1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Remote Processor Framework
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
15 */
16
17#define pr_fmt(fmt)    "%s: " fmt, __func__
18
19#include <linux/delay.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/device.h>
23#include <linux/panic_notifier.h>
24#include <linux/slab.h>
25#include <linux/mutex.h>
26#include <linux/dma-mapping.h>
27#include <linux/firmware.h>
28#include <linux/string.h>
29#include <linux/debugfs.h>
30#include <linux/rculist.h>
31#include <linux/remoteproc.h>
32#include <linux/iommu.h>
33#include <linux/idr.h>
34#include <linux/elf.h>
35#include <linux/crc32.h>
36#include <linux/of_platform.h>
37#include <linux/of_reserved_mem.h>
38#include <linux/virtio_ids.h>
39#include <linux/virtio_ring.h>
40#include <asm/byteorder.h>
41#include <linux/platform_device.h>
42
43#include "remoteproc_internal.h"
44
45#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
46
47static DEFINE_MUTEX(rproc_list_mutex);
48static LIST_HEAD(rproc_list);
49static struct notifier_block rproc_panic_nb;
50
51typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
52				 void *, int offset, int avail);
53
54static int rproc_alloc_carveout(struct rproc *rproc,
55				struct rproc_mem_entry *mem);
56static int rproc_release_carveout(struct rproc *rproc,
57				  struct rproc_mem_entry *mem);
58
59/* Unique indices for remoteproc devices */
60static DEFINE_IDA(rproc_dev_index);
61static struct workqueue_struct *rproc_recovery_wq;
62
63static const char * const rproc_crash_names[] = {
64	[RPROC_MMUFAULT]	= "mmufault",
65	[RPROC_WATCHDOG]	= "watchdog",
66	[RPROC_FATAL_ERROR]	= "fatal error",
67};
68
69/* translate rproc_crash_type to string */
70static const char *rproc_crash_to_string(enum rproc_crash_type type)
71{
72	if (type < ARRAY_SIZE(rproc_crash_names))
73		return rproc_crash_names[type];
74	return "unknown";
75}
76
77/*
78 * This is the IOMMU fault handler we register with the IOMMU API
79 * (when relevant; not all remote processors access memory through
80 * an IOMMU).
81 *
82 * IOMMU core will invoke this handler whenever the remote processor
83 * will try to access an unmapped device address.
84 */
85static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
86			     unsigned long iova, int flags, void *token)
87{
88	struct rproc *rproc = token;
89
90	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
91
92	rproc_report_crash(rproc, RPROC_MMUFAULT);
93
94	/*
95	 * Let the iommu core know we're not really handling this fault;
96	 * we just used it as a recovery trigger.
97	 */
98	return -ENOSYS;
99}
100
101static int rproc_enable_iommu(struct rproc *rproc)
102{
103	struct iommu_domain *domain;
104	struct device *dev = rproc->dev.parent;
105	int ret;
106
107	if (!rproc->has_iommu) {
108		dev_dbg(dev, "iommu not present\n");
109		return 0;
110	}
111
112	domain = iommu_domain_alloc(dev->bus);
113	if (!domain) {
114		dev_err(dev, "can't alloc iommu domain\n");
115		return -ENOMEM;
116	}
117
118	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
119
120	ret = iommu_attach_device(domain, dev);
121	if (ret) {
122		dev_err(dev, "can't attach iommu device: %d\n", ret);
123		goto free_domain;
124	}
125
126	rproc->domain = domain;
127
128	return 0;
129
130free_domain:
131	iommu_domain_free(domain);
132	return ret;
133}
134
135static void rproc_disable_iommu(struct rproc *rproc)
136{
137	struct iommu_domain *domain = rproc->domain;
138	struct device *dev = rproc->dev.parent;
139
140	if (!domain)
141		return;
142
143	iommu_detach_device(domain, dev);
144	iommu_domain_free(domain);
145}
146
147phys_addr_t rproc_va_to_pa(void *cpu_addr)
148{
149	/*
150	 * Return physical address according to virtual address location
151	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
152	 * - in kernel: if region allocated in generic dma memory pool
153	 */
154	if (is_vmalloc_addr(cpu_addr)) {
155		return page_to_phys(vmalloc_to_page(cpu_addr)) +
156				    offset_in_page(cpu_addr);
157	}
158
159	WARN_ON(!virt_addr_valid(cpu_addr));
160	return virt_to_phys(cpu_addr);
161}
162EXPORT_SYMBOL(rproc_va_to_pa);
163
164/**
165 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
166 * @rproc: handle of a remote processor
167 * @da: remoteproc device address to translate
168 * @len: length of the memory region @da is pointing to
169 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
170 *
171 * Some remote processors will ask us to allocate them physically contiguous
172 * memory regions (which we call "carveouts"), and map them to specific
173 * device addresses (which are hardcoded in the firmware). They may also have
174 * dedicated memory regions internal to the processors, and use them either
175 * exclusively or alongside carveouts.
176 *
177 * They may then ask us to copy objects into specific device addresses (e.g.
178 * code/data sections) or expose us certain symbols in other device address
179 * (e.g. their trace buffer).
180 *
181 * This function is a helper function with which we can go over the allocated
182 * carveouts and translate specific device addresses to kernel virtual addresses
183 * so we can access the referenced memory. This function also allows to perform
184 * translations on the internal remoteproc memory regions through a platform
185 * implementation specific da_to_va ops, if present.
186 *
187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188 * but only on kernel direct mapped RAM memory. Instead, we're just using
189 * here the output of the DMA API for the carveouts, which should be more
190 * correct.
191 *
192 * Return: a valid kernel address on success or NULL on failure
193 */
194void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
195{
196	struct rproc_mem_entry *carveout;
197	void *ptr = NULL;
198
199	if (rproc->ops->da_to_va) {
200		ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
201		if (ptr)
202			goto out;
203	}
204
205	list_for_each_entry(carveout, &rproc->carveouts, node) {
206		int offset = da - carveout->da;
207
208		/*  Verify that carveout is allocated */
209		if (!carveout->va)
210			continue;
211
212		/* try next carveout if da is too small */
213		if (offset < 0)
214			continue;
215
216		/* try next carveout if da is too large */
217		if (offset + len > carveout->len)
218			continue;
219
220		ptr = carveout->va + offset;
221
222		if (is_iomem)
223			*is_iomem = carveout->is_iomem;
224
225		break;
226	}
227
228out:
229	return ptr;
230}
231EXPORT_SYMBOL(rproc_da_to_va);
232
233/**
234 * rproc_find_carveout_by_name() - lookup the carveout region by a name
235 * @rproc: handle of a remote processor
236 * @name: carveout name to find (format string)
237 * @...: optional parameters matching @name string
238 *
239 * Platform driver has the capability to register some pre-allacoted carveout
240 * (physically contiguous memory regions) before rproc firmware loading and
241 * associated resource table analysis. These regions may be dedicated memory
242 * regions internal to the coprocessor or specified DDR region with specific
243 * attributes
244 *
245 * This function is a helper function with which we can go over the
246 * allocated carveouts and return associated region characteristics like
247 * coprocessor address, length or processor virtual address.
248 *
249 * Return: a valid pointer on carveout entry on success or NULL on failure.
250 */
251__printf(2, 3)
252struct rproc_mem_entry *
253rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
254{
255	va_list args;
256	char _name[32];
257	struct rproc_mem_entry *carveout, *mem = NULL;
258
259	if (!name)
260		return NULL;
261
262	va_start(args, name);
263	vsnprintf(_name, sizeof(_name), name, args);
264	va_end(args);
265
266	list_for_each_entry(carveout, &rproc->carveouts, node) {
267		/* Compare carveout and requested names */
268		if (!strcmp(carveout->name, _name)) {
269			mem = carveout;
270			break;
271		}
272	}
273
274	return mem;
275}
276
277/**
278 * rproc_check_carveout_da() - Check specified carveout da configuration
279 * @rproc: handle of a remote processor
280 * @mem: pointer on carveout to check
281 * @da: area device address
282 * @len: associated area size
283 *
284 * This function is a helper function to verify requested device area (couple
285 * da, len) is part of specified carveout.
286 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
287 * checked.
288 *
289 * Return: 0 if carveout matches request else error
290 */
291static int rproc_check_carveout_da(struct rproc *rproc,
292				   struct rproc_mem_entry *mem, u32 da, u32 len)
293{
294	struct device *dev = &rproc->dev;
295	int delta;
296
297	/* Check requested resource length */
298	if (len > mem->len) {
299		dev_err(dev, "Registered carveout doesn't fit len request\n");
300		return -EINVAL;
301	}
302
303	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
304		/* Address doesn't match registered carveout configuration */
305		return -EINVAL;
306	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
307		delta = da - mem->da;
308
309		/* Check requested resource belongs to registered carveout */
310		if (delta < 0) {
311			dev_err(dev,
312				"Registered carveout doesn't fit da request\n");
313			return -EINVAL;
314		}
315
316		if (delta + len > mem->len) {
317			dev_err(dev,
318				"Registered carveout doesn't fit len request\n");
319			return -EINVAL;
320		}
321	}
322
323	return 0;
324}
325
326int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
327{
328	struct rproc *rproc = rvdev->rproc;
329	struct device *dev = &rproc->dev;
330	struct rproc_vring *rvring = &rvdev->vring[i];
331	struct fw_rsc_vdev *rsc;
332	int ret, notifyid;
333	struct rproc_mem_entry *mem;
334	size_t size;
335
336	/* actual size of vring (in bytes) */
337	size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
338
339	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
340
341	/* Search for pre-registered carveout */
342	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
343					  i);
344	if (mem) {
345		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
346			return -ENOMEM;
347	} else {
348		/* Register carveout in list */
349		mem = rproc_mem_entry_init(dev, NULL, 0,
350					   size, rsc->vring[i].da,
351					   rproc_alloc_carveout,
352					   rproc_release_carveout,
353					   "vdev%dvring%d",
354					   rvdev->index, i);
355		if (!mem) {
356			dev_err(dev, "Can't allocate memory entry structure\n");
357			return -ENOMEM;
358		}
359
360		rproc_add_carveout(rproc, mem);
361	}
362
363	/*
364	 * Assign an rproc-wide unique index for this vring
365	 * TODO: assign a notifyid for rvdev updates as well
366	 * TODO: support predefined notifyids (via resource table)
367	 */
368	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
369	if (ret < 0) {
370		dev_err(dev, "idr_alloc failed: %d\n", ret);
371		return ret;
372	}
373	notifyid = ret;
374
375	/* Potentially bump max_notifyid */
376	if (notifyid > rproc->max_notifyid)
377		rproc->max_notifyid = notifyid;
378
379	rvring->notifyid = notifyid;
380
381	/* Let the rproc know the notifyid of this vring.*/
382	rsc->vring[i].notifyid = notifyid;
383	return 0;
384}
385
386int
387rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
388{
389	struct rproc *rproc = rvdev->rproc;
390	struct device *dev = &rproc->dev;
391	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
392	struct rproc_vring *rvring = &rvdev->vring[i];
393
394	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
395		i, vring->da, vring->num, vring->align);
396
397	/* verify queue size and vring alignment are sane */
398	if (!vring->num || !vring->align) {
399		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
400			vring->num, vring->align);
401		return -EINVAL;
402	}
403
404	rvring->num = vring->num;
405	rvring->align = vring->align;
406	rvring->rvdev = rvdev;
407
408	return 0;
409}
410
411void rproc_free_vring(struct rproc_vring *rvring)
412{
413	struct rproc *rproc = rvring->rvdev->rproc;
414	int idx = rvring - rvring->rvdev->vring;
415	struct fw_rsc_vdev *rsc;
416
417	idr_remove(&rproc->notifyids, rvring->notifyid);
418
419	/*
420	 * At this point rproc_stop() has been called and the installed resource
421	 * table in the remote processor memory may no longer be accessible. As
422	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
423	 * resource table (rproc->cached_table).  The cached resource table is
424	 * only available when a remote processor has been booted by the
425	 * remoteproc core, otherwise it is NULL.
426	 *
427	 * Based on the above, reset the virtio device section in the cached
428	 * resource table only if there is one to work with.
429	 */
430	if (rproc->table_ptr) {
431		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
432		rsc->vring[idx].da = 0;
433		rsc->vring[idx].notifyid = -1;
434	}
435}
436
437void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
438{
439	if (rvdev && rproc)
440		list_add_tail(&rvdev->node, &rproc->rvdevs);
441}
442
443void rproc_remove_rvdev(struct rproc_vdev *rvdev)
444{
445	if (rvdev)
446		list_del(&rvdev->node);
447}
448/**
449 * rproc_handle_vdev() - handle a vdev fw resource
450 * @rproc: the remote processor
451 * @ptr: the vring resource descriptor
452 * @offset: offset of the resource entry
453 * @avail: size of available data (for sanity checking the image)
454 *
455 * This resource entry requests the host to statically register a virtio
456 * device (vdev), and setup everything needed to support it. It contains
457 * everything needed to make it possible: the virtio device id, virtio
458 * device features, vrings information, virtio config space, etc...
459 *
460 * Before registering the vdev, the vrings are allocated from non-cacheable
461 * physically contiguous memory. Currently we only support two vrings per
462 * remote processor (temporary limitation). We might also want to consider
463 * doing the vring allocation only later when ->find_vqs() is invoked, and
464 * then release them upon ->del_vqs().
465 *
466 * Note: @da is currently not really handled correctly: we dynamically
467 * allocate it using the DMA API, ignoring requested hard coded addresses,
468 * and we don't take care of any required IOMMU programming. This is all
469 * going to be taken care of when the generic iommu-based DMA API will be
470 * merged. Meanwhile, statically-addressed iommu-based firmware images should
471 * use RSC_DEVMEM resource entries to map their required @da to the physical
472 * address of their base CMA region (ouch, hacky!).
473 *
474 * Return: 0 on success, or an appropriate error code otherwise
475 */
476static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
477			     int offset, int avail)
478{
479	struct fw_rsc_vdev *rsc = ptr;
480	struct device *dev = &rproc->dev;
481	struct rproc_vdev *rvdev;
482	size_t rsc_size;
483	struct rproc_vdev_data rvdev_data;
484	struct platform_device *pdev;
485
486	/* make sure resource isn't truncated */
487	rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
488	if (size_add(rsc_size, rsc->config_len) > avail) {
489		dev_err(dev, "vdev rsc is truncated\n");
490		return -EINVAL;
491	}
492
493	/* make sure reserved bytes are zeroes */
494	if (rsc->reserved[0] || rsc->reserved[1]) {
495		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
496		return -EINVAL;
497	}
498
499	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
500		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
501
502	/* we currently support only two vrings per rvdev */
503	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
504		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
505		return -EINVAL;
506	}
507
508	rvdev_data.id = rsc->id;
509	rvdev_data.index = rproc->nb_vdev++;
510	rvdev_data.rsc_offset = offset;
511	rvdev_data.rsc = rsc;
512
513	/*
514	 * When there is more than one remote processor, rproc->nb_vdev number is
515	 * same for each separate instances of "rproc". If rvdev_data.index is used
516	 * as device id, then we get duplication in sysfs, so need to use
517	 * PLATFORM_DEVID_AUTO to auto select device id.
518	 */
519	pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data,
520					     sizeof(rvdev_data));
521	if (IS_ERR(pdev)) {
522		dev_err(dev, "failed to create rproc-virtio device\n");
523		return PTR_ERR(pdev);
524	}
525
526	return 0;
527}
528
529/**
530 * rproc_handle_trace() - handle a shared trace buffer resource
531 * @rproc: the remote processor
532 * @ptr: the trace resource descriptor
533 * @offset: offset of the resource entry
534 * @avail: size of available data (for sanity checking the image)
535 *
536 * In case the remote processor dumps trace logs into memory,
537 * export it via debugfs.
538 *
539 * Currently, the 'da' member of @rsc should contain the device address
540 * where the remote processor is dumping the traces. Later we could also
541 * support dynamically allocating this address using the generic
542 * DMA API (but currently there isn't a use case for that).
543 *
544 * Return: 0 on success, or an appropriate error code otherwise
545 */
546static int rproc_handle_trace(struct rproc *rproc, void *ptr,
547			      int offset, int avail)
548{
549	struct fw_rsc_trace *rsc = ptr;
550	struct rproc_debug_trace *trace;
551	struct device *dev = &rproc->dev;
552	char name[15];
553
554	if (sizeof(*rsc) > avail) {
555		dev_err(dev, "trace rsc is truncated\n");
556		return -EINVAL;
557	}
558
559	/* make sure reserved bytes are zeroes */
560	if (rsc->reserved) {
561		dev_err(dev, "trace rsc has non zero reserved bytes\n");
562		return -EINVAL;
563	}
564
565	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
566	if (!trace)
567		return -ENOMEM;
568
569	/* set the trace buffer dma properties */
570	trace->trace_mem.len = rsc->len;
571	trace->trace_mem.da = rsc->da;
572
573	/* set pointer on rproc device */
574	trace->rproc = rproc;
575
576	/* make sure snprintf always null terminates, even if truncating */
577	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
578
579	/* create the debugfs entry */
580	trace->tfile = rproc_create_trace_file(name, rproc, trace);
581
582	list_add_tail(&trace->node, &rproc->traces);
583
584	rproc->num_traces++;
585
586	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
587		name, rsc->da, rsc->len);
588
589	return 0;
590}
591
592/**
593 * rproc_handle_devmem() - handle devmem resource entry
594 * @rproc: remote processor handle
595 * @ptr: the devmem resource entry
596 * @offset: offset of the resource entry
597 * @avail: size of available data (for sanity checking the image)
598 *
599 * Remote processors commonly need to access certain on-chip peripherals.
600 *
601 * Some of these remote processors access memory via an iommu device,
602 * and might require us to configure their iommu before they can access
603 * the on-chip peripherals they need.
604 *
605 * This resource entry is a request to map such a peripheral device.
606 *
607 * These devmem entries will contain the physical address of the device in
608 * the 'pa' member. If a specific device address is expected, then 'da' will
609 * contain it (currently this is the only use case supported). 'len' will
610 * contain the size of the physical region we need to map.
611 *
612 * Currently we just "trust" those devmem entries to contain valid physical
613 * addresses, but this is going to change: we want the implementations to
614 * tell us ranges of physical addresses the firmware is allowed to request,
615 * and not allow firmwares to request access to physical addresses that
616 * are outside those ranges.
617 *
618 * Return: 0 on success, or an appropriate error code otherwise
619 */
620static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
621			       int offset, int avail)
622{
623	struct fw_rsc_devmem *rsc = ptr;
624	struct rproc_mem_entry *mapping;
625	struct device *dev = &rproc->dev;
626	int ret;
627
628	/* no point in handling this resource without a valid iommu domain */
629	if (!rproc->domain)
630		return -EINVAL;
631
632	if (sizeof(*rsc) > avail) {
633		dev_err(dev, "devmem rsc is truncated\n");
634		return -EINVAL;
635	}
636
637	/* make sure reserved bytes are zeroes */
638	if (rsc->reserved) {
639		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
640		return -EINVAL;
641	}
642
643	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
644	if (!mapping)
645		return -ENOMEM;
646
647	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags,
648			GFP_KERNEL);
649	if (ret) {
650		dev_err(dev, "failed to map devmem: %d\n", ret);
651		goto out;
652	}
653
654	/*
655	 * We'll need this info later when we'll want to unmap everything
656	 * (e.g. on shutdown).
657	 *
658	 * We can't trust the remote processor not to change the resource
659	 * table, so we must maintain this info independently.
660	 */
661	mapping->da = rsc->da;
662	mapping->len = rsc->len;
663	list_add_tail(&mapping->node, &rproc->mappings);
664
665	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
666		rsc->pa, rsc->da, rsc->len);
667
668	return 0;
669
670out:
671	kfree(mapping);
672	return ret;
673}
674
675/**
676 * rproc_alloc_carveout() - allocated specified carveout
677 * @rproc: rproc handle
678 * @mem: the memory entry to allocate
679 *
680 * This function allocate specified memory entry @mem using
681 * dma_alloc_coherent() as default allocator
682 *
683 * Return: 0 on success, or an appropriate error code otherwise
684 */
685static int rproc_alloc_carveout(struct rproc *rproc,
686				struct rproc_mem_entry *mem)
687{
688	struct rproc_mem_entry *mapping = NULL;
689	struct device *dev = &rproc->dev;
690	dma_addr_t dma;
691	void *va;
692	int ret;
693
694	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
695	if (!va) {
696		dev_err(dev->parent,
697			"failed to allocate dma memory: len 0x%zx\n",
698			mem->len);
699		return -ENOMEM;
700	}
701
702	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
703		va, &dma, mem->len);
704
705	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
706		/*
707		 * Check requested da is equal to dma address
708		 * and print a warn message in case of missalignment.
709		 * Don't stop rproc_start sequence as coprocessor may
710		 * build pa to da translation on its side.
711		 */
712		if (mem->da != (u32)dma)
713			dev_warn(dev->parent,
714				 "Allocated carveout doesn't fit device address request\n");
715	}
716
717	/*
718	 * Ok, this is non-standard.
719	 *
720	 * Sometimes we can't rely on the generic iommu-based DMA API
721	 * to dynamically allocate the device address and then set the IOMMU
722	 * tables accordingly, because some remote processors might
723	 * _require_ us to use hard coded device addresses that their
724	 * firmware was compiled with.
725	 *
726	 * In this case, we must use the IOMMU API directly and map
727	 * the memory to the device address as expected by the remote
728	 * processor.
729	 *
730	 * Obviously such remote processor devices should not be configured
731	 * to use the iommu-based DMA API: we expect 'dma' to contain the
732	 * physical address in this case.
733	 */
734	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
735		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
736		if (!mapping) {
737			ret = -ENOMEM;
738			goto dma_free;
739		}
740
741		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
742				mem->flags, GFP_KERNEL);
743		if (ret) {
744			dev_err(dev, "iommu_map failed: %d\n", ret);
745			goto free_mapping;
746		}
747
748		/*
749		 * We'll need this info later when we'll want to unmap
750		 * everything (e.g. on shutdown).
751		 *
752		 * We can't trust the remote processor not to change the
753		 * resource table, so we must maintain this info independently.
754		 */
755		mapping->da = mem->da;
756		mapping->len = mem->len;
757		list_add_tail(&mapping->node, &rproc->mappings);
758
759		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
760			mem->da, &dma);
761	}
762
763	if (mem->da == FW_RSC_ADDR_ANY) {
764		/* Update device address as undefined by requester */
765		if ((u64)dma & HIGH_BITS_MASK)
766			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
767
768		mem->da = (u32)dma;
769	}
770
771	mem->dma = dma;
772	mem->va = va;
773
774	return 0;
775
776free_mapping:
777	kfree(mapping);
778dma_free:
779	dma_free_coherent(dev->parent, mem->len, va, dma);
780	return ret;
781}
782
783/**
784 * rproc_release_carveout() - release acquired carveout
785 * @rproc: rproc handle
786 * @mem: the memory entry to release
787 *
788 * This function releases specified memory entry @mem allocated via
789 * rproc_alloc_carveout() function by @rproc.
790 *
791 * Return: 0 on success, or an appropriate error code otherwise
792 */
793static int rproc_release_carveout(struct rproc *rproc,
794				  struct rproc_mem_entry *mem)
795{
796	struct device *dev = &rproc->dev;
797
798	/* clean up carveout allocations */
799	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
800	return 0;
801}
802
803/**
804 * rproc_handle_carveout() - handle phys contig memory allocation requests
805 * @rproc: rproc handle
806 * @ptr: the resource entry
807 * @offset: offset of the resource entry
808 * @avail: size of available data (for image validation)
809 *
810 * This function will handle firmware requests for allocation of physically
811 * contiguous memory regions.
812 *
813 * These request entries should come first in the firmware's resource table,
814 * as other firmware entries might request placing other data objects inside
815 * these memory regions (e.g. data/code segments, trace resource entries, ...).
816 *
817 * Allocating memory this way helps utilizing the reserved physical memory
818 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
819 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
820 * pressure is important; it may have a substantial impact on performance.
821 *
822 * Return: 0 on success, or an appropriate error code otherwise
823 */
824static int rproc_handle_carveout(struct rproc *rproc,
825				 void *ptr, int offset, int avail)
826{
827	struct fw_rsc_carveout *rsc = ptr;
828	struct rproc_mem_entry *carveout;
829	struct device *dev = &rproc->dev;
830
831	if (sizeof(*rsc) > avail) {
832		dev_err(dev, "carveout rsc is truncated\n");
833		return -EINVAL;
834	}
835
836	/* make sure reserved bytes are zeroes */
837	if (rsc->reserved) {
838		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
839		return -EINVAL;
840	}
841
842	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
843		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
844
845	/*
846	 * Check carveout rsc already part of a registered carveout,
847	 * Search by name, then check the da and length
848	 */
849	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
850
851	if (carveout) {
852		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
853			dev_err(dev,
854				"Carveout already associated to resource table\n");
855			return -ENOMEM;
856		}
857
858		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
859			return -ENOMEM;
860
861		/* Update memory carveout with resource table info */
862		carveout->rsc_offset = offset;
863		carveout->flags = rsc->flags;
864
865		return 0;
866	}
867
868	/* Register carveout in list */
869	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
870					rproc_alloc_carveout,
871					rproc_release_carveout, rsc->name);
872	if (!carveout) {
873		dev_err(dev, "Can't allocate memory entry structure\n");
874		return -ENOMEM;
875	}
876
877	carveout->flags = rsc->flags;
878	carveout->rsc_offset = offset;
879	rproc_add_carveout(rproc, carveout);
880
881	return 0;
882}
883
884/**
885 * rproc_add_carveout() - register an allocated carveout region
886 * @rproc: rproc handle
887 * @mem: memory entry to register
888 *
889 * This function registers specified memory entry in @rproc carveouts list.
890 * Specified carveout should have been allocated before registering.
891 */
892void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
893{
894	list_add_tail(&mem->node, &rproc->carveouts);
895}
896EXPORT_SYMBOL(rproc_add_carveout);
897
898/**
899 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
900 * @dev: pointer on device struct
901 * @va: virtual address
902 * @dma: dma address
903 * @len: memory carveout length
904 * @da: device address
905 * @alloc: memory carveout allocation function
906 * @release: memory carveout release function
907 * @name: carveout name
908 *
909 * This function allocates a rproc_mem_entry struct and fill it with parameters
910 * provided by client.
911 *
912 * Return: a valid pointer on success, or NULL on failure
913 */
914__printf(8, 9)
915struct rproc_mem_entry *
916rproc_mem_entry_init(struct device *dev,
917		     void *va, dma_addr_t dma, size_t len, u32 da,
918		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
919		     int (*release)(struct rproc *, struct rproc_mem_entry *),
920		     const char *name, ...)
921{
922	struct rproc_mem_entry *mem;
923	va_list args;
924
925	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
926	if (!mem)
927		return mem;
928
929	mem->va = va;
930	mem->dma = dma;
931	mem->da = da;
932	mem->len = len;
933	mem->alloc = alloc;
934	mem->release = release;
935	mem->rsc_offset = FW_RSC_ADDR_ANY;
936	mem->of_resm_idx = -1;
937
938	va_start(args, name);
939	vsnprintf(mem->name, sizeof(mem->name), name, args);
940	va_end(args);
941
942	return mem;
943}
944EXPORT_SYMBOL(rproc_mem_entry_init);
945
946/**
947 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
948 * from a reserved memory phandle
949 * @dev: pointer on device struct
950 * @of_resm_idx: reserved memory phandle index in "memory-region"
951 * @len: memory carveout length
952 * @da: device address
953 * @name: carveout name
954 *
955 * This function allocates a rproc_mem_entry struct and fill it with parameters
956 * provided by client.
957 *
958 * Return: a valid pointer on success, or NULL on failure
959 */
960__printf(5, 6)
961struct rproc_mem_entry *
962rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
963			     u32 da, const char *name, ...)
964{
965	struct rproc_mem_entry *mem;
966	va_list args;
967
968	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
969	if (!mem)
970		return mem;
971
972	mem->da = da;
973	mem->len = len;
974	mem->rsc_offset = FW_RSC_ADDR_ANY;
975	mem->of_resm_idx = of_resm_idx;
976
977	va_start(args, name);
978	vsnprintf(mem->name, sizeof(mem->name), name, args);
979	va_end(args);
980
981	return mem;
982}
983EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
984
985/**
986 * rproc_of_parse_firmware() - parse and return the firmware-name
987 * @dev: pointer on device struct representing a rproc
988 * @index: index to use for the firmware-name retrieval
989 * @fw_name: pointer to a character string, in which the firmware
990 *           name is returned on success and unmodified otherwise.
991 *
992 * This is an OF helper function that parses a device's DT node for
993 * the "firmware-name" property and returns the firmware name pointer
994 * in @fw_name on success.
995 *
996 * Return: 0 on success, or an appropriate failure.
997 */
998int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
999{
1000	int ret;
1001
1002	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1003					    index, fw_name);
1004	return ret ? ret : 0;
1005}
1006EXPORT_SYMBOL(rproc_of_parse_firmware);
1007
1008/*
1009 * A lookup table for resource handlers. The indices are defined in
1010 * enum fw_resource_type.
1011 */
1012static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1013	[RSC_CARVEOUT] = rproc_handle_carveout,
1014	[RSC_DEVMEM] = rproc_handle_devmem,
1015	[RSC_TRACE] = rproc_handle_trace,
1016	[RSC_VDEV] = rproc_handle_vdev,
1017};
1018
1019/* handle firmware resource entries before booting the remote processor */
1020static int rproc_handle_resources(struct rproc *rproc,
1021				  rproc_handle_resource_t handlers[RSC_LAST])
1022{
1023	struct device *dev = &rproc->dev;
1024	rproc_handle_resource_t handler;
1025	int ret = 0, i;
1026
1027	if (!rproc->table_ptr)
1028		return 0;
1029
1030	for (i = 0; i < rproc->table_ptr->num; i++) {
1031		int offset = rproc->table_ptr->offset[i];
1032		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1033		int avail = rproc->table_sz - offset - sizeof(*hdr);
1034		void *rsc = (void *)hdr + sizeof(*hdr);
1035
1036		/* make sure table isn't truncated */
1037		if (avail < 0) {
1038			dev_err(dev, "rsc table is truncated\n");
1039			return -EINVAL;
1040		}
1041
1042		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1043
1044		if (hdr->type >= RSC_VENDOR_START &&
1045		    hdr->type <= RSC_VENDOR_END) {
1046			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1047					       offset + sizeof(*hdr), avail);
1048			if (ret == RSC_HANDLED)
1049				continue;
1050			else if (ret < 0)
1051				break;
1052
1053			dev_warn(dev, "unsupported vendor resource %d\n",
1054				 hdr->type);
1055			continue;
1056		}
1057
1058		if (hdr->type >= RSC_LAST) {
1059			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1060			continue;
1061		}
1062
1063		handler = handlers[hdr->type];
1064		if (!handler)
1065			continue;
1066
1067		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1068		if (ret)
1069			break;
1070	}
1071
1072	return ret;
1073}
1074
1075static int rproc_prepare_subdevices(struct rproc *rproc)
1076{
1077	struct rproc_subdev *subdev;
1078	int ret;
1079
1080	list_for_each_entry(subdev, &rproc->subdevs, node) {
1081		if (subdev->prepare) {
1082			ret = subdev->prepare(subdev);
1083			if (ret)
1084				goto unroll_preparation;
1085		}
1086	}
1087
1088	return 0;
1089
1090unroll_preparation:
1091	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1092		if (subdev->unprepare)
1093			subdev->unprepare(subdev);
1094	}
1095
1096	return ret;
1097}
1098
1099static int rproc_start_subdevices(struct rproc *rproc)
1100{
1101	struct rproc_subdev *subdev;
1102	int ret;
1103
1104	list_for_each_entry(subdev, &rproc->subdevs, node) {
1105		if (subdev->start) {
1106			ret = subdev->start(subdev);
1107			if (ret)
1108				goto unroll_registration;
1109		}
1110	}
1111
1112	return 0;
1113
1114unroll_registration:
1115	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1116		if (subdev->stop)
1117			subdev->stop(subdev, true);
1118	}
1119
1120	return ret;
1121}
1122
1123static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1124{
1125	struct rproc_subdev *subdev;
1126
1127	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1128		if (subdev->stop)
1129			subdev->stop(subdev, crashed);
1130	}
1131}
1132
1133static void rproc_unprepare_subdevices(struct rproc *rproc)
1134{
1135	struct rproc_subdev *subdev;
1136
1137	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1138		if (subdev->unprepare)
1139			subdev->unprepare(subdev);
1140	}
1141}
1142
1143/**
1144 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1145 * in the list
1146 * @rproc: the remote processor handle
1147 *
1148 * This function parses registered carveout list, performs allocation
1149 * if alloc() ops registered and updates resource table information
1150 * if rsc_offset set.
1151 *
1152 * Return: 0 on success
1153 */
1154static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1155{
1156	struct rproc_mem_entry *entry, *tmp;
1157	struct fw_rsc_carveout *rsc;
1158	struct device *dev = &rproc->dev;
1159	u64 pa;
1160	int ret;
1161
1162	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1163		if (entry->alloc) {
1164			ret = entry->alloc(rproc, entry);
1165			if (ret) {
1166				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1167					entry->name, ret);
1168				return -ENOMEM;
1169			}
1170		}
1171
1172		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1173			/* update resource table */
1174			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1175
1176			/*
1177			 * Some remote processors might need to know the pa
1178			 * even though they are behind an IOMMU. E.g., OMAP4's
1179			 * remote M3 processor needs this so it can control
1180			 * on-chip hardware accelerators that are not behind
1181			 * the IOMMU, and therefor must know the pa.
1182			 *
1183			 * Generally we don't want to expose physical addresses
1184			 * if we don't have to (remote processors are generally
1185			 * _not_ trusted), so we might want to do this only for
1186			 * remote processor that _must_ have this (e.g. OMAP4's
1187			 * dual M3 subsystem).
1188			 *
1189			 * Non-IOMMU processors might also want to have this info.
1190			 * In this case, the device address and the physical address
1191			 * are the same.
1192			 */
1193
1194			/* Use va if defined else dma to generate pa */
1195			if (entry->va)
1196				pa = (u64)rproc_va_to_pa(entry->va);
1197			else
1198				pa = (u64)entry->dma;
1199
1200			if (((u64)pa) & HIGH_BITS_MASK)
1201				dev_warn(dev,
1202					 "Physical address cast in 32bit to fit resource table format\n");
1203
1204			rsc->pa = (u32)pa;
1205			rsc->da = entry->da;
1206			rsc->len = entry->len;
1207		}
1208	}
1209
1210	return 0;
1211}
1212
1213
1214/**
1215 * rproc_resource_cleanup() - clean up and free all acquired resources
1216 * @rproc: rproc handle
1217 *
1218 * This function will free all resources acquired for @rproc, and it
1219 * is called whenever @rproc either shuts down or fails to boot.
1220 */
1221void rproc_resource_cleanup(struct rproc *rproc)
1222{
1223	struct rproc_mem_entry *entry, *tmp;
1224	struct rproc_debug_trace *trace, *ttmp;
1225	struct rproc_vdev *rvdev, *rvtmp;
1226	struct device *dev = &rproc->dev;
1227
1228	/* clean up debugfs trace entries */
1229	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1230		rproc_remove_trace_file(trace->tfile);
1231		rproc->num_traces--;
1232		list_del(&trace->node);
1233		kfree(trace);
1234	}
1235
1236	/* clean up iommu mapping entries */
1237	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1238		size_t unmapped;
1239
1240		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1241		if (unmapped != entry->len) {
1242			/* nothing much to do besides complaining */
1243			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1244				unmapped);
1245		}
1246
1247		list_del(&entry->node);
1248		kfree(entry);
1249	}
1250
1251	/* clean up carveout allocations */
1252	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1253		if (entry->release)
1254			entry->release(rproc, entry);
1255		list_del(&entry->node);
1256		kfree(entry);
1257	}
1258
1259	/* clean up remote vdev entries */
1260	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1261		platform_device_unregister(rvdev->pdev);
1262
1263	rproc_coredump_cleanup(rproc);
1264}
1265EXPORT_SYMBOL(rproc_resource_cleanup);
1266
1267static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1268{
1269	struct resource_table *loaded_table;
1270	struct device *dev = &rproc->dev;
1271	int ret;
1272
1273	/* load the ELF segments to memory */
1274	ret = rproc_load_segments(rproc, fw);
1275	if (ret) {
1276		dev_err(dev, "Failed to load program segments: %d\n", ret);
1277		return ret;
1278	}
1279
1280	/*
1281	 * The starting device has been given the rproc->cached_table as the
1282	 * resource table. The address of the vring along with the other
1283	 * allocated resources (carveouts etc) is stored in cached_table.
1284	 * In order to pass this information to the remote device we must copy
1285	 * this information to device memory. We also update the table_ptr so
1286	 * that any subsequent changes will be applied to the loaded version.
1287	 */
1288	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1289	if (loaded_table) {
1290		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1291		rproc->table_ptr = loaded_table;
1292	}
1293
1294	ret = rproc_prepare_subdevices(rproc);
1295	if (ret) {
1296		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1297			rproc->name, ret);
1298		goto reset_table_ptr;
1299	}
1300
1301	/* power up the remote processor */
1302	ret = rproc->ops->start(rproc);
1303	if (ret) {
1304		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1305		goto unprepare_subdevices;
1306	}
1307
1308	/* Start any subdevices for the remote processor */
1309	ret = rproc_start_subdevices(rproc);
1310	if (ret) {
1311		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1312			rproc->name, ret);
1313		goto stop_rproc;
1314	}
1315
1316	rproc->state = RPROC_RUNNING;
1317
1318	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1319
1320	return 0;
1321
1322stop_rproc:
1323	rproc->ops->stop(rproc);
1324unprepare_subdevices:
1325	rproc_unprepare_subdevices(rproc);
1326reset_table_ptr:
1327	rproc->table_ptr = rproc->cached_table;
1328
1329	return ret;
1330}
1331
1332static int __rproc_attach(struct rproc *rproc)
1333{
1334	struct device *dev = &rproc->dev;
1335	int ret;
1336
1337	ret = rproc_prepare_subdevices(rproc);
1338	if (ret) {
1339		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1340			rproc->name, ret);
1341		goto out;
1342	}
1343
1344	/* Attach to the remote processor */
1345	ret = rproc_attach_device(rproc);
1346	if (ret) {
1347		dev_err(dev, "can't attach to rproc %s: %d\n",
1348			rproc->name, ret);
1349		goto unprepare_subdevices;
1350	}
1351
1352	/* Start any subdevices for the remote processor */
1353	ret = rproc_start_subdevices(rproc);
1354	if (ret) {
1355		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1356			rproc->name, ret);
1357		goto stop_rproc;
1358	}
1359
1360	rproc->state = RPROC_ATTACHED;
1361
1362	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1363
1364	return 0;
1365
1366stop_rproc:
1367	rproc->ops->stop(rproc);
1368unprepare_subdevices:
1369	rproc_unprepare_subdevices(rproc);
1370out:
1371	return ret;
1372}
1373
1374/*
1375 * take a firmware and boot a remote processor with it.
1376 */
1377static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1378{
1379	struct device *dev = &rproc->dev;
1380	const char *name = rproc->firmware;
1381	int ret;
1382
1383	ret = rproc_fw_sanity_check(rproc, fw);
1384	if (ret)
1385		return ret;
1386
1387	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1388
1389	/*
1390	 * if enabling an IOMMU isn't relevant for this rproc, this is
1391	 * just a nop
1392	 */
1393	ret = rproc_enable_iommu(rproc);
1394	if (ret) {
1395		dev_err(dev, "can't enable iommu: %d\n", ret);
1396		return ret;
1397	}
1398
1399	/* Prepare rproc for firmware loading if needed */
1400	ret = rproc_prepare_device(rproc);
1401	if (ret) {
1402		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1403		goto disable_iommu;
1404	}
1405
1406	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1407
1408	/* Load resource table, core dump segment list etc from the firmware */
1409	ret = rproc_parse_fw(rproc, fw);
1410	if (ret)
1411		goto unprepare_rproc;
1412
1413	/* reset max_notifyid */
1414	rproc->max_notifyid = -1;
1415
1416	/* reset handled vdev */
1417	rproc->nb_vdev = 0;
1418
1419	/* handle fw resources which are required to boot rproc */
1420	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1421	if (ret) {
1422		dev_err(dev, "Failed to process resources: %d\n", ret);
1423		goto clean_up_resources;
1424	}
1425
1426	/* Allocate carveout resources associated to rproc */
1427	ret = rproc_alloc_registered_carveouts(rproc);
1428	if (ret) {
1429		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1430			ret);
1431		goto clean_up_resources;
1432	}
1433
1434	ret = rproc_start(rproc, fw);
1435	if (ret)
1436		goto clean_up_resources;
1437
1438	return 0;
1439
1440clean_up_resources:
1441	rproc_resource_cleanup(rproc);
1442	kfree(rproc->cached_table);
1443	rproc->cached_table = NULL;
1444	rproc->table_ptr = NULL;
1445unprepare_rproc:
1446	/* release HW resources if needed */
1447	rproc_unprepare_device(rproc);
1448disable_iommu:
1449	rproc_disable_iommu(rproc);
1450	return ret;
1451}
1452
1453static int rproc_set_rsc_table(struct rproc *rproc)
1454{
1455	struct resource_table *table_ptr;
1456	struct device *dev = &rproc->dev;
1457	size_t table_sz;
1458	int ret;
1459
1460	table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1461	if (!table_ptr) {
1462		/* Not having a resource table is acceptable */
1463		return 0;
1464	}
1465
1466	if (IS_ERR(table_ptr)) {
1467		ret = PTR_ERR(table_ptr);
1468		dev_err(dev, "can't load resource table: %d\n", ret);
1469		return ret;
1470	}
1471
1472	/*
1473	 * If it is possible to detach the remote processor, keep an untouched
1474	 * copy of the resource table.  That way we can start fresh again when
1475	 * the remote processor is re-attached, that is:
1476	 *
1477	 *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1478	 *
1479	 * Free'd in rproc_reset_rsc_table_on_detach() and
1480	 * rproc_reset_rsc_table_on_stop().
1481	 */
1482	if (rproc->ops->detach) {
1483		rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1484		if (!rproc->clean_table)
1485			return -ENOMEM;
1486	} else {
1487		rproc->clean_table = NULL;
1488	}
1489
1490	rproc->cached_table = NULL;
1491	rproc->table_ptr = table_ptr;
1492	rproc->table_sz = table_sz;
1493
1494	return 0;
1495}
1496
1497static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1498{
1499	struct resource_table *table_ptr;
1500
1501	/* A resource table was never retrieved, nothing to do here */
1502	if (!rproc->table_ptr)
1503		return 0;
1504
1505	/*
1506	 * If we made it to this point a clean_table _must_ have been
1507	 * allocated in rproc_set_rsc_table().  If one isn't present
1508	 * something went really wrong and we must complain.
1509	 */
1510	if (WARN_ON(!rproc->clean_table))
1511		return -EINVAL;
1512
1513	/* Remember where the external entity installed the resource table */
1514	table_ptr = rproc->table_ptr;
1515
1516	/*
1517	 * If we made it here the remote processor was started by another
1518	 * entity and a cache table doesn't exist.  As such make a copy of
1519	 * the resource table currently used by the remote processor and
1520	 * use that for the rest of the shutdown process.  The memory
1521	 * allocated here is free'd in rproc_detach().
1522	 */
1523	rproc->cached_table = kmemdup(rproc->table_ptr,
1524				      rproc->table_sz, GFP_KERNEL);
1525	if (!rproc->cached_table)
1526		return -ENOMEM;
1527
1528	/*
1529	 * Use a copy of the resource table for the remainder of the
1530	 * shutdown process.
1531	 */
1532	rproc->table_ptr = rproc->cached_table;
1533
1534	/*
1535	 * Reset the memory area where the firmware loaded the resource table
1536	 * to its original value.  That way when we re-attach the remote
1537	 * processor the resource table is clean and ready to be used again.
1538	 */
1539	memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1540
1541	/*
1542	 * The clean resource table is no longer needed.  Allocated in
1543	 * rproc_set_rsc_table().
1544	 */
1545	kfree(rproc->clean_table);
1546
1547	return 0;
1548}
1549
1550static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1551{
1552	/* A resource table was never retrieved, nothing to do here */
1553	if (!rproc->table_ptr)
1554		return 0;
1555
1556	/*
1557	 * If a cache table exists the remote processor was started by
1558	 * the remoteproc core.  That cache table should be used for
1559	 * the rest of the shutdown process.
1560	 */
1561	if (rproc->cached_table)
1562		goto out;
1563
1564	/*
1565	 * If we made it here the remote processor was started by another
1566	 * entity and a cache table doesn't exist.  As such make a copy of
1567	 * the resource table currently used by the remote processor and
1568	 * use that for the rest of the shutdown process.  The memory
1569	 * allocated here is free'd in rproc_shutdown().
1570	 */
1571	rproc->cached_table = kmemdup(rproc->table_ptr,
1572				      rproc->table_sz, GFP_KERNEL);
1573	if (!rproc->cached_table)
1574		return -ENOMEM;
1575
1576	/*
1577	 * Since the remote processor is being switched off the clean table
1578	 * won't be needed.  Allocated in rproc_set_rsc_table().
1579	 */
1580	kfree(rproc->clean_table);
1581
1582out:
1583	/*
1584	 * Use a copy of the resource table for the remainder of the
1585	 * shutdown process.
1586	 */
1587	rproc->table_ptr = rproc->cached_table;
1588	return 0;
1589}
1590
1591/*
1592 * Attach to remote processor - similar to rproc_fw_boot() but without
1593 * the steps that deal with the firmware image.
1594 */
1595static int rproc_attach(struct rproc *rproc)
1596{
1597	struct device *dev = &rproc->dev;
1598	int ret;
1599
1600	/*
1601	 * if enabling an IOMMU isn't relevant for this rproc, this is
1602	 * just a nop
1603	 */
1604	ret = rproc_enable_iommu(rproc);
1605	if (ret) {
1606		dev_err(dev, "can't enable iommu: %d\n", ret);
1607		return ret;
1608	}
1609
1610	/* Do anything that is needed to boot the remote processor */
1611	ret = rproc_prepare_device(rproc);
1612	if (ret) {
1613		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1614		goto disable_iommu;
1615	}
1616
1617	ret = rproc_set_rsc_table(rproc);
1618	if (ret) {
1619		dev_err(dev, "can't load resource table: %d\n", ret);
1620		goto unprepare_device;
1621	}
1622
1623	/* reset max_notifyid */
1624	rproc->max_notifyid = -1;
1625
1626	/* reset handled vdev */
1627	rproc->nb_vdev = 0;
1628
1629	/*
1630	 * Handle firmware resources required to attach to a remote processor.
1631	 * Because we are attaching rather than booting the remote processor,
1632	 * we expect the platform driver to properly set rproc->table_ptr.
1633	 */
1634	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1635	if (ret) {
1636		dev_err(dev, "Failed to process resources: %d\n", ret);
1637		goto unprepare_device;
1638	}
1639
1640	/* Allocate carveout resources associated to rproc */
1641	ret = rproc_alloc_registered_carveouts(rproc);
1642	if (ret) {
1643		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1644			ret);
1645		goto clean_up_resources;
1646	}
1647
1648	ret = __rproc_attach(rproc);
1649	if (ret)
1650		goto clean_up_resources;
1651
1652	return 0;
1653
1654clean_up_resources:
1655	rproc_resource_cleanup(rproc);
1656unprepare_device:
1657	/* release HW resources if needed */
1658	rproc_unprepare_device(rproc);
1659disable_iommu:
1660	rproc_disable_iommu(rproc);
1661	return ret;
1662}
1663
1664/*
1665 * take a firmware and boot it up.
1666 *
1667 * Note: this function is called asynchronously upon registration of the
1668 * remote processor (so we must wait until it completes before we try
1669 * to unregister the device. one other option is just to use kref here,
1670 * that might be cleaner).
1671 */
1672static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1673{
1674	struct rproc *rproc = context;
1675
1676	rproc_boot(rproc);
1677
1678	release_firmware(fw);
1679}
1680
1681static int rproc_trigger_auto_boot(struct rproc *rproc)
1682{
1683	int ret;
1684
1685	/*
1686	 * Since the remote processor is in a detached state, it has already
1687	 * been booted by another entity.  As such there is no point in waiting
1688	 * for a firmware image to be loaded, we can simply initiate the process
1689	 * of attaching to it immediately.
1690	 */
1691	if (rproc->state == RPROC_DETACHED)
1692		return rproc_boot(rproc);
1693
1694	/*
1695	 * We're initiating an asynchronous firmware loading, so we can
1696	 * be built-in kernel code, without hanging the boot process.
1697	 */
1698	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1699				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1700				      rproc, rproc_auto_boot_callback);
1701	if (ret < 0)
1702		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1703
1704	return ret;
1705}
1706
1707static int rproc_stop(struct rproc *rproc, bool crashed)
1708{
1709	struct device *dev = &rproc->dev;
1710	int ret;
1711
1712	/* No need to continue if a stop() operation has not been provided */
1713	if (!rproc->ops->stop)
1714		return -EINVAL;
1715
1716	/* Stop any subdevices for the remote processor */
1717	rproc_stop_subdevices(rproc, crashed);
1718
1719	/* the installed resource table is no longer accessible */
1720	ret = rproc_reset_rsc_table_on_stop(rproc);
1721	if (ret) {
1722		dev_err(dev, "can't reset resource table: %d\n", ret);
1723		return ret;
1724	}
1725
1726
1727	/* power off the remote processor */
1728	ret = rproc->ops->stop(rproc);
1729	if (ret) {
1730		dev_err(dev, "can't stop rproc: %d\n", ret);
1731		return ret;
1732	}
1733
1734	rproc_unprepare_subdevices(rproc);
1735
1736	rproc->state = RPROC_OFFLINE;
1737
1738	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1739
1740	return 0;
1741}
1742
1743/*
1744 * __rproc_detach(): Does the opposite of __rproc_attach()
1745 */
1746static int __rproc_detach(struct rproc *rproc)
1747{
1748	struct device *dev = &rproc->dev;
1749	int ret;
1750
1751	/* No need to continue if a detach() operation has not been provided */
1752	if (!rproc->ops->detach)
1753		return -EINVAL;
1754
1755	/* Stop any subdevices for the remote processor */
1756	rproc_stop_subdevices(rproc, false);
1757
1758	/* the installed resource table is no longer accessible */
1759	ret = rproc_reset_rsc_table_on_detach(rproc);
1760	if (ret) {
1761		dev_err(dev, "can't reset resource table: %d\n", ret);
1762		return ret;
1763	}
1764
1765	/* Tell the remote processor the core isn't available anymore */
1766	ret = rproc->ops->detach(rproc);
1767	if (ret) {
1768		dev_err(dev, "can't detach from rproc: %d\n", ret);
1769		return ret;
1770	}
1771
1772	rproc_unprepare_subdevices(rproc);
1773
1774	rproc->state = RPROC_DETACHED;
1775
1776	dev_info(dev, "detached remote processor %s\n", rproc->name);
1777
1778	return 0;
1779}
1780
1781static int rproc_attach_recovery(struct rproc *rproc)
1782{
1783	int ret;
1784
1785	ret = __rproc_detach(rproc);
1786	if (ret)
1787		return ret;
1788
1789	return __rproc_attach(rproc);
1790}
1791
1792static int rproc_boot_recovery(struct rproc *rproc)
1793{
1794	const struct firmware *firmware_p;
1795	struct device *dev = &rproc->dev;
1796	int ret;
1797
1798	ret = rproc_stop(rproc, true);
1799	if (ret)
1800		return ret;
1801
1802	/* generate coredump */
1803	rproc->ops->coredump(rproc);
1804
1805	/* load firmware */
1806	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1807	if (ret < 0) {
1808		dev_err(dev, "request_firmware failed: %d\n", ret);
1809		return ret;
1810	}
1811
1812	/* boot the remote processor up again */
1813	ret = rproc_start(rproc, firmware_p);
1814
1815	release_firmware(firmware_p);
1816
1817	return ret;
1818}
1819
1820/**
1821 * rproc_trigger_recovery() - recover a remoteproc
1822 * @rproc: the remote processor
1823 *
1824 * The recovery is done by resetting all the virtio devices, that way all the
1825 * rpmsg drivers will be reseted along with the remote processor making the
1826 * remoteproc functional again.
1827 *
1828 * This function can sleep, so it cannot be called from atomic context.
1829 *
1830 * Return: 0 on success or a negative value upon failure
1831 */
1832int rproc_trigger_recovery(struct rproc *rproc)
1833{
1834	struct device *dev = &rproc->dev;
1835	int ret;
1836
1837	ret = mutex_lock_interruptible(&rproc->lock);
1838	if (ret)
1839		return ret;
1840
1841	/* State could have changed before we got the mutex */
1842	if (rproc->state != RPROC_CRASHED)
1843		goto unlock_mutex;
1844
1845	dev_err(dev, "recovering %s\n", rproc->name);
1846
1847	if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY))
1848		ret = rproc_attach_recovery(rproc);
1849	else
1850		ret = rproc_boot_recovery(rproc);
1851
1852unlock_mutex:
1853	mutex_unlock(&rproc->lock);
1854	return ret;
1855}
1856
1857/**
1858 * rproc_crash_handler_work() - handle a crash
1859 * @work: work treating the crash
1860 *
1861 * This function needs to handle everything related to a crash, like cpu
1862 * registers and stack dump, information to help to debug the fatal error, etc.
1863 */
1864static void rproc_crash_handler_work(struct work_struct *work)
1865{
1866	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1867	struct device *dev = &rproc->dev;
1868
1869	dev_dbg(dev, "enter %s\n", __func__);
1870
1871	mutex_lock(&rproc->lock);
1872
1873	if (rproc->state == RPROC_CRASHED) {
1874		/* handle only the first crash detected */
1875		mutex_unlock(&rproc->lock);
1876		return;
1877	}
1878
1879	if (rproc->state == RPROC_OFFLINE) {
1880		/* Don't recover if the remote processor was stopped */
1881		mutex_unlock(&rproc->lock);
1882		goto out;
1883	}
1884
1885	rproc->state = RPROC_CRASHED;
1886	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1887		rproc->name);
1888
1889	mutex_unlock(&rproc->lock);
1890
1891	if (!rproc->recovery_disabled)
1892		rproc_trigger_recovery(rproc);
1893
1894out:
1895	pm_relax(rproc->dev.parent);
1896}
1897
1898/**
1899 * rproc_boot() - boot a remote processor
1900 * @rproc: handle of a remote processor
1901 *
1902 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1903 *
1904 * If the remote processor is already powered on, this function immediately
1905 * returns (successfully).
1906 *
1907 * Return: 0 on success, and an appropriate error value otherwise
1908 */
1909int rproc_boot(struct rproc *rproc)
1910{
1911	const struct firmware *firmware_p;
1912	struct device *dev;
1913	int ret;
1914
1915	if (!rproc) {
1916		pr_err("invalid rproc handle\n");
1917		return -EINVAL;
1918	}
1919
1920	dev = &rproc->dev;
1921
1922	ret = mutex_lock_interruptible(&rproc->lock);
1923	if (ret) {
1924		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1925		return ret;
1926	}
1927
1928	if (rproc->state == RPROC_DELETED) {
1929		ret = -ENODEV;
1930		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1931		goto unlock_mutex;
1932	}
1933
1934	/* skip the boot or attach process if rproc is already powered up */
1935	if (atomic_inc_return(&rproc->power) > 1) {
1936		ret = 0;
1937		goto unlock_mutex;
1938	}
1939
1940	if (rproc->state == RPROC_DETACHED) {
1941		dev_info(dev, "attaching to %s\n", rproc->name);
1942
1943		ret = rproc_attach(rproc);
1944	} else {
1945		dev_info(dev, "powering up %s\n", rproc->name);
1946
1947		/* load firmware */
1948		ret = request_firmware(&firmware_p, rproc->firmware, dev);
1949		if (ret < 0) {
1950			dev_err(dev, "request_firmware failed: %d\n", ret);
1951			goto downref_rproc;
1952		}
1953
1954		ret = rproc_fw_boot(rproc, firmware_p);
1955
1956		release_firmware(firmware_p);
1957	}
1958
1959downref_rproc:
1960	if (ret)
1961		atomic_dec(&rproc->power);
1962unlock_mutex:
1963	mutex_unlock(&rproc->lock);
1964	return ret;
1965}
1966EXPORT_SYMBOL(rproc_boot);
1967
1968/**
1969 * rproc_shutdown() - power off the remote processor
1970 * @rproc: the remote processor
1971 *
1972 * Power off a remote processor (previously booted with rproc_boot()).
1973 *
1974 * In case @rproc is still being used by an additional user(s), then
1975 * this function will just decrement the power refcount and exit,
1976 * without really powering off the device.
1977 *
1978 * Every call to rproc_boot() must (eventually) be accompanied by a call
1979 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1980 *
1981 * Notes:
1982 * - we're not decrementing the rproc's refcount, only the power refcount.
1983 *   which means that the @rproc handle stays valid even after rproc_shutdown()
1984 *   returns, and users can still use it with a subsequent rproc_boot(), if
1985 *   needed.
1986 *
1987 * Return: 0 on success, and an appropriate error value otherwise
1988 */
1989int rproc_shutdown(struct rproc *rproc)
1990{
1991	struct device *dev = &rproc->dev;
1992	int ret = 0;
1993
1994	ret = mutex_lock_interruptible(&rproc->lock);
1995	if (ret) {
1996		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1997		return ret;
1998	}
1999
2000	if (rproc->state != RPROC_RUNNING &&
2001	    rproc->state != RPROC_ATTACHED) {
2002		ret = -EINVAL;
2003		goto out;
2004	}
2005
2006	/* if the remote proc is still needed, bail out */
2007	if (!atomic_dec_and_test(&rproc->power))
2008		goto out;
2009
2010	ret = rproc_stop(rproc, false);
2011	if (ret) {
2012		atomic_inc(&rproc->power);
2013		goto out;
2014	}
2015
2016	/* clean up all acquired resources */
2017	rproc_resource_cleanup(rproc);
2018
2019	/* release HW resources if needed */
2020	rproc_unprepare_device(rproc);
2021
2022	rproc_disable_iommu(rproc);
2023
2024	/* Free the copy of the resource table */
2025	kfree(rproc->cached_table);
2026	rproc->cached_table = NULL;
2027	rproc->table_ptr = NULL;
2028out:
2029	mutex_unlock(&rproc->lock);
2030	return ret;
2031}
2032EXPORT_SYMBOL(rproc_shutdown);
2033
2034/**
2035 * rproc_detach() - Detach the remote processor from the
2036 * remoteproc core
2037 *
2038 * @rproc: the remote processor
2039 *
2040 * Detach a remote processor (previously attached to with rproc_attach()).
2041 *
2042 * In case @rproc is still being used by an additional user(s), then
2043 * this function will just decrement the power refcount and exit,
2044 * without disconnecting the device.
2045 *
2046 * Function rproc_detach() calls __rproc_detach() in order to let a remote
2047 * processor know that services provided by the application processor are
2048 * no longer available.  From there it should be possible to remove the
2049 * platform driver and even power cycle the application processor (if the HW
2050 * supports it) without needing to switch off the remote processor.
2051 *
2052 * Return: 0 on success, and an appropriate error value otherwise
2053 */
2054int rproc_detach(struct rproc *rproc)
2055{
2056	struct device *dev = &rproc->dev;
2057	int ret;
2058
2059	ret = mutex_lock_interruptible(&rproc->lock);
2060	if (ret) {
2061		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2062		return ret;
2063	}
2064
2065	if (rproc->state != RPROC_ATTACHED) {
2066		ret = -EINVAL;
2067		goto out;
2068	}
2069
2070	/* if the remote proc is still needed, bail out */
2071	if (!atomic_dec_and_test(&rproc->power)) {
2072		ret = 0;
2073		goto out;
2074	}
2075
2076	ret = __rproc_detach(rproc);
2077	if (ret) {
2078		atomic_inc(&rproc->power);
2079		goto out;
2080	}
2081
2082	/* clean up all acquired resources */
2083	rproc_resource_cleanup(rproc);
2084
2085	/* release HW resources if needed */
2086	rproc_unprepare_device(rproc);
2087
2088	rproc_disable_iommu(rproc);
2089
2090	/* Free the copy of the resource table */
2091	kfree(rproc->cached_table);
2092	rproc->cached_table = NULL;
2093	rproc->table_ptr = NULL;
2094out:
2095	mutex_unlock(&rproc->lock);
2096	return ret;
2097}
2098EXPORT_SYMBOL(rproc_detach);
2099
2100/**
2101 * rproc_get_by_phandle() - find a remote processor by phandle
2102 * @phandle: phandle to the rproc
2103 *
2104 * Finds an rproc handle using the remote processor's phandle, and then
2105 * return a handle to the rproc.
2106 *
2107 * This function increments the remote processor's refcount, so always
2108 * use rproc_put() to decrement it back once rproc isn't needed anymore.
2109 *
2110 * Return: rproc handle on success, and NULL on failure
2111 */
2112#ifdef CONFIG_OF
2113struct rproc *rproc_get_by_phandle(phandle phandle)
2114{
2115	struct rproc *rproc = NULL, *r;
2116	struct device_driver *driver;
2117	struct device_node *np;
2118
2119	np = of_find_node_by_phandle(phandle);
2120	if (!np)
2121		return NULL;
2122
2123	rcu_read_lock();
2124	list_for_each_entry_rcu(r, &rproc_list, node) {
2125		if (r->dev.parent && device_match_of_node(r->dev.parent, np)) {
2126			/* prevent underlying implementation from being removed */
2127
2128			/*
2129			 * If the remoteproc's parent has a driver, the
2130			 * remoteproc is not part of a cluster and we can use
2131			 * that driver.
2132			 */
2133			driver = r->dev.parent->driver;
2134
2135			/*
2136			 * If the remoteproc's parent does not have a driver,
2137			 * look for the driver associated with the cluster.
2138			 */
2139			if (!driver) {
2140				if (r->dev.parent->parent)
2141					driver = r->dev.parent->parent->driver;
2142				if (!driver)
2143					break;
2144			}
2145
2146			if (!try_module_get(driver->owner)) {
2147				dev_err(&r->dev, "can't get owner\n");
2148				break;
2149			}
2150
2151			rproc = r;
2152			get_device(&rproc->dev);
2153			break;
2154		}
2155	}
2156	rcu_read_unlock();
2157
2158	of_node_put(np);
2159
2160	return rproc;
2161}
2162#else
2163struct rproc *rproc_get_by_phandle(phandle phandle)
2164{
2165	return NULL;
2166}
2167#endif
2168EXPORT_SYMBOL(rproc_get_by_phandle);
2169
2170/**
2171 * rproc_set_firmware() - assign a new firmware
2172 * @rproc: rproc handle to which the new firmware is being assigned
2173 * @fw_name: new firmware name to be assigned
2174 *
2175 * This function allows remoteproc drivers or clients to configure a custom
2176 * firmware name that is different from the default name used during remoteproc
2177 * registration. The function does not trigger a remote processor boot,
2178 * only sets the firmware name used for a subsequent boot. This function
2179 * should also be called only when the remote processor is offline.
2180 *
2181 * This allows either the userspace to configure a different name through
2182 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2183 * a specific firmware when it is controlling the boot and shutdown of the
2184 * remote processor.
2185 *
2186 * Return: 0 on success or a negative value upon failure
2187 */
2188int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2189{
2190	struct device *dev;
2191	int ret, len;
2192	char *p;
2193
2194	if (!rproc || !fw_name)
2195		return -EINVAL;
2196
2197	dev = rproc->dev.parent;
2198
2199	ret = mutex_lock_interruptible(&rproc->lock);
2200	if (ret) {
2201		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2202		return -EINVAL;
2203	}
2204
2205	if (rproc->state != RPROC_OFFLINE) {
2206		dev_err(dev, "can't change firmware while running\n");
2207		ret = -EBUSY;
2208		goto out;
2209	}
2210
2211	len = strcspn(fw_name, "\n");
2212	if (!len) {
2213		dev_err(dev, "can't provide empty string for firmware name\n");
2214		ret = -EINVAL;
2215		goto out;
2216	}
2217
2218	p = kstrndup(fw_name, len, GFP_KERNEL);
2219	if (!p) {
2220		ret = -ENOMEM;
2221		goto out;
2222	}
2223
2224	kfree_const(rproc->firmware);
2225	rproc->firmware = p;
2226
2227out:
2228	mutex_unlock(&rproc->lock);
2229	return ret;
2230}
2231EXPORT_SYMBOL(rproc_set_firmware);
2232
2233static int rproc_validate(struct rproc *rproc)
2234{
2235	switch (rproc->state) {
2236	case RPROC_OFFLINE:
2237		/*
2238		 * An offline processor without a start()
2239		 * function makes no sense.
2240		 */
2241		if (!rproc->ops->start)
2242			return -EINVAL;
2243		break;
2244	case RPROC_DETACHED:
2245		/*
2246		 * A remote processor in a detached state without an
2247		 * attach() function makes not sense.
2248		 */
2249		if (!rproc->ops->attach)
2250			return -EINVAL;
2251		/*
2252		 * When attaching to a remote processor the device memory
2253		 * is already available and as such there is no need to have a
2254		 * cached table.
2255		 */
2256		if (rproc->cached_table)
2257			return -EINVAL;
2258		break;
2259	default:
2260		/*
2261		 * When adding a remote processor, the state of the device
2262		 * can be offline or detached, nothing else.
2263		 */
2264		return -EINVAL;
2265	}
2266
2267	return 0;
2268}
2269
2270/**
2271 * rproc_add() - register a remote processor
2272 * @rproc: the remote processor handle to register
2273 *
2274 * Registers @rproc with the remoteproc framework, after it has been
2275 * allocated with rproc_alloc().
2276 *
2277 * This is called by the platform-specific rproc implementation, whenever
2278 * a new remote processor device is probed.
2279 *
2280 * Note: this function initiates an asynchronous firmware loading
2281 * context, which will look for virtio devices supported by the rproc's
2282 * firmware.
2283 *
2284 * If found, those virtio devices will be created and added, so as a result
2285 * of registering this remote processor, additional virtio drivers might be
2286 * probed.
2287 *
2288 * Return: 0 on success and an appropriate error code otherwise
2289 */
2290int rproc_add(struct rproc *rproc)
2291{
2292	struct device *dev = &rproc->dev;
2293	int ret;
2294
2295	ret = rproc_validate(rproc);
2296	if (ret < 0)
2297		return ret;
2298
2299	/* add char device for this remoteproc */
2300	ret = rproc_char_device_add(rproc);
2301	if (ret < 0)
2302		return ret;
2303
2304	ret = device_add(dev);
2305	if (ret < 0) {
2306		put_device(dev);
2307		goto rproc_remove_cdev;
2308	}
2309
2310	dev_info(dev, "%s is available\n", rproc->name);
2311
2312	/* create debugfs entries */
2313	rproc_create_debug_dir(rproc);
2314
2315	/* if rproc is marked always-on, request it to boot */
2316	if (rproc->auto_boot) {
2317		ret = rproc_trigger_auto_boot(rproc);
2318		if (ret < 0)
2319			goto rproc_remove_dev;
2320	}
2321
2322	/* expose to rproc_get_by_phandle users */
2323	mutex_lock(&rproc_list_mutex);
2324	list_add_rcu(&rproc->node, &rproc_list);
2325	mutex_unlock(&rproc_list_mutex);
2326
2327	return 0;
2328
2329rproc_remove_dev:
2330	rproc_delete_debug_dir(rproc);
2331	device_del(dev);
2332rproc_remove_cdev:
2333	rproc_char_device_remove(rproc);
2334	return ret;
2335}
2336EXPORT_SYMBOL(rproc_add);
2337
2338static void devm_rproc_remove(void *rproc)
2339{
2340	rproc_del(rproc);
2341}
2342
2343/**
2344 * devm_rproc_add() - resource managed rproc_add()
2345 * @dev: the underlying device
2346 * @rproc: the remote processor handle to register
2347 *
2348 * This function performs like rproc_add() but the registered rproc device will
2349 * automatically be removed on driver detach.
2350 *
2351 * Return: 0 on success, negative errno on failure
2352 */
2353int devm_rproc_add(struct device *dev, struct rproc *rproc)
2354{
2355	int err;
2356
2357	err = rproc_add(rproc);
2358	if (err)
2359		return err;
2360
2361	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2362}
2363EXPORT_SYMBOL(devm_rproc_add);
2364
2365/**
2366 * rproc_type_release() - release a remote processor instance
2367 * @dev: the rproc's device
2368 *
2369 * This function should _never_ be called directly.
2370 *
2371 * It will be called by the driver core when no one holds a valid pointer
2372 * to @dev anymore.
2373 */
2374static void rproc_type_release(struct device *dev)
2375{
2376	struct rproc *rproc = container_of(dev, struct rproc, dev);
2377
2378	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2379
2380	idr_destroy(&rproc->notifyids);
2381
2382	if (rproc->index >= 0)
2383		ida_free(&rproc_dev_index, rproc->index);
2384
2385	kfree_const(rproc->firmware);
2386	kfree_const(rproc->name);
2387	kfree(rproc->ops);
2388	kfree(rproc);
2389}
2390
2391static const struct device_type rproc_type = {
2392	.name		= "remoteproc",
2393	.release	= rproc_type_release,
2394};
2395
2396static int rproc_alloc_firmware(struct rproc *rproc,
2397				const char *name, const char *firmware)
2398{
2399	const char *p;
2400
2401	/*
2402	 * Allocate a firmware name if the caller gave us one to work
2403	 * with.  Otherwise construct a new one using a default pattern.
2404	 */
2405	if (firmware)
2406		p = kstrdup_const(firmware, GFP_KERNEL);
2407	else
2408		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2409
2410	if (!p)
2411		return -ENOMEM;
2412
2413	rproc->firmware = p;
2414
2415	return 0;
2416}
2417
2418static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2419{
2420	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2421	if (!rproc->ops)
2422		return -ENOMEM;
2423
2424	/* Default to rproc_coredump if no coredump function is specified */
2425	if (!rproc->ops->coredump)
2426		rproc->ops->coredump = rproc_coredump;
2427
2428	if (rproc->ops->load)
2429		return 0;
2430
2431	/* Default to ELF loader if no load function is specified */
2432	rproc->ops->load = rproc_elf_load_segments;
2433	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2434	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2435	rproc->ops->sanity_check = rproc_elf_sanity_check;
2436	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2437
2438	return 0;
2439}
2440
2441/**
2442 * rproc_alloc() - allocate a remote processor handle
2443 * @dev: the underlying device
2444 * @name: name of this remote processor
2445 * @ops: platform-specific handlers (mainly start/stop)
2446 * @firmware: name of firmware file to load, can be NULL
2447 * @len: length of private data needed by the rproc driver (in bytes)
2448 *
2449 * Allocates a new remote processor handle, but does not register
2450 * it yet. if @firmware is NULL, a default name is used.
2451 *
2452 * This function should be used by rproc implementations during initialization
2453 * of the remote processor.
2454 *
2455 * After creating an rproc handle using this function, and when ready,
2456 * implementations should then call rproc_add() to complete
2457 * the registration of the remote processor.
2458 *
2459 * Note: _never_ directly deallocate @rproc, even if it was not registered
2460 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2461 *
2462 * Return: new rproc pointer on success, and NULL on failure
2463 */
2464struct rproc *rproc_alloc(struct device *dev, const char *name,
2465			  const struct rproc_ops *ops,
2466			  const char *firmware, int len)
2467{
2468	struct rproc *rproc;
2469
2470	if (!dev || !name || !ops)
2471		return NULL;
2472
2473	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2474	if (!rproc)
2475		return NULL;
2476
2477	rproc->priv = &rproc[1];
2478	rproc->auto_boot = true;
2479	rproc->elf_class = ELFCLASSNONE;
2480	rproc->elf_machine = EM_NONE;
2481
2482	device_initialize(&rproc->dev);
2483	rproc->dev.parent = dev;
2484	rproc->dev.type = &rproc_type;
2485	rproc->dev.class = &rproc_class;
2486	rproc->dev.driver_data = rproc;
2487	idr_init(&rproc->notifyids);
2488
2489	rproc->name = kstrdup_const(name, GFP_KERNEL);
2490	if (!rproc->name)
2491		goto put_device;
2492
2493	if (rproc_alloc_firmware(rproc, name, firmware))
2494		goto put_device;
2495
2496	if (rproc_alloc_ops(rproc, ops))
2497		goto put_device;
2498
2499	/* Assign a unique device index and name */
2500	rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
2501	if (rproc->index < 0) {
2502		dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2503		goto put_device;
2504	}
2505
2506	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2507
2508	atomic_set(&rproc->power, 0);
2509
2510	mutex_init(&rproc->lock);
2511
2512	INIT_LIST_HEAD(&rproc->carveouts);
2513	INIT_LIST_HEAD(&rproc->mappings);
2514	INIT_LIST_HEAD(&rproc->traces);
2515	INIT_LIST_HEAD(&rproc->rvdevs);
2516	INIT_LIST_HEAD(&rproc->subdevs);
2517	INIT_LIST_HEAD(&rproc->dump_segments);
2518
2519	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2520
2521	rproc->state = RPROC_OFFLINE;
2522
2523	return rproc;
2524
2525put_device:
2526	put_device(&rproc->dev);
2527	return NULL;
2528}
2529EXPORT_SYMBOL(rproc_alloc);
2530
2531/**
2532 * rproc_free() - unroll rproc_alloc()
2533 * @rproc: the remote processor handle
2534 *
2535 * This function decrements the rproc dev refcount.
2536 *
2537 * If no one holds any reference to rproc anymore, then its refcount would
2538 * now drop to zero, and it would be freed.
2539 */
2540void rproc_free(struct rproc *rproc)
2541{
2542	put_device(&rproc->dev);
2543}
2544EXPORT_SYMBOL(rproc_free);
2545
2546/**
2547 * rproc_put() - release rproc reference
2548 * @rproc: the remote processor handle
2549 *
2550 * This function decrements the rproc dev refcount.
2551 *
2552 * If no one holds any reference to rproc anymore, then its refcount would
2553 * now drop to zero, and it would be freed.
2554 */
2555void rproc_put(struct rproc *rproc)
2556{
2557	if (rproc->dev.parent->driver)
2558		module_put(rproc->dev.parent->driver->owner);
2559	else
2560		module_put(rproc->dev.parent->parent->driver->owner);
2561
2562	put_device(&rproc->dev);
2563}
2564EXPORT_SYMBOL(rproc_put);
2565
2566/**
2567 * rproc_del() - unregister a remote processor
2568 * @rproc: rproc handle to unregister
2569 *
2570 * This function should be called when the platform specific rproc
2571 * implementation decides to remove the rproc device. it should
2572 * _only_ be called if a previous invocation of rproc_add()
2573 * has completed successfully.
2574 *
2575 * After rproc_del() returns, @rproc isn't freed yet, because
2576 * of the outstanding reference created by rproc_alloc. To decrement that
2577 * one last refcount, one still needs to call rproc_free().
2578 *
2579 * Return: 0 on success and -EINVAL if @rproc isn't valid
2580 */
2581int rproc_del(struct rproc *rproc)
2582{
2583	if (!rproc)
2584		return -EINVAL;
2585
2586	/* TODO: make sure this works with rproc->power > 1 */
2587	rproc_shutdown(rproc);
2588
2589	mutex_lock(&rproc->lock);
2590	rproc->state = RPROC_DELETED;
2591	mutex_unlock(&rproc->lock);
2592
2593	rproc_delete_debug_dir(rproc);
2594
2595	/* the rproc is downref'ed as soon as it's removed from the klist */
2596	mutex_lock(&rproc_list_mutex);
2597	list_del_rcu(&rproc->node);
2598	mutex_unlock(&rproc_list_mutex);
2599
2600	/* Ensure that no readers of rproc_list are still active */
2601	synchronize_rcu();
2602
2603	device_del(&rproc->dev);
2604	rproc_char_device_remove(rproc);
2605
2606	return 0;
2607}
2608EXPORT_SYMBOL(rproc_del);
2609
2610static void devm_rproc_free(struct device *dev, void *res)
2611{
2612	rproc_free(*(struct rproc **)res);
2613}
2614
2615/**
2616 * devm_rproc_alloc() - resource managed rproc_alloc()
2617 * @dev: the underlying device
2618 * @name: name of this remote processor
2619 * @ops: platform-specific handlers (mainly start/stop)
2620 * @firmware: name of firmware file to load, can be NULL
2621 * @len: length of private data needed by the rproc driver (in bytes)
2622 *
2623 * This function performs like rproc_alloc() but the acquired rproc device will
2624 * automatically be released on driver detach.
2625 *
2626 * Return: new rproc instance, or NULL on failure
2627 */
2628struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2629			       const struct rproc_ops *ops,
2630			       const char *firmware, int len)
2631{
2632	struct rproc **ptr, *rproc;
2633
2634	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2635	if (!ptr)
2636		return NULL;
2637
2638	rproc = rproc_alloc(dev, name, ops, firmware, len);
2639	if (rproc) {
2640		*ptr = rproc;
2641		devres_add(dev, ptr);
2642	} else {
2643		devres_free(ptr);
2644	}
2645
2646	return rproc;
2647}
2648EXPORT_SYMBOL(devm_rproc_alloc);
2649
2650/**
2651 * rproc_add_subdev() - add a subdevice to a remoteproc
2652 * @rproc: rproc handle to add the subdevice to
2653 * @subdev: subdev handle to register
2654 *
2655 * Caller is responsible for populating optional subdevice function pointers.
2656 */
2657void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2658{
2659	list_add_tail(&subdev->node, &rproc->subdevs);
2660}
2661EXPORT_SYMBOL(rproc_add_subdev);
2662
2663/**
2664 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2665 * @rproc: rproc handle to remove the subdevice from
2666 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2667 */
2668void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2669{
2670	list_del(&subdev->node);
2671}
2672EXPORT_SYMBOL(rproc_remove_subdev);
2673
2674/**
2675 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2676 * @dev:	child device to find ancestor of
2677 *
2678 * Return: the ancestor rproc instance, or NULL if not found
2679 */
2680struct rproc *rproc_get_by_child(struct device *dev)
2681{
2682	for (dev = dev->parent; dev; dev = dev->parent) {
2683		if (dev->type == &rproc_type)
2684			return dev->driver_data;
2685	}
2686
2687	return NULL;
2688}
2689EXPORT_SYMBOL(rproc_get_by_child);
2690
2691/**
2692 * rproc_report_crash() - rproc crash reporter function
2693 * @rproc: remote processor
2694 * @type: crash type
2695 *
2696 * This function must be called every time a crash is detected by the low-level
2697 * drivers implementing a specific remoteproc. This should not be called from a
2698 * non-remoteproc driver.
2699 *
2700 * This function can be called from atomic/interrupt context.
2701 */
2702void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2703{
2704	if (!rproc) {
2705		pr_err("NULL rproc pointer\n");
2706		return;
2707	}
2708
2709	/* Prevent suspend while the remoteproc is being recovered */
2710	pm_stay_awake(rproc->dev.parent);
2711
2712	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2713		rproc->name, rproc_crash_to_string(type));
2714
2715	queue_work(rproc_recovery_wq, &rproc->crash_handler);
2716}
2717EXPORT_SYMBOL(rproc_report_crash);
2718
2719static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2720			       void *ptr)
2721{
2722	unsigned int longest = 0;
2723	struct rproc *rproc;
2724	unsigned int d;
2725
2726	rcu_read_lock();
2727	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2728		if (!rproc->ops->panic)
2729			continue;
2730
2731		if (rproc->state != RPROC_RUNNING &&
2732		    rproc->state != RPROC_ATTACHED)
2733			continue;
2734
2735		d = rproc->ops->panic(rproc);
2736		longest = max(longest, d);
2737	}
2738	rcu_read_unlock();
2739
2740	/*
2741	 * Delay for the longest requested duration before returning. This can
2742	 * be used by the remoteproc drivers to give the remote processor time
2743	 * to perform any requested operations (such as flush caches), when
2744	 * it's not possible to signal the Linux side due to the panic.
2745	 */
2746	mdelay(longest);
2747
2748	return NOTIFY_DONE;
2749}
2750
2751static void __init rproc_init_panic(void)
2752{
2753	rproc_panic_nb.notifier_call = rproc_panic_handler;
2754	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2755}
2756
2757static void __exit rproc_exit_panic(void)
2758{
2759	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2760}
2761
2762static int __init remoteproc_init(void)
2763{
2764	rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2765						WQ_UNBOUND | WQ_FREEZABLE, 0);
2766	if (!rproc_recovery_wq) {
2767		pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2768		return -ENOMEM;
2769	}
2770
2771	rproc_init_sysfs();
2772	rproc_init_debugfs();
2773	rproc_init_cdev();
2774	rproc_init_panic();
2775
2776	return 0;
2777}
2778subsys_initcall(remoteproc_init);
2779
2780static void __exit remoteproc_exit(void)
2781{
2782	ida_destroy(&rproc_dev_index);
2783
2784	if (!rproc_recovery_wq)
2785		return;
2786
2787	rproc_exit_panic();
2788	rproc_exit_debugfs();
2789	rproc_exit_sysfs();
2790	destroy_workqueue(rproc_recovery_wq);
2791}
2792module_exit(remoteproc_exit);
2793
2794MODULE_DESCRIPTION("Generic Remote Processor Framework");
2795