1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * An RTC driver for Allwinner A31/A23
4 *
5 * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
6 *
7 * based on rtc-sunxi.c
8 *
9 * An RTC driver for Allwinner A10/A20
10 *
11 * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
12 */
13
14#include <linux/clk.h>
15#include <linux/clk-provider.h>
16#include <linux/clk/sunxi-ng.h>
17#include <linux/delay.h>
18#include <linux/err.h>
19#include <linux/fs.h>
20#include <linux/init.h>
21#include <linux/interrupt.h>
22#include <linux/io.h>
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/of.h>
26#include <linux/of_address.h>
27#include <linux/platform_device.h>
28#include <linux/rtc.h>
29#include <linux/slab.h>
30#include <linux/types.h>
31
32/* Control register */
33#define SUN6I_LOSC_CTRL				0x0000
34#define SUN6I_LOSC_CTRL_KEY			(0x16aa << 16)
35#define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS		BIT(15)
36#define SUN6I_LOSC_CTRL_ALM_DHMS_ACC		BIT(9)
37#define SUN6I_LOSC_CTRL_RTC_HMS_ACC		BIT(8)
38#define SUN6I_LOSC_CTRL_RTC_YMD_ACC		BIT(7)
39#define SUN6I_LOSC_CTRL_EXT_LOSC_EN		BIT(4)
40#define SUN6I_LOSC_CTRL_EXT_OSC			BIT(0)
41#define SUN6I_LOSC_CTRL_ACC_MASK		GENMASK(9, 7)
42
43#define SUN6I_LOSC_CLK_PRESCAL			0x0008
44
45/* RTC */
46#define SUN6I_RTC_YMD				0x0010
47#define SUN6I_RTC_HMS				0x0014
48
49/* Alarm 0 (counter) */
50#define SUN6I_ALRM_COUNTER			0x0020
51/* This holds the remaining alarm seconds on older SoCs (current value) */
52#define SUN6I_ALRM_COUNTER_HMS			0x0024
53#define SUN6I_ALRM_EN				0x0028
54#define SUN6I_ALRM_EN_CNT_EN			BIT(0)
55#define SUN6I_ALRM_IRQ_EN			0x002c
56#define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN		BIT(0)
57#define SUN6I_ALRM_IRQ_STA			0x0030
58#define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND		BIT(0)
59
60/* Alarm 1 (wall clock) */
61#define SUN6I_ALRM1_EN				0x0044
62#define SUN6I_ALRM1_IRQ_EN			0x0048
63#define SUN6I_ALRM1_IRQ_STA			0x004c
64#define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND	BIT(0)
65
66/* Alarm config */
67#define SUN6I_ALARM_CONFIG			0x0050
68#define SUN6I_ALARM_CONFIG_WAKEUP		BIT(0)
69
70#define SUN6I_LOSC_OUT_GATING			0x0060
71#define SUN6I_LOSC_OUT_GATING_EN_OFFSET		0
72
73/* General-purpose data */
74#define SUN6I_GP_DATA				0x0100
75#define SUN6I_GP_DATA_SIZE			0x20
76
77/*
78 * Get date values
79 */
80#define SUN6I_DATE_GET_DAY_VALUE(x)		((x)  & 0x0000001f)
81#define SUN6I_DATE_GET_MON_VALUE(x)		(((x) & 0x00000f00) >> 8)
82#define SUN6I_DATE_GET_YEAR_VALUE(x)		(((x) & 0x003f0000) >> 16)
83#define SUN6I_LEAP_GET_VALUE(x)			(((x) & 0x00400000) >> 22)
84
85/*
86 * Get time values
87 */
88#define SUN6I_TIME_GET_SEC_VALUE(x)		((x)  & 0x0000003f)
89#define SUN6I_TIME_GET_MIN_VALUE(x)		(((x) & 0x00003f00) >> 8)
90#define SUN6I_TIME_GET_HOUR_VALUE(x)		(((x) & 0x001f0000) >> 16)
91
92/*
93 * Set date values
94 */
95#define SUN6I_DATE_SET_DAY_VALUE(x)		((x)       & 0x0000001f)
96#define SUN6I_DATE_SET_MON_VALUE(x)		((x) <<  8 & 0x00000f00)
97#define SUN6I_DATE_SET_YEAR_VALUE(x)		((x) << 16 & 0x003f0000)
98#define SUN6I_LEAP_SET_VALUE(x)			((x) << 22 & 0x00400000)
99
100/*
101 * Set time values
102 */
103#define SUN6I_TIME_SET_SEC_VALUE(x)		((x)       & 0x0000003f)
104#define SUN6I_TIME_SET_MIN_VALUE(x)		((x) <<  8 & 0x00003f00)
105#define SUN6I_TIME_SET_HOUR_VALUE(x)		((x) << 16 & 0x001f0000)
106
107/*
108 * The year parameter passed to the driver is usually an offset relative to
109 * the year 1900. This macro is used to convert this offset to another one
110 * relative to the minimum year allowed by the hardware.
111 *
112 * The year range is 1970 - 2033. This range is selected to match Allwinner's
113 * driver, even though it is somewhat limited.
114 */
115#define SUN6I_YEAR_MIN				1970
116#define SUN6I_YEAR_OFF				(SUN6I_YEAR_MIN - 1900)
117
118#define SECS_PER_DAY				(24 * 3600ULL)
119
120/*
121 * There are other differences between models, including:
122 *
123 *   - number of GPIO pins that can be configured to hold a certain level
124 *   - crypto-key related registers (H5, H6)
125 *   - boot process related (super standby, secondary processor entry address)
126 *     registers (R40, H6)
127 *   - SYS power domain controls (R40)
128 *   - DCXO controls (H6)
129 *   - RC oscillator calibration (H6)
130 *
131 * These functions are not covered by this driver.
132 */
133struct sun6i_rtc_clk_data {
134	unsigned long rc_osc_rate;
135	unsigned int fixed_prescaler : 16;
136	unsigned int has_prescaler : 1;
137	unsigned int has_out_clk : 1;
138	unsigned int has_losc_en : 1;
139	unsigned int has_auto_swt : 1;
140};
141
142#define RTC_LINEAR_DAY	BIT(0)
143
144struct sun6i_rtc_dev {
145	struct rtc_device *rtc;
146	const struct sun6i_rtc_clk_data *data;
147	void __iomem *base;
148	int irq;
149	time64_t alarm;
150	unsigned long flags;
151
152	struct clk_hw hw;
153	struct clk_hw *int_osc;
154	struct clk *losc;
155	struct clk *ext_losc;
156
157	spinlock_t lock;
158};
159
160static struct sun6i_rtc_dev *sun6i_rtc;
161
162static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
163					       unsigned long parent_rate)
164{
165	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
166	u32 val = 0;
167
168	val = readl(rtc->base + SUN6I_LOSC_CTRL);
169	if (val & SUN6I_LOSC_CTRL_EXT_OSC)
170		return parent_rate;
171
172	if (rtc->data->fixed_prescaler)
173		parent_rate /= rtc->data->fixed_prescaler;
174
175	if (rtc->data->has_prescaler) {
176		val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
177		val &= GENMASK(4, 0);
178	}
179
180	return parent_rate / (val + 1);
181}
182
183static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
184{
185	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
186
187	return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
188}
189
190static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
191{
192	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
193	unsigned long flags;
194	u32 val;
195
196	if (index > 1)
197		return -EINVAL;
198
199	spin_lock_irqsave(&rtc->lock, flags);
200	val = readl(rtc->base + SUN6I_LOSC_CTRL);
201	val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
202	val |= SUN6I_LOSC_CTRL_KEY;
203	val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
204	if (rtc->data->has_losc_en) {
205		val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
206		val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
207	}
208	writel(val, rtc->base + SUN6I_LOSC_CTRL);
209	spin_unlock_irqrestore(&rtc->lock, flags);
210
211	return 0;
212}
213
214static const struct clk_ops sun6i_rtc_osc_ops = {
215	.recalc_rate	= sun6i_rtc_osc_recalc_rate,
216	.determine_rate	= clk_hw_determine_rate_no_reparent,
217
218	.get_parent	= sun6i_rtc_osc_get_parent,
219	.set_parent	= sun6i_rtc_osc_set_parent,
220};
221
222static void __init sun6i_rtc_clk_init(struct device_node *node,
223				      const struct sun6i_rtc_clk_data *data)
224{
225	struct clk_hw_onecell_data *clk_data;
226	struct sun6i_rtc_dev *rtc;
227	struct clk_init_data init = {
228		.ops		= &sun6i_rtc_osc_ops,
229		.name		= "losc",
230	};
231	const char *iosc_name = "rtc-int-osc";
232	const char *clkout_name = "osc32k-out";
233	const char *parents[2];
234	u32 reg;
235
236	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
237	if (!rtc)
238		return;
239
240	rtc->data = data;
241	clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
242	if (!clk_data) {
243		kfree(rtc);
244		return;
245	}
246
247	spin_lock_init(&rtc->lock);
248
249	rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
250	if (IS_ERR(rtc->base)) {
251		pr_crit("Can't map RTC registers");
252		goto err;
253	}
254
255	reg = SUN6I_LOSC_CTRL_KEY;
256	if (rtc->data->has_auto_swt) {
257		/* Bypass auto-switch to int osc, on ext losc failure */
258		reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
259		writel(reg, rtc->base + SUN6I_LOSC_CTRL);
260	}
261
262	/* Switch to the external, more precise, oscillator, if present */
263	if (of_property_present(node, "clocks")) {
264		reg |= SUN6I_LOSC_CTRL_EXT_OSC;
265		if (rtc->data->has_losc_en)
266			reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
267	}
268	writel(reg, rtc->base + SUN6I_LOSC_CTRL);
269
270	/* Yes, I know, this is ugly. */
271	sun6i_rtc = rtc;
272
273	of_property_read_string_index(node, "clock-output-names", 2,
274				      &iosc_name);
275
276	rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
277								iosc_name,
278								NULL, 0,
279								rtc->data->rc_osc_rate,
280								300000000);
281	if (IS_ERR(rtc->int_osc)) {
282		pr_crit("Couldn't register the internal oscillator\n");
283		goto err;
284	}
285
286	parents[0] = clk_hw_get_name(rtc->int_osc);
287	/* If there is no external oscillator, this will be NULL and ... */
288	parents[1] = of_clk_get_parent_name(node, 0);
289
290	rtc->hw.init = &init;
291
292	init.parent_names = parents;
293	/* ... number of clock parents will be 1. */
294	init.num_parents = of_clk_get_parent_count(node) + 1;
295	of_property_read_string_index(node, "clock-output-names", 0,
296				      &init.name);
297
298	rtc->losc = clk_register(NULL, &rtc->hw);
299	if (IS_ERR(rtc->losc)) {
300		pr_crit("Couldn't register the LOSC clock\n");
301		goto err_register;
302	}
303
304	of_property_read_string_index(node, "clock-output-names", 1,
305				      &clkout_name);
306	rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
307					  0, rtc->base + SUN6I_LOSC_OUT_GATING,
308					  SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
309					  &rtc->lock);
310	if (IS_ERR(rtc->ext_losc)) {
311		pr_crit("Couldn't register the LOSC external gate\n");
312		goto err_register;
313	}
314
315	clk_data->num = 3;
316	clk_data->hws[0] = &rtc->hw;
317	clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
318	clk_data->hws[2] = rtc->int_osc;
319	of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
320	return;
321
322err_register:
323	clk_hw_unregister_fixed_rate(rtc->int_osc);
324err:
325	kfree(clk_data);
326}
327
328static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
329	.rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
330	.has_prescaler = 1,
331};
332
333static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
334{
335	sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
336}
337CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
338		      sun6i_a31_rtc_clk_init);
339
340static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
341	.rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
342	.has_prescaler = 1,
343	.has_out_clk = 1,
344};
345
346static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
347{
348	sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
349}
350CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
351		      sun8i_a23_rtc_clk_init);
352
353static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
354	.rc_osc_rate = 16000000,
355	.fixed_prescaler = 32,
356	.has_prescaler = 1,
357	.has_out_clk = 1,
358};
359
360static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
361{
362	sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
363}
364CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
365		      sun8i_h3_rtc_clk_init);
366/* As far as we are concerned, clocks for H5 are the same as H3 */
367CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
368		      sun8i_h3_rtc_clk_init);
369
370static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = {
371	.rc_osc_rate = 16000000,
372	.fixed_prescaler = 32,
373	.has_prescaler = 1,
374	.has_out_clk = 1,
375	.has_losc_en = 1,
376	.has_auto_swt = 1,
377};
378
379static void __init sun50i_h6_rtc_clk_init(struct device_node *node)
380{
381	sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data);
382}
383CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc",
384		      sun50i_h6_rtc_clk_init);
385
386/*
387 * The R40 user manual is self-conflicting on whether the prescaler is
388 * fixed or configurable. The clock diagram shows it as fixed, but there
389 * is also a configurable divider in the RTC block.
390 */
391static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = {
392	.rc_osc_rate = 16000000,
393	.fixed_prescaler = 512,
394};
395static void __init sun8i_r40_rtc_clk_init(struct device_node *node)
396{
397	sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data);
398}
399CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc",
400		      sun8i_r40_rtc_clk_init);
401
402static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
403	.rc_osc_rate = 32000,
404	.has_out_clk = 1,
405};
406
407static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
408{
409	sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
410}
411CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
412		      sun8i_v3_rtc_clk_init);
413
414static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
415{
416	struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
417	irqreturn_t ret = IRQ_NONE;
418	u32 val;
419
420	spin_lock(&chip->lock);
421	val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
422
423	if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
424		val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
425		writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
426
427		rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
428
429		ret = IRQ_HANDLED;
430	}
431	spin_unlock(&chip->lock);
432
433	return ret;
434}
435
436static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
437{
438	u32 alrm_val = 0;
439	u32 alrm_irq_val = 0;
440	u32 alrm_wake_val = 0;
441	unsigned long flags;
442
443	if (to) {
444		alrm_val = SUN6I_ALRM_EN_CNT_EN;
445		alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
446		alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
447	} else {
448		writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
449		       chip->base + SUN6I_ALRM_IRQ_STA);
450	}
451
452	spin_lock_irqsave(&chip->lock, flags);
453	writel(alrm_val, chip->base + SUN6I_ALRM_EN);
454	writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
455	writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
456	spin_unlock_irqrestore(&chip->lock, flags);
457}
458
459static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
460{
461	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
462	u32 date, time;
463
464	/*
465	 * read again in case it changes
466	 */
467	do {
468		date = readl(chip->base + SUN6I_RTC_YMD);
469		time = readl(chip->base + SUN6I_RTC_HMS);
470	} while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
471		 (time != readl(chip->base + SUN6I_RTC_HMS)));
472
473	if (chip->flags & RTC_LINEAR_DAY) {
474		/*
475		 * Newer chips store a linear day number, the manual
476		 * does not mandate any epoch base. The BSP driver uses
477		 * the UNIX epoch, let's just copy that, as it's the
478		 * easiest anyway.
479		 */
480		rtc_time64_to_tm((date & 0xffff) * SECS_PER_DAY, rtc_tm);
481	} else {
482		rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
483		rtc_tm->tm_mon  = SUN6I_DATE_GET_MON_VALUE(date) - 1;
484		rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
485
486		/*
487		 * switch from (data_year->min)-relative offset to
488		 * a (1900)-relative one
489		 */
490		rtc_tm->tm_year += SUN6I_YEAR_OFF;
491	}
492
493	rtc_tm->tm_sec  = SUN6I_TIME_GET_SEC_VALUE(time);
494	rtc_tm->tm_min  = SUN6I_TIME_GET_MIN_VALUE(time);
495	rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
496
497	return 0;
498}
499
500static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
501{
502	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
503	unsigned long flags;
504	u32 alrm_st;
505	u32 alrm_en;
506
507	spin_lock_irqsave(&chip->lock, flags);
508	alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
509	alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
510	spin_unlock_irqrestore(&chip->lock, flags);
511
512	wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
513	wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
514	rtc_time64_to_tm(chip->alarm, &wkalrm->time);
515
516	return 0;
517}
518
519static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
520{
521	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
522	struct rtc_time *alrm_tm = &wkalrm->time;
523	struct rtc_time tm_now;
524	time64_t time_set;
525	u32 counter_val, counter_val_hms;
526	int ret;
527
528	time_set = rtc_tm_to_time64(alrm_tm);
529
530	if (chip->flags & RTC_LINEAR_DAY) {
531		/*
532		 * The alarm registers hold the actual alarm time, encoded
533		 * in the same way (linear day + HMS) as the current time.
534		 */
535		counter_val_hms = SUN6I_TIME_SET_SEC_VALUE(alrm_tm->tm_sec)  |
536				  SUN6I_TIME_SET_MIN_VALUE(alrm_tm->tm_min)  |
537				  SUN6I_TIME_SET_HOUR_VALUE(alrm_tm->tm_hour);
538		/* The division will cut off the H:M:S part of alrm_tm. */
539		counter_val = div_u64(rtc_tm_to_time64(alrm_tm), SECS_PER_DAY);
540	} else {
541		/* The alarm register holds the number of seconds left. */
542		time64_t time_now;
543
544		ret = sun6i_rtc_gettime(dev, &tm_now);
545		if (ret < 0) {
546			dev_err(dev, "Error in getting time\n");
547			return -EINVAL;
548		}
549
550		time_now = rtc_tm_to_time64(&tm_now);
551		if (time_set <= time_now) {
552			dev_err(dev, "Date to set in the past\n");
553			return -EINVAL;
554		}
555		if ((time_set - time_now) > U32_MAX) {
556			dev_err(dev, "Date too far in the future\n");
557			return -EINVAL;
558		}
559
560		counter_val = time_set - time_now;
561	}
562
563	sun6i_rtc_setaie(0, chip);
564	writel(0, chip->base + SUN6I_ALRM_COUNTER);
565	if (chip->flags & RTC_LINEAR_DAY)
566		writel(0, chip->base + SUN6I_ALRM_COUNTER_HMS);
567	usleep_range(100, 300);
568
569	writel(counter_val, chip->base + SUN6I_ALRM_COUNTER);
570	if (chip->flags & RTC_LINEAR_DAY)
571		writel(counter_val_hms, chip->base + SUN6I_ALRM_COUNTER_HMS);
572	chip->alarm = time_set;
573
574	sun6i_rtc_setaie(wkalrm->enabled, chip);
575
576	return 0;
577}
578
579static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
580			  unsigned int mask, unsigned int ms_timeout)
581{
582	const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
583	u32 reg;
584
585	do {
586		reg = readl(chip->base + offset);
587		reg &= mask;
588
589		if (!reg)
590			return 0;
591
592	} while (time_before(jiffies, timeout));
593
594	return -ETIMEDOUT;
595}
596
597static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
598{
599	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
600	u32 date = 0;
601	u32 time = 0;
602
603	time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec)  |
604		SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min)  |
605		SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
606
607	if (chip->flags & RTC_LINEAR_DAY) {
608		/* The division will cut off the H:M:S part of rtc_tm. */
609		date = div_u64(rtc_tm_to_time64(rtc_tm), SECS_PER_DAY);
610	} else {
611		rtc_tm->tm_year -= SUN6I_YEAR_OFF;
612		rtc_tm->tm_mon += 1;
613
614		date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
615			SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon)  |
616			SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
617
618		if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN))
619			date |= SUN6I_LEAP_SET_VALUE(1);
620	}
621
622	/* Check whether registers are writable */
623	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
624			   SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
625		dev_err(dev, "rtc is still busy.\n");
626		return -EBUSY;
627	}
628
629	writel(time, chip->base + SUN6I_RTC_HMS);
630
631	/*
632	 * After writing the RTC HH-MM-SS register, the
633	 * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
634	 * be cleared until the real writing operation is finished
635	 */
636
637	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
638			   SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
639		dev_err(dev, "Failed to set rtc time.\n");
640		return -ETIMEDOUT;
641	}
642
643	writel(date, chip->base + SUN6I_RTC_YMD);
644
645	/*
646	 * After writing the RTC YY-MM-DD register, the
647	 * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
648	 * be cleared until the real writing operation is finished
649	 */
650
651	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
652			   SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
653		dev_err(dev, "Failed to set rtc time.\n");
654		return -ETIMEDOUT;
655	}
656
657	return 0;
658}
659
660static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
661{
662	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
663
664	if (!enabled)
665		sun6i_rtc_setaie(enabled, chip);
666
667	return 0;
668}
669
670static const struct rtc_class_ops sun6i_rtc_ops = {
671	.read_time		= sun6i_rtc_gettime,
672	.set_time		= sun6i_rtc_settime,
673	.read_alarm		= sun6i_rtc_getalarm,
674	.set_alarm		= sun6i_rtc_setalarm,
675	.alarm_irq_enable	= sun6i_rtc_alarm_irq_enable
676};
677
678static int sun6i_rtc_nvmem_read(void *priv, unsigned int offset, void *_val, size_t bytes)
679{
680	struct sun6i_rtc_dev *chip = priv;
681	u32 *val = _val;
682	int i;
683
684	for (i = 0; i < bytes / 4; ++i)
685		val[i] = readl(chip->base + SUN6I_GP_DATA + offset + 4 * i);
686
687	return 0;
688}
689
690static int sun6i_rtc_nvmem_write(void *priv, unsigned int offset, void *_val, size_t bytes)
691{
692	struct sun6i_rtc_dev *chip = priv;
693	u32 *val = _val;
694	int i;
695
696	for (i = 0; i < bytes / 4; ++i)
697		writel(val[i], chip->base + SUN6I_GP_DATA + offset + 4 * i);
698
699	return 0;
700}
701
702static struct nvmem_config sun6i_rtc_nvmem_cfg = {
703	.type		= NVMEM_TYPE_BATTERY_BACKED,
704	.reg_read	= sun6i_rtc_nvmem_read,
705	.reg_write	= sun6i_rtc_nvmem_write,
706	.size		= SUN6I_GP_DATA_SIZE,
707	.word_size	= 4,
708	.stride		= 4,
709};
710
711#ifdef CONFIG_PM_SLEEP
712/* Enable IRQ wake on suspend, to wake up from RTC. */
713static int sun6i_rtc_suspend(struct device *dev)
714{
715	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
716
717	if (device_may_wakeup(dev))
718		enable_irq_wake(chip->irq);
719
720	return 0;
721}
722
723/* Disable IRQ wake on resume. */
724static int sun6i_rtc_resume(struct device *dev)
725{
726	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
727
728	if (device_may_wakeup(dev))
729		disable_irq_wake(chip->irq);
730
731	return 0;
732}
733#endif
734
735static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
736	sun6i_rtc_suspend, sun6i_rtc_resume);
737
738static void sun6i_rtc_bus_clk_cleanup(void *data)
739{
740	struct clk *bus_clk = data;
741
742	clk_disable_unprepare(bus_clk);
743}
744
745static int sun6i_rtc_probe(struct platform_device *pdev)
746{
747	struct sun6i_rtc_dev *chip = sun6i_rtc;
748	struct device *dev = &pdev->dev;
749	struct clk *bus_clk;
750	int ret;
751
752	bus_clk = devm_clk_get_optional(dev, "bus");
753	if (IS_ERR(bus_clk))
754		return PTR_ERR(bus_clk);
755
756	if (bus_clk) {
757		ret = clk_prepare_enable(bus_clk);
758		if (ret)
759			return ret;
760
761		ret = devm_add_action_or_reset(dev, sun6i_rtc_bus_clk_cleanup,
762					       bus_clk);
763		if (ret)
764			return ret;
765	}
766
767	if (!chip) {
768		chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
769		if (!chip)
770			return -ENOMEM;
771
772		spin_lock_init(&chip->lock);
773
774		chip->base = devm_platform_ioremap_resource(pdev, 0);
775		if (IS_ERR(chip->base))
776			return PTR_ERR(chip->base);
777
778		if (IS_REACHABLE(CONFIG_SUN6I_RTC_CCU)) {
779			ret = sun6i_rtc_ccu_probe(dev, chip->base);
780			if (ret)
781				return ret;
782		}
783	}
784
785	platform_set_drvdata(pdev, chip);
786
787	chip->flags = (unsigned long)of_device_get_match_data(&pdev->dev);
788
789	chip->irq = platform_get_irq(pdev, 0);
790	if (chip->irq < 0)
791		return chip->irq;
792
793	ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
794			       0, dev_name(&pdev->dev), chip);
795	if (ret) {
796		dev_err(&pdev->dev, "Could not request IRQ\n");
797		return ret;
798	}
799
800	/* clear the alarm counter value */
801	writel(0, chip->base + SUN6I_ALRM_COUNTER);
802
803	/* disable counter alarm */
804	writel(0, chip->base + SUN6I_ALRM_EN);
805
806	/* disable counter alarm interrupt */
807	writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
808
809	/* disable week alarm */
810	writel(0, chip->base + SUN6I_ALRM1_EN);
811
812	/* disable week alarm interrupt */
813	writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
814
815	/* clear counter alarm pending interrupts */
816	writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
817	       chip->base + SUN6I_ALRM_IRQ_STA);
818
819	/* clear week alarm pending interrupts */
820	writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
821	       chip->base + SUN6I_ALRM1_IRQ_STA);
822
823	/* disable alarm wakeup */
824	writel(0, chip->base + SUN6I_ALARM_CONFIG);
825
826	clk_prepare_enable(chip->losc);
827
828	device_init_wakeup(&pdev->dev, 1);
829
830	chip->rtc = devm_rtc_allocate_device(&pdev->dev);
831	if (IS_ERR(chip->rtc))
832		return PTR_ERR(chip->rtc);
833
834	chip->rtc->ops = &sun6i_rtc_ops;
835	if (chip->flags & RTC_LINEAR_DAY)
836		chip->rtc->range_max = (65536 * SECS_PER_DAY) - 1;
837	else
838		chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */
839
840	ret = devm_rtc_register_device(chip->rtc);
841	if (ret)
842		return ret;
843
844	sun6i_rtc_nvmem_cfg.priv = chip;
845	ret = devm_rtc_nvmem_register(chip->rtc, &sun6i_rtc_nvmem_cfg);
846	if (ret)
847		return ret;
848
849	return 0;
850}
851
852/*
853 * As far as RTC functionality goes, all models are the same. The
854 * datasheets claim that different models have different number of
855 * registers available for non-volatile storage, but experiments show
856 * that all SoCs have 16 registers available for this purpose.
857 */
858static const struct of_device_id sun6i_rtc_dt_ids[] = {
859	{ .compatible = "allwinner,sun6i-a31-rtc" },
860	{ .compatible = "allwinner,sun8i-a23-rtc" },
861	{ .compatible = "allwinner,sun8i-h3-rtc" },
862	{ .compatible = "allwinner,sun8i-r40-rtc" },
863	{ .compatible = "allwinner,sun8i-v3-rtc" },
864	{ .compatible = "allwinner,sun50i-h5-rtc" },
865	{ .compatible = "allwinner,sun50i-h6-rtc" },
866	{ .compatible = "allwinner,sun50i-h616-rtc",
867		.data = (void *)RTC_LINEAR_DAY },
868	{ .compatible = "allwinner,sun50i-r329-rtc",
869		.data = (void *)RTC_LINEAR_DAY },
870	{ /* sentinel */ },
871};
872MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
873
874static struct platform_driver sun6i_rtc_driver = {
875	.probe		= sun6i_rtc_probe,
876	.driver		= {
877		.name		= "sun6i-rtc",
878		.of_match_table = sun6i_rtc_dt_ids,
879		.pm = &sun6i_rtc_pm_ops,
880	},
881};
882builtin_platform_driver(sun6i_rtc_driver);
883