1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
4 * Copyright 2010 Orex Computed Radiography
5 */
6
7/*
8 * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block
9 * to implement a Linux RTC. Times and alarms are truncated to seconds.
10 * Since the RTC framework performs API locking via rtc->ops_lock the
11 * only simultaneous accesses we need to deal with is updating DryIce
12 * registers while servicing an alarm.
13 *
14 * Note that reading the DSR (DryIce Status Register) automatically clears
15 * the WCF (Write Complete Flag). All DryIce writes are synchronized to the
16 * LP (Low Power) domain and set the WCF upon completion. Writes to the
17 * DIER (DryIce Interrupt Enable Register) are the only exception. These
18 * occur at normal bus speeds and do not set WCF.  Periodic interrupts are
19 * not supported by the hardware.
20 */
21
22#include <linux/io.h>
23#include <linux/clk.h>
24#include <linux/delay.h>
25#include <linux/module.h>
26#include <linux/platform_device.h>
27#include <linux/pm_wakeirq.h>
28#include <linux/rtc.h>
29#include <linux/sched.h>
30#include <linux/spinlock.h>
31#include <linux/workqueue.h>
32#include <linux/of.h>
33
34/* DryIce Register Definitions */
35
36#define DTCMR     0x00           /* Time Counter MSB Reg */
37#define DTCLR     0x04           /* Time Counter LSB Reg */
38
39#define DCAMR     0x08           /* Clock Alarm MSB Reg */
40#define DCALR     0x0c           /* Clock Alarm LSB Reg */
41#define DCAMR_UNSET  0xFFFFFFFF  /* doomsday - 1 sec */
42
43#define DCR       0x10           /* Control Reg */
44#define DCR_TDCHL (1 << 30)      /* Tamper-detect configuration hard lock */
45#define DCR_TDCSL (1 << 29)      /* Tamper-detect configuration soft lock */
46#define DCR_KSSL  (1 << 27)      /* Key-select soft lock */
47#define DCR_MCHL  (1 << 20)      /* Monotonic-counter hard lock */
48#define DCR_MCSL  (1 << 19)      /* Monotonic-counter soft lock */
49#define DCR_TCHL  (1 << 18)      /* Timer-counter hard lock */
50#define DCR_TCSL  (1 << 17)      /* Timer-counter soft lock */
51#define DCR_FSHL  (1 << 16)      /* Failure state hard lock */
52#define DCR_TCE   (1 << 3)       /* Time Counter Enable */
53#define DCR_MCE   (1 << 2)       /* Monotonic Counter Enable */
54
55#define DSR       0x14           /* Status Reg */
56#define DSR_WTD   (1 << 23)      /* Wire-mesh tamper detected */
57#define DSR_ETBD  (1 << 22)      /* External tamper B detected */
58#define DSR_ETAD  (1 << 21)      /* External tamper A detected */
59#define DSR_EBD   (1 << 20)      /* External boot detected */
60#define DSR_SAD   (1 << 19)      /* SCC alarm detected */
61#define DSR_TTD   (1 << 18)      /* Temperature tamper detected */
62#define DSR_CTD   (1 << 17)      /* Clock tamper detected */
63#define DSR_VTD   (1 << 16)      /* Voltage tamper detected */
64#define DSR_WBF   (1 << 10)      /* Write Busy Flag (synchronous) */
65#define DSR_WNF   (1 << 9)       /* Write Next Flag (synchronous) */
66#define DSR_WCF   (1 << 8)       /* Write Complete Flag (synchronous)*/
67#define DSR_WEF   (1 << 7)       /* Write Error Flag */
68#define DSR_CAF   (1 << 4)       /* Clock Alarm Flag */
69#define DSR_MCO   (1 << 3)       /* monotonic counter overflow */
70#define DSR_TCO   (1 << 2)       /* time counter overflow */
71#define DSR_NVF   (1 << 1)       /* Non-Valid Flag */
72#define DSR_SVF   (1 << 0)       /* Security Violation Flag */
73
74#define DIER      0x18           /* Interrupt Enable Reg (synchronous) */
75#define DIER_WNIE (1 << 9)       /* Write Next Interrupt Enable */
76#define DIER_WCIE (1 << 8)       /* Write Complete Interrupt Enable */
77#define DIER_WEIE (1 << 7)       /* Write Error Interrupt Enable */
78#define DIER_CAIE (1 << 4)       /* Clock Alarm Interrupt Enable */
79#define DIER_SVIE (1 << 0)       /* Security-violation Interrupt Enable */
80
81#define DMCR      0x1c           /* DryIce Monotonic Counter Reg */
82
83#define DTCR      0x28           /* DryIce Tamper Configuration Reg */
84#define DTCR_MOE  (1 << 9)       /* monotonic overflow enabled */
85#define DTCR_TOE  (1 << 8)       /* time overflow enabled */
86#define DTCR_WTE  (1 << 7)       /* wire-mesh tamper enabled */
87#define DTCR_ETBE (1 << 6)       /* external B tamper enabled */
88#define DTCR_ETAE (1 << 5)       /* external A tamper enabled */
89#define DTCR_EBE  (1 << 4)       /* external boot tamper enabled */
90#define DTCR_SAIE (1 << 3)       /* SCC enabled */
91#define DTCR_TTE  (1 << 2)       /* temperature tamper enabled */
92#define DTCR_CTE  (1 << 1)       /* clock tamper enabled */
93#define DTCR_VTE  (1 << 0)       /* voltage tamper enabled */
94
95#define DGPR      0x3c           /* DryIce General Purpose Reg */
96
97/**
98 * struct imxdi_dev - private imxdi rtc data
99 * @pdev: pointer to platform dev
100 * @rtc: pointer to rtc struct
101 * @ioaddr: IO registers pointer
102 * @clk: input reference clock
103 * @dsr: copy of the DSR register
104 * @irq_lock: interrupt enable register (DIER) lock
105 * @write_wait: registers write complete queue
106 * @write_mutex: serialize registers write
107 * @work: schedule alarm work
108 */
109struct imxdi_dev {
110	struct platform_device *pdev;
111	struct rtc_device *rtc;
112	void __iomem *ioaddr;
113	struct clk *clk;
114	u32 dsr;
115	spinlock_t irq_lock;
116	wait_queue_head_t write_wait;
117	struct mutex write_mutex;
118	struct work_struct work;
119};
120
121/* Some background:
122 *
123 * The DryIce unit is a complex security/tamper monitor device. To be able do
124 * its job in a useful manner it runs a bigger statemachine to bring it into
125 * security/tamper failure state and once again to bring it out of this state.
126 *
127 * This unit can be in one of three states:
128 *
129 * - "NON-VALID STATE"
130 *   always after the battery power was removed
131 * - "FAILURE STATE"
132 *   if one of the enabled security events has happened
133 * - "VALID STATE"
134 *   if the unit works as expected
135 *
136 * Everything stops when the unit enters the failure state including the RTC
137 * counter (to be able to detect the time the security event happened).
138 *
139 * The following events (when enabled) let the DryIce unit enter the failure
140 * state:
141 *
142 * - wire-mesh-tamper detect
143 * - external tamper B detect
144 * - external tamper A detect
145 * - temperature tamper detect
146 * - clock tamper detect
147 * - voltage tamper detect
148 * - RTC counter overflow
149 * - monotonic counter overflow
150 * - external boot
151 *
152 * If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we
153 * can only detect this state. In this case the unit is completely locked and
154 * must force a second "SYSTEM POR" to bring the DryIce into the
155 * "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible.
156 * If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case
157 * a battery power cycle is required.
158 *
159 * In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE"
160 * and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last
161 * task, we bring back this unit into life.
162 */
163
164/*
165 * Do a write into the unit without interrupt support.
166 * We do not need to check the WEF here, because the only reason this kind of
167 * write error can happen is if we write to the unit twice within the 122 us
168 * interval. This cannot happen, since we are using this function only while
169 * setting up the unit.
170 */
171static void di_write_busy_wait(const struct imxdi_dev *imxdi, u32 val,
172			       unsigned reg)
173{
174	/* do the register write */
175	writel(val, imxdi->ioaddr + reg);
176
177	/*
178	 * now it takes four 32,768 kHz clock cycles to take
179	 * the change into effect = 122 us
180	 */
181	usleep_range(130, 200);
182}
183
184static void di_report_tamper_info(struct imxdi_dev *imxdi,  u32 dsr)
185{
186	u32 dtcr;
187
188	dtcr = readl(imxdi->ioaddr + DTCR);
189
190	dev_emerg(&imxdi->pdev->dev, "DryIce tamper event detected\n");
191	/* the following flags force a transition into the "FAILURE STATE" */
192	if (dsr & DSR_VTD)
193		dev_emerg(&imxdi->pdev->dev, "%sVoltage Tamper Event\n",
194			  dtcr & DTCR_VTE ? "" : "Spurious ");
195
196	if (dsr & DSR_CTD)
197		dev_emerg(&imxdi->pdev->dev, "%s32768 Hz Clock Tamper Event\n",
198			  dtcr & DTCR_CTE ? "" : "Spurious ");
199
200	if (dsr & DSR_TTD)
201		dev_emerg(&imxdi->pdev->dev, "%sTemperature Tamper Event\n",
202			  dtcr & DTCR_TTE ? "" : "Spurious ");
203
204	if (dsr & DSR_SAD)
205		dev_emerg(&imxdi->pdev->dev,
206			  "%sSecure Controller Alarm Event\n",
207			  dtcr & DTCR_SAIE ? "" : "Spurious ");
208
209	if (dsr & DSR_EBD)
210		dev_emerg(&imxdi->pdev->dev, "%sExternal Boot Tamper Event\n",
211			  dtcr & DTCR_EBE ? "" : "Spurious ");
212
213	if (dsr & DSR_ETAD)
214		dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper A Event\n",
215			  dtcr & DTCR_ETAE ? "" : "Spurious ");
216
217	if (dsr & DSR_ETBD)
218		dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper B Event\n",
219			  dtcr & DTCR_ETBE ? "" : "Spurious ");
220
221	if (dsr & DSR_WTD)
222		dev_emerg(&imxdi->pdev->dev, "%sWire-mesh Tamper Event\n",
223			  dtcr & DTCR_WTE ? "" : "Spurious ");
224
225	if (dsr & DSR_MCO)
226		dev_emerg(&imxdi->pdev->dev,
227			  "%sMonotonic-counter Overflow Event\n",
228			  dtcr & DTCR_MOE ? "" : "Spurious ");
229
230	if (dsr & DSR_TCO)
231		dev_emerg(&imxdi->pdev->dev, "%sTimer-counter Overflow Event\n",
232			  dtcr & DTCR_TOE ? "" : "Spurious ");
233}
234
235static void di_what_is_to_be_done(struct imxdi_dev *imxdi,
236				  const char *power_supply)
237{
238	dev_emerg(&imxdi->pdev->dev, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n",
239		  power_supply);
240}
241
242static int di_handle_failure_state(struct imxdi_dev *imxdi, u32 dsr)
243{
244	u32 dcr;
245
246	dev_dbg(&imxdi->pdev->dev, "DSR register reports: %08X\n", dsr);
247
248	/* report the cause */
249	di_report_tamper_info(imxdi, dsr);
250
251	dcr = readl(imxdi->ioaddr + DCR);
252
253	if (dcr & DCR_FSHL) {
254		/* we are out of luck */
255		di_what_is_to_be_done(imxdi, "battery");
256		return -ENODEV;
257	}
258	/*
259	 * with the next SYSTEM POR we will transit from the "FAILURE STATE"
260	 * into the "NON-VALID STATE" + "FAILURE STATE"
261	 */
262	di_what_is_to_be_done(imxdi, "main");
263
264	return -ENODEV;
265}
266
267static int di_handle_valid_state(struct imxdi_dev *imxdi, u32 dsr)
268{
269	/* initialize alarm */
270	di_write_busy_wait(imxdi, DCAMR_UNSET, DCAMR);
271	di_write_busy_wait(imxdi, 0, DCALR);
272
273	/* clear alarm flag */
274	if (dsr & DSR_CAF)
275		di_write_busy_wait(imxdi, DSR_CAF, DSR);
276
277	return 0;
278}
279
280static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr)
281{
282	u32 dcr, sec;
283
284	/*
285	 * lets disable all sources which can force the DryIce unit into
286	 * the "FAILURE STATE" for now
287	 */
288	di_write_busy_wait(imxdi, 0x00000000, DTCR);
289	/* and lets protect them at runtime from any change */
290	di_write_busy_wait(imxdi, DCR_TDCSL, DCR);
291
292	sec = readl(imxdi->ioaddr + DTCMR);
293	if (sec != 0)
294		dev_warn(&imxdi->pdev->dev,
295			 "The security violation has happened at %u seconds\n",
296			 sec);
297	/*
298	 * the timer cannot be set/modified if
299	 * - the TCHL or TCSL bit is set in DCR
300	 */
301	dcr = readl(imxdi->ioaddr + DCR);
302	if (!(dcr & DCR_TCE)) {
303		if (dcr & DCR_TCHL) {
304			/* we are out of luck */
305			di_what_is_to_be_done(imxdi, "battery");
306			return -ENODEV;
307		}
308		if (dcr & DCR_TCSL) {
309			di_what_is_to_be_done(imxdi, "main");
310			return -ENODEV;
311		}
312	}
313	/*
314	 * - the timer counter stops/is stopped if
315	 *   - its overflow flag is set (TCO in DSR)
316	 *      -> clear overflow bit to make it count again
317	 *   - NVF is set in DSR
318	 *      -> clear non-valid bit to make it count again
319	 *   - its TCE (DCR) is cleared
320	 *      -> set TCE to make it count
321	 *   - it was never set before
322	 *      -> write a time into it (required again if the NVF was set)
323	 */
324	/* state handled */
325	di_write_busy_wait(imxdi, DSR_NVF, DSR);
326	/* clear overflow flag */
327	di_write_busy_wait(imxdi, DSR_TCO, DSR);
328	/* enable the counter */
329	di_write_busy_wait(imxdi, dcr | DCR_TCE, DCR);
330	/* set and trigger it to make it count */
331	di_write_busy_wait(imxdi, sec, DTCMR);
332
333	/* now prepare for the valid state */
334	return di_handle_valid_state(imxdi, __raw_readl(imxdi->ioaddr + DSR));
335}
336
337static int di_handle_invalid_and_failure_state(struct imxdi_dev *imxdi, u32 dsr)
338{
339	u32 dcr;
340
341	/*
342	 * now we must first remove the tamper sources in order to get the
343	 * device out of the "FAILURE STATE"
344	 * To disable any of the following sources we need to modify the DTCR
345	 */
346	if (dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD | DSR_EBD | DSR_SAD |
347			DSR_TTD | DSR_CTD | DSR_VTD | DSR_MCO | DSR_TCO)) {
348		dcr = __raw_readl(imxdi->ioaddr + DCR);
349		if (dcr & DCR_TDCHL) {
350			/*
351			 * the tamper register is locked. We cannot disable the
352			 * tamper detection. The TDCHL can only be reset by a
353			 * DRYICE POR, but we cannot force a DRYICE POR in
354			 * software because we are still in "FAILURE STATE".
355			 * We need a DRYICE POR via battery power cycling....
356			 */
357			/*
358			 * out of luck!
359			 * we cannot disable them without a DRYICE POR
360			 */
361			di_what_is_to_be_done(imxdi, "battery");
362			return -ENODEV;
363		}
364		if (dcr & DCR_TDCSL) {
365			/* a soft lock can be removed by a SYSTEM POR */
366			di_what_is_to_be_done(imxdi, "main");
367			return -ENODEV;
368		}
369	}
370
371	/* disable all sources */
372	di_write_busy_wait(imxdi, 0x00000000, DTCR);
373
374	/* clear the status bits now */
375	di_write_busy_wait(imxdi, dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD |
376			DSR_EBD | DSR_SAD | DSR_TTD | DSR_CTD | DSR_VTD |
377			DSR_MCO | DSR_TCO), DSR);
378
379	dsr = readl(imxdi->ioaddr + DSR);
380	if ((dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
381			DSR_WCF | DSR_WEF)) != 0)
382		dev_warn(&imxdi->pdev->dev,
383			 "There are still some sources of pain in DSR: %08x!\n",
384			 dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
385				 DSR_WCF | DSR_WEF));
386
387	/*
388	 * now we are trying to clear the "Security-violation flag" to
389	 * get the DryIce out of this state
390	 */
391	di_write_busy_wait(imxdi, DSR_SVF, DSR);
392
393	/* success? */
394	dsr = readl(imxdi->ioaddr + DSR);
395	if (dsr & DSR_SVF) {
396		dev_crit(&imxdi->pdev->dev,
397			 "Cannot clear the security violation flag. We are ending up in an endless loop!\n");
398		/* last resort */
399		di_what_is_to_be_done(imxdi, "battery");
400		return -ENODEV;
401	}
402
403	/*
404	 * now we have left the "FAILURE STATE" and ending up in the
405	 * "NON-VALID STATE" time to recover everything
406	 */
407	return di_handle_invalid_state(imxdi, dsr);
408}
409
410static int di_handle_state(struct imxdi_dev *imxdi)
411{
412	int rc;
413	u32 dsr;
414
415	dsr = readl(imxdi->ioaddr + DSR);
416
417	switch (dsr & (DSR_NVF | DSR_SVF)) {
418	case DSR_NVF:
419		dev_warn(&imxdi->pdev->dev, "Invalid stated unit detected\n");
420		rc = di_handle_invalid_state(imxdi, dsr);
421		break;
422	case DSR_SVF:
423		dev_warn(&imxdi->pdev->dev, "Failure stated unit detected\n");
424		rc = di_handle_failure_state(imxdi, dsr);
425		break;
426	case DSR_NVF | DSR_SVF:
427		dev_warn(&imxdi->pdev->dev,
428			 "Failure+Invalid stated unit detected\n");
429		rc = di_handle_invalid_and_failure_state(imxdi, dsr);
430		break;
431	default:
432		dev_notice(&imxdi->pdev->dev, "Unlocked unit detected\n");
433		rc = di_handle_valid_state(imxdi, dsr);
434	}
435
436	return rc;
437}
438
439/*
440 * enable a dryice interrupt
441 */
442static void di_int_enable(struct imxdi_dev *imxdi, u32 intr)
443{
444	unsigned long flags;
445
446	spin_lock_irqsave(&imxdi->irq_lock, flags);
447	writel(readl(imxdi->ioaddr + DIER) | intr,
448	       imxdi->ioaddr + DIER);
449	spin_unlock_irqrestore(&imxdi->irq_lock, flags);
450}
451
452/*
453 * disable a dryice interrupt
454 */
455static void di_int_disable(struct imxdi_dev *imxdi, u32 intr)
456{
457	unsigned long flags;
458
459	spin_lock_irqsave(&imxdi->irq_lock, flags);
460	writel(readl(imxdi->ioaddr + DIER) & ~intr,
461	       imxdi->ioaddr + DIER);
462	spin_unlock_irqrestore(&imxdi->irq_lock, flags);
463}
464
465/*
466 * This function attempts to clear the dryice write-error flag.
467 *
468 * A dryice write error is similar to a bus fault and should not occur in
469 * normal operation.  Clearing the flag requires another write, so the root
470 * cause of the problem may need to be fixed before the flag can be cleared.
471 */
472static void clear_write_error(struct imxdi_dev *imxdi)
473{
474	int cnt;
475
476	dev_warn(&imxdi->pdev->dev, "WARNING: Register write error!\n");
477
478	/* clear the write error flag */
479	writel(DSR_WEF, imxdi->ioaddr + DSR);
480
481	/* wait for it to take effect */
482	for (cnt = 0; cnt < 1000; cnt++) {
483		if ((readl(imxdi->ioaddr + DSR) & DSR_WEF) == 0)
484			return;
485		udelay(10);
486	}
487	dev_err(&imxdi->pdev->dev,
488			"ERROR: Cannot clear write-error flag!\n");
489}
490
491/*
492 * Write a dryice register and wait until it completes.
493 *
494 * This function uses interrupts to determine when the
495 * write has completed.
496 */
497static int di_write_wait(struct imxdi_dev *imxdi, u32 val, int reg)
498{
499	int ret;
500	int rc = 0;
501
502	/* serialize register writes */
503	mutex_lock(&imxdi->write_mutex);
504
505	/* enable the write-complete interrupt */
506	di_int_enable(imxdi, DIER_WCIE);
507
508	imxdi->dsr = 0;
509
510	/* do the register write */
511	writel(val, imxdi->ioaddr + reg);
512
513	/* wait for the write to finish */
514	ret = wait_event_interruptible_timeout(imxdi->write_wait,
515			imxdi->dsr & (DSR_WCF | DSR_WEF), msecs_to_jiffies(1));
516	if (ret < 0) {
517		rc = ret;
518		goto out;
519	} else if (ret == 0) {
520		dev_warn(&imxdi->pdev->dev,
521				"Write-wait timeout "
522				"val = 0x%08x reg = 0x%08x\n", val, reg);
523	}
524
525	/* check for write error */
526	if (imxdi->dsr & DSR_WEF) {
527		clear_write_error(imxdi);
528		rc = -EIO;
529	}
530
531out:
532	mutex_unlock(&imxdi->write_mutex);
533
534	return rc;
535}
536
537/*
538 * read the seconds portion of the current time from the dryice time counter
539 */
540static int dryice_rtc_read_time(struct device *dev, struct rtc_time *tm)
541{
542	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
543	unsigned long now;
544
545	now = readl(imxdi->ioaddr + DTCMR);
546	rtc_time64_to_tm(now, tm);
547
548	return 0;
549}
550
551/*
552 * set the seconds portion of dryice time counter and clear the
553 * fractional part.
554 */
555static int dryice_rtc_set_time(struct device *dev, struct rtc_time *tm)
556{
557	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
558	u32 dcr, dsr;
559	int rc;
560
561	dcr = readl(imxdi->ioaddr + DCR);
562	dsr = readl(imxdi->ioaddr + DSR);
563
564	if (!(dcr & DCR_TCE) || (dsr & DSR_SVF)) {
565		if (dcr & DCR_TCHL) {
566			/* we are even more out of luck */
567			di_what_is_to_be_done(imxdi, "battery");
568			return -EPERM;
569		}
570		if ((dcr & DCR_TCSL) || (dsr & DSR_SVF)) {
571			/* we are out of luck for now */
572			di_what_is_to_be_done(imxdi, "main");
573			return -EPERM;
574		}
575	}
576
577	/* zero the fractional part first */
578	rc = di_write_wait(imxdi, 0, DTCLR);
579	if (rc != 0)
580		return rc;
581
582	rc = di_write_wait(imxdi, rtc_tm_to_time64(tm), DTCMR);
583	if (rc != 0)
584		return rc;
585
586	return di_write_wait(imxdi, readl(imxdi->ioaddr + DCR) | DCR_TCE, DCR);
587}
588
589static int dryice_rtc_alarm_irq_enable(struct device *dev,
590		unsigned int enabled)
591{
592	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
593
594	if (enabled)
595		di_int_enable(imxdi, DIER_CAIE);
596	else
597		di_int_disable(imxdi, DIER_CAIE);
598
599	return 0;
600}
601
602/*
603 * read the seconds portion of the alarm register.
604 * the fractional part of the alarm register is always zero.
605 */
606static int dryice_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
607{
608	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
609	u32 dcamr;
610
611	dcamr = readl(imxdi->ioaddr + DCAMR);
612	rtc_time64_to_tm(dcamr, &alarm->time);
613
614	/* alarm is enabled if the interrupt is enabled */
615	alarm->enabled = (readl(imxdi->ioaddr + DIER) & DIER_CAIE) != 0;
616
617	/* don't allow the DSR read to mess up DSR_WCF */
618	mutex_lock(&imxdi->write_mutex);
619
620	/* alarm is pending if the alarm flag is set */
621	alarm->pending = (readl(imxdi->ioaddr + DSR) & DSR_CAF) != 0;
622
623	mutex_unlock(&imxdi->write_mutex);
624
625	return 0;
626}
627
628/*
629 * set the seconds portion of dryice alarm register
630 */
631static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
632{
633	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
634	int rc;
635
636	/* write the new alarm time */
637	rc = di_write_wait(imxdi, rtc_tm_to_time64(&alarm->time), DCAMR);
638	if (rc)
639		return rc;
640
641	if (alarm->enabled)
642		di_int_enable(imxdi, DIER_CAIE);  /* enable alarm intr */
643	else
644		di_int_disable(imxdi, DIER_CAIE); /* disable alarm intr */
645
646	return 0;
647}
648
649static const struct rtc_class_ops dryice_rtc_ops = {
650	.read_time		= dryice_rtc_read_time,
651	.set_time		= dryice_rtc_set_time,
652	.alarm_irq_enable	= dryice_rtc_alarm_irq_enable,
653	.read_alarm		= dryice_rtc_read_alarm,
654	.set_alarm		= dryice_rtc_set_alarm,
655};
656
657/*
658 * interrupt handler for dryice "normal" and security violation interrupt
659 */
660static irqreturn_t dryice_irq(int irq, void *dev_id)
661{
662	struct imxdi_dev *imxdi = dev_id;
663	u32 dsr, dier;
664	irqreturn_t rc = IRQ_NONE;
665
666	dier = readl(imxdi->ioaddr + DIER);
667	dsr = readl(imxdi->ioaddr + DSR);
668
669	/* handle the security violation event */
670	if (dier & DIER_SVIE) {
671		if (dsr & DSR_SVF) {
672			/*
673			 * Disable the interrupt when this kind of event has
674			 * happened.
675			 * There cannot be more than one event of this type,
676			 * because it needs a complex state change
677			 * including a main power cycle to get again out of
678			 * this state.
679			 */
680			di_int_disable(imxdi, DIER_SVIE);
681			/* report the violation */
682			di_report_tamper_info(imxdi, dsr);
683			rc = IRQ_HANDLED;
684		}
685	}
686
687	/* handle write complete and write error cases */
688	if (dier & DIER_WCIE) {
689		/*If the write wait queue is empty then there is no pending
690		  operations. It means the interrupt is for DryIce -Security.
691		  IRQ must be returned as none.*/
692		if (list_empty_careful(&imxdi->write_wait.head))
693			return rc;
694
695		/* DSR_WCF clears itself on DSR read */
696		if (dsr & (DSR_WCF | DSR_WEF)) {
697			/* mask the interrupt */
698			di_int_disable(imxdi, DIER_WCIE);
699
700			/* save the dsr value for the wait queue */
701			imxdi->dsr |= dsr;
702
703			wake_up_interruptible(&imxdi->write_wait);
704			rc = IRQ_HANDLED;
705		}
706	}
707
708	/* handle the alarm case */
709	if (dier & DIER_CAIE) {
710		/* DSR_WCF clears itself on DSR read */
711		if (dsr & DSR_CAF) {
712			/* mask the interrupt */
713			di_int_disable(imxdi, DIER_CAIE);
714
715			/* finish alarm in user context */
716			schedule_work(&imxdi->work);
717			rc = IRQ_HANDLED;
718		}
719	}
720	return rc;
721}
722
723/*
724 * post the alarm event from user context so it can sleep
725 * on the write completion.
726 */
727static void dryice_work(struct work_struct *work)
728{
729	struct imxdi_dev *imxdi = container_of(work,
730			struct imxdi_dev, work);
731
732	/* dismiss the interrupt (ignore error) */
733	di_write_wait(imxdi, DSR_CAF, DSR);
734
735	/* pass the alarm event to the rtc framework. */
736	rtc_update_irq(imxdi->rtc, 1, RTC_AF | RTC_IRQF);
737}
738
739/*
740 * probe for dryice rtc device
741 */
742static int __init dryice_rtc_probe(struct platform_device *pdev)
743{
744	struct imxdi_dev *imxdi;
745	int norm_irq, sec_irq;
746	int rc;
747
748	imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL);
749	if (!imxdi)
750		return -ENOMEM;
751
752	imxdi->pdev = pdev;
753
754	imxdi->ioaddr = devm_platform_ioremap_resource(pdev, 0);
755	if (IS_ERR(imxdi->ioaddr))
756		return PTR_ERR(imxdi->ioaddr);
757
758	spin_lock_init(&imxdi->irq_lock);
759
760	norm_irq = platform_get_irq(pdev, 0);
761	if (norm_irq < 0)
762		return norm_irq;
763
764	/* the 2nd irq is the security violation irq
765	 * make this optional, don't break the device tree ABI
766	 */
767	sec_irq = platform_get_irq(pdev, 1);
768	if (sec_irq <= 0)
769		sec_irq = IRQ_NOTCONNECTED;
770
771	init_waitqueue_head(&imxdi->write_wait);
772
773	INIT_WORK(&imxdi->work, dryice_work);
774
775	mutex_init(&imxdi->write_mutex);
776
777	imxdi->rtc = devm_rtc_allocate_device(&pdev->dev);
778	if (IS_ERR(imxdi->rtc))
779		return PTR_ERR(imxdi->rtc);
780
781	imxdi->clk = devm_clk_get(&pdev->dev, NULL);
782	if (IS_ERR(imxdi->clk))
783		return PTR_ERR(imxdi->clk);
784	rc = clk_prepare_enable(imxdi->clk);
785	if (rc)
786		return rc;
787
788	/*
789	 * Initialize dryice hardware
790	 */
791
792	/* mask all interrupts */
793	writel(0, imxdi->ioaddr + DIER);
794
795	rc = di_handle_state(imxdi);
796	if (rc != 0)
797		goto err;
798
799	rc = devm_request_irq(&pdev->dev, norm_irq, dryice_irq,
800			      IRQF_SHARED, pdev->name, imxdi);
801	if (rc) {
802		dev_warn(&pdev->dev, "interrupt not available.\n");
803		goto err;
804	}
805
806	rc = devm_request_irq(&pdev->dev, sec_irq, dryice_irq,
807			      IRQF_SHARED, pdev->name, imxdi);
808	if (rc) {
809		dev_warn(&pdev->dev, "security violation interrupt not available.\n");
810		/* this is not an error, see above */
811	}
812
813	platform_set_drvdata(pdev, imxdi);
814
815	device_init_wakeup(&pdev->dev, true);
816	dev_pm_set_wake_irq(&pdev->dev, norm_irq);
817
818	imxdi->rtc->ops = &dryice_rtc_ops;
819	imxdi->rtc->range_max = U32_MAX;
820
821	rc = devm_rtc_register_device(imxdi->rtc);
822	if (rc)
823		goto err;
824
825	return 0;
826
827err:
828	clk_disable_unprepare(imxdi->clk);
829
830	return rc;
831}
832
833static void __exit dryice_rtc_remove(struct platform_device *pdev)
834{
835	struct imxdi_dev *imxdi = platform_get_drvdata(pdev);
836
837	flush_work(&imxdi->work);
838
839	/* mask all interrupts */
840	writel(0, imxdi->ioaddr + DIER);
841
842	clk_disable_unprepare(imxdi->clk);
843}
844
845static const struct of_device_id dryice_dt_ids[] = {
846	{ .compatible = "fsl,imx25-rtc" },
847	{ /* sentinel */ }
848};
849
850MODULE_DEVICE_TABLE(of, dryice_dt_ids);
851
852/*
853 * dryice_rtc_remove() lives in .exit.text. For drivers registered via
854 * module_platform_driver_probe() this is ok because they cannot get unbound at
855 * runtime. So mark the driver struct with __refdata to prevent modpost
856 * triggering a section mismatch warning.
857 */
858static struct platform_driver dryice_rtc_driver __refdata = {
859	.driver = {
860		   .name = "imxdi_rtc",
861		   .of_match_table = dryice_dt_ids,
862		   },
863	.remove_new = __exit_p(dryice_rtc_remove),
864};
865
866module_platform_driver_probe(dryice_rtc_driver, dryice_rtc_probe);
867
868MODULE_AUTHOR("Freescale Semiconductor, Inc.");
869MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
870MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)");
871MODULE_LICENSE("GPL");
872