1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *	Adaptec AAC series RAID controller driver
4 *	(c) Copyright 2001 Red Hat Inc.
5 *
6 * based on the old aacraid driver that is..
7 * Adaptec aacraid device driver for Linux.
8 *
9 * Copyright (c) 2000-2010 Adaptec, Inc.
10 *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11 *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12 *
13 * Module Name:
14 *  dpcsup.c
15 *
16 * Abstract: All DPC processing routines for the cyclone board occur here.
17 */
18
19#include <linux/kernel.h>
20#include <linux/init.h>
21#include <linux/types.h>
22#include <linux/spinlock.h>
23#include <linux/slab.h>
24#include <linux/completion.h>
25#include <linux/blkdev.h>
26
27#include "aacraid.h"
28
29/**
30 *	aac_response_normal	-	Handle command replies
31 *	@q: Queue to read from
32 *
33 *	This DPC routine will be run when the adapter interrupts us to let us
34 *	know there is a response on our normal priority queue. We will pull off
35 *	all QE there are and wake up all the waiters before exiting. We will
36 *	take a spinlock out on the queue before operating on it.
37 */
38
39unsigned int aac_response_normal(struct aac_queue * q)
40{
41	struct aac_dev * dev = q->dev;
42	struct aac_entry *entry;
43	struct hw_fib * hwfib;
44	struct fib * fib;
45	int consumed = 0;
46	unsigned long flags, mflags;
47
48	spin_lock_irqsave(q->lock, flags);
49	/*
50	 *	Keep pulling response QEs off the response queue and waking
51	 *	up the waiters until there are no more QEs. We then return
52	 *	back to the system. If no response was requested we just
53	 *	deallocate the Fib here and continue.
54	 */
55	while(aac_consumer_get(dev, q, &entry))
56	{
57		int fast;
58		u32 index = le32_to_cpu(entry->addr);
59		fast = index & 0x01;
60		fib = &dev->fibs[index >> 2];
61		hwfib = fib->hw_fib_va;
62
63		aac_consumer_free(dev, q, HostNormRespQueue);
64		/*
65		 *	Remove this fib from the Outstanding I/O queue.
66		 *	But only if it has not already been timed out.
67		 *
68		 *	If the fib has been timed out already, then just
69		 *	continue. The caller has already been notified that
70		 *	the fib timed out.
71		 */
72		atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
73
74		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
75			spin_unlock_irqrestore(q->lock, flags);
76			aac_fib_complete(fib);
77			aac_fib_free(fib);
78			spin_lock_irqsave(q->lock, flags);
79			continue;
80		}
81		spin_unlock_irqrestore(q->lock, flags);
82
83		if (fast) {
84			/*
85			 *	Doctor the fib
86			 */
87			*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
88			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
89			fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
90		}
91
92		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
93
94		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
95		{
96			__le32 *pstatus = (__le32 *)hwfib->data;
97			if (*pstatus & cpu_to_le32(0xffff0000))
98				*pstatus = cpu_to_le32(ST_OK);
99		}
100		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
101		{
102			if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected)) {
103				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
104			} else {
105				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
106			}
107			/*
108			 *	NOTE:  we cannot touch the fib after this
109			 *	    call, because it may have been deallocated.
110			 */
111			fib->callback(fib->callback_data, fib);
112		} else {
113			unsigned long flagv;
114			spin_lock_irqsave(&fib->event_lock, flagv);
115			if (!fib->done) {
116				fib->done = 1;
117				complete(&fib->event_wait);
118			}
119			spin_unlock_irqrestore(&fib->event_lock, flagv);
120
121			spin_lock_irqsave(&dev->manage_lock, mflags);
122			dev->management_fib_count--;
123			spin_unlock_irqrestore(&dev->manage_lock, mflags);
124
125			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
126			if (fib->done == 2) {
127				spin_lock_irqsave(&fib->event_lock, flagv);
128				fib->done = 0;
129				spin_unlock_irqrestore(&fib->event_lock, flagv);
130				aac_fib_complete(fib);
131				aac_fib_free(fib);
132			}
133		}
134		consumed++;
135		spin_lock_irqsave(q->lock, flags);
136	}
137
138	if (consumed > aac_config.peak_fibs)
139		aac_config.peak_fibs = consumed;
140	if (consumed == 0)
141		aac_config.zero_fibs++;
142
143	spin_unlock_irqrestore(q->lock, flags);
144	return 0;
145}
146
147
148/**
149 *	aac_command_normal	-	handle commands
150 *	@q: queue to process
151 *
152 *	This DPC routine will be queued when the adapter interrupts us to
153 *	let us know there is a command on our normal priority queue. We will
154 *	pull off all QE there are and wake up all the waiters before exiting.
155 *	We will take a spinlock out on the queue before operating on it.
156 */
157
158unsigned int aac_command_normal(struct aac_queue *q)
159{
160	struct aac_dev * dev = q->dev;
161	struct aac_entry *entry;
162	unsigned long flags;
163
164	spin_lock_irqsave(q->lock, flags);
165
166	/*
167	 *	Keep pulling response QEs off the response queue and waking
168	 *	up the waiters until there are no more QEs. We then return
169	 *	back to the system.
170	 */
171	while(aac_consumer_get(dev, q, &entry))
172	{
173		struct fib fibctx;
174		struct hw_fib * hw_fib;
175		u32 index;
176		struct fib *fib = &fibctx;
177
178		index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
179		hw_fib = &dev->aif_base_va[index];
180
181		/*
182		 *	Allocate a FIB at all costs. For non queued stuff
183		 *	we can just use the stack so we are happy. We need
184		 *	a fib object in order to manage the linked lists
185		 */
186		if (dev->aif_thread)
187			if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
188				fib = &fibctx;
189
190		memset(fib, 0, sizeof(struct fib));
191		INIT_LIST_HEAD(&fib->fiblink);
192		fib->type = FSAFS_NTC_FIB_CONTEXT;
193		fib->size = sizeof(struct fib);
194		fib->hw_fib_va = hw_fib;
195		fib->data = hw_fib->data;
196		fib->dev = dev;
197
198
199		if (dev->aif_thread && fib != &fibctx) {
200		        list_add_tail(&fib->fiblink, &q->cmdq);
201	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
202		        wake_up_interruptible(&q->cmdready);
203		} else {
204	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
205			spin_unlock_irqrestore(q->lock, flags);
206			/*
207			 *	Set the status of this FIB
208			 */
209			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
210			aac_fib_adapter_complete(fib, sizeof(u32));
211			spin_lock_irqsave(q->lock, flags);
212		}
213	}
214	spin_unlock_irqrestore(q->lock, flags);
215	return 0;
216}
217
218/*
219 *
220 * aac_aif_callback
221 * @context: the context set in the fib - here it is scsi cmd
222 * @fibptr: pointer to the fib
223 *
224 * Handles the AIFs - new method (SRC)
225 *
226 */
227
228static void aac_aif_callback(void *context, struct fib * fibptr)
229{
230	struct fib *fibctx;
231	struct aac_dev *dev;
232	struct aac_aifcmd *cmd;
233
234	fibctx = (struct fib *)context;
235	BUG_ON(fibptr == NULL);
236	dev = fibptr->dev;
237
238	if ((fibptr->hw_fib_va->header.XferState &
239	    cpu_to_le32(NoMoreAifDataAvailable)) ||
240		dev->sa_firmware) {
241		aac_fib_complete(fibptr);
242		aac_fib_free(fibptr);
243		return;
244	}
245
246	aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va);
247
248	aac_fib_init(fibctx);
249	cmd = (struct aac_aifcmd *) fib_data(fibctx);
250	cmd->command = cpu_to_le32(AifReqEvent);
251
252	aac_fib_send(AifRequest,
253		fibctx,
254		sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
255		FsaNormal,
256		0, 1,
257		(fib_callback)aac_aif_callback, fibctx);
258}
259
260
261/*
262 *	aac_intr_normal	-	Handle command replies
263 *	@dev: Device
264 *	@index: completion reference
265 *
266 *	This DPC routine will be run when the adapter interrupts us to let us
267 *	know there is a response on our normal priority queue. We will pull off
268 *	all QE there are and wake up all the waiters before exiting.
269 */
270unsigned int aac_intr_normal(struct aac_dev *dev, u32 index, int isAif,
271	int isFastResponse, struct hw_fib *aif_fib)
272{
273	unsigned long mflags;
274	dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index));
275	if (isAif == 1) {	/* AIF - common */
276		struct hw_fib * hw_fib;
277		struct fib * fib;
278		struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
279		unsigned long flags;
280
281		/*
282		 *	Allocate a FIB. For non queued stuff we can just use
283		 * the stack so we are happy. We need a fib object in order to
284		 * manage the linked lists.
285		 */
286		if ((!dev->aif_thread)
287		 || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC))))
288			return 1;
289		if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
290			kfree (fib);
291			return 1;
292		}
293		if (dev->sa_firmware) {
294			fib->hbacmd_size = index;	/* store event type */
295		} else if (aif_fib != NULL) {
296			memcpy(hw_fib, aif_fib, sizeof(struct hw_fib));
297		} else {
298			memcpy(hw_fib, (struct hw_fib *)
299				(((uintptr_t)(dev->regs.sa)) + index),
300				sizeof(struct hw_fib));
301		}
302		INIT_LIST_HEAD(&fib->fiblink);
303		fib->type = FSAFS_NTC_FIB_CONTEXT;
304		fib->size = sizeof(struct fib);
305		fib->hw_fib_va = hw_fib;
306		fib->data = hw_fib->data;
307		fib->dev = dev;
308
309		spin_lock_irqsave(q->lock, flags);
310		list_add_tail(&fib->fiblink, &q->cmdq);
311	        wake_up_interruptible(&q->cmdready);
312		spin_unlock_irqrestore(q->lock, flags);
313		return 1;
314	} else if (isAif == 2) {	/* AIF - new (SRC) */
315		struct fib *fibctx;
316		struct aac_aifcmd *cmd;
317
318		fibctx = aac_fib_alloc(dev);
319		if (!fibctx)
320			return 1;
321		aac_fib_init(fibctx);
322
323		cmd = (struct aac_aifcmd *) fib_data(fibctx);
324		cmd->command = cpu_to_le32(AifReqEvent);
325
326		return aac_fib_send(AifRequest,
327			fibctx,
328			sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
329			FsaNormal,
330			0, 1,
331			(fib_callback)aac_aif_callback, fibctx);
332	} else {
333		struct fib *fib = &dev->fibs[index];
334		int start_callback = 0;
335
336		/*
337		 *	Remove this fib from the Outstanding I/O queue.
338		 *	But only if it has not already been timed out.
339		 *
340		 *	If the fib has been timed out already, then just
341		 *	continue. The caller has already been notified that
342		 *	the fib timed out.
343		 */
344		atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
345
346		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
347			aac_fib_complete(fib);
348			aac_fib_free(fib);
349			return 0;
350		}
351
352		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
353
354		if (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
355
356			if (isFastResponse)
357				fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
358
359			if (fib->callback) {
360				start_callback = 1;
361			} else {
362				unsigned long flagv;
363				int completed = 0;
364
365				dprintk((KERN_INFO "event_wait up\n"));
366				spin_lock_irqsave(&fib->event_lock, flagv);
367				if (fib->done == 2) {
368					fib->done = 1;
369					completed = 1;
370				} else {
371					fib->done = 1;
372					complete(&fib->event_wait);
373				}
374				spin_unlock_irqrestore(&fib->event_lock, flagv);
375
376				spin_lock_irqsave(&dev->manage_lock, mflags);
377				dev->management_fib_count--;
378				spin_unlock_irqrestore(&dev->manage_lock,
379					mflags);
380
381				FIB_COUNTER_INCREMENT(aac_config.NativeRecved);
382				if (completed)
383					aac_fib_complete(fib);
384			}
385		} else {
386			struct hw_fib *hwfib = fib->hw_fib_va;
387
388			if (isFastResponse) {
389				/* Doctor the fib */
390				*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
391				hwfib->header.XferState |=
392					cpu_to_le32(AdapterProcessed);
393				fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
394			}
395
396			if (hwfib->header.Command ==
397				cpu_to_le16(NuFileSystem)) {
398				__le32 *pstatus = (__le32 *)hwfib->data;
399
400				if (*pstatus & cpu_to_le32(0xffff0000))
401					*pstatus = cpu_to_le32(ST_OK);
402			}
403			if (hwfib->header.XferState &
404				cpu_to_le32(NoResponseExpected | Async)) {
405				if (hwfib->header.XferState & cpu_to_le32(
406					NoResponseExpected)) {
407					FIB_COUNTER_INCREMENT(
408						aac_config.NoResponseRecved);
409				} else {
410					FIB_COUNTER_INCREMENT(
411						aac_config.AsyncRecved);
412				}
413				start_callback = 1;
414			} else {
415				unsigned long flagv;
416				int completed = 0;
417
418				dprintk((KERN_INFO "event_wait up\n"));
419				spin_lock_irqsave(&fib->event_lock, flagv);
420				if (fib->done == 2) {
421					fib->done = 1;
422					completed = 1;
423				} else {
424					fib->done = 1;
425					complete(&fib->event_wait);
426				}
427				spin_unlock_irqrestore(&fib->event_lock, flagv);
428
429				spin_lock_irqsave(&dev->manage_lock, mflags);
430				dev->management_fib_count--;
431				spin_unlock_irqrestore(&dev->manage_lock,
432					mflags);
433
434				FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
435				if (completed)
436					aac_fib_complete(fib);
437			}
438		}
439
440
441		if (start_callback) {
442			/*
443			 * NOTE:  we cannot touch the fib after this
444			 *  call, because it may have been deallocated.
445			 */
446			if (likely(fib->callback && fib->callback_data)) {
447				fib->callback(fib->callback_data, fib);
448			} else {
449				aac_fib_complete(fib);
450				aac_fib_free(fib);
451			}
452
453		}
454		return 0;
455	}
456}
457