1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Freescale STMP37XX/STMP378X Real Time Clock driver
4 *
5 * Copyright (c) 2007 Sigmatel, Inc.
6 * Peter Hartley, <peter.hartley@sigmatel.com>
7 *
8 * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved.
9 * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
10 * Copyright 2011 Wolfram Sang, Pengutronix e.K.
11 */
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/io.h>
15#include <linux/init.h>
16#include <linux/platform_device.h>
17#include <linux/interrupt.h>
18#include <linux/delay.h>
19#include <linux/rtc.h>
20#include <linux/slab.h>
21#include <linux/of.h>
22#include <linux/stmp_device.h>
23#include <linux/stmp3xxx_rtc_wdt.h>
24
25#define STMP3XXX_RTC_CTRL			0x0
26#define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN		0x00000001
27#define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN	0x00000002
28#define STMP3XXX_RTC_CTRL_ALARM_IRQ		0x00000004
29#define STMP3XXX_RTC_CTRL_WATCHDOGEN		0x00000010
30
31#define STMP3XXX_RTC_STAT			0x10
32#define STMP3XXX_RTC_STAT_STALE_SHIFT		16
33#define STMP3XXX_RTC_STAT_RTC_PRESENT		0x80000000
34#define STMP3XXX_RTC_STAT_XTAL32000_PRESENT	0x10000000
35#define STMP3XXX_RTC_STAT_XTAL32768_PRESENT	0x08000000
36
37#define STMP3XXX_RTC_SECONDS			0x30
38
39#define STMP3XXX_RTC_ALARM			0x40
40
41#define STMP3XXX_RTC_WATCHDOG			0x50
42
43#define STMP3XXX_RTC_PERSISTENT0		0x60
44#define STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE		(1 << 0)
45#define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN		(1 << 1)
46#define STMP3XXX_RTC_PERSISTENT0_ALARM_EN		(1 << 2)
47#define STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP	(1 << 4)
48#define STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP	(1 << 5)
49#define STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ		(1 << 6)
50#define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE		(1 << 7)
51
52#define STMP3XXX_RTC_PERSISTENT1		0x70
53/* missing bitmask in headers */
54#define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER	0x80000000
55
56struct stmp3xxx_rtc_data {
57	struct rtc_device *rtc;
58	void __iomem *io;
59	int irq_alarm;
60};
61
62#if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG)
63/**
64 * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC
65 * @dev: the parent device of the watchdog (= the RTC)
66 * @timeout: the desired value for the timeout register of the watchdog.
67 *           0 disables the watchdog
68 *
69 * The watchdog needs one register and two bits which are in the RTC domain.
70 * To handle the resource conflict, the RTC driver will create another
71 * platform_device for the watchdog driver as a child of the RTC device.
72 * The watchdog driver is passed the below accessor function via platform_data
73 * to configure the watchdog. Locking is not needed because accessing SET/CLR
74 * registers is atomic.
75 */
76
77static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout)
78{
79	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
80
81	if (timeout) {
82		writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG);
83		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
84		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
85		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
86		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET);
87	} else {
88		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
89		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
90		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
91		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR);
92	}
93}
94
95static struct stmp3xxx_wdt_pdata wdt_pdata = {
96	.wdt_set_timeout = stmp3xxx_wdt_set_timeout,
97};
98
99static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
100{
101	int rc = -1;
102	struct platform_device *wdt_pdev =
103		platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id);
104
105	if (wdt_pdev) {
106		wdt_pdev->dev.parent = &rtc_pdev->dev;
107		wdt_pdev->dev.platform_data = &wdt_pdata;
108		rc = platform_device_add(wdt_pdev);
109		if (rc)
110			platform_device_put(wdt_pdev);
111	}
112
113	if (rc)
114		dev_err(&rtc_pdev->dev,
115			"failed to register stmp3xxx_rtc_wdt\n");
116}
117#else
118static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
119{
120}
121#endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */
122
123static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data)
124{
125	int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */
126	/*
127	 * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010
128	 * states:
129	 * | The order in which registers are updated is
130	 * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds.
131	 * | (This list is in bitfield order, from LSB to MSB, as they would
132	 * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT
133	 * | register. For example, the Seconds register corresponds to
134	 * | STALE_REGS or NEW_REGS containing 0x80.)
135	 */
136	do {
137		if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) &
138				(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)))
139			return 0;
140		udelay(1);
141	} while (--timeout > 0);
142	return (readl(rtc_data->io + STMP3XXX_RTC_STAT) &
143		(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0;
144}
145
146/* Time read/write */
147static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
148{
149	int ret;
150	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
151
152	ret = stmp3xxx_wait_time(rtc_data);
153	if (ret)
154		return ret;
155
156	rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm);
157	return 0;
158}
159
160static int stmp3xxx_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
161{
162	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
163
164	writel(rtc_tm_to_time64(rtc_tm), rtc_data->io + STMP3XXX_RTC_SECONDS);
165	return stmp3xxx_wait_time(rtc_data);
166}
167
168/* interrupt(s) handler */
169static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id)
170{
171	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id);
172	u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL);
173
174	if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) {
175		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ,
176			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
177		rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF);
178		return IRQ_HANDLED;
179	}
180
181	return IRQ_NONE;
182}
183
184static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled)
185{
186	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
187
188	if (enabled) {
189		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
190				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
191			rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
192				STMP_OFFSET_REG_SET);
193		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
194			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
195	} else {
196		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
197				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
198			rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
199				STMP_OFFSET_REG_CLR);
200		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
201			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
202	}
203	return 0;
204}
205
206static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
207{
208	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
209
210	rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time);
211	return 0;
212}
213
214static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
215{
216	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
217
218	writel(rtc_tm_to_time64(&alm->time), rtc_data->io + STMP3XXX_RTC_ALARM);
219
220	stmp3xxx_alarm_irq_enable(dev, alm->enabled);
221
222	return 0;
223}
224
225static const struct rtc_class_ops stmp3xxx_rtc_ops = {
226	.alarm_irq_enable =
227			  stmp3xxx_alarm_irq_enable,
228	.read_time	= stmp3xxx_rtc_gettime,
229	.set_time	= stmp3xxx_rtc_settime,
230	.read_alarm	= stmp3xxx_rtc_read_alarm,
231	.set_alarm	= stmp3xxx_rtc_set_alarm,
232};
233
234static void stmp3xxx_rtc_remove(struct platform_device *pdev)
235{
236	struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev);
237
238	if (!rtc_data)
239		return;
240
241	writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
242		rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
243}
244
245static int stmp3xxx_rtc_probe(struct platform_device *pdev)
246{
247	struct stmp3xxx_rtc_data *rtc_data;
248	struct resource *r;
249	u32 rtc_stat;
250	u32 pers0_set, pers0_clr;
251	u32 crystalfreq = 0;
252	int err;
253
254	rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL);
255	if (!rtc_data)
256		return -ENOMEM;
257
258	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
259	if (!r) {
260		dev_err(&pdev->dev, "failed to get resource\n");
261		return -ENXIO;
262	}
263
264	rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r));
265	if (!rtc_data->io) {
266		dev_err(&pdev->dev, "ioremap failed\n");
267		return -EIO;
268	}
269
270	rtc_data->irq_alarm = platform_get_irq(pdev, 0);
271
272	rtc_stat = readl(rtc_data->io + STMP3XXX_RTC_STAT);
273	if (!(rtc_stat & STMP3XXX_RTC_STAT_RTC_PRESENT)) {
274		dev_err(&pdev->dev, "no device onboard\n");
275		return -ENODEV;
276	}
277
278	platform_set_drvdata(pdev, rtc_data);
279
280	/*
281	 * Resetting the rtc stops the watchdog timer that is potentially
282	 * running. So (assuming it is running on purpose) don't reset if the
283	 * watchdog is enabled.
284	 */
285	if (readl(rtc_data->io + STMP3XXX_RTC_CTRL) &
286	    STMP3XXX_RTC_CTRL_WATCHDOGEN) {
287		dev_info(&pdev->dev,
288			 "Watchdog is running, skip resetting rtc\n");
289	} else {
290		err = stmp_reset_block(rtc_data->io);
291		if (err) {
292			dev_err(&pdev->dev, "stmp_reset_block failed: %d\n",
293				err);
294			return err;
295		}
296	}
297
298	/*
299	 * Obviously the rtc needs a clock input to be able to run.
300	 * This clock can be provided by an external 32k crystal. If that one is
301	 * missing XTAL must not be disabled in suspend which consumes a
302	 * lot of power. Normally the presence and exact frequency (supported
303	 * are 32000 Hz and 32768 Hz) is detectable from fuses, but as reality
304	 * proves these fuses are not blown correctly on all machines, so the
305	 * frequency can be overridden in the device tree.
306	 */
307	if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32000_PRESENT)
308		crystalfreq = 32000;
309	else if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32768_PRESENT)
310		crystalfreq = 32768;
311
312	of_property_read_u32(pdev->dev.of_node, "stmp,crystal-freq",
313			     &crystalfreq);
314
315	switch (crystalfreq) {
316	case 32000:
317		/* keep 32kHz crystal running in low-power mode */
318		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ |
319			STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
320			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
321		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
322		break;
323	case 32768:
324		/* keep 32.768kHz crystal running in low-power mode */
325		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
326			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
327		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP |
328			STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ;
329		break;
330	default:
331		dev_warn(&pdev->dev,
332			 "invalid crystal-freq specified in device-tree. Assuming no crystal\n");
333		fallthrough;
334	case 0:
335		/* keep XTAL on in low-power mode */
336		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
337		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
338			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
339	}
340
341	writel(pers0_set, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
342			STMP_OFFSET_REG_SET);
343
344	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
345			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
346			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE | pers0_clr,
347		rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
348
349	writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN |
350			STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
351		rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
352
353	rtc_data->rtc = devm_rtc_allocate_device(&pdev->dev);
354	if (IS_ERR(rtc_data->rtc))
355		return PTR_ERR(rtc_data->rtc);
356
357	err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm,
358			stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev);
359	if (err) {
360		dev_err(&pdev->dev, "Cannot claim IRQ%d\n",
361			rtc_data->irq_alarm);
362		return err;
363	}
364
365	rtc_data->rtc->ops = &stmp3xxx_rtc_ops;
366	rtc_data->rtc->range_max = U32_MAX;
367
368	err = devm_rtc_register_device(rtc_data->rtc);
369	if (err)
370		return err;
371
372	stmp3xxx_wdt_register(pdev);
373	return 0;
374}
375
376#ifdef CONFIG_PM_SLEEP
377static int stmp3xxx_rtc_suspend(struct device *dev)
378{
379	return 0;
380}
381
382static int stmp3xxx_rtc_resume(struct device *dev)
383{
384	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
385
386	stmp_reset_block(rtc_data->io);
387	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
388			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
389			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE,
390		rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
391	return 0;
392}
393#endif
394
395static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend,
396			stmp3xxx_rtc_resume);
397
398static const struct of_device_id rtc_dt_ids[] = {
399	{ .compatible = "fsl,stmp3xxx-rtc", },
400	{ /* sentinel */ }
401};
402MODULE_DEVICE_TABLE(of, rtc_dt_ids);
403
404static struct platform_driver stmp3xxx_rtcdrv = {
405	.probe		= stmp3xxx_rtc_probe,
406	.remove_new	= stmp3xxx_rtc_remove,
407	.driver		= {
408		.name	= "stmp3xxx-rtc",
409		.pm	= &stmp3xxx_rtc_pm_ops,
410		.of_match_table = rtc_dt_ids,
411	},
412};
413
414module_platform_driver(stmp3xxx_rtcdrv);
415
416MODULE_DESCRIPTION("STMP3xxx RTC Driver");
417MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and "
418		"Wolfram Sang <kernel@pengutronix.de>");
419MODULE_LICENSE("GPL");
420