */
9290	0,			/* wdtr_able */
9291	0,			/* sdtr_able */
9292	0,			/* start_motor */
9293	0,			/* tagqng_able */
9294	0,			/* bios_scan */
9295	0,			/* scam_tolerant */
9296	1,			/* adapter_scsi_id */
9297	1,			/* bios_boot_delay */
9298	1,			/* scsi_reset_delay */
9299	1,			/* bios_id_lun */
9300	1,			/* termination */
9301	1,			/* reserved1 */
9302	0,			/* bios_ctrl */
9303	0,			/* ultra_able */
9304	0,			/* reserved2 */
9305	1,			/* max_host_qng */
9306	1,			/* max_dvc_qng */
9307	0,			/* dvc_cntl */
9308	0,			/* bug_fix */
9309	0,			/* serial_number_word1 */
9310	0,			/* serial_number_word2 */
9311	0,			/* serial_number_word3 */
9312	0,			/* check_sum */
9313	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9314	,			/* oem_name[16] */
9315	0,			/* dvc_err_code */
9316	0,			/* adv_err_code */
9317	0,			/* adv_err_addr */
9318	0,			/* saved_dvc_err_code */
9319	0,			/* saved_adv_err_code */
9320	0,			/* saved_adv_err_addr */
9321	0			/* num_of_err */
9322};
9323
9324static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9325	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
9326	0x0000,			/* 01 cfg_msw */
9327	0xFFFF,			/* 02 disc_enable */
9328	0xFFFF,			/* 03 wdtr_able */
9329	0x4444,			/* 04 sdtr_speed1 */
9330	0xFFFF,			/* 05 start_motor */
9331	0xFFFF,			/* 06 tagqng_able */
9332	0xFFFF,			/* 07 bios_scan */
9333	0,			/* 08 scam_tolerant */
9334	7,			/* 09 adapter_scsi_id */
9335	0,			/*    bios_boot_delay */
9336	3,			/* 10 scsi_reset_delay */
9337	0,			/*    bios_id_lun */
9338	0,			/* 11 termination_se */
9339	0,			/*    termination_lvd */
9340	0xFFE7,			/* 12 bios_ctrl */
9341	0x4444,			/* 13 sdtr_speed2 */
9342	0x4444,			/* 14 sdtr_speed3 */
9343	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
9344	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
9345	0,			/* 16 dvc_cntl */
9346	0x4444,			/* 17 sdtr_speed4 */
9347	0,			/* 18 serial_number_word1 */
9348	0,			/* 19 serial_number_word2 */
9349	0,			/* 20 serial_number_word3 */
9350	0,			/* 21 check_sum */
9351	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9352	,			/* 22-29 oem_name[16] */
9353	0,			/* 30 dvc_err_code */
9354	0,			/* 31 adv_err_code */
9355	0,			/* 32 adv_err_addr */
9356	0,			/* 33 saved_dvc_err_code */
9357	0,			/* 34 saved_adv_err_code */
9358	0,			/* 35 saved_adv_err_addr */
9359	0,			/* 36 reserved */
9360	0,			/* 37 reserved */
9361	0,			/* 38 reserved */
9362	0,			/* 39 reserved */
9363	0,			/* 40 reserved */
9364	0,			/* 41 reserved */
9365	0,			/* 42 reserved */
9366	0,			/* 43 reserved */
9367	0,			/* 44 reserved */
9368	0,			/* 45 reserved */
9369	0,			/* 46 reserved */
9370	0,			/* 47 reserved */
9371	0,			/* 48 reserved */
9372	0,			/* 49 reserved */
9373	0,			/* 50 reserved */
9374	0,			/* 51 reserved */
9375	0,			/* 52 reserved */
9376	0,			/* 53 reserved */
9377	0,			/* 54 reserved */
9378	0,			/* 55 reserved */
9379	0,			/* 56 cisptr_lsw */
9380	0,			/* 57 cisprt_msw */
9381	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
9382	PCI_DEVICE_ID_38C0800_REV1,	/* 59 subsysid */
9383	0,			/* 60 reserved */
9384	0,			/* 61 reserved */
9385	0,			/* 62 reserved */
9386	0			/* 63 reserved */
9387};
9388
9389static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
9390	0,			/* 00 cfg_lsw */
9391	0,			/* 01 cfg_msw */
9392	0,			/* 02 disc_enable */
9393	0,			/* 03 wdtr_able */
9394	0,			/* 04 sdtr_speed1 */
9395	0,			/* 05 start_motor */
9396	0,			/* 06 tagqng_able */
9397	0,			/* 07 bios_scan */
9398	0,			/* 08 scam_tolerant */
9399	1,			/* 09 adapter_scsi_id */
9400	1,			/*    bios_boot_delay */
9401	1,			/* 10 scsi_reset_delay */
9402	1,			/*    bios_id_lun */
9403	1,			/* 11 termination_se */
9404	1,			/*    termination_lvd */
9405	0,			/* 12 bios_ctrl */
9406	0,			/* 13 sdtr_speed2 */
9407	0,			/* 14 sdtr_speed3 */
9408	1,			/* 15 max_host_qng */
9409	1,			/*    max_dvc_qng */
9410	0,			/* 16 dvc_cntl */
9411	0,			/* 17 sdtr_speed4 */
9412	0,			/* 18 serial_number_word1 */
9413	0,			/* 19 serial_number_word2 */
9414	0,			/* 20 serial_number_word3 */
9415	0,			/* 21 check_sum */
9416	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9417	,			/* 22-29 oem_name[16] */
9418	0,			/* 30 dvc_err_code */
9419	0,			/* 31 adv_err_code */
9420	0,			/* 32 adv_err_addr */
9421	0,			/* 33 saved_dvc_err_code */
9422	0,			/* 34 saved_adv_err_code */
9423	0,			/* 35 saved_adv_err_addr */
9424	0,			/* 36 reserved */
9425	0,			/* 37 reserved */
9426	0,			/* 38 reserved */
9427	0,			/* 39 reserved */
9428	0,			/* 40 reserved */
9429	0,			/* 41 reserved */
9430	0,			/* 42 reserved */
9431	0,			/* 43 reserved */
9432	0,			/* 44 reserved */
9433	0,			/* 45 reserved */
9434	0,			/* 46 reserved */
9435	0,			/* 47 reserved */
9436	0,			/* 48 reserved */
9437	0,			/* 49 reserved */
9438	0,			/* 50 reserved */
9439	0,			/* 51 reserved */
9440	0,			/* 52 reserved */
9441	0,			/* 53 reserved */
9442	0,			/* 54 reserved */
9443	0,			/* 55 reserved */
9444	0,			/* 56 cisptr_lsw */
9445	0,			/* 57 cisprt_msw */
9446	0,			/* 58 subsysvid */
9447	0,			/* 59 subsysid */
9448	0,			/* 60 reserved */
9449	0,			/* 61 reserved */
9450	0,			/* 62 reserved */
9451	0			/* 63 reserved */
9452};
9453
9454static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
9455	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
9456	0x0000,			/* 01 cfg_msw */
9457	0xFFFF,			/* 02 disc_enable */
9458	0xFFFF,			/* 03 wdtr_able */
9459	0x5555,			/* 04 sdtr_speed1 */
9460	0xFFFF,			/* 05 start_motor */
9461	0xFFFF,			/* 06 tagqng_able */
9462	0xFFFF,			/* 07 bios_scan */
9463	0,			/* 08 scam_tolerant */
9464	7,			/* 09 adapter_scsi_id */
9465	0,			/*    bios_boot_delay */
9466	3,			/* 10 scsi_reset_delay */
9467	0,			/*    bios_id_lun */
9468	0,			/* 11 termination_se */
9469	0,			/*    termination_lvd */
9470	0xFFE7,			/* 12 bios_ctrl */
9471	0x5555,			/* 13 sdtr_speed2 */
9472	0x5555,			/* 14 sdtr_speed3 */
9473	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
9474	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
9475	0,			/* 16 dvc_cntl */
9476	0x5555,			/* 17 sdtr_speed4 */
9477	0,			/* 18 serial_number_word1 */
9478	0,			/* 19 serial_number_word2 */
9479	0,			/* 20 serial_number_word3 */
9480	0,			/* 21 check_sum */
9481	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9482	,			/* 22-29 oem_name[16] */
9483	0,			/* 30 dvc_err_code */
9484	0,			/* 31 adv_err_code */
9485	0,			/* 32 adv_err_addr */
9486	0,			/* 33 saved_dvc_err_code */
9487	0,			/* 34 saved_adv_err_code */
9488	0,			/* 35 saved_adv_err_addr */
9489	0,			/* 36 reserved */
9490	0,			/* 37 reserved */
9491	0,			/* 38 reserved */
9492	0,			/* 39 reserved */
9493	0,			/* 40 reserved */
9494	0,			/* 41 reserved */
9495	0,			/* 42 reserved */
9496	0,			/* 43 reserved */
9497	0,			/* 44 reserved */
9498	0,			/* 45 reserved */
9499	0,			/* 46 reserved */
9500	0,			/* 47 reserved */
9501	0,			/* 48 reserved */
9502	0,			/* 49 reserved */
9503	0,			/* 50 reserved */
9504	0,			/* 51 reserved */
9505	0,			/* 52 reserved */
9506	0,			/* 53 reserved */
9507	0,			/* 54 reserved */
9508	0,			/* 55 reserved */
9509	0,			/* 56 cisptr_lsw */
9510	0,			/* 57 cisprt_msw */
9511	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
9512	PCI_DEVICE_ID_38C1600_REV1,	/* 59 subsysid */
9513	0,			/* 60 reserved */
9514	0,			/* 61 reserved */
9515	0,			/* 62 reserved */
9516	0			/* 63 reserved */
9517};
9518
9519static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
9520	0,			/* 00 cfg_lsw */
9521	0,			/* 01 cfg_msw */
9522	0,			/* 02 disc_enable */
9523	0,			/* 03 wdtr_able */
9524	0,			/* 04 sdtr_speed1 */
9525	0,			/* 05 start_motor */
9526	0,			/* 06 tagqng_able */
9527	0,			/* 07 bios_scan */
9528	0,			/* 08 scam_tolerant */
9529	1,			/* 09 adapter_scsi_id */
9530	1,			/*    bios_boot_delay */
9531	1,			/* 10 scsi_reset_delay */
9532	1,			/*    bios_id_lun */
9533	1,			/* 11 termination_se */
9534	1,			/*    termination_lvd */
9535	0,			/* 12 bios_ctrl */
9536	0,			/* 13 sdtr_speed2 */
9537	0,			/* 14 sdtr_speed3 */
9538	1,			/* 15 max_host_qng */
9539	1,			/*    max_dvc_qng */
9540	0,			/* 16 dvc_cntl */
9541	0,			/* 17 sdtr_speed4 */
9542	0,			/* 18 serial_number_word1 */
9543	0,			/* 19 serial_number_word2 */
9544	0,			/* 20 serial_number_word3 */
9545	0,			/* 21 check_sum */
9546	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9547	,			/* 22-29 oem_name[16] */
9548	0,			/* 30 dvc_err_code */
9549	0,			/* 31 adv_err_code */
9550	0,			/* 32 adv_err_addr */
9551	0,			/* 33 saved_dvc_err_code */
9552	0,			/* 34 saved_adv_err_code */
9553	0,			/* 35 saved_adv_err_addr */
9554	0,			/* 36 reserved */
9555	0,			/* 37 reserved */
9556	0,			/* 38 reserved */
9557	0,			/* 39 reserved */
9558	0,			/* 40 reserved */
9559	0,			/* 41 reserved */
9560	0,			/* 42 reserved */
9561	0,			/* 43 reserved */
9562	0,			/* 44 reserved */
9563	0,			/* 45 reserved */
9564	0,			/* 46 reserved */
9565	0,			/* 47 reserved */
9566	0,			/* 48 reserved */
9567	0,			/* 49 reserved */
9568	0,			/* 50 reserved */
9569	0,			/* 51 reserved */
9570	0,			/* 52 reserved */
9571	0,			/* 53 reserved */
9572	0,			/* 54 reserved */
9573	0,			/* 55 reserved */
9574	0,			/* 56 cisptr_lsw */
9575	0,			/* 57 cisprt_msw */
9576	0,			/* 58 subsysvid */
9577	0,			/* 59 subsysid */
9578	0,			/* 60 reserved */
9579	0,			/* 61 reserved */
9580	0,			/* 62 reserved */
9581	0			/* 63 reserved */
9582};
9583
9584/*
9585 * Wait for EEPROM command to complete
9586 */
9587static void AdvWaitEEPCmd(AdvPortAddr iop_base)
9588{
9589	int eep_delay_ms;
9590
9591	for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
9592		if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
9593		    ASC_EEP_CMD_DONE) {
9594			break;
9595		}
9596		mdelay(1);
9597	}
9598	if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
9599	    0)
9600		BUG();
9601}
9602
9603/*
9604 * Read the EEPROM from specified location
9605 */
9606static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
9607{
9608	AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9609			     ASC_EEP_CMD_READ | eep_word_addr);
9610	AdvWaitEEPCmd(iop_base);
9611	return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
9612}
9613
9614/*
9615 * Write the EEPROM from 'cfg_buf'.
9616 */
9617static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
9618				ADVEEP_3550_CONFIG *cfg_buf)
9619{
9620	ushort *wbuf;
9621	ushort addr, chksum;
9622	ushort *charfields;
9623
9624	wbuf = (ushort *)cfg_buf;
9625	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9626	chksum = 0;
9627
9628	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9629	AdvWaitEEPCmd(iop_base);
9630
9631	/*
9632	 * Write EEPROM from word 0 to word 20.
9633	 */
9634	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9635	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9636		ushort word;
9637
9638		if (*charfields++) {
9639			word = cpu_to_le16(*wbuf);
9640		} else {
9641			word = *wbuf;
9642		}
9643		chksum += *wbuf;	/* Checksum is calculated from word values. */
9644		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9645		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9646				     ASC_EEP_CMD_WRITE | addr);
9647		AdvWaitEEPCmd(iop_base);
9648		mdelay(ADV_EEP_DELAY_MS);
9649	}
9650
9651	/*
9652	 * Write EEPROM checksum at word 21.
9653	 */
9654	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9655	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9656	AdvWaitEEPCmd(iop_base);
9657	wbuf++;
9658	charfields++;
9659
9660	/*
9661	 * Write EEPROM OEM name at words 22 to 29.
9662	 */
9663	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9664	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9665		ushort word;
9666
9667		if (*charfields++) {
9668			word = cpu_to_le16(*wbuf);
9669		} else {
9670			word = *wbuf;
9671		}
9672		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9673		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9674				     ASC_EEP_CMD_WRITE | addr);
9675		AdvWaitEEPCmd(iop_base);
9676	}
9677	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9678	AdvWaitEEPCmd(iop_base);
9679}
9680
9681/*
9682 * Write the EEPROM from 'cfg_buf'.
9683 */
9684static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
9685				   ADVEEP_38C0800_CONFIG *cfg_buf)
9686{
9687	ushort *wbuf;
9688	ushort *charfields;
9689	ushort addr, chksum;
9690
9691	wbuf = (ushort *)cfg_buf;
9692	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9693	chksum = 0;
9694
9695	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9696	AdvWaitEEPCmd(iop_base);
9697
9698	/*
9699	 * Write EEPROM from word 0 to word 20.
9700	 */
9701	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9702	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9703		ushort word;
9704
9705		if (*charfields++) {
9706			word = cpu_to_le16(*wbuf);
9707		} else {
9708			word = *wbuf;
9709		}
9710		chksum += *wbuf;	/* Checksum is calculated from word values. */
9711		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9712		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9713				     ASC_EEP_CMD_WRITE | addr);
9714		AdvWaitEEPCmd(iop_base);
9715		mdelay(ADV_EEP_DELAY_MS);
9716	}
9717
9718	/*
9719	 * Write EEPROM checksum at word 21.
9720	 */
9721	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9722	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9723	AdvWaitEEPCmd(iop_base);
9724	wbuf++;
9725	charfields++;
9726
9727	/*
9728	 * Write EEPROM OEM name at words 22 to 29.
9729	 */
9730	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9731	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9732		ushort word;
9733
9734		if (*charfields++) {
9735			word = cpu_to_le16(*wbuf);
9736		} else {
9737			word = *wbuf;
9738		}
9739		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9740		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9741				     ASC_EEP_CMD_WRITE | addr);
9742		AdvWaitEEPCmd(iop_base);
9743	}
9744	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9745	AdvWaitEEPCmd(iop_base);
9746}
9747
9748/*
9749 * Write the EEPROM from 'cfg_buf'.
9750 */
9751static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
9752				   ADVEEP_38C1600_CONFIG *cfg_buf)
9753{
9754	ushort *wbuf;
9755	ushort *charfields;
9756	ushort addr, chksum;
9757
9758	wbuf = (ushort *)cfg_buf;
9759	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9760	chksum = 0;
9761
9762	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9763	AdvWaitEEPCmd(iop_base);
9764
9765	/*
9766	 * Write EEPROM from word 0 to word 20.
9767	 */
9768	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9769	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9770		ushort word;
9771
9772		if (*charfields++) {
9773			word = cpu_to_le16(*wbuf);
9774		} else {
9775			word = *wbuf;
9776		}
9777		chksum += *wbuf;	/* Checksum is calculated from word values. */
9778		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9779		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9780				     ASC_EEP_CMD_WRITE | addr);
9781		AdvWaitEEPCmd(iop_base);
9782		mdelay(ADV_EEP_DELAY_MS);
9783	}
9784
9785	/*
9786	 * Write EEPROM checksum at word 21.
9787	 */
9788	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9789	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9790	AdvWaitEEPCmd(iop_base);
9791	wbuf++;
9792	charfields++;
9793
9794	/*
9795	 * Write EEPROM OEM name at words 22 to 29.
9796	 */
9797	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9798	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9799		ushort word;
9800
9801		if (*charfields++) {
9802			word = cpu_to_le16(*wbuf);
9803		} else {
9804			word = *wbuf;
9805		}
9806		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9807		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9808				     ASC_EEP_CMD_WRITE | addr);
9809		AdvWaitEEPCmd(iop_base);
9810	}
9811	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9812	AdvWaitEEPCmd(iop_base);
9813}
9814
9815/*
9816 * Read EEPROM configuration into the specified buffer.
9817 *
9818 * Return a checksum based on the EEPROM configuration read.
9819 */
9820static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
9821				  ADVEEP_3550_CONFIG *cfg_buf)
9822{
9823	ushort wval, chksum;
9824	ushort *wbuf;
9825	int eep_addr;
9826	ushort *charfields;
9827
9828	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9829	wbuf = (ushort *)cfg_buf;
9830	chksum = 0;
9831
9832	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
9833	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
9834		wval = AdvReadEEPWord(iop_base, eep_addr);
9835		chksum += wval;	/* Checksum is calculated from word values. */
9836		if (*charfields++) {
9837			*wbuf = le16_to_cpu(wval);
9838		} else {
9839			*wbuf = wval;
9840		}
9841	}
9842	/* Read checksum word. */
9843	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9844	wbuf++;
9845	charfields++;
9846
9847	/* Read rest of EEPROM not covered by the checksum. */
9848	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
9849	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
9850		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9851		if (*charfields++) {
9852			*wbuf = le16_to_cpu(*wbuf);
9853		}
9854	}
9855	return chksum;
9856}
9857
9858/*
9859 * Read EEPROM configuration into the specified buffer.
9860 *
9861 * Return a checksum based on the EEPROM configuration read.
9862 */
9863static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
9864				     ADVEEP_38C0800_CONFIG *cfg_buf)
9865{
9866	ushort wval, chksum;
9867	ushort *wbuf;
9868	int eep_addr;
9869	ushort *charfields;
9870
9871	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9872	wbuf = (ushort *)cfg_buf;
9873	chksum = 0;
9874
9875	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
9876	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
9877		wval = AdvReadEEPWord(iop_base, eep_addr);
9878		chksum += wval;	/* Checksum is calculated from word values. */
9879		if (*charfields++) {
9880			*wbuf = le16_to_cpu(wval);
9881		} else {
9882			*wbuf = wval;
9883		}
9884	}
9885	/* Read checksum word. */
9886	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9887	wbuf++;
9888	charfields++;
9889
9890	/* Read rest of EEPROM not covered by the checksum. */
9891	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
9892	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
9893		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9894		if (*charfields++) {
9895			*wbuf = le16_to_cpu(*wbuf);
9896		}
9897	}
9898	return chksum;
9899}
9900
9901/*
9902 * Read EEPROM configuration into the specified buffer.
9903 *
9904 * Return a checksum based on the EEPROM configuration read.
9905 */
9906static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
9907				     ADVEEP_38C1600_CONFIG *cfg_buf)
9908{
9909	ushort wval, chksum;
9910	ushort *wbuf;
9911	int eep_addr;
9912	ushort *charfields;
9913
9914	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9915	wbuf = (ushort *)cfg_buf;
9916	chksum = 0;
9917
9918	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
9919	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
9920		wval = AdvReadEEPWord(iop_base, eep_addr);
9921		chksum += wval;	/* Checksum is calculated from word values. */
9922		if (*charfields++) {
9923			*wbuf = le16_to_cpu(wval);
9924		} else {
9925			*wbuf = wval;
9926		}
9927	}
9928	/* Read checksum word. */
9929	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9930	wbuf++;
9931	charfields++;
9932
9933	/* Read rest of EEPROM not covered by the checksum. */
9934	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
9935	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
9936		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9937		if (*charfields++) {
9938			*wbuf = le16_to_cpu(*wbuf);
9939		}
9940	}
9941	return chksum;
9942}
9943
9944/*
9945 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
9946 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
9947 * all of this is done.
9948 *
9949 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
9950 *
9951 * For a non-fatal error return a warning code. If there are no warnings
9952 * then 0 is returned.
9953 *
9954 * Note: Chip is stopped on entry.
9955 */
9956static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
9957{
9958	AdvPortAddr iop_base;
9959	ushort warn_code;
9960	ADVEEP_3550_CONFIG eep_config;
9961
9962	iop_base = asc_dvc->iop_base;
9963
9964	warn_code = 0;
9965
9966	/*
9967	 * Read the board's EEPROM configuration.
9968	 *
9969	 * Set default values if a bad checksum is found.
9970	 */
9971	if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
9972		warn_code |= ASC_WARN_EEPROM_CHKSUM;
9973
9974		/*
9975		 * Set EEPROM default values.
9976		 */
9977		memcpy(&eep_config, &Default_3550_EEPROM_Config,
9978			sizeof(ADVEEP_3550_CONFIG));
9979
9980		/*
9981		 * Assume the 6 byte board serial number that was read from
9982		 * EEPROM is correct even if the EEPROM checksum failed.
9983		 */
9984		eep_config.serial_number_word3 =
9985		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
9986
9987		eep_config.serial_number_word2 =
9988		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
9989
9990		eep_config.serial_number_word1 =
9991		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
9992
9993		AdvSet3550EEPConfig(iop_base, &eep_config);
9994	}
9995	/*
9996	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
9997	 * EEPROM configuration that was read.
9998	 *
9999	 * This is the mapping of EEPROM fields to Adv Library fields.
10000	 */
10001	asc_dvc->wdtr_able = eep_config.wdtr_able;
10002	asc_dvc->sdtr_able = eep_config.sdtr_able;
10003	asc_dvc->ultra_able = eep_config.ultra_able;
10004	asc_dvc->tagqng_able = eep_config.tagqng_able;
10005	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10006	asc_dvc->max_host_qng = eep_config.max_host_qng;
10007	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10008	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10009	asc_dvc->start_motor = eep_config.start_motor;
10010	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10011	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10012	asc_dvc->no_scam = eep_config.scam_tolerant;
10013	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10014	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10015	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10016
10017	/*
10018	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10019	 * maximum queuing (max. 63, min. 4).
10020	 */
10021	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10022		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10023	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10024		/* If the value is zero, assume it is uninitialized. */
10025		if (eep_config.max_host_qng == 0) {
10026			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10027		} else {
10028			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10029		}
10030	}
10031
10032	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10033		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10034	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10035		/* If the value is zero, assume it is uninitialized. */
10036		if (eep_config.max_dvc_qng == 0) {
10037			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10038		} else {
10039			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10040		}
10041	}
10042
10043	/*
10044	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10045	 * set 'max_dvc_qng' to 'max_host_qng'.
10046	 */
10047	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10048		eep_config.max_dvc_qng = eep_config.max_host_qng;
10049	}
10050
10051	/*
10052	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10053	 * values based on possibly adjusted EEPROM values.
10054	 */
10055	asc_dvc->max_host_qng = eep_config.max_host_qng;
10056	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10057
10058	/*
10059	 * If the EEPROM 'termination' field is set to automatic (0), then set
10060	 * the ADV_DVC_CFG 'termination' field to automatic also.
10061	 *
10062	 * If the termination is specified with a non-zero 'termination'
10063	 * value check that a legal value is set and set the ADV_DVC_CFG
10064	 * 'termination' field appropriately.
10065	 */
10066	if (eep_config.termination == 0) {
10067		asc_dvc->cfg->termination = 0;	/* auto termination */
10068	} else {
10069		/* Enable manual control with low off / high off. */
10070		if (eep_config.termination == 1) {
10071			asc_dvc->cfg->termination = TERM_CTL_SEL;
10072
10073			/* Enable manual control with low off / high on. */
10074		} else if (eep_config.termination == 2) {
10075			asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10076
10077			/* Enable manual control with low on / high on. */
10078		} else if (eep_config.termination == 3) {
10079			asc_dvc->cfg->termination =
10080			    TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10081		} else {
10082			/*
10083			 * The EEPROM 'termination' field contains a bad value. Use
10084			 * automatic termination instead.
10085			 */
10086			asc_dvc->cfg->termination = 0;
10087			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10088		}
10089	}
10090
10091	return warn_code;
10092}
10093
10094/*
10095 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10096 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10097 * all of this is done.
10098 *
10099 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10100 *
10101 * For a non-fatal error return a warning code. If there are no warnings
10102 * then 0 is returned.
10103 *
10104 * Note: Chip is stopped on entry.
10105 */
10106static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10107{
10108	AdvPortAddr iop_base;
10109	ushort warn_code;
10110	ADVEEP_38C0800_CONFIG eep_config;
10111	uchar tid, termination;
10112	ushort sdtr_speed = 0;
10113
10114	iop_base = asc_dvc->iop_base;
10115
10116	warn_code = 0;
10117
10118	/*
10119	 * Read the board's EEPROM configuration.
10120	 *
10121	 * Set default values if a bad checksum is found.
10122	 */
10123	if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10124	    eep_config.check_sum) {
10125		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10126
10127		/*
10128		 * Set EEPROM default values.
10129		 */
10130		memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10131			sizeof(ADVEEP_38C0800_CONFIG));
10132
10133		/*
10134		 * Assume the 6 byte board serial number that was read from
10135		 * EEPROM is correct even if the EEPROM checksum failed.
10136		 */
10137		eep_config.serial_number_word3 =
10138		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10139
10140		eep_config.serial_number_word2 =
10141		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10142
10143		eep_config.serial_number_word1 =
10144		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10145
10146		AdvSet38C0800EEPConfig(iop_base, &eep_config);
10147	}
10148	/*
10149	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10150	 * EEPROM configuration that was read.
10151	 *
10152	 * This is the mapping of EEPROM fields to Adv Library fields.
10153	 */
10154	asc_dvc->wdtr_able = eep_config.wdtr_able;
10155	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10156	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10157	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10158	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10159	asc_dvc->tagqng_able = eep_config.tagqng_able;
10160	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10161	asc_dvc->max_host_qng = eep_config.max_host_qng;
10162	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10163	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10164	asc_dvc->start_motor = eep_config.start_motor;
10165	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10166	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10167	asc_dvc->no_scam = eep_config.scam_tolerant;
10168	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10169	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10170	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10171
10172	/*
10173	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10174	 * are set, then set an 'sdtr_able' bit for it.
10175	 */
10176	asc_dvc->sdtr_able = 0;
10177	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10178		if (tid == 0) {
10179			sdtr_speed = asc_dvc->sdtr_speed1;
10180		} else if (tid == 4) {
10181			sdtr_speed = asc_dvc->sdtr_speed2;
10182		} else if (tid == 8) {
10183			sdtr_speed = asc_dvc->sdtr_speed3;
10184		} else if (tid == 12) {
10185			sdtr_speed = asc_dvc->sdtr_speed4;
10186		}
10187		if (sdtr_speed & ADV_MAX_TID) {
10188			asc_dvc->sdtr_able |= (1 << tid);
10189		}
10190		sdtr_speed >>= 4;
10191	}
10192
10193	/*
10194	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10195	 * maximum queuing (max. 63, min. 4).
10196	 */
10197	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10198		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10199	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10200		/* If the value is zero, assume it is uninitialized. */
10201		if (eep_config.max_host_qng == 0) {
10202			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10203		} else {
10204			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10205		}
10206	}
10207
10208	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10209		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10210	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10211		/* If the value is zero, assume it is uninitialized. */
10212		if (eep_config.max_dvc_qng == 0) {
10213			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10214		} else {
10215			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10216		}
10217	}
10218
10219	/*
10220	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10221	 * set 'max_dvc_qng' to 'max_host_qng'.
10222	 */
10223	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10224		eep_config.max_dvc_qng = eep_config.max_host_qng;
10225	}
10226
10227	/*
10228	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10229	 * values based on possibly adjusted EEPROM values.
10230	 */
10231	asc_dvc->max_host_qng = eep_config.max_host_qng;
10232	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10233
10234	/*
10235	 * If the EEPROM 'termination' field is set to automatic (0), then set
10236	 * the ADV_DVC_CFG 'termination' field to automatic also.
10237	 *
10238	 * If the termination is specified with a non-zero 'termination'
10239	 * value check that a legal value is set and set the ADV_DVC_CFG
10240	 * 'termination' field appropriately.
10241	 */
10242	if (eep_config.termination_se == 0) {
10243		termination = 0;	/* auto termination for SE */
10244	} else {
10245		/* Enable manual control with low off / high off. */
10246		if (eep_config.termination_se == 1) {
10247			termination = 0;
10248
10249			/* Enable manual control with low off / high on. */
10250		} else if (eep_config.termination_se == 2) {
10251			termination = TERM_SE_HI;
10252
10253			/* Enable manual control with low on / high on. */
10254		} else if (eep_config.termination_se == 3) {
10255			termination = TERM_SE;
10256		} else {
10257			/*
10258			 * The EEPROM 'termination_se' field contains a bad value.
10259			 * Use automatic termination instead.
10260			 */
10261			termination = 0;
10262			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10263		}
10264	}
10265
10266	if (eep_config.termination_lvd == 0) {
10267		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
10268	} else {
10269		/* Enable manual control with low off / high off. */
10270		if (eep_config.termination_lvd == 1) {
10271			asc_dvc->cfg->termination = termination;
10272
10273			/* Enable manual control with low off / high on. */
10274		} else if (eep_config.termination_lvd == 2) {
10275			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10276
10277			/* Enable manual control with low on / high on. */
10278		} else if (eep_config.termination_lvd == 3) {
10279			asc_dvc->cfg->termination = termination | TERM_LVD;
10280		} else {
10281			/*
10282			 * The EEPROM 'termination_lvd' field contains a bad value.
10283			 * Use automatic termination instead.
10284			 */
10285			asc_dvc->cfg->termination = termination;
10286			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10287		}
10288	}
10289
10290	return warn_code;
10291}
10292
10293/*
10294 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10295 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10296 * all of this is done.
10297 *
10298 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10299 *
10300 * For a non-fatal error return a warning code. If there are no warnings
10301 * then 0 is returned.
10302 *
10303 * Note: Chip is stopped on entry.
10304 */
10305static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10306{
10307	AdvPortAddr iop_base;
10308	ushort warn_code;
10309	ADVEEP_38C1600_CONFIG eep_config;
10310	uchar tid, termination;
10311	ushort sdtr_speed = 0;
10312
10313	iop_base = asc_dvc->iop_base;
10314
10315	warn_code = 0;
10316
10317	/*
10318	 * Read the board's EEPROM configuration.
10319	 *
10320	 * Set default values if a bad checksum is found.
10321	 */
10322	if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10323	    eep_config.check_sum) {
10324		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10325		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10326
10327		/*
10328		 * Set EEPROM default values.
10329		 */
10330		memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10331			sizeof(ADVEEP_38C1600_CONFIG));
10332
10333		if (PCI_FUNC(pdev->devfn) != 0) {
10334			u8 ints;
10335			/*
10336			 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10337			 * and old Mac system booting problem. The Expansion
10338			 * ROM must be disabled in Function 1 for these systems
10339			 */
10340			eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10341			/*
10342			 * Clear the INTAB (bit 11) if the GPIO 0 input
10343			 * indicates the Function 1 interrupt line is wired
10344			 * to INTB.
10345			 *
10346			 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10347			 *   1 - Function 1 interrupt line wired to INT A.
10348			 *   0 - Function 1 interrupt line wired to INT B.
10349			 *
10350			 * Note: Function 0 is always wired to INTA.
10351			 * Put all 5 GPIO bits in input mode and then read
10352			 * their input values.
10353			 */
10354			AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
10355			ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
10356			if ((ints & 0x01) == 0)
10357				eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
10358		}
10359
10360		/*
10361		 * Assume the 6 byte board serial number that was read from
10362		 * EEPROM is correct even if the EEPROM checksum failed.
10363		 */
10364		eep_config.serial_number_word3 =
10365			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10366		eep_config.serial_number_word2 =
10367			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10368		eep_config.serial_number_word1 =
10369			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10370
10371		AdvSet38C1600EEPConfig(iop_base, &eep_config);
10372	}
10373
10374	/*
10375	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10376	 * EEPROM configuration that was read.
10377	 *
10378	 * This is the mapping of EEPROM fields to Adv Library fields.
10379	 */
10380	asc_dvc->wdtr_able = eep_config.wdtr_able;
10381	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10382	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10383	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10384	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10385	asc_dvc->ppr_able = 0;
10386	asc_dvc->tagqng_able = eep_config.tagqng_able;
10387	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10388	asc_dvc->max_host_qng = eep_config.max_host_qng;
10389	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10390	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
10391	asc_dvc->start_motor = eep_config.start_motor;
10392	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10393	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10394	asc_dvc->no_scam = eep_config.scam_tolerant;
10395
10396	/*
10397	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10398	 * are set, then set an 'sdtr_able' bit for it.
10399	 */
10400	asc_dvc->sdtr_able = 0;
10401	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
10402		if (tid == 0) {
10403			sdtr_speed = asc_dvc->sdtr_speed1;
10404		} else if (tid == 4) {
10405			sdtr_speed = asc_dvc->sdtr_speed2;
10406		} else if (tid == 8) {
10407			sdtr_speed = asc_dvc->sdtr_speed3;
10408		} else if (tid == 12) {
10409			sdtr_speed = asc_dvc->sdtr_speed4;
10410		}
10411		if (sdtr_speed & ASC_MAX_TID) {
10412			asc_dvc->sdtr_able |= (1 << tid);
10413		}
10414		sdtr_speed >>= 4;
10415	}
10416
10417	/*
10418	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10419	 * maximum queuing (max. 63, min. 4).
10420	 */
10421	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10422		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10423	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10424		/* If the value is zero, assume it is uninitialized. */
10425		if (eep_config.max_host_qng == 0) {
10426			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10427		} else {
10428			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10429		}
10430	}
10431
10432	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10433		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10434	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10435		/* If the value is zero, assume it is uninitialized. */
10436		if (eep_config.max_dvc_qng == 0) {
10437			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10438		} else {
10439			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10440		}
10441	}
10442
10443	/*
10444	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10445	 * set 'max_dvc_qng' to 'max_host_qng'.
10446	 */
10447	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10448		eep_config.max_dvc_qng = eep_config.max_host_qng;
10449	}
10450
10451	/*
10452	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
10453	 * values based on possibly adjusted EEPROM values.
10454	 */
10455	asc_dvc->max_host_qng = eep_config.max_host_qng;
10456	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10457
10458	/*
10459	 * If the EEPROM 'termination' field is set to automatic (0), then set
10460	 * the ASC_DVC_CFG 'termination' field to automatic also.
10461	 *
10462	 * If the termination is specified with a non-zero 'termination'
10463	 * value check that a legal value is set and set the ASC_DVC_CFG
10464	 * 'termination' field appropriately.
10465	 */
10466	if (eep_config.termination_se == 0) {
10467		termination = 0;	/* auto termination for SE */
10468	} else {
10469		/* Enable manual control with low off / high off. */
10470		if (eep_config.termination_se == 1) {
10471			termination = 0;
10472
10473			/* Enable manual control with low off / high on. */
10474		} else if (eep_config.termination_se == 2) {
10475			termination = TERM_SE_HI;
10476
10477			/* Enable manual control with low on / high on. */
10478		} else if (eep_config.termination_se == 3) {
10479			termination = TERM_SE;
10480		} else {
10481			/*
10482			 * The EEPROM 'termination_se' field contains a bad value.
10483			 * Use automatic termination instead.
10484			 */
10485			termination = 0;
10486			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10487		}
10488	}
10489
10490	if (eep_config.termination_lvd == 0) {
10491		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
10492	} else {
10493		/* Enable manual control with low off / high off. */
10494		if (eep_config.termination_lvd == 1) {
10495			asc_dvc->cfg->termination = termination;
10496
10497			/* Enable manual control with low off / high on. */
10498		} else if (eep_config.termination_lvd == 2) {
10499			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10500
10501			/* Enable manual control with low on / high on. */
10502		} else if (eep_config.termination_lvd == 3) {
10503			asc_dvc->cfg->termination = termination | TERM_LVD;
10504		} else {
10505			/*
10506			 * The EEPROM 'termination_lvd' field contains a bad value.
10507			 * Use automatic termination instead.
10508			 */
10509			asc_dvc->cfg->termination = termination;
10510			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10511		}
10512	}
10513
10514	return warn_code;
10515}
10516
10517/*
10518 * Initialize the ADV_DVC_VAR structure.
10519 *
10520 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10521 *
10522 * For a non-fatal error return a warning code. If there are no warnings
10523 * then 0 is returned.
10524 */
10525static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10526{
10527	struct asc_board *board = shost_priv(shost);
10528	ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
10529	unsigned short warn_code = 0;
10530	AdvPortAddr iop_base = asc_dvc->iop_base;
10531	u16 cmd;
10532	int status;
10533
10534	asc_dvc->err_code = 0;
10535
10536	/*
10537	 * Save the state of the PCI Configuration Command Register
10538	 * "Parity Error Response Control" Bit. If the bit is clear (0),
10539	 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
10540	 * DMA parity errors.
10541	 */
10542	asc_dvc->cfg->control_flag = 0;
10543	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
10544	if ((cmd & PCI_COMMAND_PARITY) == 0)
10545		asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
10546
10547	asc_dvc->cfg->chip_version =
10548	    AdvGetChipVersion(iop_base, asc_dvc->bus_type);
10549
10550	ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
10551		 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
10552		 (ushort)ADV_CHIP_ID_BYTE);
10553
10554	ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
10555		 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
10556		 (ushort)ADV_CHIP_ID_WORD);
10557
10558	/*
10559	 * Reset the chip to start and allow register writes.
10560	 */
10561	if (AdvFindSignature(iop_base) == 0) {
10562		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10563		return ADV_ERROR;
10564	} else {
10565		/*
10566		 * The caller must set 'chip_type' to a valid setting.
10567		 */
10568		if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
10569		    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
10570		    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
10571			asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
10572			return ADV_ERROR;
10573		}
10574
10575		/*
10576		 * Reset Chip.
10577		 */
10578		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10579				     ADV_CTRL_REG_CMD_RESET);
10580		mdelay(100);
10581		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10582				     ADV_CTRL_REG_CMD_WR_IO_REG);
10583
10584		if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
10585			status = AdvInitFrom38C1600EEP(asc_dvc);
10586		} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10587			status = AdvInitFrom38C0800EEP(asc_dvc);
10588		} else {
10589			status = AdvInitFrom3550EEP(asc_dvc);
10590		}
10591		warn_code |= status;
10592	}
10593
10594	if (warn_code != 0)
10595		shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
10596
10597	if (asc_dvc->err_code)
10598		shost_printk(KERN_ERR, shost, "error code 0x%x\n",
10599				asc_dvc->err_code);
10600
10601	return asc_dvc->err_code;
10602}
10603#endif
10604
10605static const struct scsi_host_template advansys_template = {
10606	.proc_name = DRV_NAME,
10607#ifdef CONFIG_PROC_FS
10608	.show_info = advansys_show_info,
10609#endif
10610	.name = DRV_NAME,
10611	.info = advansys_info,
10612	.queuecommand = advansys_queuecommand,
10613	.eh_host_reset_handler = advansys_reset,
10614	.bios_param = advansys_biosparam,
10615	.slave_configure = advansys_slave_configure,
10616	.cmd_size = sizeof(struct advansys_cmd),
10617};
10618
10619static int advansys_wide_init_chip(struct Scsi_Host *shost)
10620{
10621	struct asc_board *board = shost_priv(shost);
10622	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10623	size_t sgblk_pool_size;
10624	int warn_code, err_code;
10625
10626	/*
10627	 * Allocate buffer carrier structures. The total size
10628	 * is about 8 KB, so allocate all at once.
10629	 */
10630	adv_dvc->carrier = dma_alloc_coherent(board->dev,
10631		ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL);
10632	ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier);
10633
10634	if (!adv_dvc->carrier)
10635		goto kmalloc_failed;
10636
10637	/*
10638	 * Allocate up to 'max_host_qng' request structures for the Wide
10639	 * board. The total size is about 16 KB, so allocate all at once.
10640	 * If the allocation fails decrement and try again.
10641	 */
10642	board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t);
10643	if (board->adv_reqp_size & 0x1f) {
10644		ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t));
10645		board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size);
10646	}
10647	board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size,
10648		&board->adv_reqp_addr, GFP_KERNEL);
10649
10650	if (!board->adv_reqp)
10651		goto kmalloc_failed;
10652
10653	ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp,
10654		adv_dvc->max_host_qng, board->adv_reqp_size);
10655
10656	/*
10657	 * Allocate up to ADV_TOT_SG_BLOCK request structures for
10658	 * the Wide board. Each structure is about 136 bytes.
10659	 */
10660	sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK;
10661	board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev,
10662						sgblk_pool_size, 32, 0);
10663
10664	ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK,
10665		sizeof(adv_sgblk_t), sgblk_pool_size);
10666
10667	if (!board->adv_sgblk_pool)
10668		goto kmalloc_failed;
10669
10670	if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
10671		ASC_DBG(2, "AdvInitAsc3550Driver()\n");
10672		warn_code = AdvInitAsc3550Driver(adv_dvc);
10673	} else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10674		ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
10675		warn_code = AdvInitAsc38C0800Driver(adv_dvc);
10676	} else {
10677		ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
10678		warn_code = AdvInitAsc38C1600Driver(adv_dvc);
10679	}
10680	err_code = adv_dvc->err_code;
10681
10682	if (warn_code || err_code) {
10683		shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
10684			"0x%x\n", warn_code, err_code);
10685	}
10686
10687	goto exit;
10688
10689 kmalloc_failed:
10690	shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
10691	err_code = ADV_ERROR;
10692 exit:
10693	return err_code;
10694}
10695
10696static void advansys_wide_free_mem(struct asc_board *board)
10697{
10698	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10699
10700	if (adv_dvc->carrier) {
10701		dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE,
10702				  adv_dvc->carrier, adv_dvc->carrier_addr);
10703		adv_dvc->carrier = NULL;
10704	}
10705	if (board->adv_reqp) {
10706		dma_free_coherent(board->dev, board->adv_reqp_size,
10707				  board->adv_reqp, board->adv_reqp_addr);
10708		board->adv_reqp = NULL;
10709	}
10710	if (board->adv_sgblk_pool) {
10711		dma_pool_destroy(board->adv_sgblk_pool);
10712		board->adv_sgblk_pool = NULL;
10713	}
10714}
10715
10716static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
10717				int bus_type)
10718{
10719	struct pci_dev *pdev;
10720	struct asc_board *boardp = shost_priv(shost);
10721	ASC_DVC_VAR *asc_dvc_varp = NULL;
10722	ADV_DVC_VAR *adv_dvc_varp = NULL;
10723	int share_irq, warn_code, ret;
10724
10725	pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
10726
10727	if (ASC_NARROW_BOARD(boardp)) {
10728		ASC_DBG(1, "narrow board\n");
10729		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
10730		asc_dvc_varp->bus_type = bus_type;
10731		asc_dvc_varp->drv_ptr = boardp;
10732		asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
10733		asc_dvc_varp->iop_base = iop;
10734	} else {
10735#ifdef CONFIG_PCI
10736		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
10737		adv_dvc_varp->drv_ptr = boardp;
10738		adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
10739		if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
10740			ASC_DBG(1, "wide board ASC-3550\n");
10741			adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
10742		} else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
10743			ASC_DBG(1, "wide board ASC-38C0800\n");
10744			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
10745		} else {
10746			ASC_DBG(1, "wide board ASC-38C1600\n");
10747			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
10748		}
10749
10750		boardp->asc_n_io_port = pci_resource_len(pdev, 1);
10751		boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
10752		if (!boardp->ioremap_addr) {
10753			shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
10754					"returned NULL\n",
10755					(long)pci_resource_start(pdev, 1),
10756					boardp->asc_n_io_port);
10757			ret = -ENODEV;
10758			goto err_shost;
10759		}
10760		adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
10761		ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
10762
10763		/*
10764		 * Even though it isn't used to access wide boards, other
10765		 * than for the debug line below, save I/O Port address so
10766		 * that it can be reported.
10767		 */
10768		boardp->ioport = iop;
10769
10770		ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
10771				(ushort)inp(iop + 1), (ushort)inpw(iop));
10772#endif /* CONFIG_PCI */
10773	}
10774
10775	if (ASC_NARROW_BOARD(boardp)) {
10776		/*
10777		 * Set the board bus type and PCI IRQ before
10778		 * calling AscInitGetConfig().
10779		 */
10780		switch (asc_dvc_varp->bus_type) {
10781#ifdef CONFIG_ISA
10782		case ASC_IS_VL:
10783			share_irq = 0;
10784			break;
10785		case ASC_IS_EISA:
10786			share_irq = IRQF_SHARED;
10787			break;
10788#endif /* CONFIG_ISA */
10789#ifdef CONFIG_PCI
10790		case ASC_IS_PCI:
10791			share_irq = IRQF_SHARED;
10792			break;
10793#endif /* CONFIG_PCI */
10794		default:
10795			shost_printk(KERN_ERR, shost, "unknown adapter type: "
10796					"%d\n", asc_dvc_varp->bus_type);
10797			share_irq = 0;
10798			break;
10799		}
10800
10801		/*
10802		 * NOTE: AscInitGetConfig() may change the board's
10803		 * bus_type value. The bus_type value should no
10804		 * longer be used. If the bus_type field must be
10805		 * referenced only use the bit-wise AND operator "&".
10806		 */
10807		ASC_DBG(2, "AscInitGetConfig()\n");
10808		ret = AscInitGetConfig(shost) ? -ENODEV : 0;
10809	} else {
10810#ifdef CONFIG_PCI
10811		/*
10812		 * For Wide boards set PCI information before calling
10813		 * AdvInitGetConfig().
10814		 */
10815		share_irq = IRQF_SHARED;
10816		ASC_DBG(2, "AdvInitGetConfig()\n");
10817
10818		ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
10819#else
10820		share_irq = 0;
10821		ret = -ENODEV;
10822#endif /* CONFIG_PCI */
10823	}
10824
10825	if (ret)
10826		goto err_unmap;
10827
10828	/*
10829	 * Save the EEPROM configuration so that it can be displayed
10830	 * from /proc/scsi/advansys/[0...].
10831	 */
10832	if (ASC_NARROW_BOARD(boardp)) {
10833
10834		ASCEEP_CONFIG *ep;
10835
10836		/*
10837		 * Set the adapter's target id bit in the 'init_tidmask' field.
10838		 */
10839		boardp->init_tidmask |=
10840		    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
10841
10842		/*
10843		 * Save EEPROM settings for the board.
10844		 */
10845		ep = &boardp->eep_config.asc_eep;
10846
10847		ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
10848		ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
10849		ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
10850		ASC_EEP_SET_DMA_SPD(ep, ASC_DEF_ISA_DMA_SPEED);
10851		ep->start_motor = asc_dvc_varp->start_motor;
10852		ep->cntl = asc_dvc_varp->dvc_cntl;
10853		ep->no_scam = asc_dvc_varp->no_scam;
10854		ep->max_total_qng = asc_dvc_varp->max_total_qng;
10855		ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
10856		/* 'max_tag_qng' is set to the same value for every device. */
10857		ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
10858		ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
10859		ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
10860		ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
10861		ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
10862		ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
10863		ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
10864
10865		/*
10866		 * Modify board configuration.
10867		 */
10868		ASC_DBG(2, "AscInitSetConfig()\n");
10869		ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
10870		if (ret)
10871			goto err_unmap;
10872	} else {
10873		ADVEEP_3550_CONFIG *ep_3550;
10874		ADVEEP_38C0800_CONFIG *ep_38C0800;
10875		ADVEEP_38C1600_CONFIG *ep_38C1600;
10876
10877		/*
10878		 * Save Wide EEP Configuration Information.
10879		 */
10880		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
10881			ep_3550 = &boardp->eep_config.adv_3550_eep;
10882
10883			ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
10884			ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
10885			ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
10886			ep_3550->termination = adv_dvc_varp->cfg->termination;
10887			ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
10888			ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
10889			ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
10890			ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
10891			ep_3550->ultra_able = adv_dvc_varp->ultra_able;
10892			ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
10893			ep_3550->start_motor = adv_dvc_varp->start_motor;
10894			ep_3550->scsi_reset_delay =
10895			    adv_dvc_varp->scsi_reset_wait;
10896			ep_3550->serial_number_word1 =
10897			    adv_dvc_varp->cfg->serial1;
10898			ep_3550->serial_number_word2 =
10899			    adv_dvc_varp->cfg->serial2;
10900			ep_3550->serial_number_word3 =
10901			    adv_dvc_varp->cfg->serial3;
10902		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
10903			ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
10904
10905			ep_38C0800->adapter_scsi_id =
10906			    adv_dvc_varp->chip_scsi_id;
10907			ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
10908			ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
10909			ep_38C0800->termination_lvd =
10910			    adv_dvc_varp->cfg->termination;
10911			ep_38C0800->disc_enable =
10912			    adv_dvc_varp->cfg->disc_enable;
10913			ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
10914			ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
10915			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
10916			ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
10917			ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
10918			ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
10919			ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
10920			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
10921			ep_38C0800->start_motor = adv_dvc_varp->start_motor;
10922			ep_38C0800->scsi_reset_delay =
10923			    adv_dvc_varp->scsi_reset_wait;
10924			ep_38C0800->serial_number_word1 =
10925			    adv_dvc_varp->cfg->serial1;
10926			ep_38C0800->serial_number_word2 =
10927			    adv_dvc_varp->cfg->serial2;
10928			ep_38C0800->serial_number_word3 =
10929			    adv_dvc_varp->cfg->serial3;
10930		} else {
10931			ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
10932
10933			ep_38C1600->adapter_scsi_id =
10934			    adv_dvc_varp->chip_scsi_id;
10935			ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
10936			ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
10937			ep_38C1600->termination_lvd =
10938			    adv_dvc_varp->cfg->termination;
10939			ep_38C1600->disc_enable =
10940			    adv_dvc_varp->cfg->disc_enable;
10941			ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
10942			ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
10943			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
10944			ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
10945			ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
10946			ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
10947			ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
10948			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
10949			ep_38C1600->start_motor = adv_dvc_varp->start_motor;
10950			ep_38C1600->scsi_reset_delay =
10951			    adv_dvc_varp->scsi_reset_wait;
10952			ep_38C1600->serial_number_word1 =
10953			    adv_dvc_varp->cfg->serial1;
10954			ep_38C1600->serial_number_word2 =
10955			    adv_dvc_varp->cfg->serial2;
10956			ep_38C1600->serial_number_word3 =
10957			    adv_dvc_varp->cfg->serial3;
10958		}
10959
10960		/*
10961		 * Set the adapter's target id bit in the 'init_tidmask' field.
10962		 */
10963		boardp->init_tidmask |=
10964		    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
10965	}
10966
10967	/*
10968	 * Channels are numbered beginning with 0. For AdvanSys one host
10969	 * structure supports one channel. Multi-channel boards have a
10970	 * separate host structure for each channel.
10971	 */
10972	shost->max_channel = 0;
10973	if (ASC_NARROW_BOARD(boardp)) {
10974		shost->max_id = ASC_MAX_TID + 1;
10975		shost->max_lun = ASC_MAX_LUN + 1;
10976		shost->max_cmd_len = ASC_MAX_CDB_LEN;
10977
10978		shost->io_port = asc_dvc_varp->iop_base;
10979		boardp->asc_n_io_port = ASC_IOADR_GAP;
10980		shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
10981
10982		/* Set maximum number of queues the adapter can handle. */
10983		shost->can_queue = asc_dvc_varp->max_total_qng;
10984	} else {
10985		shost->max_id = ADV_MAX_TID + 1;
10986		shost->max_lun = ADV_MAX_LUN + 1;
10987		shost->max_cmd_len = ADV_MAX_CDB_LEN;
10988
10989		/*
10990		 * Save the I/O Port address and length even though
10991		 * I/O ports are not used to access Wide boards.
10992		 * Instead the Wide boards are accessed with
10993		 * PCI Memory Mapped I/O.
10994		 */
10995		shost->io_port = iop;
10996
10997		shost->this_id = adv_dvc_varp->chip_scsi_id;
10998
10999		/* Set maximum number of queues the adapter can handle. */
11000		shost->can_queue = adv_dvc_varp->max_host_qng;
11001	}
11002
11003	/*
11004	 * Set the maximum number of scatter-gather elements the
11005	 * adapter can handle.
11006	 */
11007	if (ASC_NARROW_BOARD(boardp)) {
11008		/*
11009		 * Allow two commands with 'sg_tablesize' scatter-gather
11010		 * elements to be executed simultaneously. This value is
11011		 * the theoretical hardware limit. It may be decreased
11012		 * below.
11013		 */
11014		shost->sg_tablesize =
11015		    (((asc_dvc_varp->max_total_qng - 2) / 2) *
11016		     ASC_SG_LIST_PER_Q) + 1;
11017	} else {
11018		shost->sg_tablesize = ADV_MAX_SG_LIST;
11019	}
11020
11021	/*
11022	 * The value of 'sg_tablesize' can not exceed the SCSI
11023	 * mid-level driver definition of SG_ALL. SG_ALL also
11024	 * must not be exceeded, because it is used to define the
11025	 * size of the scatter-gather table in 'struct asc_sg_head'.
11026	 */
11027	if (shost->sg_tablesize > SG_ALL) {
11028		shost->sg_tablesize = SG_ALL;
11029	}
11030
11031	ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11032
11033	/* BIOS start address. */
11034	if (ASC_NARROW_BOARD(boardp)) {
11035		shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11036						    asc_dvc_varp->bus_type);
11037	} else {
11038		/*
11039		 * Fill-in BIOS board variables. The Wide BIOS saves
11040		 * information in LRAM that is used by the driver.
11041		 */
11042		AdvReadWordLram(adv_dvc_varp->iop_base,
11043				BIOS_SIGNATURE, boardp->bios_signature);
11044		AdvReadWordLram(adv_dvc_varp->iop_base,
11045				BIOS_VERSION, boardp->bios_version);
11046		AdvReadWordLram(adv_dvc_varp->iop_base,
11047				BIOS_CODESEG, boardp->bios_codeseg);
11048		AdvReadWordLram(adv_dvc_varp->iop_base,
11049				BIOS_CODELEN, boardp->bios_codelen);
11050
11051		ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11052			 boardp->bios_signature, boardp->bios_version);
11053
11054		ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11055			 boardp->bios_codeseg, boardp->bios_codelen);
11056
11057		/*
11058		 * If the BIOS saved a valid signature, then fill in
11059		 * the BIOS code segment base address.
11060		 */
11061		if (boardp->bios_signature == 0x55AA) {
11062			/*
11063			 * Convert x86 realmode code segment to a linear
11064			 * address by shifting left 4.
11065			 */
11066			shost->base = ((ulong)boardp->bios_codeseg << 4);
11067		} else {
11068			shost->base = 0;
11069		}
11070	}
11071
11072	/*
11073	 * Register Board Resources - I/O Port, DMA, IRQ
11074	 */
11075
11076	/* Register DMA Channel for Narrow boards. */
11077	shost->dma_channel = NO_ISA_DMA;	/* Default to no ISA DMA. */
11078
11079	/* Register IRQ Number. */
11080	ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11081
11082	ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11083			  DRV_NAME, shost);
11084
11085	if (ret) {
11086		if (ret == -EBUSY) {
11087			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11088					"already in use\n", boardp->irq);
11089		} else if (ret == -EINVAL) {
11090			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11091					"not valid\n", boardp->irq);
11092		} else {
11093			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11094					"failed with %d\n", boardp->irq, ret);
11095		}
11096		goto err_unmap;
11097	}
11098
11099	/*
11100	 * Initialize board RISC chip and enable interrupts.
11101	 */
11102	if (ASC_NARROW_BOARD(boardp)) {
11103		ASC_DBG(2, "AscInitAsc1000Driver()\n");
11104
11105		asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11106		if (!asc_dvc_varp->overrun_buf) {
11107			ret = -ENOMEM;
11108			goto err_free_irq;
11109		}
11110		warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11111
11112		if (warn_code || asc_dvc_varp->err_code) {
11113			shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11114					"warn 0x%x, error 0x%x\n",
11115					asc_dvc_varp->init_state, warn_code,
11116					asc_dvc_varp->err_code);
11117			if (!asc_dvc_varp->overrun_dma) {
11118				ret = -ENODEV;
11119				goto err_free_mem;
11120			}
11121		}
11122	} else {
11123		if (advansys_wide_init_chip(shost)) {
11124			ret = -ENODEV;
11125			goto err_free_mem;
11126		}
11127	}
11128
11129	ASC_DBG_PRT_SCSI_HOST(2, shost);
11130
11131	ret = scsi_add_host(shost, boardp->dev);
11132	if (ret)
11133		goto err_free_mem;
11134
11135	scsi_scan_host(shost);
11136	return 0;
11137
11138 err_free_mem:
11139	if (ASC_NARROW_BOARD(boardp)) {
11140		if (asc_dvc_varp->overrun_dma)
11141			dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11142					 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11143		kfree(asc_dvc_varp->overrun_buf);
11144	} else
11145		advansys_wide_free_mem(boardp);
11146 err_free_irq:
11147	free_irq(boardp->irq, shost);
11148 err_unmap:
11149	if (boardp->ioremap_addr)
11150		iounmap(boardp->ioremap_addr);
11151#ifdef CONFIG_PCI
11152 err_shost:
11153#endif
11154	return ret;
11155}
11156
11157/*
11158 * advansys_release()
11159 *
11160 * Release resources allocated for a single AdvanSys adapter.
11161 */
11162static int advansys_release(struct Scsi_Host *shost)
11163{
11164	struct asc_board *board = shost_priv(shost);
11165	ASC_DBG(1, "begin\n");
11166	scsi_remove_host(shost);
11167	free_irq(board->irq, shost);
11168
11169	if (ASC_NARROW_BOARD(board)) {
11170		dma_unmap_single(board->dev,
11171					board->dvc_var.asc_dvc_var.overrun_dma,
11172					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11173		kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11174	} else {
11175		iounmap(board->ioremap_addr);
11176		advansys_wide_free_mem(board);
11177	}
11178	scsi_host_put(shost);
11179	ASC_DBG(1, "end\n");
11180	return 0;
11181}
11182
11183#define ASC_IOADR_TABLE_MAX_IX  11
11184
11185static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11186	0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11187	0x0210, 0x0230, 0x0250, 0x0330
11188};
11189
11190static void advansys_vlb_remove(struct device *dev, unsigned int id)
11191{
11192	int ioport = _asc_def_iop_base[id];
11193	advansys_release(dev_get_drvdata(dev));
11194	release_region(ioport, ASC_IOADR_GAP);
11195}
11196
11197/*
11198 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
11199 * 000: invalid
11200 * 001: 10
11201 * 010: 11
11202 * 011: 12
11203 * 100: invalid
11204 * 101: 14
11205 * 110: 15
11206 * 111: invalid
11207 */
11208static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11209{
11210	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11211	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
11212	if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
11213		return 0;
11214	return chip_irq;
11215}
11216
11217static int advansys_vlb_probe(struct device *dev, unsigned int id)
11218{
11219	int err = -ENODEV;
11220	PortAddr iop_base = _asc_def_iop_base[id];
11221	struct Scsi_Host *shost;
11222	struct asc_board *board;
11223
11224	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11225		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11226		return -ENODEV;
11227	}
11228	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11229	if (!AscFindSignature(iop_base))
11230		goto release_region;
11231	/*
11232	 * I don't think this condition can actually happen, but the old
11233	 * driver did it, and the chances of finding a VLB setup in 2007
11234	 * to do testing with is slight to none.
11235	 */
11236	if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
11237		goto release_region;
11238
11239	err = -ENOMEM;
11240	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11241	if (!shost)
11242		goto release_region;
11243
11244	board = shost_priv(shost);
11245	board->irq = advansys_vlb_irq_no(iop_base);
11246	board->dev = dev;
11247	board->shost = shost;
11248
11249	err = advansys_board_found(shost, iop_base, ASC_IS_VL);
11250	if (err)
11251		goto free_host;
11252
11253	dev_set_drvdata(dev, shost);
11254	return 0;
11255
11256 free_host:
11257	scsi_host_put(shost);
11258 release_region:
11259	release_region(iop_base, ASC_IOADR_GAP);
11260	return -ENODEV;
11261}
11262
11263static struct isa_driver advansys_vlb_driver = {
11264	.probe		= advansys_vlb_probe,
11265	.remove		= advansys_vlb_remove,
11266	.driver = {
11267		.owner	= THIS_MODULE,
11268		.name	= "advansys_vlb",
11269	},
11270};
11271
11272static struct eisa_device_id advansys_eisa_table[] = {
11273	{ "ABP7401" },
11274	{ "ABP7501" },
11275	{ "" }
11276};
11277
11278MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
11279
11280/*
11281 * EISA is a little more tricky than PCI; each EISA device may have two
11282 * channels, and this driver is written to make each channel its own Scsi_Host
11283 */
11284struct eisa_scsi_data {
11285	struct Scsi_Host *host[2];
11286};
11287
11288/*
11289 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
11290 * 000: 10
11291 * 001: 11
11292 * 010: 12
11293 * 011: invalid
11294 * 100: 14
11295 * 101: 15
11296 * 110: invalid
11297 * 111: invalid
11298 */
11299static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
11300{
11301	unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
11302	unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
11303	if ((chip_irq == 13) || (chip_irq > 15))
11304		return 0;
11305	return chip_irq;
11306}
11307
11308static int advansys_eisa_probe(struct device *dev)
11309{
11310	int i, ioport, irq = 0;
11311	int err;
11312	struct eisa_device *edev = to_eisa_device(dev);
11313	struct eisa_scsi_data *data;
11314
11315	err = -ENOMEM;
11316	data = kzalloc(sizeof(*data), GFP_KERNEL);
11317	if (!data)
11318		goto fail;
11319	ioport = edev->base_addr + 0xc30;
11320
11321	err = -ENODEV;
11322	for (i = 0; i < 2; i++, ioport += 0x20) {
11323		struct asc_board *board;
11324		struct Scsi_Host *shost;
11325		if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
11326			printk(KERN_WARNING "Region %x-%x busy\n", ioport,
11327			       ioport + ASC_IOADR_GAP - 1);
11328			continue;
11329		}
11330		if (!AscFindSignature(ioport)) {
11331			release_region(ioport, ASC_IOADR_GAP);
11332			continue;
11333		}
11334
11335		/*
11336		 * I don't know why we need to do this for EISA chips, but
11337		 * not for any others.  It looks to be equivalent to
11338		 * AscGetChipCfgMsw, but I may have overlooked something,
11339		 * so I'm not converting it until I get an EISA board to
11340		 * test with.
11341		 */
11342		inw(ioport + 4);
11343
11344		if (!irq)
11345			irq = advansys_eisa_irq_no(edev);
11346
11347		err = -ENOMEM;
11348		shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11349		if (!shost)
11350			goto release_region;
11351
11352		board = shost_priv(shost);
11353		board->irq = irq;
11354		board->dev = dev;
11355		board->shost = shost;
11356
11357		err = advansys_board_found(shost, ioport, ASC_IS_EISA);
11358		if (!err) {
11359			data->host[i] = shost;
11360			continue;
11361		}
11362
11363		scsi_host_put(shost);
11364 release_region:
11365		release_region(ioport, ASC_IOADR_GAP);
11366		break;
11367	}
11368
11369	if (err)
11370		goto free_data;
11371	dev_set_drvdata(dev, data);
11372	return 0;
11373
11374 free_data:
11375	kfree(data->host[0]);
11376	kfree(data->host[1]);
11377	kfree(data);
11378 fail:
11379	return err;
11380}
11381
11382static int advansys_eisa_remove(struct device *dev)
11383{
11384	int i;
11385	struct eisa_scsi_data *data = dev_get_drvdata(dev);
11386
11387	for (i = 0; i < 2; i++) {
11388		int ioport;
11389		struct Scsi_Host *shost = data->host[i];
11390		if (!shost)
11391			continue;
11392		ioport = shost->io_port;
11393		advansys_release(shost);
11394		release_region(ioport, ASC_IOADR_GAP);
11395	}
11396
11397	kfree(data);
11398	return 0;
11399}
11400
11401static struct eisa_driver advansys_eisa_driver = {
11402	.id_table =		advansys_eisa_table,
11403	.driver = {
11404		.name =		DRV_NAME,
11405		.probe =	advansys_eisa_probe,
11406		.remove =	advansys_eisa_remove,
11407	}
11408};
11409
11410/* PCI Devices supported by this driver */
11411static struct pci_device_id advansys_pci_tbl[] = {
11412	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
11413	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11414	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
11415	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11416	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
11417	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11418	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
11419	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11420	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
11421	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11422	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
11423	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11424	{}
11425};
11426
11427MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
11428
11429static void advansys_set_latency(struct pci_dev *pdev)
11430{
11431	if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
11432	    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
11433		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
11434	} else {
11435		u8 latency;
11436		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
11437		if (latency < 0x20)
11438			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
11439	}
11440}
11441
11442static int advansys_pci_probe(struct pci_dev *pdev,
11443			      const struct pci_device_id *ent)
11444{
11445	int err, ioport;
11446	struct Scsi_Host *shost;
11447	struct asc_board *board;
11448
11449	err = pci_enable_device(pdev);
11450	if (err)
11451		goto fail;
11452	err = pci_request_regions(pdev, DRV_NAME);
11453	if (err)
11454		goto disable_device;
11455	pci_set_master(pdev);
11456	advansys_set_latency(pdev);
11457
11458	err = -ENODEV;
11459	if (pci_resource_len(pdev, 0) == 0)
11460		goto release_region;
11461
11462	ioport = pci_resource_start(pdev, 0);
11463
11464	err = -ENOMEM;
11465	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11466	if (!shost)
11467		goto release_region;
11468
11469	board = shost_priv(shost);
11470	board->irq = pdev->irq;
11471	board->dev = &pdev->dev;
11472	board->shost = shost;
11473
11474	if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
11475	    pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
11476	    pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
11477		board->flags |= ASC_IS_WIDE_BOARD;
11478	}
11479
11480	err = advansys_board_found(shost, ioport, ASC_IS_PCI);
11481	if (err)
11482		goto free_host;
11483
11484	pci_set_drvdata(pdev, shost);
11485	return 0;
11486
11487 free_host:
11488	scsi_host_put(shost);
11489 release_region:
11490	pci_release_regions(pdev);
11491 disable_device:
11492	pci_disable_device(pdev);
11493 fail:
11494	return err;
11495}
11496
11497static void advansys_pci_remove(struct pci_dev *pdev)
11498{
11499	advansys_release(pci_get_drvdata(pdev));
11500	pci_release_regions(pdev);
11501	pci_disable_device(pdev);
11502}
11503
11504static struct pci_driver advansys_pci_driver = {
11505	.name =		DRV_NAME,
11506	.id_table =	advansys_pci_tbl,
11507	.probe =	advansys_pci_probe,
11508	.remove =	advansys_pci_remove,
11509};
11510
11511static int __init advansys_init(void)
11512{
11513	int error;
11514
11515	error = isa_register_driver(&advansys_vlb_driver,
11516				    ASC_IOADR_TABLE_MAX_IX);
11517	if (error)
11518		goto fail;
11519
11520	error = eisa_driver_register(&advansys_eisa_driver);
11521	if (error)
11522		goto unregister_vlb;
11523
11524	error = pci_register_driver(&advansys_pci_driver);
11525	if (error)
11526		goto unregister_eisa;
11527
11528	return 0;
11529
11530 unregister_eisa:
11531	eisa_driver_unregister(&advansys_eisa_driver);
11532 unregister_vlb:
11533	isa_unregister_driver(&advansys_vlb_driver);
11534 fail:
11535	return error;
11536}
11537
11538static void __exit advansys_exit(void)
11539{
11540	pci_unregister_driver(&advansys_pci_driver);
11541	eisa_driver_unregister(&advansys_eisa_driver);
11542	isa_unregister_driver(&advansys_vlb_driver);
11543}
11544
11545module_init(advansys_init);
11546module_exit(advansys_exit);
11547
11548MODULE_LICENSE("GPL");
11549MODULE_FIRMWARE("advansys/mcode.bin");
11550MODULE_FIRMWARE("advansys/3550.bin");
11551MODULE_FIRMWARE("advansys/38C0800.bin");
11552MODULE_FIRMWARE("advansys/38C1600.bin");
11553