1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *	Adaptec AAC series RAID controller driver
4 *	(c) Copyright 2001 Red Hat Inc.
5 *
6 * based on the old aacraid driver that is..
7 * Adaptec aacraid device driver for Linux.
8 *
9 * Copyright (c) 2000-2010 Adaptec, Inc.
10 *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11 *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12 *
13 * Module Name:
14 *  commsup.c
15 *
16 * Abstract: Contain all routines that are required for FSA host/adapter
17 *    communication.
18 */
19
20#include <linux/kernel.h>
21#include <linux/init.h>
22#include <linux/crash_dump.h>
23#include <linux/types.h>
24#include <linux/sched.h>
25#include <linux/pci.h>
26#include <linux/spinlock.h>
27#include <linux/slab.h>
28#include <linux/completion.h>
29#include <linux/blkdev.h>
30#include <linux/delay.h>
31#include <linux/kthread.h>
32#include <linux/interrupt.h>
33#include <linux/bcd.h>
34#include <scsi/scsi.h>
35#include <scsi/scsi_host.h>
36#include <scsi/scsi_device.h>
37#include <scsi/scsi_cmnd.h>
38
39#include "aacraid.h"
40
41/**
42 *	fib_map_alloc		-	allocate the fib objects
43 *	@dev: Adapter to allocate for
44 *
45 *	Allocate and map the shared PCI space for the FIB blocks used to
46 *	talk to the Adaptec firmware.
47 */
48
49static int fib_map_alloc(struct aac_dev *dev)
50{
51	if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
52		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
53	else
54		dev->max_cmd_size = dev->max_fib_size;
55	if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
56		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
57	} else {
58		dev->max_cmd_size = dev->max_fib_size;
59	}
60
61	dprintk((KERN_INFO
62	  "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
63	  &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
64	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
65	dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
66		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
67		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
68		&dev->hw_fib_pa, GFP_KERNEL);
69	if (dev->hw_fib_va == NULL)
70		return -ENOMEM;
71	return 0;
72}
73
74/**
75 *	aac_fib_map_free		-	free the fib objects
76 *	@dev: Adapter to free
77 *
78 *	Free the PCI mappings and the memory allocated for FIB blocks
79 *	on this adapter.
80 */
81
82void aac_fib_map_free(struct aac_dev *dev)
83{
84	size_t alloc_size;
85	size_t fib_size;
86	int num_fibs;
87
88	if(!dev->hw_fib_va || !dev->max_cmd_size)
89		return;
90
91	num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
92	fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
93	alloc_size = fib_size * num_fibs + ALIGN32 - 1;
94
95	dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
96			  dev->hw_fib_pa);
97
98	dev->hw_fib_va = NULL;
99	dev->hw_fib_pa = 0;
100}
101
102void aac_fib_vector_assign(struct aac_dev *dev)
103{
104	u32 i = 0;
105	u32 vector = 1;
106	struct fib *fibptr = NULL;
107
108	for (i = 0, fibptr = &dev->fibs[i];
109		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
110		i++, fibptr++) {
111		if ((dev->max_msix == 1) ||
112		  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
113			- dev->vector_cap))) {
114			fibptr->vector_no = 0;
115		} else {
116			fibptr->vector_no = vector;
117			vector++;
118			if (vector == dev->max_msix)
119				vector = 1;
120		}
121	}
122}
123
124/**
125 *	aac_fib_setup	-	setup the fibs
126 *	@dev: Adapter to set up
127 *
128 *	Allocate the PCI space for the fibs, map it and then initialise the
129 *	fib area, the unmapped fib data and also the free list
130 */
131
132int aac_fib_setup(struct aac_dev * dev)
133{
134	struct fib *fibptr;
135	struct hw_fib *hw_fib;
136	dma_addr_t hw_fib_pa;
137	int i;
138	u32 max_cmds;
139
140	while (((i = fib_map_alloc(dev)) == -ENOMEM)
141	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
142		max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
143		dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
144		if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
145			dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
146	}
147	if (i<0)
148		return -ENOMEM;
149
150	memset(dev->hw_fib_va, 0,
151		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
152		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
153
154	/* 32 byte alignment for PMC */
155	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
156	hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
157					(hw_fib_pa - dev->hw_fib_pa));
158
159	/* add Xport header */
160	hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
161		sizeof(struct aac_fib_xporthdr));
162	hw_fib_pa += sizeof(struct aac_fib_xporthdr);
163
164	/*
165	 *	Initialise the fibs
166	 */
167	for (i = 0, fibptr = &dev->fibs[i];
168		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
169		i++, fibptr++)
170	{
171		fibptr->flags = 0;
172		fibptr->size = sizeof(struct fib);
173		fibptr->dev = dev;
174		fibptr->hw_fib_va = hw_fib;
175		fibptr->data = (void *) fibptr->hw_fib_va->data;
176		fibptr->next = fibptr+1;	/* Forward chain the fibs */
177		init_completion(&fibptr->event_wait);
178		spin_lock_init(&fibptr->event_lock);
179		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
180		hw_fib->header.SenderSize =
181			cpu_to_le16(dev->max_fib_size);	/* ?? max_cmd_size */
182		fibptr->hw_fib_pa = hw_fib_pa;
183		fibptr->hw_sgl_pa = hw_fib_pa +
184			offsetof(struct aac_hba_cmd_req, sge[2]);
185		/*
186		 * one element is for the ptr to the separate sg list,
187		 * second element for 32 byte alignment
188		 */
189		fibptr->hw_error_pa = hw_fib_pa +
190			offsetof(struct aac_native_hba, resp.resp_bytes[0]);
191
192		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
193			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
194		hw_fib_pa = hw_fib_pa +
195			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
196	}
197
198	/*
199	 *Assign vector numbers to fibs
200	 */
201	aac_fib_vector_assign(dev);
202
203	/*
204	 *	Add the fib chain to the free list
205	 */
206	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
207	/*
208	*	Set 8 fibs aside for management tools
209	*/
210	dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
211	return 0;
212}
213
214/**
215 *	aac_fib_alloc_tag-allocate a fib using tags
216 *	@dev: Adapter to allocate the fib for
217 *	@scmd: SCSI command
218 *
219 *	Allocate a fib from the adapter fib pool using tags
220 *	from the blk layer.
221 */
222
223struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
224{
225	struct fib *fibptr;
226
227	fibptr = &dev->fibs[scsi_cmd_to_rq(scmd)->tag];
228	/*
229	 *	Null out fields that depend on being zero at the start of
230	 *	each I/O
231	 */
232	fibptr->hw_fib_va->header.XferState = 0;
233	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
234	fibptr->callback_data = NULL;
235	fibptr->callback = NULL;
236	fibptr->flags = 0;
237
238	return fibptr;
239}
240
241/**
242 *	aac_fib_alloc	-	allocate a fib
243 *	@dev: Adapter to allocate the fib for
244 *
245 *	Allocate a fib from the adapter fib pool. If the pool is empty we
246 *	return NULL.
247 */
248
249struct fib *aac_fib_alloc(struct aac_dev *dev)
250{
251	struct fib * fibptr;
252	unsigned long flags;
253	spin_lock_irqsave(&dev->fib_lock, flags);
254	fibptr = dev->free_fib;
255	if(!fibptr){
256		spin_unlock_irqrestore(&dev->fib_lock, flags);
257		return fibptr;
258	}
259	dev->free_fib = fibptr->next;
260	spin_unlock_irqrestore(&dev->fib_lock, flags);
261	/*
262	 *	Set the proper node type code and node byte size
263	 */
264	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
265	fibptr->size = sizeof(struct fib);
266	/*
267	 *	Null out fields that depend on being zero at the start of
268	 *	each I/O
269	 */
270	fibptr->hw_fib_va->header.XferState = 0;
271	fibptr->flags = 0;
272	fibptr->callback = NULL;
273	fibptr->callback_data = NULL;
274
275	return fibptr;
276}
277
278/**
279 *	aac_fib_free	-	free a fib
280 *	@fibptr: fib to free up
281 *
282 *	Frees up a fib and places it on the appropriate queue
283 */
284
285void aac_fib_free(struct fib *fibptr)
286{
287	unsigned long flags;
288
289	if (fibptr->done == 2)
290		return;
291
292	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
293	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
294		aac_config.fib_timeouts++;
295	if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
296		fibptr->hw_fib_va->header.XferState != 0) {
297		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
298			 (void*)fibptr,
299			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
300	}
301	fibptr->next = fibptr->dev->free_fib;
302	fibptr->dev->free_fib = fibptr;
303	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
304}
305
306/**
307 *	aac_fib_init	-	initialise a fib
308 *	@fibptr: The fib to initialize
309 *
310 *	Set up the generic fib fields ready for use
311 */
312
313void aac_fib_init(struct fib *fibptr)
314{
315	struct hw_fib *hw_fib = fibptr->hw_fib_va;
316
317	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
318	hw_fib->header.StructType = FIB_MAGIC;
319	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
320	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
321	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
322	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
323}
324
325/**
326 *	fib_dealloc		-	deallocate a fib
327 *	@fibptr: fib to deallocate
328 *
329 *	Will deallocate and return to the free pool the FIB pointed to by the
330 *	caller.
331 */
332
333static void fib_dealloc(struct fib * fibptr)
334{
335	struct hw_fib *hw_fib = fibptr->hw_fib_va;
336	hw_fib->header.XferState = 0;
337}
338
339/*
340 *	Commuication primitives define and support the queuing method we use to
341 *	support host to adapter commuication. All queue accesses happen through
342 *	these routines and are the only routines which have a knowledge of the
343 *	 how these queues are implemented.
344 */
345
346/**
347 *	aac_get_entry		-	get a queue entry
348 *	@dev: Adapter
349 *	@qid: Queue Number
350 *	@entry: Entry return
351 *	@index: Index return
352 *	@nonotify: notification control
353 *
354 *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
355 *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
356 *	returned.
357 */
358
359static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
360{
361	struct aac_queue * q;
362	unsigned long idx;
363
364	/*
365	 *	All of the queues wrap when they reach the end, so we check
366	 *	to see if they have reached the end and if they have we just
367	 *	set the index back to zero. This is a wrap. You could or off
368	 *	the high bits in all updates but this is a bit faster I think.
369	 */
370
371	q = &dev->queues->queue[qid];
372
373	idx = *index = le32_to_cpu(*(q->headers.producer));
374	/* Interrupt Moderation, only interrupt for first two entries */
375	if (idx != le32_to_cpu(*(q->headers.consumer))) {
376		if (--idx == 0) {
377			if (qid == AdapNormCmdQueue)
378				idx = ADAP_NORM_CMD_ENTRIES;
379			else
380				idx = ADAP_NORM_RESP_ENTRIES;
381		}
382		if (idx != le32_to_cpu(*(q->headers.consumer)))
383			*nonotify = 1;
384	}
385
386	if (qid == AdapNormCmdQueue) {
387		if (*index >= ADAP_NORM_CMD_ENTRIES)
388			*index = 0; /* Wrap to front of the Producer Queue. */
389	} else {
390		if (*index >= ADAP_NORM_RESP_ENTRIES)
391			*index = 0; /* Wrap to front of the Producer Queue. */
392	}
393
394	/* Queue is full */
395	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
396		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
397				qid, atomic_read(&q->numpending));
398		return 0;
399	} else {
400		*entry = q->base + *index;
401		return 1;
402	}
403}
404
405/**
406 *	aac_queue_get		-	get the next free QE
407 *	@dev: Adapter
408 *	@index: Returned index
409 *	@qid: Queue number
410 *	@hw_fib: Fib to associate with the queue entry
411 *	@wait: Wait if queue full
412 *	@fibptr: Driver fib object to go with fib
413 *	@nonotify: Don't notify the adapter
414 *
415 *	Gets the next free QE off the requested priorty adapter command
416 *	queue and associates the Fib with the QE. The QE represented by
417 *	index is ready to insert on the queue when this routine returns
418 *	success.
419 */
420
421int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
422{
423	struct aac_entry * entry = NULL;
424	int map = 0;
425
426	if (qid == AdapNormCmdQueue) {
427		/*  if no entries wait for some if caller wants to */
428		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
429			printk(KERN_ERR "GetEntries failed\n");
430		}
431		/*
432		 *	Setup queue entry with a command, status and fib mapped
433		 */
434		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
435		map = 1;
436	} else {
437		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
438			/* if no entries wait for some if caller wants to */
439		}
440		/*
441		 *	Setup queue entry with command, status and fib mapped
442		 */
443		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
444		entry->addr = hw_fib->header.SenderFibAddress;
445			/* Restore adapters pointer to the FIB */
446		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
447		map = 0;
448	}
449	/*
450	 *	If MapFib is true than we need to map the Fib and put pointers
451	 *	in the queue entry.
452	 */
453	if (map)
454		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
455	return 0;
456}
457
458/*
459 *	Define the highest level of host to adapter communication routines.
460 *	These routines will support host to adapter FS commuication. These
461 *	routines have no knowledge of the commuication method used. This level
462 *	sends and receives FIBs. This level has no knowledge of how these FIBs
463 *	get passed back and forth.
464 */
465
466/**
467 *	aac_fib_send	-	send a fib to the adapter
468 *	@command: Command to send
469 *	@fibptr: The fib
470 *	@size: Size of fib data area
471 *	@priority: Priority of Fib
472 *	@wait: Async/sync select
473 *	@reply: True if a reply is wanted
474 *	@callback: Called with reply
475 *	@callback_data: Passed to callback
476 *
477 *	Sends the requested FIB to the adapter and optionally will wait for a
478 *	response FIB. If the caller does not wish to wait for a response than
479 *	an event to wait on must be supplied. This event will be set when a
480 *	response FIB is received from the adapter.
481 */
482
483int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
484		int priority, int wait, int reply, fib_callback callback,
485		void *callback_data)
486{
487	struct aac_dev * dev = fibptr->dev;
488	struct hw_fib * hw_fib = fibptr->hw_fib_va;
489	unsigned long flags = 0;
490	unsigned long mflags = 0;
491	unsigned long sflags = 0;
492
493	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
494		return -EBUSY;
495
496	if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
497		return -EINVAL;
498
499	/*
500	 *	There are 5 cases with the wait and response requested flags.
501	 *	The only invalid cases are if the caller requests to wait and
502	 *	does not request a response and if the caller does not want a
503	 *	response and the Fib is not allocated from pool. If a response
504	 *	is not requested the Fib will just be deallocaed by the DPC
505	 *	routine when the response comes back from the adapter. No
506	 *	further processing will be done besides deleting the Fib. We
507	 *	will have a debug mode where the adapter can notify the host
508	 *	it had a problem and the host can log that fact.
509	 */
510	fibptr->flags = 0;
511	if (wait && !reply) {
512		return -EINVAL;
513	} else if (!wait && reply) {
514		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
515		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
516	} else if (!wait && !reply) {
517		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
518		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
519	} else if (wait && reply) {
520		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
521		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
522	}
523	/*
524	 *	Map the fib into 32bits by using the fib number
525	 */
526
527	hw_fib->header.SenderFibAddress =
528		cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
529
530	/* use the same shifted value for handle to be compatible
531	 * with the new native hba command handle
532	 */
533	hw_fib->header.Handle =
534		cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
535
536	/*
537	 *	Set FIB state to indicate where it came from and if we want a
538	 *	response from the adapter. Also load the command from the
539	 *	caller.
540	 *
541	 *	Map the hw fib pointer as a 32bit value
542	 */
543	hw_fib->header.Command = cpu_to_le16(command);
544	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
545	/*
546	 *	Set the size of the Fib we want to send to the adapter
547	 */
548	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
549	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
550		return -EMSGSIZE;
551	}
552	/*
553	 *	Get a queue entry connect the FIB to it and send an notify
554	 *	the adapter a command is ready.
555	 */
556	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
557
558	/*
559	 *	Fill in the Callback and CallbackContext if we are not
560	 *	going to wait.
561	 */
562	if (!wait) {
563		fibptr->callback = callback;
564		fibptr->callback_data = callback_data;
565		fibptr->flags = FIB_CONTEXT_FLAG;
566	}
567
568	fibptr->done = 0;
569
570	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
571
572	dprintk((KERN_DEBUG "Fib contents:.\n"));
573	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
574	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
575	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
576	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
577	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
578	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
579
580	if (!dev->queues)
581		return -EBUSY;
582
583	if (wait) {
584
585		spin_lock_irqsave(&dev->manage_lock, mflags);
586		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
587			printk(KERN_INFO "No management Fibs Available:%d\n",
588						dev->management_fib_count);
589			spin_unlock_irqrestore(&dev->manage_lock, mflags);
590			return -EBUSY;
591		}
592		dev->management_fib_count++;
593		spin_unlock_irqrestore(&dev->manage_lock, mflags);
594		spin_lock_irqsave(&fibptr->event_lock, flags);
595	}
596
597	if (dev->sync_mode) {
598		if (wait)
599			spin_unlock_irqrestore(&fibptr->event_lock, flags);
600		spin_lock_irqsave(&dev->sync_lock, sflags);
601		if (dev->sync_fib) {
602			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
603			spin_unlock_irqrestore(&dev->sync_lock, sflags);
604		} else {
605			dev->sync_fib = fibptr;
606			spin_unlock_irqrestore(&dev->sync_lock, sflags);
607			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
608				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
609				NULL, NULL, NULL, NULL, NULL);
610		}
611		if (wait) {
612			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
613			if (wait_for_completion_interruptible(&fibptr->event_wait)) {
614				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
615				return -EFAULT;
616			}
617			return 0;
618		}
619		return -EINPROGRESS;
620	}
621
622	if (aac_adapter_deliver(fibptr) != 0) {
623		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
624		if (wait) {
625			spin_unlock_irqrestore(&fibptr->event_lock, flags);
626			spin_lock_irqsave(&dev->manage_lock, mflags);
627			dev->management_fib_count--;
628			spin_unlock_irqrestore(&dev->manage_lock, mflags);
629		}
630		return -EBUSY;
631	}
632
633
634	/*
635	 *	If the caller wanted us to wait for response wait now.
636	 */
637
638	if (wait) {
639		spin_unlock_irqrestore(&fibptr->event_lock, flags);
640		/* Only set for first known interruptable command */
641		if (wait < 0) {
642			/*
643			 * *VERY* Dangerous to time out a command, the
644			 * assumption is made that we have no hope of
645			 * functioning because an interrupt routing or other
646			 * hardware failure has occurred.
647			 */
648			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
649			while (!try_wait_for_completion(&fibptr->event_wait)) {
650				int blink;
651				if (time_is_before_eq_jiffies(timeout)) {
652					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
653					atomic_dec(&q->numpending);
654					if (wait == -1) {
655	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
656						  "Usually a result of a PCI interrupt routing problem;\n"
657						  "update mother board BIOS or consider utilizing one of\n"
658						  "the SAFE mode kernel options (acpi, apic etc)\n");
659					}
660					return -ETIMEDOUT;
661				}
662
663				if (unlikely(aac_pci_offline(dev)))
664					return -EFAULT;
665
666				if ((blink = aac_adapter_check_health(dev)) > 0) {
667					if (wait == -1) {
668	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
669						  "Usually a result of a serious unrecoverable hardware problem\n",
670						  blink);
671					}
672					return -EFAULT;
673				}
674				/*
675				 * Allow other processes / CPUS to use core
676				 */
677				schedule();
678			}
679		} else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
680			/* Do nothing ... satisfy
681			 * wait_for_completion_interruptible must_check */
682		}
683
684		spin_lock_irqsave(&fibptr->event_lock, flags);
685		if (fibptr->done == 0) {
686			fibptr->done = 2; /* Tell interrupt we aborted */
687			spin_unlock_irqrestore(&fibptr->event_lock, flags);
688			return -ERESTARTSYS;
689		}
690		spin_unlock_irqrestore(&fibptr->event_lock, flags);
691		BUG_ON(fibptr->done == 0);
692
693		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
694			return -ETIMEDOUT;
695		return 0;
696	}
697	/*
698	 *	If the user does not want a response than return success otherwise
699	 *	return pending
700	 */
701	if (reply)
702		return -EINPROGRESS;
703	else
704		return 0;
705}
706
707int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
708		void *callback_data)
709{
710	struct aac_dev *dev = fibptr->dev;
711	int wait;
712	unsigned long flags = 0;
713	unsigned long mflags = 0;
714	struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
715			fibptr->hw_fib_va;
716
717	fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
718	if (callback) {
719		wait = 0;
720		fibptr->callback = callback;
721		fibptr->callback_data = callback_data;
722	} else
723		wait = 1;
724
725
726	hbacmd->iu_type = command;
727
728	if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
729		/* bit1 of request_id must be 0 */
730		hbacmd->request_id =
731			cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
732		fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
733	} else
734		return -EINVAL;
735
736
737	if (wait) {
738		spin_lock_irqsave(&dev->manage_lock, mflags);
739		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
740			spin_unlock_irqrestore(&dev->manage_lock, mflags);
741			return -EBUSY;
742		}
743		dev->management_fib_count++;
744		spin_unlock_irqrestore(&dev->manage_lock, mflags);
745		spin_lock_irqsave(&fibptr->event_lock, flags);
746	}
747
748	if (aac_adapter_deliver(fibptr) != 0) {
749		if (wait) {
750			spin_unlock_irqrestore(&fibptr->event_lock, flags);
751			spin_lock_irqsave(&dev->manage_lock, mflags);
752			dev->management_fib_count--;
753			spin_unlock_irqrestore(&dev->manage_lock, mflags);
754		}
755		return -EBUSY;
756	}
757	FIB_COUNTER_INCREMENT(aac_config.NativeSent);
758
759	if (wait) {
760
761		spin_unlock_irqrestore(&fibptr->event_lock, flags);
762
763		if (unlikely(aac_pci_offline(dev)))
764			return -EFAULT;
765
766		fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
767		if (wait_for_completion_interruptible(&fibptr->event_wait))
768			fibptr->done = 2;
769		fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
770
771		spin_lock_irqsave(&fibptr->event_lock, flags);
772		if ((fibptr->done == 0) || (fibptr->done == 2)) {
773			fibptr->done = 2; /* Tell interrupt we aborted */
774			spin_unlock_irqrestore(&fibptr->event_lock, flags);
775			return -ERESTARTSYS;
776		}
777		spin_unlock_irqrestore(&fibptr->event_lock, flags);
778		WARN_ON(fibptr->done == 0);
779
780		if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
781			return -ETIMEDOUT;
782
783		return 0;
784	}
785
786	return -EINPROGRESS;
787}
788
789/**
790 *	aac_consumer_get	-	get the top of the queue
791 *	@dev: Adapter
792 *	@q: Queue
793 *	@entry: Return entry
794 *
795 *	Will return a pointer to the entry on the top of the queue requested that
796 *	we are a consumer of, and return the address of the queue entry. It does
797 *	not change the state of the queue.
798 */
799
800int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
801{
802	u32 index;
803	int status;
804	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
805		status = 0;
806	} else {
807		/*
808		 *	The consumer index must be wrapped if we have reached
809		 *	the end of the queue, else we just use the entry
810		 *	pointed to by the header index
811		 */
812		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
813			index = 0;
814		else
815			index = le32_to_cpu(*q->headers.consumer);
816		*entry = q->base + index;
817		status = 1;
818	}
819	return(status);
820}
821
822/**
823 *	aac_consumer_free	-	free consumer entry
824 *	@dev: Adapter
825 *	@q: Queue
826 *	@qid: Queue ident
827 *
828 *	Frees up the current top of the queue we are a consumer of. If the
829 *	queue was full notify the producer that the queue is no longer full.
830 */
831
832void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
833{
834	int wasfull = 0;
835	u32 notify;
836
837	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
838		wasfull = 1;
839
840	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
841		*q->headers.consumer = cpu_to_le32(1);
842	else
843		le32_add_cpu(q->headers.consumer, 1);
844
845	if (wasfull) {
846		switch (qid) {
847
848		case HostNormCmdQueue:
849			notify = HostNormCmdNotFull;
850			break;
851		case HostNormRespQueue:
852			notify = HostNormRespNotFull;
853			break;
854		default:
855			BUG();
856			return;
857		}
858		aac_adapter_notify(dev, notify);
859	}
860}
861
862/**
863 *	aac_fib_adapter_complete	-	complete adapter issued fib
864 *	@fibptr: fib to complete
865 *	@size: size of fib
866 *
867 *	Will do all necessary work to complete a FIB that was sent from
868 *	the adapter.
869 */
870
871int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
872{
873	struct hw_fib * hw_fib = fibptr->hw_fib_va;
874	struct aac_dev * dev = fibptr->dev;
875	struct aac_queue * q;
876	unsigned long nointr = 0;
877	unsigned long qflags;
878
879	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
880		dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
881		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
882		kfree(hw_fib);
883		return 0;
884	}
885
886	if (hw_fib->header.XferState == 0) {
887		if (dev->comm_interface == AAC_COMM_MESSAGE)
888			kfree(hw_fib);
889		return 0;
890	}
891	/*
892	 *	If we plan to do anything check the structure type first.
893	 */
894	if (hw_fib->header.StructType != FIB_MAGIC &&
895	    hw_fib->header.StructType != FIB_MAGIC2 &&
896	    hw_fib->header.StructType != FIB_MAGIC2_64) {
897		if (dev->comm_interface == AAC_COMM_MESSAGE)
898			kfree(hw_fib);
899		return -EINVAL;
900	}
901	/*
902	 *	This block handles the case where the adapter had sent us a
903	 *	command and we have finished processing the command. We
904	 *	call completeFib when we are done processing the command
905	 *	and want to send a response back to the adapter. This will
906	 *	send the completed cdb to the adapter.
907	 */
908	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
909		if (dev->comm_interface == AAC_COMM_MESSAGE) {
910			kfree (hw_fib);
911		} else {
912			u32 index;
913			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
914			if (size) {
915				size += sizeof(struct aac_fibhdr);
916				if (size > le16_to_cpu(hw_fib->header.SenderSize))
917					return -EMSGSIZE;
918				hw_fib->header.Size = cpu_to_le16(size);
919			}
920			q = &dev->queues->queue[AdapNormRespQueue];
921			spin_lock_irqsave(q->lock, qflags);
922			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
923			*(q->headers.producer) = cpu_to_le32(index + 1);
924			spin_unlock_irqrestore(q->lock, qflags);
925			if (!(nointr & (int)aac_config.irq_mod))
926				aac_adapter_notify(dev, AdapNormRespQueue);
927		}
928	} else {
929		printk(KERN_WARNING "aac_fib_adapter_complete: "
930			"Unknown xferstate detected.\n");
931		BUG();
932	}
933	return 0;
934}
935
936/**
937 *	aac_fib_complete	-	fib completion handler
938 *	@fibptr: FIB to complete
939 *
940 *	Will do all necessary work to complete a FIB.
941 */
942
943int aac_fib_complete(struct fib *fibptr)
944{
945	struct hw_fib * hw_fib = fibptr->hw_fib_va;
946
947	if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
948		fib_dealloc(fibptr);
949		return 0;
950	}
951
952	/*
953	 *	Check for a fib which has already been completed or with a
954	 *	status wait timeout
955	 */
956
957	if (hw_fib->header.XferState == 0 || fibptr->done == 2)
958		return 0;
959	/*
960	 *	If we plan to do anything check the structure type first.
961	 */
962
963	if (hw_fib->header.StructType != FIB_MAGIC &&
964	    hw_fib->header.StructType != FIB_MAGIC2 &&
965	    hw_fib->header.StructType != FIB_MAGIC2_64)
966		return -EINVAL;
967	/*
968	 *	This block completes a cdb which orginated on the host and we
969	 *	just need to deallocate the cdb or reinit it. At this point the
970	 *	command is complete that we had sent to the adapter and this
971	 *	cdb could be reused.
972	 */
973
974	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
975		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
976	{
977		fib_dealloc(fibptr);
978	}
979	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
980	{
981		/*
982		 *	This handles the case when the host has aborted the I/O
983		 *	to the adapter because the adapter is not responding
984		 */
985		fib_dealloc(fibptr);
986	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
987		fib_dealloc(fibptr);
988	} else {
989		BUG();
990	}
991	return 0;
992}
993
994/**
995 *	aac_printf	-	handle printf from firmware
996 *	@dev: Adapter
997 *	@val: Message info
998 *
999 *	Print a message passed to us by the controller firmware on the
1000 *	Adaptec board
1001 */
1002
1003void aac_printf(struct aac_dev *dev, u32 val)
1004{
1005	char *cp = dev->printfbuf;
1006	if (dev->printf_enabled)
1007	{
1008		int length = val & 0xffff;
1009		int level = (val >> 16) & 0xffff;
1010
1011		/*
1012		 *	The size of the printfbuf is set in port.c
1013		 *	There is no variable or define for it
1014		 */
1015		if (length > 255)
1016			length = 255;
1017		if (cp[length] != 0)
1018			cp[length] = 0;
1019		if (level == LOG_AAC_HIGH_ERROR)
1020			printk(KERN_WARNING "%s:%s", dev->name, cp);
1021		else
1022			printk(KERN_INFO "%s:%s", dev->name, cp);
1023	}
1024	memset(cp, 0, 256);
1025}
1026
1027static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1028{
1029	return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1030}
1031
1032
1033static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1034{
1035	switch (aac_aif_data(aifcmd, 1)) {
1036	case AifBuCacheDataLoss:
1037		if (aac_aif_data(aifcmd, 2))
1038			dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1039			aac_aif_data(aifcmd, 2));
1040		else
1041			dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1042		break;
1043	case AifBuCacheDataRecover:
1044		if (aac_aif_data(aifcmd, 2))
1045			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1046			aac_aif_data(aifcmd, 2));
1047		else
1048			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1049		break;
1050	}
1051}
1052
1053#define AIF_SNIFF_TIMEOUT	(500*HZ)
1054/**
1055 *	aac_handle_aif		-	Handle a message from the firmware
1056 *	@dev: Which adapter this fib is from
1057 *	@fibptr: Pointer to fibptr from adapter
1058 *
1059 *	This routine handles a driver notify fib from the adapter and
1060 *	dispatches it to the appropriate routine for handling.
1061 */
1062static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1063{
1064	struct hw_fib * hw_fib = fibptr->hw_fib_va;
1065	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1066	u32 channel, id, lun, container;
1067	struct scsi_device *device;
1068	enum {
1069		NOTHING,
1070		DELETE,
1071		ADD,
1072		CHANGE
1073	} device_config_needed = NOTHING;
1074
1075	/* Sniff for container changes */
1076
1077	if (!dev || !dev->fsa_dev)
1078		return;
1079	container = channel = id = lun = (u32)-1;
1080
1081	/*
1082	 *	We have set this up to try and minimize the number of
1083	 * re-configures that take place. As a result of this when
1084	 * certain AIF's come in we will set a flag waiting for another
1085	 * type of AIF before setting the re-config flag.
1086	 */
1087	switch (le32_to_cpu(aifcmd->command)) {
1088	case AifCmdDriverNotify:
1089		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1090		case AifRawDeviceRemove:
1091			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1092			if ((container >> 28)) {
1093				container = (u32)-1;
1094				break;
1095			}
1096			channel = (container >> 24) & 0xF;
1097			if (channel >= dev->maximum_num_channels) {
1098				container = (u32)-1;
1099				break;
1100			}
1101			id = container & 0xFFFF;
1102			if (id >= dev->maximum_num_physicals) {
1103				container = (u32)-1;
1104				break;
1105			}
1106			lun = (container >> 16) & 0xFF;
1107			container = (u32)-1;
1108			channel = aac_phys_to_logical(channel);
1109			device_config_needed = DELETE;
1110			break;
1111
1112		/*
1113		 *	Morph or Expand complete
1114		 */
1115		case AifDenMorphComplete:
1116		case AifDenVolumeExtendComplete:
1117			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1118			if (container >= dev->maximum_num_containers)
1119				break;
1120
1121			/*
1122			 *	Find the scsi_device associated with the SCSI
1123			 * address. Make sure we have the right array, and if
1124			 * so set the flag to initiate a new re-config once we
1125			 * see an AifEnConfigChange AIF come through.
1126			 */
1127
1128			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1129				device = scsi_device_lookup(dev->scsi_host_ptr,
1130					CONTAINER_TO_CHANNEL(container),
1131					CONTAINER_TO_ID(container),
1132					CONTAINER_TO_LUN(container));
1133				if (device) {
1134					dev->fsa_dev[container].config_needed = CHANGE;
1135					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1136					dev->fsa_dev[container].config_waiting_stamp = jiffies;
1137					scsi_device_put(device);
1138				}
1139			}
1140		}
1141
1142		/*
1143		 *	If we are waiting on something and this happens to be
1144		 * that thing then set the re-configure flag.
1145		 */
1146		if (container != (u32)-1) {
1147			if (container >= dev->maximum_num_containers)
1148				break;
1149			if ((dev->fsa_dev[container].config_waiting_on ==
1150			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1151			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1152				dev->fsa_dev[container].config_waiting_on = 0;
1153		} else for (container = 0;
1154		    container < dev->maximum_num_containers; ++container) {
1155			if ((dev->fsa_dev[container].config_waiting_on ==
1156			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1157			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1158				dev->fsa_dev[container].config_waiting_on = 0;
1159		}
1160		break;
1161
1162	case AifCmdEventNotify:
1163		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1164		case AifEnBatteryEvent:
1165			dev->cache_protected =
1166				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1167			break;
1168		/*
1169		 *	Add an Array.
1170		 */
1171		case AifEnAddContainer:
1172			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1173			if (container >= dev->maximum_num_containers)
1174				break;
1175			dev->fsa_dev[container].config_needed = ADD;
1176			dev->fsa_dev[container].config_waiting_on =
1177				AifEnConfigChange;
1178			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1179			break;
1180
1181		/*
1182		 *	Delete an Array.
1183		 */
1184		case AifEnDeleteContainer:
1185			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1186			if (container >= dev->maximum_num_containers)
1187				break;
1188			dev->fsa_dev[container].config_needed = DELETE;
1189			dev->fsa_dev[container].config_waiting_on =
1190				AifEnConfigChange;
1191			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1192			break;
1193
1194		/*
1195		 *	Container change detected. If we currently are not
1196		 * waiting on something else, setup to wait on a Config Change.
1197		 */
1198		case AifEnContainerChange:
1199			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1200			if (container >= dev->maximum_num_containers)
1201				break;
1202			if (dev->fsa_dev[container].config_waiting_on &&
1203			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1204				break;
1205			dev->fsa_dev[container].config_needed = CHANGE;
1206			dev->fsa_dev[container].config_waiting_on =
1207				AifEnConfigChange;
1208			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1209			break;
1210
1211		case AifEnConfigChange:
1212			break;
1213
1214		case AifEnAddJBOD:
1215		case AifEnDeleteJBOD:
1216			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1217			if ((container >> 28)) {
1218				container = (u32)-1;
1219				break;
1220			}
1221			channel = (container >> 24) & 0xF;
1222			if (channel >= dev->maximum_num_channels) {
1223				container = (u32)-1;
1224				break;
1225			}
1226			id = container & 0xFFFF;
1227			if (id >= dev->maximum_num_physicals) {
1228				container = (u32)-1;
1229				break;
1230			}
1231			lun = (container >> 16) & 0xFF;
1232			container = (u32)-1;
1233			channel = aac_phys_to_logical(channel);
1234			device_config_needed =
1235			  (((__le32 *)aifcmd->data)[0] ==
1236			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1237			if (device_config_needed == ADD) {
1238				device = scsi_device_lookup(dev->scsi_host_ptr,
1239					channel,
1240					id,
1241					lun);
1242				if (device) {
1243					scsi_remove_device(device);
1244					scsi_device_put(device);
1245				}
1246			}
1247			break;
1248
1249		case AifEnEnclosureManagement:
1250			/*
1251			 * If in JBOD mode, automatic exposure of new
1252			 * physical target to be suppressed until configured.
1253			 */
1254			if (dev->jbod)
1255				break;
1256			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1257			case EM_DRIVE_INSERTION:
1258			case EM_DRIVE_REMOVAL:
1259			case EM_SES_DRIVE_INSERTION:
1260			case EM_SES_DRIVE_REMOVAL:
1261				container = le32_to_cpu(
1262					((__le32 *)aifcmd->data)[2]);
1263				if ((container >> 28)) {
1264					container = (u32)-1;
1265					break;
1266				}
1267				channel = (container >> 24) & 0xF;
1268				if (channel >= dev->maximum_num_channels) {
1269					container = (u32)-1;
1270					break;
1271				}
1272				id = container & 0xFFFF;
1273				lun = (container >> 16) & 0xFF;
1274				container = (u32)-1;
1275				if (id >= dev->maximum_num_physicals) {
1276					/* legacy dev_t ? */
1277					if ((0x2000 <= id) || lun || channel ||
1278					  ((channel = (id >> 7) & 0x3F) >=
1279					  dev->maximum_num_channels))
1280						break;
1281					lun = (id >> 4) & 7;
1282					id &= 0xF;
1283				}
1284				channel = aac_phys_to_logical(channel);
1285				device_config_needed =
1286				  ((((__le32 *)aifcmd->data)[3]
1287				    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1288				    (((__le32 *)aifcmd->data)[3]
1289				    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1290				  ADD : DELETE;
1291				break;
1292			}
1293			break;
1294		case AifBuManagerEvent:
1295			aac_handle_aif_bu(dev, aifcmd);
1296			break;
1297		}
1298
1299		/*
1300		 *	If we are waiting on something and this happens to be
1301		 * that thing then set the re-configure flag.
1302		 */
1303		if (container != (u32)-1) {
1304			if (container >= dev->maximum_num_containers)
1305				break;
1306			if ((dev->fsa_dev[container].config_waiting_on ==
1307			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1308			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1309				dev->fsa_dev[container].config_waiting_on = 0;
1310		} else for (container = 0;
1311		    container < dev->maximum_num_containers; ++container) {
1312			if ((dev->fsa_dev[container].config_waiting_on ==
1313			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1314			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1315				dev->fsa_dev[container].config_waiting_on = 0;
1316		}
1317		break;
1318
1319	case AifCmdJobProgress:
1320		/*
1321		 *	These are job progress AIF's. When a Clear is being
1322		 * done on a container it is initially created then hidden from
1323		 * the OS. When the clear completes we don't get a config
1324		 * change so we monitor the job status complete on a clear then
1325		 * wait for a container change.
1326		 */
1327
1328		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1329		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1330		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1331			for (container = 0;
1332			    container < dev->maximum_num_containers;
1333			    ++container) {
1334				/*
1335				 * Stomp on all config sequencing for all
1336				 * containers?
1337				 */
1338				dev->fsa_dev[container].config_waiting_on =
1339					AifEnContainerChange;
1340				dev->fsa_dev[container].config_needed = ADD;
1341				dev->fsa_dev[container].config_waiting_stamp =
1342					jiffies;
1343			}
1344		}
1345		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1346		    ((__le32 *)aifcmd->data)[6] == 0 &&
1347		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1348			for (container = 0;
1349			    container < dev->maximum_num_containers;
1350			    ++container) {
1351				/*
1352				 * Stomp on all config sequencing for all
1353				 * containers?
1354				 */
1355				dev->fsa_dev[container].config_waiting_on =
1356					AifEnContainerChange;
1357				dev->fsa_dev[container].config_needed = DELETE;
1358				dev->fsa_dev[container].config_waiting_stamp =
1359					jiffies;
1360			}
1361		}
1362		break;
1363	}
1364
1365	container = 0;
1366retry_next:
1367	if (device_config_needed == NOTHING) {
1368		for (; container < dev->maximum_num_containers; ++container) {
1369			if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1370			    (dev->fsa_dev[container].config_needed != NOTHING) &&
1371			    time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1372				device_config_needed =
1373					dev->fsa_dev[container].config_needed;
1374				dev->fsa_dev[container].config_needed = NOTHING;
1375				channel = CONTAINER_TO_CHANNEL(container);
1376				id = CONTAINER_TO_ID(container);
1377				lun = CONTAINER_TO_LUN(container);
1378				break;
1379			}
1380		}
1381	}
1382	if (device_config_needed == NOTHING)
1383		return;
1384
1385	/*
1386	 *	If we decided that a re-configuration needs to be done,
1387	 * schedule it here on the way out the door, please close the door
1388	 * behind you.
1389	 */
1390
1391	/*
1392	 *	Find the scsi_device associated with the SCSI address,
1393	 * and mark it as changed, invalidating the cache. This deals
1394	 * with changes to existing device IDs.
1395	 */
1396
1397	if (!dev || !dev->scsi_host_ptr)
1398		return;
1399	/*
1400	 * force reload of disk info via aac_probe_container
1401	 */
1402	if ((channel == CONTAINER_CHANNEL) &&
1403	  (device_config_needed != NOTHING)) {
1404		if (dev->fsa_dev[container].valid == 1)
1405			dev->fsa_dev[container].valid = 2;
1406		aac_probe_container(dev, container);
1407	}
1408	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1409	if (device) {
1410		switch (device_config_needed) {
1411		case DELETE:
1412#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1413			scsi_remove_device(device);
1414#else
1415			if (scsi_device_online(device)) {
1416				scsi_device_set_state(device, SDEV_OFFLINE);
1417				sdev_printk(KERN_INFO, device,
1418					"Device offlined - %s\n",
1419					(channel == CONTAINER_CHANNEL) ?
1420						"array deleted" :
1421						"enclosure services event");
1422			}
1423#endif
1424			break;
1425		case ADD:
1426			if (!scsi_device_online(device)) {
1427				sdev_printk(KERN_INFO, device,
1428					"Device online - %s\n",
1429					(channel == CONTAINER_CHANNEL) ?
1430						"array created" :
1431						"enclosure services event");
1432				scsi_device_set_state(device, SDEV_RUNNING);
1433			}
1434			fallthrough;
1435		case CHANGE:
1436			if ((channel == CONTAINER_CHANNEL)
1437			 && (!dev->fsa_dev[container].valid)) {
1438#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1439				scsi_remove_device(device);
1440#else
1441				if (!scsi_device_online(device))
1442					break;
1443				scsi_device_set_state(device, SDEV_OFFLINE);
1444				sdev_printk(KERN_INFO, device,
1445					"Device offlined - %s\n",
1446					"array failed");
1447#endif
1448				break;
1449			}
1450			scsi_rescan_device(device);
1451			break;
1452
1453		default:
1454			break;
1455		}
1456		scsi_device_put(device);
1457		device_config_needed = NOTHING;
1458	}
1459	if (device_config_needed == ADD)
1460		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1461	if (channel == CONTAINER_CHANNEL) {
1462		container++;
1463		device_config_needed = NOTHING;
1464		goto retry_next;
1465	}
1466}
1467
1468static void aac_schedule_bus_scan(struct aac_dev *aac)
1469{
1470	if (aac->sa_firmware)
1471		aac_schedule_safw_scan_worker(aac);
1472	else
1473		aac_schedule_src_reinit_aif_worker(aac);
1474}
1475
1476static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1477{
1478	int index, quirks;
1479	int retval;
1480	struct Scsi_Host *host = aac->scsi_host_ptr;
1481	int jafo = 0;
1482	int bled;
1483	u64 dmamask;
1484	int num_of_fibs = 0;
1485
1486	/*
1487	 * Assumptions:
1488	 *	- host is locked, unless called by the aacraid thread.
1489	 *	  (a matter of convenience, due to legacy issues surrounding
1490	 *	  eh_host_adapter_reset).
1491	 *	- in_reset is asserted, so no new i/o is getting to the
1492	 *	  card.
1493	 *	- The card is dead, or will be very shortly ;-/ so no new
1494	 *	  commands are completing in the interrupt service.
1495	 */
1496	aac_adapter_disable_int(aac);
1497	if (aac->thread && aac->thread->pid != current->pid) {
1498		spin_unlock_irq(host->host_lock);
1499		kthread_stop(aac->thread);
1500		aac->thread = NULL;
1501		jafo = 1;
1502	}
1503
1504	/*
1505	 *	If a positive health, means in a known DEAD PANIC
1506	 * state and the adapter could be reset to `try again'.
1507	 */
1508	bled = forced ? 0 : aac_adapter_check_health(aac);
1509	retval = aac_adapter_restart(aac, bled, reset_type);
1510
1511	if (retval)
1512		goto out;
1513
1514	/*
1515	 *	Loop through the fibs, close the synchronous FIBS
1516	 */
1517	retval = 1;
1518	num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1519	for (index = 0; index <  num_of_fibs; index++) {
1520
1521		struct fib *fib = &aac->fibs[index];
1522		__le32 XferState = fib->hw_fib_va->header.XferState;
1523		bool is_response_expected = false;
1524
1525		if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1526		   (XferState & cpu_to_le32(ResponseExpected)))
1527			is_response_expected = true;
1528
1529		if (is_response_expected
1530		  || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1531			unsigned long flagv;
1532			spin_lock_irqsave(&fib->event_lock, flagv);
1533			complete(&fib->event_wait);
1534			spin_unlock_irqrestore(&fib->event_lock, flagv);
1535			schedule();
1536			retval = 0;
1537		}
1538	}
1539	/* Give some extra time for ioctls to complete. */
1540	if (retval == 0)
1541		ssleep(2);
1542	index = aac->cardtype;
1543
1544	/*
1545	 * Re-initialize the adapter, first free resources, then carefully
1546	 * apply the initialization sequence to come back again. Only risk
1547	 * is a change in Firmware dropping cache, it is assumed the caller
1548	 * will ensure that i/o is queisced and the card is flushed in that
1549	 * case.
1550	 */
1551	aac_free_irq(aac);
1552	aac_fib_map_free(aac);
1553	dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1554			  aac->comm_phys);
1555	aac_adapter_ioremap(aac, 0);
1556	aac->comm_addr = NULL;
1557	aac->comm_phys = 0;
1558	kfree(aac->queues);
1559	aac->queues = NULL;
1560	kfree(aac->fsa_dev);
1561	aac->fsa_dev = NULL;
1562
1563	dmamask = DMA_BIT_MASK(32);
1564	quirks = aac_get_driver_ident(index)->quirks;
1565	if (quirks & AAC_QUIRK_31BIT)
1566		retval = dma_set_mask(&aac->pdev->dev, dmamask);
1567	else if (!(quirks & AAC_QUIRK_SRC))
1568		retval = dma_set_mask(&aac->pdev->dev, dmamask);
1569	else
1570		retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask);
1571
1572	if (quirks & AAC_QUIRK_31BIT && !retval) {
1573		dmamask = DMA_BIT_MASK(31);
1574		retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask);
1575	}
1576
1577	if (retval)
1578		goto out;
1579
1580	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1581		goto out;
1582
1583	if (jafo) {
1584		aac->thread = kthread_run(aac_command_thread, aac, "%s",
1585					  aac->name);
1586		if (IS_ERR(aac->thread)) {
1587			retval = PTR_ERR(aac->thread);
1588			aac->thread = NULL;
1589			goto out;
1590		}
1591	}
1592	(void)aac_get_adapter_info(aac);
1593	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1594		host->sg_tablesize = 34;
1595		host->max_sectors = (host->sg_tablesize * 8) + 112;
1596	}
1597	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1598		host->sg_tablesize = 17;
1599		host->max_sectors = (host->sg_tablesize * 8) + 112;
1600	}
1601	aac_get_config_status(aac, 1);
1602	aac_get_containers(aac);
1603	/*
1604	 * This is where the assumption that the Adapter is quiesced
1605	 * is important.
1606	 */
1607	scsi_host_complete_all_commands(host, DID_RESET);
1608
1609	retval = 0;
1610out:
1611	aac->in_reset = 0;
1612
1613	/*
1614	 * Issue bus rescan to catch any configuration that might have
1615	 * occurred
1616	 */
1617	if (!retval && !is_kdump_kernel()) {
1618		dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1619		aac_schedule_bus_scan(aac);
1620	}
1621
1622	if (jafo) {
1623		spin_lock_irq(host->host_lock);
1624	}
1625	return retval;
1626}
1627
1628int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1629{
1630	unsigned long flagv = 0;
1631	int retval, unblock_retval;
1632	struct Scsi_Host *host = aac->scsi_host_ptr;
1633	int bled;
1634
1635	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1636		return -EBUSY;
1637
1638	if (aac->in_reset) {
1639		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1640		return -EBUSY;
1641	}
1642	aac->in_reset = 1;
1643	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1644
1645	/*
1646	 * Wait for all commands to complete to this specific
1647	 * target (block maximum 60 seconds). Although not necessary,
1648	 * it does make us a good storage citizen.
1649	 */
1650	scsi_host_block(host);
1651
1652	/* Quiesce build, flush cache, write through mode */
1653	if (forced < 2)
1654		aac_send_shutdown(aac);
1655	spin_lock_irqsave(host->host_lock, flagv);
1656	bled = forced ? forced :
1657			(aac_check_reset != 0 && aac_check_reset != 1);
1658	retval = _aac_reset_adapter(aac, bled, reset_type);
1659	spin_unlock_irqrestore(host->host_lock, flagv);
1660
1661	unblock_retval = scsi_host_unblock(host, SDEV_RUNNING);
1662	if (!retval)
1663		retval = unblock_retval;
1664	if ((forced < 2) && (retval == -ENODEV)) {
1665		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1666		struct fib * fibctx = aac_fib_alloc(aac);
1667		if (fibctx) {
1668			struct aac_pause *cmd;
1669			int status;
1670
1671			aac_fib_init(fibctx);
1672
1673			cmd = (struct aac_pause *) fib_data(fibctx);
1674
1675			cmd->command = cpu_to_le32(VM_ContainerConfig);
1676			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1677			cmd->timeout = cpu_to_le32(1);
1678			cmd->min = cpu_to_le32(1);
1679			cmd->noRescan = cpu_to_le32(1);
1680			cmd->count = cpu_to_le32(0);
1681
1682			status = aac_fib_send(ContainerCommand,
1683			  fibctx,
1684			  sizeof(struct aac_pause),
1685			  FsaNormal,
1686			  -2 /* Timeout silently */, 1,
1687			  NULL, NULL);
1688
1689			if (status >= 0)
1690				aac_fib_complete(fibctx);
1691			/* FIB should be freed only after getting
1692			 * the response from the F/W */
1693			if (status != -ERESTARTSYS)
1694				aac_fib_free(fibctx);
1695		}
1696	}
1697
1698	return retval;
1699}
1700
1701int aac_check_health(struct aac_dev * aac)
1702{
1703	int BlinkLED;
1704	unsigned long time_now, flagv = 0;
1705	struct list_head * entry;
1706
1707	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1708	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1709		return 0;
1710
1711	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1712		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1713		return 0; /* OK */
1714	}
1715
1716	aac->in_reset = 1;
1717
1718	/* Fake up an AIF:
1719	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1720	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1721	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1722	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1723	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1724	 *	aac.aifcmd.data[3] = BlinkLED
1725	 */
1726
1727	time_now = jiffies/HZ;
1728	entry = aac->fib_list.next;
1729
1730	/*
1731	 * For each Context that is on the
1732	 * fibctxList, make a copy of the
1733	 * fib, and then set the event to wake up the
1734	 * thread that is waiting for it.
1735	 */
1736	while (entry != &aac->fib_list) {
1737		/*
1738		 * Extract the fibctx
1739		 */
1740		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1741		struct hw_fib * hw_fib;
1742		struct fib * fib;
1743		/*
1744		 * Check if the queue is getting
1745		 * backlogged
1746		 */
1747		if (fibctx->count > 20) {
1748			/*
1749			 * It's *not* jiffies folks,
1750			 * but jiffies / HZ, so do not
1751			 * panic ...
1752			 */
1753			u32 time_last = fibctx->jiffies;
1754			/*
1755			 * Has it been > 2 minutes
1756			 * since the last read off
1757			 * the queue?
1758			 */
1759			if ((time_now - time_last) > aif_timeout) {
1760				entry = entry->next;
1761				aac_close_fib_context(aac, fibctx);
1762				continue;
1763			}
1764		}
1765		/*
1766		 * Warning: no sleep allowed while
1767		 * holding spinlock
1768		 */
1769		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1770		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1771		if (fib && hw_fib) {
1772			struct aac_aifcmd * aif;
1773
1774			fib->hw_fib_va = hw_fib;
1775			fib->dev = aac;
1776			aac_fib_init(fib);
1777			fib->type = FSAFS_NTC_FIB_CONTEXT;
1778			fib->size = sizeof (struct fib);
1779			fib->data = hw_fib->data;
1780			aif = (struct aac_aifcmd *)hw_fib->data;
1781			aif->command = cpu_to_le32(AifCmdEventNotify);
1782			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1783			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1784			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1785			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1786			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1787
1788			/*
1789			 * Put the FIB onto the
1790			 * fibctx's fibs
1791			 */
1792			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1793			fibctx->count++;
1794			/*
1795			 * Set the event to wake up the
1796			 * thread that will waiting.
1797			 */
1798			complete(&fibctx->completion);
1799		} else {
1800			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1801			kfree(fib);
1802			kfree(hw_fib);
1803		}
1804		entry = entry->next;
1805	}
1806
1807	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1808
1809	if (BlinkLED < 0) {
1810		printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1811				aac->name, BlinkLED);
1812		goto out;
1813	}
1814
1815	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1816
1817out:
1818	aac->in_reset = 0;
1819	return BlinkLED;
1820}
1821
1822static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1823{
1824	return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1825}
1826
1827static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1828								int bus,
1829								int target)
1830{
1831	if (bus != CONTAINER_CHANNEL)
1832		bus = aac_phys_to_logical(bus);
1833
1834	return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1835}
1836
1837static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1838{
1839	if (bus != CONTAINER_CHANNEL)
1840		bus = aac_phys_to_logical(bus);
1841
1842	return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1843}
1844
1845static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1846{
1847	if (sdev)
1848		scsi_device_put(sdev);
1849}
1850
1851static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1852{
1853	struct scsi_device *sdev;
1854
1855	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1856	scsi_remove_device(sdev);
1857	aac_put_safw_scsi_device(sdev);
1858}
1859
1860static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1861	int bus, int target)
1862{
1863	return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1864}
1865
1866static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1867{
1868	if (is_safw_raid_volume(dev, bus, target))
1869		return dev->fsa_dev[target].valid;
1870	else
1871		return aac_is_safw_scan_count_equal(dev, bus, target);
1872}
1873
1874static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1875{
1876	int is_exposed = 0;
1877	struct scsi_device *sdev;
1878
1879	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1880	if (sdev)
1881		is_exposed = 1;
1882	aac_put_safw_scsi_device(sdev);
1883
1884	return is_exposed;
1885}
1886
1887static int aac_update_safw_host_devices(struct aac_dev *dev)
1888{
1889	int i;
1890	int bus;
1891	int target;
1892	int is_exposed = 0;
1893	int rcode = 0;
1894
1895	rcode = aac_setup_safw_adapter(dev);
1896	if (unlikely(rcode < 0)) {
1897		goto out;
1898	}
1899
1900	for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1901
1902		bus = get_bus_number(i);
1903		target = get_target_number(i);
1904
1905		is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1906
1907		if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1908			aac_add_safw_device(dev, bus, target);
1909		else if (!aac_is_safw_target_valid(dev, bus, target) &&
1910								is_exposed)
1911			aac_remove_safw_device(dev, bus, target);
1912	}
1913out:
1914	return rcode;
1915}
1916
1917static int aac_scan_safw_host(struct aac_dev *dev)
1918{
1919	int rcode = 0;
1920
1921	rcode = aac_update_safw_host_devices(dev);
1922	if (rcode)
1923		aac_schedule_safw_scan_worker(dev);
1924
1925	return rcode;
1926}
1927
1928int aac_scan_host(struct aac_dev *dev)
1929{
1930	int rcode = 0;
1931
1932	mutex_lock(&dev->scan_mutex);
1933	if (dev->sa_firmware)
1934		rcode = aac_scan_safw_host(dev);
1935	else
1936		scsi_scan_host(dev->scsi_host_ptr);
1937	mutex_unlock(&dev->scan_mutex);
1938
1939	return rcode;
1940}
1941
1942void aac_src_reinit_aif_worker(struct work_struct *work)
1943{
1944	struct aac_dev *dev = container_of(to_delayed_work(work),
1945				struct aac_dev, src_reinit_aif_worker);
1946
1947	wait_event(dev->scsi_host_ptr->host_wait,
1948			!scsi_host_in_recovery(dev->scsi_host_ptr));
1949	aac_reinit_aif(dev, dev->cardtype);
1950}
1951
1952/**
1953 *	aac_handle_sa_aif -	Handle a message from the firmware
1954 *	@dev: Which adapter this fib is from
1955 *	@fibptr: Pointer to fibptr from adapter
1956 *
1957 *	This routine handles a driver notify fib from the adapter and
1958 *	dispatches it to the appropriate routine for handling.
1959 */
1960static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1961{
1962	int i;
1963	u32 events = 0;
1964
1965	if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1966		events = SA_AIF_HOTPLUG;
1967	else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1968		events = SA_AIF_HARDWARE;
1969	else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1970		events = SA_AIF_PDEV_CHANGE;
1971	else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1972		events = SA_AIF_LDEV_CHANGE;
1973	else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1974		events = SA_AIF_BPSTAT_CHANGE;
1975	else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1976		events = SA_AIF_BPCFG_CHANGE;
1977
1978	switch (events) {
1979	case SA_AIF_HOTPLUG:
1980	case SA_AIF_HARDWARE:
1981	case SA_AIF_PDEV_CHANGE:
1982	case SA_AIF_LDEV_CHANGE:
1983	case SA_AIF_BPCFG_CHANGE:
1984
1985		aac_scan_host(dev);
1986
1987		break;
1988
1989	case SA_AIF_BPSTAT_CHANGE:
1990		/* currently do nothing */
1991		break;
1992	}
1993
1994	for (i = 1; i <= 10; ++i) {
1995		events = src_readl(dev, MUnit.IDR);
1996		if (events & (1<<23)) {
1997			pr_warn(" AIF not cleared by firmware - %d/%d)\n",
1998				i, 10);
1999			ssleep(1);
2000		}
2001	}
2002}
2003
2004static int get_fib_count(struct aac_dev *dev)
2005{
2006	unsigned int num = 0;
2007	struct list_head *entry;
2008	unsigned long flagv;
2009
2010	/*
2011	 * Warning: no sleep allowed while
2012	 * holding spinlock. We take the estimate
2013	 * and pre-allocate a set of fibs outside the
2014	 * lock.
2015	 */
2016	num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2017			/ sizeof(struct hw_fib); /* some extra */
2018	spin_lock_irqsave(&dev->fib_lock, flagv);
2019	entry = dev->fib_list.next;
2020	while (entry != &dev->fib_list) {
2021		entry = entry->next;
2022		++num;
2023	}
2024	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2025
2026	return num;
2027}
2028
2029static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2030						struct fib **fib_pool,
2031						unsigned int num)
2032{
2033	struct hw_fib **hw_fib_p;
2034	struct fib **fib_p;
2035
2036	hw_fib_p = hw_fib_pool;
2037	fib_p = fib_pool;
2038	while (hw_fib_p < &hw_fib_pool[num]) {
2039		*(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2040		if (!(*(hw_fib_p++))) {
2041			--hw_fib_p;
2042			break;
2043		}
2044
2045		*(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2046		if (!(*(fib_p++))) {
2047			kfree(*(--hw_fib_p));
2048			break;
2049		}
2050	}
2051
2052	/*
2053	 * Get the actual number of allocated fibs
2054	 */
2055	num = hw_fib_p - hw_fib_pool;
2056	return num;
2057}
2058
2059static void wakeup_fibctx_threads(struct aac_dev *dev,
2060						struct hw_fib **hw_fib_pool,
2061						struct fib **fib_pool,
2062						struct fib *fib,
2063						struct hw_fib *hw_fib,
2064						unsigned int num)
2065{
2066	unsigned long flagv;
2067	struct list_head *entry;
2068	struct hw_fib **hw_fib_p;
2069	struct fib **fib_p;
2070	u32 time_now, time_last;
2071	struct hw_fib *hw_newfib;
2072	struct fib *newfib;
2073	struct aac_fib_context *fibctx;
2074
2075	time_now = jiffies/HZ;
2076	spin_lock_irqsave(&dev->fib_lock, flagv);
2077	entry = dev->fib_list.next;
2078	/*
2079	 * For each Context that is on the
2080	 * fibctxList, make a copy of the
2081	 * fib, and then set the event to wake up the
2082	 * thread that is waiting for it.
2083	 */
2084
2085	hw_fib_p = hw_fib_pool;
2086	fib_p = fib_pool;
2087	while (entry != &dev->fib_list) {
2088		/*
2089		 * Extract the fibctx
2090		 */
2091		fibctx = list_entry(entry, struct aac_fib_context,
2092				next);
2093		/*
2094		 * Check if the queue is getting
2095		 * backlogged
2096		 */
2097		if (fibctx->count > 20) {
2098			/*
2099			 * It's *not* jiffies folks,
2100			 * but jiffies / HZ so do not
2101			 * panic ...
2102			 */
2103			time_last = fibctx->jiffies;
2104			/*
2105			 * Has it been > 2 minutes
2106			 * since the last read off
2107			 * the queue?
2108			 */
2109			if ((time_now - time_last) > aif_timeout) {
2110				entry = entry->next;
2111				aac_close_fib_context(dev, fibctx);
2112				continue;
2113			}
2114		}
2115		/*
2116		 * Warning: no sleep allowed while
2117		 * holding spinlock
2118		 */
2119		if (hw_fib_p >= &hw_fib_pool[num]) {
2120			pr_warn("aifd: didn't allocate NewFib\n");
2121			entry = entry->next;
2122			continue;
2123		}
2124
2125		hw_newfib = *hw_fib_p;
2126		*(hw_fib_p++) = NULL;
2127		newfib = *fib_p;
2128		*(fib_p++) = NULL;
2129		/*
2130		 * Make the copy of the FIB
2131		 */
2132		memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2133		memcpy(newfib, fib, sizeof(struct fib));
2134		newfib->hw_fib_va = hw_newfib;
2135		/*
2136		 * Put the FIB onto the
2137		 * fibctx's fibs
2138		 */
2139		list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2140		fibctx->count++;
2141		/*
2142		 * Set the event to wake up the
2143		 * thread that is waiting.
2144		 */
2145		complete(&fibctx->completion);
2146
2147		entry = entry->next;
2148	}
2149	/*
2150	 *	Set the status of this FIB
2151	 */
2152	*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2153	aac_fib_adapter_complete(fib, sizeof(u32));
2154	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2155
2156}
2157
2158static void aac_process_events(struct aac_dev *dev)
2159{
2160	struct hw_fib *hw_fib;
2161	struct fib *fib;
2162	unsigned long flags;
2163	spinlock_t *t_lock;
2164
2165	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2166	spin_lock_irqsave(t_lock, flags);
2167
2168	while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2169		struct list_head *entry;
2170		struct aac_aifcmd *aifcmd;
2171		unsigned int  num;
2172		struct hw_fib **hw_fib_pool, **hw_fib_p;
2173		struct fib **fib_pool, **fib_p;
2174
2175		set_current_state(TASK_RUNNING);
2176
2177		entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2178		list_del(entry);
2179
2180		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2181		spin_unlock_irqrestore(t_lock, flags);
2182
2183		fib = list_entry(entry, struct fib, fiblink);
2184		hw_fib = fib->hw_fib_va;
2185		if (dev->sa_firmware) {
2186			/* Thor AIF */
2187			aac_handle_sa_aif(dev, fib);
2188			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2189			goto free_fib;
2190		}
2191		/*
2192		 *	We will process the FIB here or pass it to a
2193		 *	worker thread that is TBD. We Really can't
2194		 *	do anything at this point since we don't have
2195		 *	anything defined for this thread to do.
2196		 */
2197		memset(fib, 0, sizeof(struct fib));
2198		fib->type = FSAFS_NTC_FIB_CONTEXT;
2199		fib->size = sizeof(struct fib);
2200		fib->hw_fib_va = hw_fib;
2201		fib->data = hw_fib->data;
2202		fib->dev = dev;
2203		/*
2204		 *	We only handle AifRequest fibs from the adapter.
2205		 */
2206
2207		aifcmd = (struct aac_aifcmd *) hw_fib->data;
2208		if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2209			/* Handle Driver Notify Events */
2210			aac_handle_aif(dev, fib);
2211			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2212			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2213			goto free_fib;
2214		}
2215		/*
2216		 * The u32 here is important and intended. We are using
2217		 * 32bit wrapping time to fit the adapter field
2218		 */
2219
2220		/* Sniff events */
2221		if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2222		 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2223			aac_handle_aif(dev, fib);
2224		}
2225
2226		/*
2227		 * get number of fibs to process
2228		 */
2229		num = get_fib_count(dev);
2230		if (!num)
2231			goto free_fib;
2232
2233		hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2234						GFP_KERNEL);
2235		if (!hw_fib_pool)
2236			goto free_fib;
2237
2238		fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2239		if (!fib_pool)
2240			goto free_hw_fib_pool;
2241
2242		/*
2243		 * Fill up fib pointer pools with actual fibs
2244		 * and hw_fibs
2245		 */
2246		num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2247		if (!num)
2248			goto free_mem;
2249
2250		/*
2251		 * wakeup the thread that is waiting for
2252		 * the response from fw (ioctl)
2253		 */
2254		wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2255							    fib, hw_fib, num);
2256
2257free_mem:
2258		/* Free up the remaining resources */
2259		hw_fib_p = hw_fib_pool;
2260		fib_p = fib_pool;
2261		while (hw_fib_p < &hw_fib_pool[num]) {
2262			kfree(*hw_fib_p);
2263			kfree(*fib_p);
2264			++fib_p;
2265			++hw_fib_p;
2266		}
2267		kfree(fib_pool);
2268free_hw_fib_pool:
2269		kfree(hw_fib_pool);
2270free_fib:
2271		kfree(fib);
2272		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2273		spin_lock_irqsave(t_lock, flags);
2274	}
2275	/*
2276	 *	There are no more AIF's
2277	 */
2278	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2279	spin_unlock_irqrestore(t_lock, flags);
2280}
2281
2282static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2283							u32 datasize)
2284{
2285	struct aac_srb *srbcmd;
2286	struct sgmap64 *sg64;
2287	dma_addr_t addr;
2288	char *dma_buf;
2289	struct fib *fibptr;
2290	int ret = -ENOMEM;
2291	u32 vbus, vid;
2292
2293	fibptr = aac_fib_alloc(dev);
2294	if (!fibptr)
2295		goto out;
2296
2297	dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2298				     GFP_KERNEL);
2299	if (!dma_buf)
2300		goto fib_free_out;
2301
2302	aac_fib_init(fibptr);
2303
2304	vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2305	vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2306
2307	srbcmd = (struct aac_srb *)fib_data(fibptr);
2308
2309	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2310	srbcmd->channel = cpu_to_le32(vbus);
2311	srbcmd->id = cpu_to_le32(vid);
2312	srbcmd->lun = 0;
2313	srbcmd->flags = cpu_to_le32(SRB_DataOut);
2314	srbcmd->timeout = cpu_to_le32(10);
2315	srbcmd->retry_limit = 0;
2316	srbcmd->cdb_size = cpu_to_le32(12);
2317	srbcmd->count = cpu_to_le32(datasize);
2318
2319	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2320	srbcmd->cdb[0] = BMIC_OUT;
2321	srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2322	memcpy(dma_buf, (char *)wellness_str, datasize);
2323
2324	sg64 = (struct sgmap64 *)&srbcmd->sg;
2325	sg64->count = cpu_to_le32(1);
2326	sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2327	sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2328	sg64->sg[0].count = cpu_to_le32(datasize);
2329
2330	ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2331				FsaNormal, 1, 1, NULL, NULL);
2332
2333	dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2334
2335	/*
2336	 * Do not set XferState to zero unless
2337	 * receives a response from F/W
2338	 */
2339	if (ret >= 0)
2340		aac_fib_complete(fibptr);
2341
2342	/*
2343	 * FIB should be freed only after
2344	 * getting the response from the F/W
2345	 */
2346	if (ret != -ERESTARTSYS)
2347		goto fib_free_out;
2348
2349out:
2350	return ret;
2351fib_free_out:
2352	aac_fib_free(fibptr);
2353	goto out;
2354}
2355
2356static int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2357{
2358	struct tm cur_tm;
2359	char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2360	u32 datasize = sizeof(wellness_str);
2361	time64_t local_time;
2362	int ret = -ENODEV;
2363
2364	if (!dev->sa_firmware)
2365		goto out;
2366
2367	local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2368	time64_to_tm(local_time, 0, &cur_tm);
2369	cur_tm.tm_mon += 1;
2370	cur_tm.tm_year += 1900;
2371	wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2372	wellness_str[9] = bin2bcd(cur_tm.tm_min);
2373	wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2374	wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2375	wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2376	wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2377	wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2378
2379	ret = aac_send_wellness_command(dev, wellness_str, datasize);
2380
2381out:
2382	return ret;
2383}
2384
2385static int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2386{
2387	int ret = -ENOMEM;
2388	struct fib *fibptr;
2389	__le32 *info;
2390
2391	fibptr = aac_fib_alloc(dev);
2392	if (!fibptr)
2393		goto out;
2394
2395	aac_fib_init(fibptr);
2396	info = (__le32 *)fib_data(fibptr);
2397	*info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2398	ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2399					1, 1, NULL, NULL);
2400
2401	/*
2402	 * Do not set XferState to zero unless
2403	 * receives a response from F/W
2404	 */
2405	if (ret >= 0)
2406		aac_fib_complete(fibptr);
2407
2408	/*
2409	 * FIB should be freed only after
2410	 * getting the response from the F/W
2411	 */
2412	if (ret != -ERESTARTSYS)
2413		aac_fib_free(fibptr);
2414
2415out:
2416	return ret;
2417}
2418
2419/**
2420 *	aac_command_thread	-	command processing thread
2421 *	@data: Adapter to monitor
2422 *
2423 *	Waits on the commandready event in it's queue. When the event gets set
2424 *	it will pull FIBs off it's queue. It will continue to pull FIBs off
2425 *	until the queue is empty. When the queue is empty it will wait for
2426 *	more FIBs.
2427 */
2428
2429int aac_command_thread(void *data)
2430{
2431	struct aac_dev *dev = data;
2432	DECLARE_WAITQUEUE(wait, current);
2433	unsigned long next_jiffies = jiffies + HZ;
2434	unsigned long next_check_jiffies = next_jiffies;
2435	long difference = HZ;
2436
2437	/*
2438	 *	We can only have one thread per adapter for AIF's.
2439	 */
2440	if (dev->aif_thread)
2441		return -EINVAL;
2442
2443	/*
2444	 *	Let the DPC know it has a place to send the AIF's to.
2445	 */
2446	dev->aif_thread = 1;
2447	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2448	set_current_state(TASK_INTERRUPTIBLE);
2449	dprintk ((KERN_INFO "aac_command_thread start\n"));
2450	while (1) {
2451
2452		aac_process_events(dev);
2453
2454		/*
2455		 *	Background activity
2456		 */
2457		if ((time_before(next_check_jiffies,next_jiffies))
2458		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2459			next_check_jiffies = next_jiffies;
2460			if (aac_adapter_check_health(dev) == 0) {
2461				difference = ((long)(unsigned)check_interval)
2462					   * HZ;
2463				next_check_jiffies = jiffies + difference;
2464			} else if (!dev->queues)
2465				break;
2466		}
2467		if (!time_before(next_check_jiffies,next_jiffies)
2468		 && ((difference = next_jiffies - jiffies) <= 0)) {
2469			struct timespec64 now;
2470			int ret;
2471
2472			/* Don't even try to talk to adapter if its sick */
2473			ret = aac_adapter_check_health(dev);
2474			if (ret || !dev->queues)
2475				break;
2476			next_check_jiffies = jiffies
2477					   + ((long)(unsigned)check_interval)
2478					   * HZ;
2479			ktime_get_real_ts64(&now);
2480
2481			/* Synchronize our watches */
2482			if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2483			 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2484				difference = HZ + HZ / 2 -
2485					     now.tv_nsec / (NSEC_PER_SEC / HZ);
2486			else {
2487				if (now.tv_nsec > NSEC_PER_SEC / 2)
2488					++now.tv_sec;
2489
2490				if (dev->sa_firmware)
2491					ret =
2492					aac_send_safw_hostttime(dev, &now);
2493				else
2494					ret = aac_send_hosttime(dev, &now);
2495
2496				difference = (long)(unsigned)update_interval*HZ;
2497			}
2498			next_jiffies = jiffies + difference;
2499			if (time_before(next_check_jiffies,next_jiffies))
2500				difference = next_check_jiffies - jiffies;
2501		}
2502		if (difference <= 0)
2503			difference = 1;
2504		set_current_state(TASK_INTERRUPTIBLE);
2505
2506		if (kthread_should_stop())
2507			break;
2508
2509		/*
2510		 * we probably want usleep_range() here instead of the
2511		 * jiffies computation
2512		 */
2513		schedule_timeout(difference);
2514
2515		if (kthread_should_stop())
2516			break;
2517	}
2518	if (dev->queues)
2519		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2520	dev->aif_thread = 0;
2521	return 0;
2522}
2523
2524int aac_acquire_irq(struct aac_dev *dev)
2525{
2526	int i;
2527	int j;
2528	int ret = 0;
2529
2530	if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2531		for (i = 0; i < dev->max_msix; i++) {
2532			dev->aac_msix[i].vector_no = i;
2533			dev->aac_msix[i].dev = dev;
2534			if (request_irq(pci_irq_vector(dev->pdev, i),
2535					dev->a_ops.adapter_intr,
2536					0, "aacraid", &(dev->aac_msix[i]))) {
2537				printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2538						dev->name, dev->id, i);
2539				for (j = 0 ; j < i ; j++)
2540					free_irq(pci_irq_vector(dev->pdev, j),
2541						 &(dev->aac_msix[j]));
2542				pci_disable_msix(dev->pdev);
2543				ret = -1;
2544			}
2545		}
2546	} else {
2547		dev->aac_msix[0].vector_no = 0;
2548		dev->aac_msix[0].dev = dev;
2549
2550		if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2551			IRQF_SHARED, "aacraid",
2552			&(dev->aac_msix[0])) < 0) {
2553			if (dev->msi)
2554				pci_disable_msi(dev->pdev);
2555			printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2556					dev->name, dev->id);
2557			ret = -1;
2558		}
2559	}
2560	return ret;
2561}
2562
2563void aac_free_irq(struct aac_dev *dev)
2564{
2565	int i;
2566
2567	if (aac_is_src(dev)) {
2568		if (dev->max_msix > 1) {
2569			for (i = 0; i < dev->max_msix; i++)
2570				free_irq(pci_irq_vector(dev->pdev, i),
2571					 &(dev->aac_msix[i]));
2572		} else {
2573			free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2574		}
2575	} else {
2576		free_irq(dev->pdev->irq, dev);
2577	}
2578	if (dev->msi)
2579		pci_disable_msi(dev->pdev);
2580	else if (dev->max_msix > 1)
2581		pci_disable_msix(dev->pdev);
2582}
2583