1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c  --  Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/reboot.h>
23#include <linux/regmap.h>
24#include <linux/regulator/of_regulator.h>
25#include <linux/regulator/consumer.h>
26#include <linux/regulator/coupler.h>
27#include <linux/regulator/driver.h>
28#include <linux/regulator/machine.h>
29#include <linux/module.h>
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/regulator.h>
33
34#include "dummy.h"
35#include "internal.h"
36#include "regnl.h"
37
38static DEFINE_WW_CLASS(regulator_ww_class);
39static DEFINE_MUTEX(regulator_nesting_mutex);
40static DEFINE_MUTEX(regulator_list_mutex);
41static LIST_HEAD(regulator_map_list);
42static LIST_HEAD(regulator_ena_gpio_list);
43static LIST_HEAD(regulator_supply_alias_list);
44static LIST_HEAD(regulator_coupler_list);
45static bool has_full_constraints;
46
47static struct dentry *debugfs_root;
48
49/*
50 * struct regulator_map
51 *
52 * Used to provide symbolic supply names to devices.
53 */
54struct regulator_map {
55	struct list_head list;
56	const char *dev_name;   /* The dev_name() for the consumer */
57	const char *supply;
58	struct regulator_dev *regulator;
59};
60
61/*
62 * struct regulator_enable_gpio
63 *
64 * Management for shared enable GPIO pin
65 */
66struct regulator_enable_gpio {
67	struct list_head list;
68	struct gpio_desc *gpiod;
69	u32 enable_count;	/* a number of enabled shared GPIO */
70	u32 request_count;	/* a number of requested shared GPIO */
71};
72
73/*
74 * struct regulator_supply_alias
75 *
76 * Used to map lookups for a supply onto an alternative device.
77 */
78struct regulator_supply_alias {
79	struct list_head list;
80	struct device *src_dev;
81	const char *src_supply;
82	struct device *alias_dev;
83	const char *alias_supply;
84};
85
86static int _regulator_is_enabled(struct regulator_dev *rdev);
87static int _regulator_disable(struct regulator *regulator);
88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89static int _regulator_get_current_limit(struct regulator_dev *rdev);
90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91static int _notifier_call_chain(struct regulator_dev *rdev,
92				  unsigned long event, void *data);
93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94				     int min_uV, int max_uV);
95static int regulator_balance_voltage(struct regulator_dev *rdev,
96				     suspend_state_t state);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98					  struct device *dev,
99					  const char *supply_name);
100static void destroy_regulator(struct regulator *regulator);
101static void _regulator_put(struct regulator *regulator);
102
103const char *rdev_get_name(struct regulator_dev *rdev)
104{
105	if (rdev->constraints && rdev->constraints->name)
106		return rdev->constraints->name;
107	else if (rdev->desc->name)
108		return rdev->desc->name;
109	else
110		return "";
111}
112EXPORT_SYMBOL_GPL(rdev_get_name);
113
114static bool have_full_constraints(void)
115{
116	return has_full_constraints || of_have_populated_dt();
117}
118
119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120{
121	if (!rdev->constraints) {
122		rdev_err(rdev, "no constraints\n");
123		return false;
124	}
125
126	if (rdev->constraints->valid_ops_mask & ops)
127		return true;
128
129	return false;
130}
131
132/**
133 * regulator_lock_nested - lock a single regulator
134 * @rdev:		regulator source
135 * @ww_ctx:		w/w mutex acquire context
136 *
137 * This function can be called many times by one task on
138 * a single regulator and its mutex will be locked only
139 * once. If a task, which is calling this function is other
140 * than the one, which initially locked the mutex, it will
141 * wait on mutex.
142 */
143static inline int regulator_lock_nested(struct regulator_dev *rdev,
144					struct ww_acquire_ctx *ww_ctx)
145{
146	bool lock = false;
147	int ret = 0;
148
149	mutex_lock(&regulator_nesting_mutex);
150
151	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
152		if (rdev->mutex_owner == current)
153			rdev->ref_cnt++;
154		else
155			lock = true;
156
157		if (lock) {
158			mutex_unlock(&regulator_nesting_mutex);
159			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
160			mutex_lock(&regulator_nesting_mutex);
161		}
162	} else {
163		lock = true;
164	}
165
166	if (lock && ret != -EDEADLK) {
167		rdev->ref_cnt++;
168		rdev->mutex_owner = current;
169	}
170
171	mutex_unlock(&regulator_nesting_mutex);
172
173	return ret;
174}
175
176/**
177 * regulator_lock - lock a single regulator
178 * @rdev:		regulator source
179 *
180 * This function can be called many times by one task on
181 * a single regulator and its mutex will be locked only
182 * once. If a task, which is calling this function is other
183 * than the one, which initially locked the mutex, it will
184 * wait on mutex.
185 */
186static void regulator_lock(struct regulator_dev *rdev)
187{
188	regulator_lock_nested(rdev, NULL);
189}
190
191/**
192 * regulator_unlock - unlock a single regulator
193 * @rdev:		regulator_source
194 *
195 * This function unlocks the mutex when the
196 * reference counter reaches 0.
197 */
198static void regulator_unlock(struct regulator_dev *rdev)
199{
200	mutex_lock(&regulator_nesting_mutex);
201
202	if (--rdev->ref_cnt == 0) {
203		rdev->mutex_owner = NULL;
204		ww_mutex_unlock(&rdev->mutex);
205	}
206
207	WARN_ON_ONCE(rdev->ref_cnt < 0);
208
209	mutex_unlock(&regulator_nesting_mutex);
210}
211
212/**
213 * regulator_lock_two - lock two regulators
214 * @rdev1:		first regulator
215 * @rdev2:		second regulator
216 * @ww_ctx:		w/w mutex acquire context
217 *
218 * Locks both rdevs using the regulator_ww_class.
219 */
220static void regulator_lock_two(struct regulator_dev *rdev1,
221			       struct regulator_dev *rdev2,
222			       struct ww_acquire_ctx *ww_ctx)
223{
224	struct regulator_dev *held, *contended;
225	int ret;
226
227	ww_acquire_init(ww_ctx, &regulator_ww_class);
228
229	/* Try to just grab both of them */
230	ret = regulator_lock_nested(rdev1, ww_ctx);
231	WARN_ON(ret);
232	ret = regulator_lock_nested(rdev2, ww_ctx);
233	if (ret != -EDEADLOCK) {
234		WARN_ON(ret);
235		goto exit;
236	}
237
238	held = rdev1;
239	contended = rdev2;
240	while (true) {
241		regulator_unlock(held);
242
243		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
244		contended->ref_cnt++;
245		contended->mutex_owner = current;
246		swap(held, contended);
247		ret = regulator_lock_nested(contended, ww_ctx);
248
249		if (ret != -EDEADLOCK) {
250			WARN_ON(ret);
251			break;
252		}
253	}
254
255exit:
256	ww_acquire_done(ww_ctx);
257}
258
259/**
260 * regulator_unlock_two - unlock two regulators
261 * @rdev1:		first regulator
262 * @rdev2:		second regulator
263 * @ww_ctx:		w/w mutex acquire context
264 *
265 * The inverse of regulator_lock_two().
266 */
267
268static void regulator_unlock_two(struct regulator_dev *rdev1,
269				 struct regulator_dev *rdev2,
270				 struct ww_acquire_ctx *ww_ctx)
271{
272	regulator_unlock(rdev2);
273	regulator_unlock(rdev1);
274	ww_acquire_fini(ww_ctx);
275}
276
277static bool regulator_supply_is_couple(struct regulator_dev *rdev)
278{
279	struct regulator_dev *c_rdev;
280	int i;
281
282	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
283		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
284
285		if (rdev->supply->rdev == c_rdev)
286			return true;
287	}
288
289	return false;
290}
291
292static void regulator_unlock_recursive(struct regulator_dev *rdev,
293				       unsigned int n_coupled)
294{
295	struct regulator_dev *c_rdev, *supply_rdev;
296	int i, supply_n_coupled;
297
298	for (i = n_coupled; i > 0; i--) {
299		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
300
301		if (!c_rdev)
302			continue;
303
304		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
305			supply_rdev = c_rdev->supply->rdev;
306			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
307
308			regulator_unlock_recursive(supply_rdev,
309						   supply_n_coupled);
310		}
311
312		regulator_unlock(c_rdev);
313	}
314}
315
316static int regulator_lock_recursive(struct regulator_dev *rdev,
317				    struct regulator_dev **new_contended_rdev,
318				    struct regulator_dev **old_contended_rdev,
319				    struct ww_acquire_ctx *ww_ctx)
320{
321	struct regulator_dev *c_rdev;
322	int i, err;
323
324	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
325		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
326
327		if (!c_rdev)
328			continue;
329
330		if (c_rdev != *old_contended_rdev) {
331			err = regulator_lock_nested(c_rdev, ww_ctx);
332			if (err) {
333				if (err == -EDEADLK) {
334					*new_contended_rdev = c_rdev;
335					goto err_unlock;
336				}
337
338				/* shouldn't happen */
339				WARN_ON_ONCE(err != -EALREADY);
340			}
341		} else {
342			*old_contended_rdev = NULL;
343		}
344
345		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
346			err = regulator_lock_recursive(c_rdev->supply->rdev,
347						       new_contended_rdev,
348						       old_contended_rdev,
349						       ww_ctx);
350			if (err) {
351				regulator_unlock(c_rdev);
352				goto err_unlock;
353			}
354		}
355	}
356
357	return 0;
358
359err_unlock:
360	regulator_unlock_recursive(rdev, i);
361
362	return err;
363}
364
365/**
366 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
367 *				regulators
368 * @rdev:			regulator source
369 * @ww_ctx:			w/w mutex acquire context
370 *
371 * Unlock all regulators related with rdev by coupling or supplying.
372 */
373static void regulator_unlock_dependent(struct regulator_dev *rdev,
374				       struct ww_acquire_ctx *ww_ctx)
375{
376	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
377	ww_acquire_fini(ww_ctx);
378}
379
380/**
381 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
382 * @rdev:			regulator source
383 * @ww_ctx:			w/w mutex acquire context
384 *
385 * This function as a wrapper on regulator_lock_recursive(), which locks
386 * all regulators related with rdev by coupling or supplying.
387 */
388static void regulator_lock_dependent(struct regulator_dev *rdev,
389				     struct ww_acquire_ctx *ww_ctx)
390{
391	struct regulator_dev *new_contended_rdev = NULL;
392	struct regulator_dev *old_contended_rdev = NULL;
393	int err;
394
395	mutex_lock(&regulator_list_mutex);
396
397	ww_acquire_init(ww_ctx, &regulator_ww_class);
398
399	do {
400		if (new_contended_rdev) {
401			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
402			old_contended_rdev = new_contended_rdev;
403			old_contended_rdev->ref_cnt++;
404			old_contended_rdev->mutex_owner = current;
405		}
406
407		err = regulator_lock_recursive(rdev,
408					       &new_contended_rdev,
409					       &old_contended_rdev,
410					       ww_ctx);
411
412		if (old_contended_rdev)
413			regulator_unlock(old_contended_rdev);
414
415	} while (err == -EDEADLK);
416
417	ww_acquire_done(ww_ctx);
418
419	mutex_unlock(&regulator_list_mutex);
420}
421
422/**
423 * of_get_child_regulator - get a child regulator device node
424 * based on supply name
425 * @parent: Parent device node
426 * @prop_name: Combination regulator supply name and "-supply"
427 *
428 * Traverse all child nodes.
429 * Extract the child regulator device node corresponding to the supply name.
430 * returns the device node corresponding to the regulator if found, else
431 * returns NULL.
432 */
433static struct device_node *of_get_child_regulator(struct device_node *parent,
434						  const char *prop_name)
435{
436	struct device_node *regnode = NULL;
437	struct device_node *child = NULL;
438
439	for_each_child_of_node(parent, child) {
440		regnode = of_parse_phandle(child, prop_name, 0);
441
442		if (!regnode) {
443			regnode = of_get_child_regulator(child, prop_name);
444			if (regnode)
445				goto err_node_put;
446		} else {
447			goto err_node_put;
448		}
449	}
450	return NULL;
451
452err_node_put:
453	of_node_put(child);
454	return regnode;
455}
456
457/**
458 * of_get_regulator - get a regulator device node based on supply name
459 * @dev: Device pointer for the consumer (of regulator) device
460 * @supply: regulator supply name
461 *
462 * Extract the regulator device node corresponding to the supply name.
463 * returns the device node corresponding to the regulator if found, else
464 * returns NULL.
465 */
466static struct device_node *of_get_regulator(struct device *dev, const char *supply)
467{
468	struct device_node *regnode = NULL;
469	char prop_name[64]; /* 64 is max size of property name */
470
471	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
472
473	snprintf(prop_name, 64, "%s-supply", supply);
474	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
475
476	if (!regnode) {
477		regnode = of_get_child_regulator(dev->of_node, prop_name);
478		if (regnode)
479			return regnode;
480
481		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
482				prop_name, dev->of_node);
483		return NULL;
484	}
485	return regnode;
486}
487
488/* Platform voltage constraint check */
489int regulator_check_voltage(struct regulator_dev *rdev,
490			    int *min_uV, int *max_uV)
491{
492	BUG_ON(*min_uV > *max_uV);
493
494	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
495		rdev_err(rdev, "voltage operation not allowed\n");
496		return -EPERM;
497	}
498
499	if (*max_uV > rdev->constraints->max_uV)
500		*max_uV = rdev->constraints->max_uV;
501	if (*min_uV < rdev->constraints->min_uV)
502		*min_uV = rdev->constraints->min_uV;
503
504	if (*min_uV > *max_uV) {
505		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
506			 *min_uV, *max_uV);
507		return -EINVAL;
508	}
509
510	return 0;
511}
512
513/* return 0 if the state is valid */
514static int regulator_check_states(suspend_state_t state)
515{
516	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
517}
518
519/* Make sure we select a voltage that suits the needs of all
520 * regulator consumers
521 */
522int regulator_check_consumers(struct regulator_dev *rdev,
523			      int *min_uV, int *max_uV,
524			      suspend_state_t state)
525{
526	struct regulator *regulator;
527	struct regulator_voltage *voltage;
528
529	list_for_each_entry(regulator, &rdev->consumer_list, list) {
530		voltage = &regulator->voltage[state];
531		/*
532		 * Assume consumers that didn't say anything are OK
533		 * with anything in the constraint range.
534		 */
535		if (!voltage->min_uV && !voltage->max_uV)
536			continue;
537
538		if (*max_uV > voltage->max_uV)
539			*max_uV = voltage->max_uV;
540		if (*min_uV < voltage->min_uV)
541			*min_uV = voltage->min_uV;
542	}
543
544	if (*min_uV > *max_uV) {
545		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
546			*min_uV, *max_uV);
547		return -EINVAL;
548	}
549
550	return 0;
551}
552
553/* current constraint check */
554static int regulator_check_current_limit(struct regulator_dev *rdev,
555					int *min_uA, int *max_uA)
556{
557	BUG_ON(*min_uA > *max_uA);
558
559	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
560		rdev_err(rdev, "current operation not allowed\n");
561		return -EPERM;
562	}
563
564	if (*max_uA > rdev->constraints->max_uA)
565		*max_uA = rdev->constraints->max_uA;
566	if (*min_uA < rdev->constraints->min_uA)
567		*min_uA = rdev->constraints->min_uA;
568
569	if (*min_uA > *max_uA) {
570		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
571			 *min_uA, *max_uA);
572		return -EINVAL;
573	}
574
575	return 0;
576}
577
578/* operating mode constraint check */
579static int regulator_mode_constrain(struct regulator_dev *rdev,
580				    unsigned int *mode)
581{
582	switch (*mode) {
583	case REGULATOR_MODE_FAST:
584	case REGULATOR_MODE_NORMAL:
585	case REGULATOR_MODE_IDLE:
586	case REGULATOR_MODE_STANDBY:
587		break;
588	default:
589		rdev_err(rdev, "invalid mode %x specified\n", *mode);
590		return -EINVAL;
591	}
592
593	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
594		rdev_err(rdev, "mode operation not allowed\n");
595		return -EPERM;
596	}
597
598	/* The modes are bitmasks, the most power hungry modes having
599	 * the lowest values. If the requested mode isn't supported
600	 * try higher modes.
601	 */
602	while (*mode) {
603		if (rdev->constraints->valid_modes_mask & *mode)
604			return 0;
605		*mode /= 2;
606	}
607
608	return -EINVAL;
609}
610
611static inline struct regulator_state *
612regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
613{
614	if (rdev->constraints == NULL)
615		return NULL;
616
617	switch (state) {
618	case PM_SUSPEND_STANDBY:
619		return &rdev->constraints->state_standby;
620	case PM_SUSPEND_MEM:
621		return &rdev->constraints->state_mem;
622	case PM_SUSPEND_MAX:
623		return &rdev->constraints->state_disk;
624	default:
625		return NULL;
626	}
627}
628
629static const struct regulator_state *
630regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
631{
632	const struct regulator_state *rstate;
633
634	rstate = regulator_get_suspend_state(rdev, state);
635	if (rstate == NULL)
636		return NULL;
637
638	/* If we have no suspend mode configuration don't set anything;
639	 * only warn if the driver implements set_suspend_voltage or
640	 * set_suspend_mode callback.
641	 */
642	if (rstate->enabled != ENABLE_IN_SUSPEND &&
643	    rstate->enabled != DISABLE_IN_SUSPEND) {
644		if (rdev->desc->ops->set_suspend_voltage ||
645		    rdev->desc->ops->set_suspend_mode)
646			rdev_warn(rdev, "No configuration\n");
647		return NULL;
648	}
649
650	return rstate;
651}
652
653static ssize_t microvolts_show(struct device *dev,
654			       struct device_attribute *attr, char *buf)
655{
656	struct regulator_dev *rdev = dev_get_drvdata(dev);
657	int uV;
658
659	regulator_lock(rdev);
660	uV = regulator_get_voltage_rdev(rdev);
661	regulator_unlock(rdev);
662
663	if (uV < 0)
664		return uV;
665	return sprintf(buf, "%d\n", uV);
666}
667static DEVICE_ATTR_RO(microvolts);
668
669static ssize_t microamps_show(struct device *dev,
670			      struct device_attribute *attr, char *buf)
671{
672	struct regulator_dev *rdev = dev_get_drvdata(dev);
673
674	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
675}
676static DEVICE_ATTR_RO(microamps);
677
678static ssize_t name_show(struct device *dev, struct device_attribute *attr,
679			 char *buf)
680{
681	struct regulator_dev *rdev = dev_get_drvdata(dev);
682
683	return sprintf(buf, "%s\n", rdev_get_name(rdev));
684}
685static DEVICE_ATTR_RO(name);
686
687static const char *regulator_opmode_to_str(int mode)
688{
689	switch (mode) {
690	case REGULATOR_MODE_FAST:
691		return "fast";
692	case REGULATOR_MODE_NORMAL:
693		return "normal";
694	case REGULATOR_MODE_IDLE:
695		return "idle";
696	case REGULATOR_MODE_STANDBY:
697		return "standby";
698	}
699	return "unknown";
700}
701
702static ssize_t regulator_print_opmode(char *buf, int mode)
703{
704	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
705}
706
707static ssize_t opmode_show(struct device *dev,
708			   struct device_attribute *attr, char *buf)
709{
710	struct regulator_dev *rdev = dev_get_drvdata(dev);
711
712	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
713}
714static DEVICE_ATTR_RO(opmode);
715
716static ssize_t regulator_print_state(char *buf, int state)
717{
718	if (state > 0)
719		return sprintf(buf, "enabled\n");
720	else if (state == 0)
721		return sprintf(buf, "disabled\n");
722	else
723		return sprintf(buf, "unknown\n");
724}
725
726static ssize_t state_show(struct device *dev,
727			  struct device_attribute *attr, char *buf)
728{
729	struct regulator_dev *rdev = dev_get_drvdata(dev);
730	ssize_t ret;
731
732	regulator_lock(rdev);
733	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
734	regulator_unlock(rdev);
735
736	return ret;
737}
738static DEVICE_ATTR_RO(state);
739
740static ssize_t status_show(struct device *dev,
741			   struct device_attribute *attr, char *buf)
742{
743	struct regulator_dev *rdev = dev_get_drvdata(dev);
744	int status;
745	char *label;
746
747	status = rdev->desc->ops->get_status(rdev);
748	if (status < 0)
749		return status;
750
751	switch (status) {
752	case REGULATOR_STATUS_OFF:
753		label = "off";
754		break;
755	case REGULATOR_STATUS_ON:
756		label = "on";
757		break;
758	case REGULATOR_STATUS_ERROR:
759		label = "error";
760		break;
761	case REGULATOR_STATUS_FAST:
762		label = "fast";
763		break;
764	case REGULATOR_STATUS_NORMAL:
765		label = "normal";
766		break;
767	case REGULATOR_STATUS_IDLE:
768		label = "idle";
769		break;
770	case REGULATOR_STATUS_STANDBY:
771		label = "standby";
772		break;
773	case REGULATOR_STATUS_BYPASS:
774		label = "bypass";
775		break;
776	case REGULATOR_STATUS_UNDEFINED:
777		label = "undefined";
778		break;
779	default:
780		return -ERANGE;
781	}
782
783	return sprintf(buf, "%s\n", label);
784}
785static DEVICE_ATTR_RO(status);
786
787static ssize_t min_microamps_show(struct device *dev,
788				  struct device_attribute *attr, char *buf)
789{
790	struct regulator_dev *rdev = dev_get_drvdata(dev);
791
792	if (!rdev->constraints)
793		return sprintf(buf, "constraint not defined\n");
794
795	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
796}
797static DEVICE_ATTR_RO(min_microamps);
798
799static ssize_t max_microamps_show(struct device *dev,
800				  struct device_attribute *attr, char *buf)
801{
802	struct regulator_dev *rdev = dev_get_drvdata(dev);
803
804	if (!rdev->constraints)
805		return sprintf(buf, "constraint not defined\n");
806
807	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
808}
809static DEVICE_ATTR_RO(max_microamps);
810
811static ssize_t min_microvolts_show(struct device *dev,
812				   struct device_attribute *attr, char *buf)
813{
814	struct regulator_dev *rdev = dev_get_drvdata(dev);
815
816	if (!rdev->constraints)
817		return sprintf(buf, "constraint not defined\n");
818
819	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
820}
821static DEVICE_ATTR_RO(min_microvolts);
822
823static ssize_t max_microvolts_show(struct device *dev,
824				   struct device_attribute *attr, char *buf)
825{
826	struct regulator_dev *rdev = dev_get_drvdata(dev);
827
828	if (!rdev->constraints)
829		return sprintf(buf, "constraint not defined\n");
830
831	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
832}
833static DEVICE_ATTR_RO(max_microvolts);
834
835static ssize_t requested_microamps_show(struct device *dev,
836					struct device_attribute *attr, char *buf)
837{
838	struct regulator_dev *rdev = dev_get_drvdata(dev);
839	struct regulator *regulator;
840	int uA = 0;
841
842	regulator_lock(rdev);
843	list_for_each_entry(regulator, &rdev->consumer_list, list) {
844		if (regulator->enable_count)
845			uA += regulator->uA_load;
846	}
847	regulator_unlock(rdev);
848	return sprintf(buf, "%d\n", uA);
849}
850static DEVICE_ATTR_RO(requested_microamps);
851
852static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
853			      char *buf)
854{
855	struct regulator_dev *rdev = dev_get_drvdata(dev);
856	return sprintf(buf, "%d\n", rdev->use_count);
857}
858static DEVICE_ATTR_RO(num_users);
859
860static ssize_t type_show(struct device *dev, struct device_attribute *attr,
861			 char *buf)
862{
863	struct regulator_dev *rdev = dev_get_drvdata(dev);
864
865	switch (rdev->desc->type) {
866	case REGULATOR_VOLTAGE:
867		return sprintf(buf, "voltage\n");
868	case REGULATOR_CURRENT:
869		return sprintf(buf, "current\n");
870	}
871	return sprintf(buf, "unknown\n");
872}
873static DEVICE_ATTR_RO(type);
874
875static ssize_t suspend_mem_microvolts_show(struct device *dev,
876					   struct device_attribute *attr, char *buf)
877{
878	struct regulator_dev *rdev = dev_get_drvdata(dev);
879
880	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
881}
882static DEVICE_ATTR_RO(suspend_mem_microvolts);
883
884static ssize_t suspend_disk_microvolts_show(struct device *dev,
885					    struct device_attribute *attr, char *buf)
886{
887	struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
890}
891static DEVICE_ATTR_RO(suspend_disk_microvolts);
892
893static ssize_t suspend_standby_microvolts_show(struct device *dev,
894					       struct device_attribute *attr, char *buf)
895{
896	struct regulator_dev *rdev = dev_get_drvdata(dev);
897
898	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
899}
900static DEVICE_ATTR_RO(suspend_standby_microvolts);
901
902static ssize_t suspend_mem_mode_show(struct device *dev,
903				     struct device_attribute *attr, char *buf)
904{
905	struct regulator_dev *rdev = dev_get_drvdata(dev);
906
907	return regulator_print_opmode(buf,
908		rdev->constraints->state_mem.mode);
909}
910static DEVICE_ATTR_RO(suspend_mem_mode);
911
912static ssize_t suspend_disk_mode_show(struct device *dev,
913				      struct device_attribute *attr, char *buf)
914{
915	struct regulator_dev *rdev = dev_get_drvdata(dev);
916
917	return regulator_print_opmode(buf,
918		rdev->constraints->state_disk.mode);
919}
920static DEVICE_ATTR_RO(suspend_disk_mode);
921
922static ssize_t suspend_standby_mode_show(struct device *dev,
923					 struct device_attribute *attr, char *buf)
924{
925	struct regulator_dev *rdev = dev_get_drvdata(dev);
926
927	return regulator_print_opmode(buf,
928		rdev->constraints->state_standby.mode);
929}
930static DEVICE_ATTR_RO(suspend_standby_mode);
931
932static ssize_t suspend_mem_state_show(struct device *dev,
933				      struct device_attribute *attr, char *buf)
934{
935	struct regulator_dev *rdev = dev_get_drvdata(dev);
936
937	return regulator_print_state(buf,
938			rdev->constraints->state_mem.enabled);
939}
940static DEVICE_ATTR_RO(suspend_mem_state);
941
942static ssize_t suspend_disk_state_show(struct device *dev,
943				       struct device_attribute *attr, char *buf)
944{
945	struct regulator_dev *rdev = dev_get_drvdata(dev);
946
947	return regulator_print_state(buf,
948			rdev->constraints->state_disk.enabled);
949}
950static DEVICE_ATTR_RO(suspend_disk_state);
951
952static ssize_t suspend_standby_state_show(struct device *dev,
953					  struct device_attribute *attr, char *buf)
954{
955	struct regulator_dev *rdev = dev_get_drvdata(dev);
956
957	return regulator_print_state(buf,
958			rdev->constraints->state_standby.enabled);
959}
960static DEVICE_ATTR_RO(suspend_standby_state);
961
962static ssize_t bypass_show(struct device *dev,
963			   struct device_attribute *attr, char *buf)
964{
965	struct regulator_dev *rdev = dev_get_drvdata(dev);
966	const char *report;
967	bool bypass;
968	int ret;
969
970	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
971
972	if (ret != 0)
973		report = "unknown";
974	else if (bypass)
975		report = "enabled";
976	else
977		report = "disabled";
978
979	return sprintf(buf, "%s\n", report);
980}
981static DEVICE_ATTR_RO(bypass);
982
983#define REGULATOR_ERROR_ATTR(name, bit)							\
984	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
985				   char *buf)						\
986	{										\
987		int ret;								\
988		unsigned int flags;							\
989		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
990		ret = _regulator_get_error_flags(rdev, &flags);				\
991		if (ret)								\
992			return ret;							\
993		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
994	}										\
995	static DEVICE_ATTR_RO(name)
996
997REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
998REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
999REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1000REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1001REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1002REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1003REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1004REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1005REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1006
1007/* Calculate the new optimum regulator operating mode based on the new total
1008 * consumer load. All locks held by caller
1009 */
1010static int drms_uA_update(struct regulator_dev *rdev)
1011{
1012	struct regulator *sibling;
1013	int current_uA = 0, output_uV, input_uV, err;
1014	unsigned int mode;
1015
1016	/*
1017	 * first check to see if we can set modes at all, otherwise just
1018	 * tell the consumer everything is OK.
1019	 */
1020	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1021		rdev_dbg(rdev, "DRMS operation not allowed\n");
1022		return 0;
1023	}
1024
1025	if (!rdev->desc->ops->get_optimum_mode &&
1026	    !rdev->desc->ops->set_load)
1027		return 0;
1028
1029	if (!rdev->desc->ops->set_mode &&
1030	    !rdev->desc->ops->set_load)
1031		return -EINVAL;
1032
1033	/* calc total requested load */
1034	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1035		if (sibling->enable_count)
1036			current_uA += sibling->uA_load;
1037	}
1038
1039	current_uA += rdev->constraints->system_load;
1040
1041	if (rdev->desc->ops->set_load) {
1042		/* set the optimum mode for our new total regulator load */
1043		err = rdev->desc->ops->set_load(rdev, current_uA);
1044		if (err < 0)
1045			rdev_err(rdev, "failed to set load %d: %pe\n",
1046				 current_uA, ERR_PTR(err));
1047	} else {
1048		/*
1049		 * Unfortunately in some cases the constraints->valid_ops has
1050		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1051		 * That's not really legit but we won't consider it a fatal
1052		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1053		 * wasn't set.
1054		 */
1055		if (!rdev->constraints->valid_modes_mask) {
1056			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1057			return 0;
1058		}
1059
1060		/* get output voltage */
1061		output_uV = regulator_get_voltage_rdev(rdev);
1062
1063		/*
1064		 * Don't return an error; if regulator driver cares about
1065		 * output_uV then it's up to the driver to validate.
1066		 */
1067		if (output_uV <= 0)
1068			rdev_dbg(rdev, "invalid output voltage found\n");
1069
1070		/* get input voltage */
1071		input_uV = 0;
1072		if (rdev->supply)
1073			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1074		if (input_uV <= 0)
1075			input_uV = rdev->constraints->input_uV;
1076
1077		/*
1078		 * Don't return an error; if regulator driver cares about
1079		 * input_uV then it's up to the driver to validate.
1080		 */
1081		if (input_uV <= 0)
1082			rdev_dbg(rdev, "invalid input voltage found\n");
1083
1084		/* now get the optimum mode for our new total regulator load */
1085		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1086							 output_uV, current_uA);
1087
1088		/* check the new mode is allowed */
1089		err = regulator_mode_constrain(rdev, &mode);
1090		if (err < 0) {
1091			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1092				 current_uA, input_uV, output_uV, ERR_PTR(err));
1093			return err;
1094		}
1095
1096		err = rdev->desc->ops->set_mode(rdev, mode);
1097		if (err < 0)
1098			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1099				 mode, ERR_PTR(err));
1100	}
1101
1102	return err;
1103}
1104
1105static int __suspend_set_state(struct regulator_dev *rdev,
1106			       const struct regulator_state *rstate)
1107{
1108	int ret = 0;
1109
1110	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1111		rdev->desc->ops->set_suspend_enable)
1112		ret = rdev->desc->ops->set_suspend_enable(rdev);
1113	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1114		rdev->desc->ops->set_suspend_disable)
1115		ret = rdev->desc->ops->set_suspend_disable(rdev);
1116	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1117		ret = 0;
1118
1119	if (ret < 0) {
1120		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1121		return ret;
1122	}
1123
1124	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1125		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1126		if (ret < 0) {
1127			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1128			return ret;
1129		}
1130	}
1131
1132	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1133		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1134		if (ret < 0) {
1135			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1136			return ret;
1137		}
1138	}
1139
1140	return ret;
1141}
1142
1143static int suspend_set_initial_state(struct regulator_dev *rdev)
1144{
1145	const struct regulator_state *rstate;
1146
1147	rstate = regulator_get_suspend_state_check(rdev,
1148			rdev->constraints->initial_state);
1149	if (!rstate)
1150		return 0;
1151
1152	return __suspend_set_state(rdev, rstate);
1153}
1154
1155#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1156static void print_constraints_debug(struct regulator_dev *rdev)
1157{
1158	struct regulation_constraints *constraints = rdev->constraints;
1159	char buf[160] = "";
1160	size_t len = sizeof(buf) - 1;
1161	int count = 0;
1162	int ret;
1163
1164	if (constraints->min_uV && constraints->max_uV) {
1165		if (constraints->min_uV == constraints->max_uV)
1166			count += scnprintf(buf + count, len - count, "%d mV ",
1167					   constraints->min_uV / 1000);
1168		else
1169			count += scnprintf(buf + count, len - count,
1170					   "%d <--> %d mV ",
1171					   constraints->min_uV / 1000,
1172					   constraints->max_uV / 1000);
1173	}
1174
1175	if (!constraints->min_uV ||
1176	    constraints->min_uV != constraints->max_uV) {
1177		ret = regulator_get_voltage_rdev(rdev);
1178		if (ret > 0)
1179			count += scnprintf(buf + count, len - count,
1180					   "at %d mV ", ret / 1000);
1181	}
1182
1183	if (constraints->uV_offset)
1184		count += scnprintf(buf + count, len - count, "%dmV offset ",
1185				   constraints->uV_offset / 1000);
1186
1187	if (constraints->min_uA && constraints->max_uA) {
1188		if (constraints->min_uA == constraints->max_uA)
1189			count += scnprintf(buf + count, len - count, "%d mA ",
1190					   constraints->min_uA / 1000);
1191		else
1192			count += scnprintf(buf + count, len - count,
1193					   "%d <--> %d mA ",
1194					   constraints->min_uA / 1000,
1195					   constraints->max_uA / 1000);
1196	}
1197
1198	if (!constraints->min_uA ||
1199	    constraints->min_uA != constraints->max_uA) {
1200		ret = _regulator_get_current_limit(rdev);
1201		if (ret > 0)
1202			count += scnprintf(buf + count, len - count,
1203					   "at %d mA ", ret / 1000);
1204	}
1205
1206	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1207		count += scnprintf(buf + count, len - count, "fast ");
1208	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1209		count += scnprintf(buf + count, len - count, "normal ");
1210	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1211		count += scnprintf(buf + count, len - count, "idle ");
1212	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1213		count += scnprintf(buf + count, len - count, "standby ");
1214
1215	if (!count)
1216		count = scnprintf(buf, len, "no parameters");
1217	else
1218		--count;
1219
1220	count += scnprintf(buf + count, len - count, ", %s",
1221		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1222
1223	rdev_dbg(rdev, "%s\n", buf);
1224}
1225#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1227#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1228
1229static void print_constraints(struct regulator_dev *rdev)
1230{
1231	struct regulation_constraints *constraints = rdev->constraints;
1232
1233	print_constraints_debug(rdev);
1234
1235	if ((constraints->min_uV != constraints->max_uV) &&
1236	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1237		rdev_warn(rdev,
1238			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1239}
1240
1241static int machine_constraints_voltage(struct regulator_dev *rdev,
1242	struct regulation_constraints *constraints)
1243{
1244	const struct regulator_ops *ops = rdev->desc->ops;
1245	int ret;
1246
1247	/* do we need to apply the constraint voltage */
1248	if (rdev->constraints->apply_uV &&
1249	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1250		int target_min, target_max;
1251		int current_uV = regulator_get_voltage_rdev(rdev);
1252
1253		if (current_uV == -ENOTRECOVERABLE) {
1254			/* This regulator can't be read and must be initialized */
1255			rdev_info(rdev, "Setting %d-%duV\n",
1256				  rdev->constraints->min_uV,
1257				  rdev->constraints->max_uV);
1258			_regulator_do_set_voltage(rdev,
1259						  rdev->constraints->min_uV,
1260						  rdev->constraints->max_uV);
1261			current_uV = regulator_get_voltage_rdev(rdev);
1262		}
1263
1264		if (current_uV < 0) {
1265			if (current_uV != -EPROBE_DEFER)
1266				rdev_err(rdev,
1267					 "failed to get the current voltage: %pe\n",
1268					 ERR_PTR(current_uV));
1269			return current_uV;
1270		}
1271
1272		/*
1273		 * If we're below the minimum voltage move up to the
1274		 * minimum voltage, if we're above the maximum voltage
1275		 * then move down to the maximum.
1276		 */
1277		target_min = current_uV;
1278		target_max = current_uV;
1279
1280		if (current_uV < rdev->constraints->min_uV) {
1281			target_min = rdev->constraints->min_uV;
1282			target_max = rdev->constraints->min_uV;
1283		}
1284
1285		if (current_uV > rdev->constraints->max_uV) {
1286			target_min = rdev->constraints->max_uV;
1287			target_max = rdev->constraints->max_uV;
1288		}
1289
1290		if (target_min != current_uV || target_max != current_uV) {
1291			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1292				  current_uV, target_min, target_max);
1293			ret = _regulator_do_set_voltage(
1294				rdev, target_min, target_max);
1295			if (ret < 0) {
1296				rdev_err(rdev,
1297					"failed to apply %d-%duV constraint: %pe\n",
1298					target_min, target_max, ERR_PTR(ret));
1299				return ret;
1300			}
1301		}
1302	}
1303
1304	/* constrain machine-level voltage specs to fit
1305	 * the actual range supported by this regulator.
1306	 */
1307	if (ops->list_voltage && rdev->desc->n_voltages) {
1308		int	count = rdev->desc->n_voltages;
1309		int	i;
1310		int	min_uV = INT_MAX;
1311		int	max_uV = INT_MIN;
1312		int	cmin = constraints->min_uV;
1313		int	cmax = constraints->max_uV;
1314
1315		/* it's safe to autoconfigure fixed-voltage supplies
1316		 * and the constraints are used by list_voltage.
1317		 */
1318		if (count == 1 && !cmin) {
1319			cmin = 1;
1320			cmax = INT_MAX;
1321			constraints->min_uV = cmin;
1322			constraints->max_uV = cmax;
1323		}
1324
1325		/* voltage constraints are optional */
1326		if ((cmin == 0) && (cmax == 0))
1327			return 0;
1328
1329		/* else require explicit machine-level constraints */
1330		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1331			rdev_err(rdev, "invalid voltage constraints\n");
1332			return -EINVAL;
1333		}
1334
1335		/* no need to loop voltages if range is continuous */
1336		if (rdev->desc->continuous_voltage_range)
1337			return 0;
1338
1339		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1340		for (i = 0; i < count; i++) {
1341			int	value;
1342
1343			value = ops->list_voltage(rdev, i);
1344			if (value <= 0)
1345				continue;
1346
1347			/* maybe adjust [min_uV..max_uV] */
1348			if (value >= cmin && value < min_uV)
1349				min_uV = value;
1350			if (value <= cmax && value > max_uV)
1351				max_uV = value;
1352		}
1353
1354		/* final: [min_uV..max_uV] valid iff constraints valid */
1355		if (max_uV < min_uV) {
1356			rdev_err(rdev,
1357				 "unsupportable voltage constraints %u-%uuV\n",
1358				 min_uV, max_uV);
1359			return -EINVAL;
1360		}
1361
1362		/* use regulator's subset of machine constraints */
1363		if (constraints->min_uV < min_uV) {
1364			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1365				 constraints->min_uV, min_uV);
1366			constraints->min_uV = min_uV;
1367		}
1368		if (constraints->max_uV > max_uV) {
1369			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1370				 constraints->max_uV, max_uV);
1371			constraints->max_uV = max_uV;
1372		}
1373	}
1374
1375	return 0;
1376}
1377
1378static int machine_constraints_current(struct regulator_dev *rdev,
1379	struct regulation_constraints *constraints)
1380{
1381	const struct regulator_ops *ops = rdev->desc->ops;
1382	int ret;
1383
1384	if (!constraints->min_uA && !constraints->max_uA)
1385		return 0;
1386
1387	if (constraints->min_uA > constraints->max_uA) {
1388		rdev_err(rdev, "Invalid current constraints\n");
1389		return -EINVAL;
1390	}
1391
1392	if (!ops->set_current_limit || !ops->get_current_limit) {
1393		rdev_warn(rdev, "Operation of current configuration missing\n");
1394		return 0;
1395	}
1396
1397	/* Set regulator current in constraints range */
1398	ret = ops->set_current_limit(rdev, constraints->min_uA,
1399			constraints->max_uA);
1400	if (ret < 0) {
1401		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1402		return ret;
1403	}
1404
1405	return 0;
1406}
1407
1408static int _regulator_do_enable(struct regulator_dev *rdev);
1409
1410static int notif_set_limit(struct regulator_dev *rdev,
1411			   int (*set)(struct regulator_dev *, int, int, bool),
1412			   int limit, int severity)
1413{
1414	bool enable;
1415
1416	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1417		enable = false;
1418		limit = 0;
1419	} else {
1420		enable = true;
1421	}
1422
1423	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1424		limit = 0;
1425
1426	return set(rdev, limit, severity, enable);
1427}
1428
1429static int handle_notify_limits(struct regulator_dev *rdev,
1430			int (*set)(struct regulator_dev *, int, int, bool),
1431			struct notification_limit *limits)
1432{
1433	int ret = 0;
1434
1435	if (!set)
1436		return -EOPNOTSUPP;
1437
1438	if (limits->prot)
1439		ret = notif_set_limit(rdev, set, limits->prot,
1440				      REGULATOR_SEVERITY_PROT);
1441	if (ret)
1442		return ret;
1443
1444	if (limits->err)
1445		ret = notif_set_limit(rdev, set, limits->err,
1446				      REGULATOR_SEVERITY_ERR);
1447	if (ret)
1448		return ret;
1449
1450	if (limits->warn)
1451		ret = notif_set_limit(rdev, set, limits->warn,
1452				      REGULATOR_SEVERITY_WARN);
1453
1454	return ret;
1455}
1456/**
1457 * set_machine_constraints - sets regulator constraints
1458 * @rdev: regulator source
1459 *
1460 * Allows platform initialisation code to define and constrain
1461 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1462 * Constraints *must* be set by platform code in order for some
1463 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1464 * set_mode.
1465 */
1466static int set_machine_constraints(struct regulator_dev *rdev)
1467{
1468	int ret = 0;
1469	const struct regulator_ops *ops = rdev->desc->ops;
1470
1471	ret = machine_constraints_voltage(rdev, rdev->constraints);
1472	if (ret != 0)
1473		return ret;
1474
1475	ret = machine_constraints_current(rdev, rdev->constraints);
1476	if (ret != 0)
1477		return ret;
1478
1479	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1480		ret = ops->set_input_current_limit(rdev,
1481						   rdev->constraints->ilim_uA);
1482		if (ret < 0) {
1483			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1484			return ret;
1485		}
1486	}
1487
1488	/* do we need to setup our suspend state */
1489	if (rdev->constraints->initial_state) {
1490		ret = suspend_set_initial_state(rdev);
1491		if (ret < 0) {
1492			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1493			return ret;
1494		}
1495	}
1496
1497	if (rdev->constraints->initial_mode) {
1498		if (!ops->set_mode) {
1499			rdev_err(rdev, "no set_mode operation\n");
1500			return -EINVAL;
1501		}
1502
1503		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1504		if (ret < 0) {
1505			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1506			return ret;
1507		}
1508	} else if (rdev->constraints->system_load) {
1509		/*
1510		 * We'll only apply the initial system load if an
1511		 * initial mode wasn't specified.
1512		 */
1513		drms_uA_update(rdev);
1514	}
1515
1516	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1517		&& ops->set_ramp_delay) {
1518		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1519		if (ret < 0) {
1520			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1521			return ret;
1522		}
1523	}
1524
1525	if (rdev->constraints->pull_down && ops->set_pull_down) {
1526		ret = ops->set_pull_down(rdev);
1527		if (ret < 0) {
1528			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1529			return ret;
1530		}
1531	}
1532
1533	if (rdev->constraints->soft_start && ops->set_soft_start) {
1534		ret = ops->set_soft_start(rdev);
1535		if (ret < 0) {
1536			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1537			return ret;
1538		}
1539	}
1540
1541	/*
1542	 * Existing logic does not warn if over_current_protection is given as
1543	 * a constraint but driver does not support that. I think we should
1544	 * warn about this type of issues as it is possible someone changes
1545	 * PMIC on board to another type - and the another PMIC's driver does
1546	 * not support setting protection. Board composer may happily believe
1547	 * the DT limits are respected - especially if the new PMIC HW also
1548	 * supports protection but the driver does not. I won't change the logic
1549	 * without hearing more experienced opinion on this though.
1550	 *
1551	 * If warning is seen as a good idea then we can merge handling the
1552	 * over-curret protection and detection and get rid of this special
1553	 * handling.
1554	 */
1555	if (rdev->constraints->over_current_protection
1556		&& ops->set_over_current_protection) {
1557		int lim = rdev->constraints->over_curr_limits.prot;
1558
1559		ret = ops->set_over_current_protection(rdev, lim,
1560						       REGULATOR_SEVERITY_PROT,
1561						       true);
1562		if (ret < 0) {
1563			rdev_err(rdev, "failed to set over current protection: %pe\n",
1564				 ERR_PTR(ret));
1565			return ret;
1566		}
1567	}
1568
1569	if (rdev->constraints->over_current_detection)
1570		ret = handle_notify_limits(rdev,
1571					   ops->set_over_current_protection,
1572					   &rdev->constraints->over_curr_limits);
1573	if (ret) {
1574		if (ret != -EOPNOTSUPP) {
1575			rdev_err(rdev, "failed to set over current limits: %pe\n",
1576				 ERR_PTR(ret));
1577			return ret;
1578		}
1579		rdev_warn(rdev,
1580			  "IC does not support requested over-current limits\n");
1581	}
1582
1583	if (rdev->constraints->over_voltage_detection)
1584		ret = handle_notify_limits(rdev,
1585					   ops->set_over_voltage_protection,
1586					   &rdev->constraints->over_voltage_limits);
1587	if (ret) {
1588		if (ret != -EOPNOTSUPP) {
1589			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1590				 ERR_PTR(ret));
1591			return ret;
1592		}
1593		rdev_warn(rdev,
1594			  "IC does not support requested over voltage limits\n");
1595	}
1596
1597	if (rdev->constraints->under_voltage_detection)
1598		ret = handle_notify_limits(rdev,
1599					   ops->set_under_voltage_protection,
1600					   &rdev->constraints->under_voltage_limits);
1601	if (ret) {
1602		if (ret != -EOPNOTSUPP) {
1603			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1604				 ERR_PTR(ret));
1605			return ret;
1606		}
1607		rdev_warn(rdev,
1608			  "IC does not support requested under voltage limits\n");
1609	}
1610
1611	if (rdev->constraints->over_temp_detection)
1612		ret = handle_notify_limits(rdev,
1613					   ops->set_thermal_protection,
1614					   &rdev->constraints->temp_limits);
1615	if (ret) {
1616		if (ret != -EOPNOTSUPP) {
1617			rdev_err(rdev, "failed to set temperature limits %pe\n",
1618				 ERR_PTR(ret));
1619			return ret;
1620		}
1621		rdev_warn(rdev,
1622			  "IC does not support requested temperature limits\n");
1623	}
1624
1625	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1626		bool ad_state = (rdev->constraints->active_discharge ==
1627			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1628
1629		ret = ops->set_active_discharge(rdev, ad_state);
1630		if (ret < 0) {
1631			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1632			return ret;
1633		}
1634	}
1635
1636	/*
1637	 * If there is no mechanism for controlling the regulator then
1638	 * flag it as always_on so we don't end up duplicating checks
1639	 * for this so much.  Note that we could control the state of
1640	 * a supply to control the output on a regulator that has no
1641	 * direct control.
1642	 */
1643	if (!rdev->ena_pin && !ops->enable) {
1644		if (rdev->supply_name && !rdev->supply)
1645			return -EPROBE_DEFER;
1646
1647		if (rdev->supply)
1648			rdev->constraints->always_on =
1649				rdev->supply->rdev->constraints->always_on;
1650		else
1651			rdev->constraints->always_on = true;
1652	}
1653
1654	/* If the constraints say the regulator should be on at this point
1655	 * and we have control then make sure it is enabled.
1656	 */
1657	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1658		/* If we want to enable this regulator, make sure that we know
1659		 * the supplying regulator.
1660		 */
1661		if (rdev->supply_name && !rdev->supply)
1662			return -EPROBE_DEFER;
1663
1664		/* If supplying regulator has already been enabled,
1665		 * it's not intended to have use_count increment
1666		 * when rdev is only boot-on.
1667		 */
1668		if (rdev->supply &&
1669		    (rdev->constraints->always_on ||
1670		     !regulator_is_enabled(rdev->supply))) {
1671			ret = regulator_enable(rdev->supply);
1672			if (ret < 0) {
1673				_regulator_put(rdev->supply);
1674				rdev->supply = NULL;
1675				return ret;
1676			}
1677		}
1678
1679		ret = _regulator_do_enable(rdev);
1680		if (ret < 0 && ret != -EINVAL) {
1681			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1682			return ret;
1683		}
1684
1685		if (rdev->constraints->always_on)
1686			rdev->use_count++;
1687	} else if (rdev->desc->off_on_delay) {
1688		rdev->last_off = ktime_get();
1689	}
1690
1691	print_constraints(rdev);
1692	return 0;
1693}
1694
1695/**
1696 * set_supply - set regulator supply regulator
1697 * @rdev: regulator (locked)
1698 * @supply_rdev: supply regulator (locked))
1699 *
1700 * Called by platform initialisation code to set the supply regulator for this
1701 * regulator. This ensures that a regulators supply will also be enabled by the
1702 * core if it's child is enabled.
1703 */
1704static int set_supply(struct regulator_dev *rdev,
1705		      struct regulator_dev *supply_rdev)
1706{
1707	int err;
1708
1709	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1710
1711	if (!try_module_get(supply_rdev->owner))
1712		return -ENODEV;
1713
1714	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1715	if (rdev->supply == NULL) {
1716		module_put(supply_rdev->owner);
1717		err = -ENOMEM;
1718		return err;
1719	}
1720	supply_rdev->open_count++;
1721
1722	return 0;
1723}
1724
1725/**
1726 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1727 * @rdev:         regulator source
1728 * @consumer_dev_name: dev_name() string for device supply applies to
1729 * @supply:       symbolic name for supply
1730 *
1731 * Allows platform initialisation code to map physical regulator
1732 * sources to symbolic names for supplies for use by devices.  Devices
1733 * should use these symbolic names to request regulators, avoiding the
1734 * need to provide board-specific regulator names as platform data.
1735 */
1736static int set_consumer_device_supply(struct regulator_dev *rdev,
1737				      const char *consumer_dev_name,
1738				      const char *supply)
1739{
1740	struct regulator_map *node, *new_node;
1741	int has_dev;
1742
1743	if (supply == NULL)
1744		return -EINVAL;
1745
1746	if (consumer_dev_name != NULL)
1747		has_dev = 1;
1748	else
1749		has_dev = 0;
1750
1751	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1752	if (new_node == NULL)
1753		return -ENOMEM;
1754
1755	new_node->regulator = rdev;
1756	new_node->supply = supply;
1757
1758	if (has_dev) {
1759		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1760		if (new_node->dev_name == NULL) {
1761			kfree(new_node);
1762			return -ENOMEM;
1763		}
1764	}
1765
1766	mutex_lock(&regulator_list_mutex);
1767	list_for_each_entry(node, &regulator_map_list, list) {
1768		if (node->dev_name && consumer_dev_name) {
1769			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1770				continue;
1771		} else if (node->dev_name || consumer_dev_name) {
1772			continue;
1773		}
1774
1775		if (strcmp(node->supply, supply) != 0)
1776			continue;
1777
1778		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1779			 consumer_dev_name,
1780			 dev_name(&node->regulator->dev),
1781			 node->regulator->desc->name,
1782			 supply,
1783			 dev_name(&rdev->dev), rdev_get_name(rdev));
1784		goto fail;
1785	}
1786
1787	list_add(&new_node->list, &regulator_map_list);
1788	mutex_unlock(&regulator_list_mutex);
1789
1790	return 0;
1791
1792fail:
1793	mutex_unlock(&regulator_list_mutex);
1794	kfree(new_node->dev_name);
1795	kfree(new_node);
1796	return -EBUSY;
1797}
1798
1799static void unset_regulator_supplies(struct regulator_dev *rdev)
1800{
1801	struct regulator_map *node, *n;
1802
1803	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1804		if (rdev == node->regulator) {
1805			list_del(&node->list);
1806			kfree(node->dev_name);
1807			kfree(node);
1808		}
1809	}
1810}
1811
1812#ifdef CONFIG_DEBUG_FS
1813static ssize_t constraint_flags_read_file(struct file *file,
1814					  char __user *user_buf,
1815					  size_t count, loff_t *ppos)
1816{
1817	const struct regulator *regulator = file->private_data;
1818	const struct regulation_constraints *c = regulator->rdev->constraints;
1819	char *buf;
1820	ssize_t ret;
1821
1822	if (!c)
1823		return 0;
1824
1825	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1826	if (!buf)
1827		return -ENOMEM;
1828
1829	ret = snprintf(buf, PAGE_SIZE,
1830			"always_on: %u\n"
1831			"boot_on: %u\n"
1832			"apply_uV: %u\n"
1833			"ramp_disable: %u\n"
1834			"soft_start: %u\n"
1835			"pull_down: %u\n"
1836			"over_current_protection: %u\n",
1837			c->always_on,
1838			c->boot_on,
1839			c->apply_uV,
1840			c->ramp_disable,
1841			c->soft_start,
1842			c->pull_down,
1843			c->over_current_protection);
1844
1845	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1846	kfree(buf);
1847
1848	return ret;
1849}
1850
1851#endif
1852
1853static const struct file_operations constraint_flags_fops = {
1854#ifdef CONFIG_DEBUG_FS
1855	.open = simple_open,
1856	.read = constraint_flags_read_file,
1857	.llseek = default_llseek,
1858#endif
1859};
1860
1861#define REG_STR_SIZE	64
1862
1863static struct regulator *create_regulator(struct regulator_dev *rdev,
1864					  struct device *dev,
1865					  const char *supply_name)
1866{
1867	struct regulator *regulator;
1868	int err = 0;
1869
1870	lockdep_assert_held_once(&rdev->mutex.base);
1871
1872	if (dev) {
1873		char buf[REG_STR_SIZE];
1874		int size;
1875
1876		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1877				dev->kobj.name, supply_name);
1878		if (size >= REG_STR_SIZE)
1879			return NULL;
1880
1881		supply_name = kstrdup(buf, GFP_KERNEL);
1882		if (supply_name == NULL)
1883			return NULL;
1884	} else {
1885		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1886		if (supply_name == NULL)
1887			return NULL;
1888	}
1889
1890	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1891	if (regulator == NULL) {
1892		kfree_const(supply_name);
1893		return NULL;
1894	}
1895
1896	regulator->rdev = rdev;
1897	regulator->supply_name = supply_name;
1898
1899	list_add(&regulator->list, &rdev->consumer_list);
1900
1901	if (dev) {
1902		regulator->dev = dev;
1903
1904		/* Add a link to the device sysfs entry */
1905		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1906					       supply_name);
1907		if (err) {
1908			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1909				  dev->kobj.name, ERR_PTR(err));
1910			/* non-fatal */
1911		}
1912	}
1913
1914	if (err != -EEXIST)
1915		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1916	if (IS_ERR(regulator->debugfs))
1917		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1918
1919	debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1920			   &regulator->uA_load);
1921	debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1922			   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1923	debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1924			   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1925	debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1926			    regulator, &constraint_flags_fops);
1927
1928	/*
1929	 * Check now if the regulator is an always on regulator - if
1930	 * it is then we don't need to do nearly so much work for
1931	 * enable/disable calls.
1932	 */
1933	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1934	    _regulator_is_enabled(rdev))
1935		regulator->always_on = true;
1936
1937	return regulator;
1938}
1939
1940static int _regulator_get_enable_time(struct regulator_dev *rdev)
1941{
1942	if (rdev->constraints && rdev->constraints->enable_time)
1943		return rdev->constraints->enable_time;
1944	if (rdev->desc->ops->enable_time)
1945		return rdev->desc->ops->enable_time(rdev);
1946	return rdev->desc->enable_time;
1947}
1948
1949static struct regulator_supply_alias *regulator_find_supply_alias(
1950		struct device *dev, const char *supply)
1951{
1952	struct regulator_supply_alias *map;
1953
1954	list_for_each_entry(map, &regulator_supply_alias_list, list)
1955		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1956			return map;
1957
1958	return NULL;
1959}
1960
1961static void regulator_supply_alias(struct device **dev, const char **supply)
1962{
1963	struct regulator_supply_alias *map;
1964
1965	map = regulator_find_supply_alias(*dev, *supply);
1966	if (map) {
1967		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1968				*supply, map->alias_supply,
1969				dev_name(map->alias_dev));
1970		*dev = map->alias_dev;
1971		*supply = map->alias_supply;
1972	}
1973}
1974
1975static int regulator_match(struct device *dev, const void *data)
1976{
1977	struct regulator_dev *r = dev_to_rdev(dev);
1978
1979	return strcmp(rdev_get_name(r), data) == 0;
1980}
1981
1982static struct regulator_dev *regulator_lookup_by_name(const char *name)
1983{
1984	struct device *dev;
1985
1986	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1987
1988	return dev ? dev_to_rdev(dev) : NULL;
1989}
1990
1991/**
1992 * regulator_dev_lookup - lookup a regulator device.
1993 * @dev: device for regulator "consumer".
1994 * @supply: Supply name or regulator ID.
1995 *
1996 * If successful, returns a struct regulator_dev that corresponds to the name
1997 * @supply and with the embedded struct device refcount incremented by one.
1998 * The refcount must be dropped by calling put_device().
1999 * On failure one of the following ERR-PTR-encoded values is returned:
2000 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2001 * in the future.
2002 */
2003static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2004						  const char *supply)
2005{
2006	struct regulator_dev *r = NULL;
2007	struct device_node *node;
2008	struct regulator_map *map;
2009	const char *devname = NULL;
2010
2011	regulator_supply_alias(&dev, &supply);
2012
2013	/* first do a dt based lookup */
2014	if (dev && dev->of_node) {
2015		node = of_get_regulator(dev, supply);
2016		if (node) {
2017			r = of_find_regulator_by_node(node);
2018			of_node_put(node);
2019			if (r)
2020				return r;
2021
2022			/*
2023			 * We have a node, but there is no device.
2024			 * assume it has not registered yet.
2025			 */
2026			return ERR_PTR(-EPROBE_DEFER);
2027		}
2028	}
2029
2030	/* if not found, try doing it non-dt way */
2031	if (dev)
2032		devname = dev_name(dev);
2033
2034	mutex_lock(&regulator_list_mutex);
2035	list_for_each_entry(map, &regulator_map_list, list) {
2036		/* If the mapping has a device set up it must match */
2037		if (map->dev_name &&
2038		    (!devname || strcmp(map->dev_name, devname)))
2039			continue;
2040
2041		if (strcmp(map->supply, supply) == 0 &&
2042		    get_device(&map->regulator->dev)) {
2043			r = map->regulator;
2044			break;
2045		}
2046	}
2047	mutex_unlock(&regulator_list_mutex);
2048
2049	if (r)
2050		return r;
2051
2052	r = regulator_lookup_by_name(supply);
2053	if (r)
2054		return r;
2055
2056	return ERR_PTR(-ENODEV);
2057}
2058
2059static int regulator_resolve_supply(struct regulator_dev *rdev)
2060{
2061	struct regulator_dev *r;
2062	struct device *dev = rdev->dev.parent;
2063	struct ww_acquire_ctx ww_ctx;
2064	int ret = 0;
2065
2066	/* No supply to resolve? */
2067	if (!rdev->supply_name)
2068		return 0;
2069
2070	/* Supply already resolved? (fast-path without locking contention) */
2071	if (rdev->supply)
2072		return 0;
2073
2074	r = regulator_dev_lookup(dev, rdev->supply_name);
2075	if (IS_ERR(r)) {
2076		ret = PTR_ERR(r);
2077
2078		/* Did the lookup explicitly defer for us? */
2079		if (ret == -EPROBE_DEFER)
2080			goto out;
2081
2082		if (have_full_constraints()) {
2083			r = dummy_regulator_rdev;
2084			get_device(&r->dev);
2085		} else {
2086			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2087				rdev->supply_name, rdev->desc->name);
2088			ret = -EPROBE_DEFER;
2089			goto out;
2090		}
2091	}
2092
2093	if (r == rdev) {
2094		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2095			rdev->desc->name, rdev->supply_name);
2096		if (!have_full_constraints()) {
2097			ret = -EINVAL;
2098			goto out;
2099		}
2100		r = dummy_regulator_rdev;
2101		get_device(&r->dev);
2102	}
2103
2104	/*
2105	 * If the supply's parent device is not the same as the
2106	 * regulator's parent device, then ensure the parent device
2107	 * is bound before we resolve the supply, in case the parent
2108	 * device get probe deferred and unregisters the supply.
2109	 */
2110	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2111		if (!device_is_bound(r->dev.parent)) {
2112			put_device(&r->dev);
2113			ret = -EPROBE_DEFER;
2114			goto out;
2115		}
2116	}
2117
2118	/* Recursively resolve the supply of the supply */
2119	ret = regulator_resolve_supply(r);
2120	if (ret < 0) {
2121		put_device(&r->dev);
2122		goto out;
2123	}
2124
2125	/*
2126	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2127	 * between rdev->supply null check and setting rdev->supply in
2128	 * set_supply() from concurrent tasks.
2129	 */
2130	regulator_lock_two(rdev, r, &ww_ctx);
2131
2132	/* Supply just resolved by a concurrent task? */
2133	if (rdev->supply) {
2134		regulator_unlock_two(rdev, r, &ww_ctx);
2135		put_device(&r->dev);
2136		goto out;
2137	}
2138
2139	ret = set_supply(rdev, r);
2140	if (ret < 0) {
2141		regulator_unlock_two(rdev, r, &ww_ctx);
2142		put_device(&r->dev);
2143		goto out;
2144	}
2145
2146	regulator_unlock_two(rdev, r, &ww_ctx);
2147
2148	/*
2149	 * In set_machine_constraints() we may have turned this regulator on
2150	 * but we couldn't propagate to the supply if it hadn't been resolved
2151	 * yet.  Do it now.
2152	 */
2153	if (rdev->use_count) {
2154		ret = regulator_enable(rdev->supply);
2155		if (ret < 0) {
2156			_regulator_put(rdev->supply);
2157			rdev->supply = NULL;
2158			goto out;
2159		}
2160	}
2161
2162out:
2163	return ret;
2164}
2165
2166/* Internal regulator request function */
2167struct regulator *_regulator_get(struct device *dev, const char *id,
2168				 enum regulator_get_type get_type)
2169{
2170	struct regulator_dev *rdev;
2171	struct regulator *regulator;
2172	struct device_link *link;
2173	int ret;
2174
2175	if (get_type >= MAX_GET_TYPE) {
2176		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2177		return ERR_PTR(-EINVAL);
2178	}
2179
2180	if (id == NULL) {
2181		pr_err("get() with no identifier\n");
2182		return ERR_PTR(-EINVAL);
2183	}
2184
2185	rdev = regulator_dev_lookup(dev, id);
2186	if (IS_ERR(rdev)) {
2187		ret = PTR_ERR(rdev);
2188
2189		/*
2190		 * If regulator_dev_lookup() fails with error other
2191		 * than -ENODEV our job here is done, we simply return it.
2192		 */
2193		if (ret != -ENODEV)
2194			return ERR_PTR(ret);
2195
2196		if (!have_full_constraints()) {
2197			dev_warn(dev,
2198				 "incomplete constraints, dummy supplies not allowed\n");
2199			return ERR_PTR(-ENODEV);
2200		}
2201
2202		switch (get_type) {
2203		case NORMAL_GET:
2204			/*
2205			 * Assume that a regulator is physically present and
2206			 * enabled, even if it isn't hooked up, and just
2207			 * provide a dummy.
2208			 */
2209			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2210			rdev = dummy_regulator_rdev;
2211			get_device(&rdev->dev);
2212			break;
2213
2214		case EXCLUSIVE_GET:
2215			dev_warn(dev,
2216				 "dummy supplies not allowed for exclusive requests\n");
2217			fallthrough;
2218
2219		default:
2220			return ERR_PTR(-ENODEV);
2221		}
2222	}
2223
2224	if (rdev->exclusive) {
2225		regulator = ERR_PTR(-EPERM);
2226		put_device(&rdev->dev);
2227		return regulator;
2228	}
2229
2230	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2231		regulator = ERR_PTR(-EBUSY);
2232		put_device(&rdev->dev);
2233		return regulator;
2234	}
2235
2236	mutex_lock(&regulator_list_mutex);
2237	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2238	mutex_unlock(&regulator_list_mutex);
2239
2240	if (ret != 0) {
2241		regulator = ERR_PTR(-EPROBE_DEFER);
2242		put_device(&rdev->dev);
2243		return regulator;
2244	}
2245
2246	ret = regulator_resolve_supply(rdev);
2247	if (ret < 0) {
2248		regulator = ERR_PTR(ret);
2249		put_device(&rdev->dev);
2250		return regulator;
2251	}
2252
2253	if (!try_module_get(rdev->owner)) {
2254		regulator = ERR_PTR(-EPROBE_DEFER);
2255		put_device(&rdev->dev);
2256		return regulator;
2257	}
2258
2259	regulator_lock(rdev);
2260	regulator = create_regulator(rdev, dev, id);
2261	regulator_unlock(rdev);
2262	if (regulator == NULL) {
2263		regulator = ERR_PTR(-ENOMEM);
2264		module_put(rdev->owner);
2265		put_device(&rdev->dev);
2266		return regulator;
2267	}
2268
2269	rdev->open_count++;
2270	if (get_type == EXCLUSIVE_GET) {
2271		rdev->exclusive = 1;
2272
2273		ret = _regulator_is_enabled(rdev);
2274		if (ret > 0) {
2275			rdev->use_count = 1;
2276			regulator->enable_count = 1;
2277
2278			/* Propagate the regulator state to its supply */
2279			if (rdev->supply) {
2280				ret = regulator_enable(rdev->supply);
2281				if (ret < 0) {
2282					destroy_regulator(regulator);
2283					module_put(rdev->owner);
2284					put_device(&rdev->dev);
2285					return ERR_PTR(ret);
2286				}
2287			}
2288		} else {
2289			rdev->use_count = 0;
2290			regulator->enable_count = 0;
2291		}
2292	}
2293
2294	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2295	if (!IS_ERR_OR_NULL(link))
2296		regulator->device_link = true;
2297
2298	return regulator;
2299}
2300
2301/**
2302 * regulator_get - lookup and obtain a reference to a regulator.
2303 * @dev: device for regulator "consumer"
2304 * @id: Supply name or regulator ID.
2305 *
2306 * Returns a struct regulator corresponding to the regulator producer,
2307 * or IS_ERR() condition containing errno.
2308 *
2309 * Use of supply names configured via set_consumer_device_supply() is
2310 * strongly encouraged.  It is recommended that the supply name used
2311 * should match the name used for the supply and/or the relevant
2312 * device pins in the datasheet.
2313 */
2314struct regulator *regulator_get(struct device *dev, const char *id)
2315{
2316	return _regulator_get(dev, id, NORMAL_GET);
2317}
2318EXPORT_SYMBOL_GPL(regulator_get);
2319
2320/**
2321 * regulator_get_exclusive - obtain exclusive access to a regulator.
2322 * @dev: device for regulator "consumer"
2323 * @id: Supply name or regulator ID.
2324 *
2325 * Returns a struct regulator corresponding to the regulator producer,
2326 * or IS_ERR() condition containing errno.  Other consumers will be
2327 * unable to obtain this regulator while this reference is held and the
2328 * use count for the regulator will be initialised to reflect the current
2329 * state of the regulator.
2330 *
2331 * This is intended for use by consumers which cannot tolerate shared
2332 * use of the regulator such as those which need to force the
2333 * regulator off for correct operation of the hardware they are
2334 * controlling.
2335 *
2336 * Use of supply names configured via set_consumer_device_supply() is
2337 * strongly encouraged.  It is recommended that the supply name used
2338 * should match the name used for the supply and/or the relevant
2339 * device pins in the datasheet.
2340 */
2341struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2342{
2343	return _regulator_get(dev, id, EXCLUSIVE_GET);
2344}
2345EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2346
2347/**
2348 * regulator_get_optional - obtain optional access to a regulator.
2349 * @dev: device for regulator "consumer"
2350 * @id: Supply name or regulator ID.
2351 *
2352 * Returns a struct regulator corresponding to the regulator producer,
2353 * or IS_ERR() condition containing errno.
2354 *
2355 * This is intended for use by consumers for devices which can have
2356 * some supplies unconnected in normal use, such as some MMC devices.
2357 * It can allow the regulator core to provide stub supplies for other
2358 * supplies requested using normal regulator_get() calls without
2359 * disrupting the operation of drivers that can handle absent
2360 * supplies.
2361 *
2362 * Use of supply names configured via set_consumer_device_supply() is
2363 * strongly encouraged.  It is recommended that the supply name used
2364 * should match the name used for the supply and/or the relevant
2365 * device pins in the datasheet.
2366 */
2367struct regulator *regulator_get_optional(struct device *dev, const char *id)
2368{
2369	return _regulator_get(dev, id, OPTIONAL_GET);
2370}
2371EXPORT_SYMBOL_GPL(regulator_get_optional);
2372
2373static void destroy_regulator(struct regulator *regulator)
2374{
2375	struct regulator_dev *rdev = regulator->rdev;
2376
2377	debugfs_remove_recursive(regulator->debugfs);
2378
2379	if (regulator->dev) {
2380		if (regulator->device_link)
2381			device_link_remove(regulator->dev, &rdev->dev);
2382
2383		/* remove any sysfs entries */
2384		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2385	}
2386
2387	regulator_lock(rdev);
2388	list_del(&regulator->list);
2389
2390	rdev->open_count--;
2391	rdev->exclusive = 0;
2392	regulator_unlock(rdev);
2393
2394	kfree_const(regulator->supply_name);
2395	kfree(regulator);
2396}
2397
2398/* regulator_list_mutex lock held by regulator_put() */
2399static void _regulator_put(struct regulator *regulator)
2400{
2401	struct regulator_dev *rdev;
2402
2403	if (IS_ERR_OR_NULL(regulator))
2404		return;
2405
2406	lockdep_assert_held_once(&regulator_list_mutex);
2407
2408	/* Docs say you must disable before calling regulator_put() */
2409	WARN_ON(regulator->enable_count);
2410
2411	rdev = regulator->rdev;
2412
2413	destroy_regulator(regulator);
2414
2415	module_put(rdev->owner);
2416	put_device(&rdev->dev);
2417}
2418
2419/**
2420 * regulator_put - "free" the regulator source
2421 * @regulator: regulator source
2422 *
2423 * Note: drivers must ensure that all regulator_enable calls made on this
2424 * regulator source are balanced by regulator_disable calls prior to calling
2425 * this function.
2426 */
2427void regulator_put(struct regulator *regulator)
2428{
2429	mutex_lock(&regulator_list_mutex);
2430	_regulator_put(regulator);
2431	mutex_unlock(&regulator_list_mutex);
2432}
2433EXPORT_SYMBOL_GPL(regulator_put);
2434
2435/**
2436 * regulator_register_supply_alias - Provide device alias for supply lookup
2437 *
2438 * @dev: device that will be given as the regulator "consumer"
2439 * @id: Supply name or regulator ID
2440 * @alias_dev: device that should be used to lookup the supply
2441 * @alias_id: Supply name or regulator ID that should be used to lookup the
2442 * supply
2443 *
2444 * All lookups for id on dev will instead be conducted for alias_id on
2445 * alias_dev.
2446 */
2447int regulator_register_supply_alias(struct device *dev, const char *id,
2448				    struct device *alias_dev,
2449				    const char *alias_id)
2450{
2451	struct regulator_supply_alias *map;
2452
2453	map = regulator_find_supply_alias(dev, id);
2454	if (map)
2455		return -EEXIST;
2456
2457	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2458	if (!map)
2459		return -ENOMEM;
2460
2461	map->src_dev = dev;
2462	map->src_supply = id;
2463	map->alias_dev = alias_dev;
2464	map->alias_supply = alias_id;
2465
2466	list_add(&map->list, &regulator_supply_alias_list);
2467
2468	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2469		id, dev_name(dev), alias_id, dev_name(alias_dev));
2470
2471	return 0;
2472}
2473EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2474
2475/**
2476 * regulator_unregister_supply_alias - Remove device alias
2477 *
2478 * @dev: device that will be given as the regulator "consumer"
2479 * @id: Supply name or regulator ID
2480 *
2481 * Remove a lookup alias if one exists for id on dev.
2482 */
2483void regulator_unregister_supply_alias(struct device *dev, const char *id)
2484{
2485	struct regulator_supply_alias *map;
2486
2487	map = regulator_find_supply_alias(dev, id);
2488	if (map) {
2489		list_del(&map->list);
2490		kfree(map);
2491	}
2492}
2493EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2494
2495/**
2496 * regulator_bulk_register_supply_alias - register multiple aliases
2497 *
2498 * @dev: device that will be given as the regulator "consumer"
2499 * @id: List of supply names or regulator IDs
2500 * @alias_dev: device that should be used to lookup the supply
2501 * @alias_id: List of supply names or regulator IDs that should be used to
2502 * lookup the supply
2503 * @num_id: Number of aliases to register
2504 *
2505 * @return 0 on success, an errno on failure.
2506 *
2507 * This helper function allows drivers to register several supply
2508 * aliases in one operation.  If any of the aliases cannot be
2509 * registered any aliases that were registered will be removed
2510 * before returning to the caller.
2511 */
2512int regulator_bulk_register_supply_alias(struct device *dev,
2513					 const char *const *id,
2514					 struct device *alias_dev,
2515					 const char *const *alias_id,
2516					 int num_id)
2517{
2518	int i;
2519	int ret;
2520
2521	for (i = 0; i < num_id; ++i) {
2522		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2523						      alias_id[i]);
2524		if (ret < 0)
2525			goto err;
2526	}
2527
2528	return 0;
2529
2530err:
2531	dev_err(dev,
2532		"Failed to create supply alias %s,%s -> %s,%s\n",
2533		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2534
2535	while (--i >= 0)
2536		regulator_unregister_supply_alias(dev, id[i]);
2537
2538	return ret;
2539}
2540EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2541
2542/**
2543 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2544 *
2545 * @dev: device that will be given as the regulator "consumer"
2546 * @id: List of supply names or regulator IDs
2547 * @num_id: Number of aliases to unregister
2548 *
2549 * This helper function allows drivers to unregister several supply
2550 * aliases in one operation.
2551 */
2552void regulator_bulk_unregister_supply_alias(struct device *dev,
2553					    const char *const *id,
2554					    int num_id)
2555{
2556	int i;
2557
2558	for (i = 0; i < num_id; ++i)
2559		regulator_unregister_supply_alias(dev, id[i]);
2560}
2561EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2562
2563
2564/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2565static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2566				const struct regulator_config *config)
2567{
2568	struct regulator_enable_gpio *pin, *new_pin;
2569	struct gpio_desc *gpiod;
2570
2571	gpiod = config->ena_gpiod;
2572	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2573
2574	mutex_lock(&regulator_list_mutex);
2575
2576	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2577		if (pin->gpiod == gpiod) {
2578			rdev_dbg(rdev, "GPIO is already used\n");
2579			goto update_ena_gpio_to_rdev;
2580		}
2581	}
2582
2583	if (new_pin == NULL) {
2584		mutex_unlock(&regulator_list_mutex);
2585		return -ENOMEM;
2586	}
2587
2588	pin = new_pin;
2589	new_pin = NULL;
2590
2591	pin->gpiod = gpiod;
2592	list_add(&pin->list, &regulator_ena_gpio_list);
2593
2594update_ena_gpio_to_rdev:
2595	pin->request_count++;
2596	rdev->ena_pin = pin;
2597
2598	mutex_unlock(&regulator_list_mutex);
2599	kfree(new_pin);
2600
2601	return 0;
2602}
2603
2604static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2605{
2606	struct regulator_enable_gpio *pin, *n;
2607
2608	if (!rdev->ena_pin)
2609		return;
2610
2611	/* Free the GPIO only in case of no use */
2612	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2613		if (pin != rdev->ena_pin)
2614			continue;
2615
2616		if (--pin->request_count)
2617			break;
2618
2619		gpiod_put(pin->gpiod);
2620		list_del(&pin->list);
2621		kfree(pin);
2622		break;
2623	}
2624
2625	rdev->ena_pin = NULL;
2626}
2627
2628/**
2629 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2630 * @rdev: regulator_dev structure
2631 * @enable: enable GPIO at initial use?
2632 *
2633 * GPIO is enabled in case of initial use. (enable_count is 0)
2634 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2635 */
2636static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2637{
2638	struct regulator_enable_gpio *pin = rdev->ena_pin;
2639
2640	if (!pin)
2641		return -EINVAL;
2642
2643	if (enable) {
2644		/* Enable GPIO at initial use */
2645		if (pin->enable_count == 0)
2646			gpiod_set_value_cansleep(pin->gpiod, 1);
2647
2648		pin->enable_count++;
2649	} else {
2650		if (pin->enable_count > 1) {
2651			pin->enable_count--;
2652			return 0;
2653		}
2654
2655		/* Disable GPIO if not used */
2656		if (pin->enable_count <= 1) {
2657			gpiod_set_value_cansleep(pin->gpiod, 0);
2658			pin->enable_count = 0;
2659		}
2660	}
2661
2662	return 0;
2663}
2664
2665/**
2666 * _regulator_delay_helper - a delay helper function
2667 * @delay: time to delay in microseconds
2668 *
2669 * Delay for the requested amount of time as per the guidelines in:
2670 *
2671 *     Documentation/timers/timers-howto.rst
2672 *
2673 * The assumption here is that these regulator operations will never used in
2674 * atomic context and therefore sleeping functions can be used.
2675 */
2676static void _regulator_delay_helper(unsigned int delay)
2677{
2678	unsigned int ms = delay / 1000;
2679	unsigned int us = delay % 1000;
2680
2681	if (ms > 0) {
2682		/*
2683		 * For small enough values, handle super-millisecond
2684		 * delays in the usleep_range() call below.
2685		 */
2686		if (ms < 20)
2687			us += ms * 1000;
2688		else
2689			msleep(ms);
2690	}
2691
2692	/*
2693	 * Give the scheduler some room to coalesce with any other
2694	 * wakeup sources. For delays shorter than 10 us, don't even
2695	 * bother setting up high-resolution timers and just busy-
2696	 * loop.
2697	 */
2698	if (us >= 10)
2699		usleep_range(us, us + 100);
2700	else
2701		udelay(us);
2702}
2703
2704/**
2705 * _regulator_check_status_enabled
2706 *
2707 * A helper function to check if the regulator status can be interpreted
2708 * as 'regulator is enabled'.
2709 * @rdev: the regulator device to check
2710 *
2711 * Return:
2712 * * 1			- if status shows regulator is in enabled state
2713 * * 0			- if not enabled state
2714 * * Error Value	- as received from ops->get_status()
2715 */
2716static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2717{
2718	int ret = rdev->desc->ops->get_status(rdev);
2719
2720	if (ret < 0) {
2721		rdev_info(rdev, "get_status returned error: %d\n", ret);
2722		return ret;
2723	}
2724
2725	switch (ret) {
2726	case REGULATOR_STATUS_OFF:
2727	case REGULATOR_STATUS_ERROR:
2728	case REGULATOR_STATUS_UNDEFINED:
2729		return 0;
2730	default:
2731		return 1;
2732	}
2733}
2734
2735static int _regulator_do_enable(struct regulator_dev *rdev)
2736{
2737	int ret, delay;
2738
2739	/* Query before enabling in case configuration dependent.  */
2740	ret = _regulator_get_enable_time(rdev);
2741	if (ret >= 0) {
2742		delay = ret;
2743	} else {
2744		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2745		delay = 0;
2746	}
2747
2748	trace_regulator_enable(rdev_get_name(rdev));
2749
2750	if (rdev->desc->off_on_delay) {
2751		/* if needed, keep a distance of off_on_delay from last time
2752		 * this regulator was disabled.
2753		 */
2754		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2755		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2756
2757		if (remaining > 0)
2758			_regulator_delay_helper(remaining);
2759	}
2760
2761	if (rdev->ena_pin) {
2762		if (!rdev->ena_gpio_state) {
2763			ret = regulator_ena_gpio_ctrl(rdev, true);
2764			if (ret < 0)
2765				return ret;
2766			rdev->ena_gpio_state = 1;
2767		}
2768	} else if (rdev->desc->ops->enable) {
2769		ret = rdev->desc->ops->enable(rdev);
2770		if (ret < 0)
2771			return ret;
2772	} else {
2773		return -EINVAL;
2774	}
2775
2776	/* Allow the regulator to ramp; it would be useful to extend
2777	 * this for bulk operations so that the regulators can ramp
2778	 * together.
2779	 */
2780	trace_regulator_enable_delay(rdev_get_name(rdev));
2781
2782	/* If poll_enabled_time is set, poll upto the delay calculated
2783	 * above, delaying poll_enabled_time uS to check if the regulator
2784	 * actually got enabled.
2785	 * If the regulator isn't enabled after our delay helper has expired,
2786	 * return -ETIMEDOUT.
2787	 */
2788	if (rdev->desc->poll_enabled_time) {
2789		int time_remaining = delay;
2790
2791		while (time_remaining > 0) {
2792			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2793
2794			if (rdev->desc->ops->get_status) {
2795				ret = _regulator_check_status_enabled(rdev);
2796				if (ret < 0)
2797					return ret;
2798				else if (ret)
2799					break;
2800			} else if (rdev->desc->ops->is_enabled(rdev))
2801				break;
2802
2803			time_remaining -= rdev->desc->poll_enabled_time;
2804		}
2805
2806		if (time_remaining <= 0) {
2807			rdev_err(rdev, "Enabled check timed out\n");
2808			return -ETIMEDOUT;
2809		}
2810	} else {
2811		_regulator_delay_helper(delay);
2812	}
2813
2814	trace_regulator_enable_complete(rdev_get_name(rdev));
2815
2816	return 0;
2817}
2818
2819/**
2820 * _regulator_handle_consumer_enable - handle that a consumer enabled
2821 * @regulator: regulator source
2822 *
2823 * Some things on a regulator consumer (like the contribution towards total
2824 * load on the regulator) only have an effect when the consumer wants the
2825 * regulator enabled.  Explained in example with two consumers of the same
2826 * regulator:
2827 *   consumer A: set_load(100);       => total load = 0
2828 *   consumer A: regulator_enable();  => total load = 100
2829 *   consumer B: set_load(1000);      => total load = 100
2830 *   consumer B: regulator_enable();  => total load = 1100
2831 *   consumer A: regulator_disable(); => total_load = 1000
2832 *
2833 * This function (together with _regulator_handle_consumer_disable) is
2834 * responsible for keeping track of the refcount for a given regulator consumer
2835 * and applying / unapplying these things.
2836 *
2837 * Returns 0 upon no error; -error upon error.
2838 */
2839static int _regulator_handle_consumer_enable(struct regulator *regulator)
2840{
2841	int ret;
2842	struct regulator_dev *rdev = regulator->rdev;
2843
2844	lockdep_assert_held_once(&rdev->mutex.base);
2845
2846	regulator->enable_count++;
2847	if (regulator->uA_load && regulator->enable_count == 1) {
2848		ret = drms_uA_update(rdev);
2849		if (ret)
2850			regulator->enable_count--;
2851		return ret;
2852	}
2853
2854	return 0;
2855}
2856
2857/**
2858 * _regulator_handle_consumer_disable - handle that a consumer disabled
2859 * @regulator: regulator source
2860 *
2861 * The opposite of _regulator_handle_consumer_enable().
2862 *
2863 * Returns 0 upon no error; -error upon error.
2864 */
2865static int _regulator_handle_consumer_disable(struct regulator *regulator)
2866{
2867	struct regulator_dev *rdev = regulator->rdev;
2868
2869	lockdep_assert_held_once(&rdev->mutex.base);
2870
2871	if (!regulator->enable_count) {
2872		rdev_err(rdev, "Underflow of regulator enable count\n");
2873		return -EINVAL;
2874	}
2875
2876	regulator->enable_count--;
2877	if (regulator->uA_load && regulator->enable_count == 0)
2878		return drms_uA_update(rdev);
2879
2880	return 0;
2881}
2882
2883/* locks held by regulator_enable() */
2884static int _regulator_enable(struct regulator *regulator)
2885{
2886	struct regulator_dev *rdev = regulator->rdev;
2887	int ret;
2888
2889	lockdep_assert_held_once(&rdev->mutex.base);
2890
2891	if (rdev->use_count == 0 && rdev->supply) {
2892		ret = _regulator_enable(rdev->supply);
2893		if (ret < 0)
2894			return ret;
2895	}
2896
2897	/* balance only if there are regulators coupled */
2898	if (rdev->coupling_desc.n_coupled > 1) {
2899		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2900		if (ret < 0)
2901			goto err_disable_supply;
2902	}
2903
2904	ret = _regulator_handle_consumer_enable(regulator);
2905	if (ret < 0)
2906		goto err_disable_supply;
2907
2908	if (rdev->use_count == 0) {
2909		/*
2910		 * The regulator may already be enabled if it's not switchable
2911		 * or was left on
2912		 */
2913		ret = _regulator_is_enabled(rdev);
2914		if (ret == -EINVAL || ret == 0) {
2915			if (!regulator_ops_is_valid(rdev,
2916					REGULATOR_CHANGE_STATUS)) {
2917				ret = -EPERM;
2918				goto err_consumer_disable;
2919			}
2920
2921			ret = _regulator_do_enable(rdev);
2922			if (ret < 0)
2923				goto err_consumer_disable;
2924
2925			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2926					     NULL);
2927		} else if (ret < 0) {
2928			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2929			goto err_consumer_disable;
2930		}
2931		/* Fallthrough on positive return values - already enabled */
2932	}
2933
2934	if (regulator->enable_count == 1)
2935		rdev->use_count++;
2936
2937	return 0;
2938
2939err_consumer_disable:
2940	_regulator_handle_consumer_disable(regulator);
2941
2942err_disable_supply:
2943	if (rdev->use_count == 0 && rdev->supply)
2944		_regulator_disable(rdev->supply);
2945
2946	return ret;
2947}
2948
2949/**
2950 * regulator_enable - enable regulator output
2951 * @regulator: regulator source
2952 *
2953 * Request that the regulator be enabled with the regulator output at
2954 * the predefined voltage or current value.  Calls to regulator_enable()
2955 * must be balanced with calls to regulator_disable().
2956 *
2957 * NOTE: the output value can be set by other drivers, boot loader or may be
2958 * hardwired in the regulator.
2959 */
2960int regulator_enable(struct regulator *regulator)
2961{
2962	struct regulator_dev *rdev = regulator->rdev;
2963	struct ww_acquire_ctx ww_ctx;
2964	int ret;
2965
2966	regulator_lock_dependent(rdev, &ww_ctx);
2967	ret = _regulator_enable(regulator);
2968	regulator_unlock_dependent(rdev, &ww_ctx);
2969
2970	return ret;
2971}
2972EXPORT_SYMBOL_GPL(regulator_enable);
2973
2974static int _regulator_do_disable(struct regulator_dev *rdev)
2975{
2976	int ret;
2977
2978	trace_regulator_disable(rdev_get_name(rdev));
2979
2980	if (rdev->ena_pin) {
2981		if (rdev->ena_gpio_state) {
2982			ret = regulator_ena_gpio_ctrl(rdev, false);
2983			if (ret < 0)
2984				return ret;
2985			rdev->ena_gpio_state = 0;
2986		}
2987
2988	} else if (rdev->desc->ops->disable) {
2989		ret = rdev->desc->ops->disable(rdev);
2990		if (ret != 0)
2991			return ret;
2992	}
2993
2994	if (rdev->desc->off_on_delay)
2995		rdev->last_off = ktime_get_boottime();
2996
2997	trace_regulator_disable_complete(rdev_get_name(rdev));
2998
2999	return 0;
3000}
3001
3002/* locks held by regulator_disable() */
3003static int _regulator_disable(struct regulator *regulator)
3004{
3005	struct regulator_dev *rdev = regulator->rdev;
3006	int ret = 0;
3007
3008	lockdep_assert_held_once(&rdev->mutex.base);
3009
3010	if (WARN(regulator->enable_count == 0,
3011		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3012		return -EIO;
3013
3014	if (regulator->enable_count == 1) {
3015	/* disabling last enable_count from this regulator */
3016		/* are we the last user and permitted to disable ? */
3017		if (rdev->use_count == 1 &&
3018		    (rdev->constraints && !rdev->constraints->always_on)) {
3019
3020			/* we are last user */
3021			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3022				ret = _notifier_call_chain(rdev,
3023							   REGULATOR_EVENT_PRE_DISABLE,
3024							   NULL);
3025				if (ret & NOTIFY_STOP_MASK)
3026					return -EINVAL;
3027
3028				ret = _regulator_do_disable(rdev);
3029				if (ret < 0) {
3030					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3031					_notifier_call_chain(rdev,
3032							REGULATOR_EVENT_ABORT_DISABLE,
3033							NULL);
3034					return ret;
3035				}
3036				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3037						NULL);
3038			}
3039
3040			rdev->use_count = 0;
3041		} else if (rdev->use_count > 1) {
3042			rdev->use_count--;
3043		}
3044	}
3045
3046	if (ret == 0)
3047		ret = _regulator_handle_consumer_disable(regulator);
3048
3049	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3050		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3051
3052	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3053		ret = _regulator_disable(rdev->supply);
3054
3055	return ret;
3056}
3057
3058/**
3059 * regulator_disable - disable regulator output
3060 * @regulator: regulator source
3061 *
3062 * Disable the regulator output voltage or current.  Calls to
3063 * regulator_enable() must be balanced with calls to
3064 * regulator_disable().
3065 *
3066 * NOTE: this will only disable the regulator output if no other consumer
3067 * devices have it enabled, the regulator device supports disabling and
3068 * machine constraints permit this operation.
3069 */
3070int regulator_disable(struct regulator *regulator)
3071{
3072	struct regulator_dev *rdev = regulator->rdev;
3073	struct ww_acquire_ctx ww_ctx;
3074	int ret;
3075
3076	regulator_lock_dependent(rdev, &ww_ctx);
3077	ret = _regulator_disable(regulator);
3078	regulator_unlock_dependent(rdev, &ww_ctx);
3079
3080	return ret;
3081}
3082EXPORT_SYMBOL_GPL(regulator_disable);
3083
3084/* locks held by regulator_force_disable() */
3085static int _regulator_force_disable(struct regulator_dev *rdev)
3086{
3087	int ret = 0;
3088
3089	lockdep_assert_held_once(&rdev->mutex.base);
3090
3091	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3092			REGULATOR_EVENT_PRE_DISABLE, NULL);
3093	if (ret & NOTIFY_STOP_MASK)
3094		return -EINVAL;
3095
3096	ret = _regulator_do_disable(rdev);
3097	if (ret < 0) {
3098		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3099		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3100				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3101		return ret;
3102	}
3103
3104	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3105			REGULATOR_EVENT_DISABLE, NULL);
3106
3107	return 0;
3108}
3109
3110/**
3111 * regulator_force_disable - force disable regulator output
3112 * @regulator: regulator source
3113 *
3114 * Forcibly disable the regulator output voltage or current.
3115 * NOTE: this *will* disable the regulator output even if other consumer
3116 * devices have it enabled. This should be used for situations when device
3117 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3118 */
3119int regulator_force_disable(struct regulator *regulator)
3120{
3121	struct regulator_dev *rdev = regulator->rdev;
3122	struct ww_acquire_ctx ww_ctx;
3123	int ret;
3124
3125	regulator_lock_dependent(rdev, &ww_ctx);
3126
3127	ret = _regulator_force_disable(regulator->rdev);
3128
3129	if (rdev->coupling_desc.n_coupled > 1)
3130		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3131
3132	if (regulator->uA_load) {
3133		regulator->uA_load = 0;
3134		ret = drms_uA_update(rdev);
3135	}
3136
3137	if (rdev->use_count != 0 && rdev->supply)
3138		_regulator_disable(rdev->supply);
3139
3140	regulator_unlock_dependent(rdev, &ww_ctx);
3141
3142	return ret;
3143}
3144EXPORT_SYMBOL_GPL(regulator_force_disable);
3145
3146static void regulator_disable_work(struct work_struct *work)
3147{
3148	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3149						  disable_work.work);
3150	struct ww_acquire_ctx ww_ctx;
3151	int count, i, ret;
3152	struct regulator *regulator;
3153	int total_count = 0;
3154
3155	regulator_lock_dependent(rdev, &ww_ctx);
3156
3157	/*
3158	 * Workqueue functions queue the new work instance while the previous
3159	 * work instance is being processed. Cancel the queued work instance
3160	 * as the work instance under processing does the job of the queued
3161	 * work instance.
3162	 */
3163	cancel_delayed_work(&rdev->disable_work);
3164
3165	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3166		count = regulator->deferred_disables;
3167
3168		if (!count)
3169			continue;
3170
3171		total_count += count;
3172		regulator->deferred_disables = 0;
3173
3174		for (i = 0; i < count; i++) {
3175			ret = _regulator_disable(regulator);
3176			if (ret != 0)
3177				rdev_err(rdev, "Deferred disable failed: %pe\n",
3178					 ERR_PTR(ret));
3179		}
3180	}
3181	WARN_ON(!total_count);
3182
3183	if (rdev->coupling_desc.n_coupled > 1)
3184		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3185
3186	regulator_unlock_dependent(rdev, &ww_ctx);
3187}
3188
3189/**
3190 * regulator_disable_deferred - disable regulator output with delay
3191 * @regulator: regulator source
3192 * @ms: milliseconds until the regulator is disabled
3193 *
3194 * Execute regulator_disable() on the regulator after a delay.  This
3195 * is intended for use with devices that require some time to quiesce.
3196 *
3197 * NOTE: this will only disable the regulator output if no other consumer
3198 * devices have it enabled, the regulator device supports disabling and
3199 * machine constraints permit this operation.
3200 */
3201int regulator_disable_deferred(struct regulator *regulator, int ms)
3202{
3203	struct regulator_dev *rdev = regulator->rdev;
3204
3205	if (!ms)
3206		return regulator_disable(regulator);
3207
3208	regulator_lock(rdev);
3209	regulator->deferred_disables++;
3210	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3211			 msecs_to_jiffies(ms));
3212	regulator_unlock(rdev);
3213
3214	return 0;
3215}
3216EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3217
3218static int _regulator_is_enabled(struct regulator_dev *rdev)
3219{
3220	/* A GPIO control always takes precedence */
3221	if (rdev->ena_pin)
3222		return rdev->ena_gpio_state;
3223
3224	/* If we don't know then assume that the regulator is always on */
3225	if (!rdev->desc->ops->is_enabled)
3226		return 1;
3227
3228	return rdev->desc->ops->is_enabled(rdev);
3229}
3230
3231static int _regulator_list_voltage(struct regulator_dev *rdev,
3232				   unsigned selector, int lock)
3233{
3234	const struct regulator_ops *ops = rdev->desc->ops;
3235	int ret;
3236
3237	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3238		return rdev->desc->fixed_uV;
3239
3240	if (ops->list_voltage) {
3241		if (selector >= rdev->desc->n_voltages)
3242			return -EINVAL;
3243		if (selector < rdev->desc->linear_min_sel)
3244			return 0;
3245		if (lock)
3246			regulator_lock(rdev);
3247		ret = ops->list_voltage(rdev, selector);
3248		if (lock)
3249			regulator_unlock(rdev);
3250	} else if (rdev->is_switch && rdev->supply) {
3251		ret = _regulator_list_voltage(rdev->supply->rdev,
3252					      selector, lock);
3253	} else {
3254		return -EINVAL;
3255	}
3256
3257	if (ret > 0) {
3258		if (ret < rdev->constraints->min_uV)
3259			ret = 0;
3260		else if (ret > rdev->constraints->max_uV)
3261			ret = 0;
3262	}
3263
3264	return ret;
3265}
3266
3267/**
3268 * regulator_is_enabled - is the regulator output enabled
3269 * @regulator: regulator source
3270 *
3271 * Returns positive if the regulator driver backing the source/client
3272 * has requested that the device be enabled, zero if it hasn't, else a
3273 * negative errno code.
3274 *
3275 * Note that the device backing this regulator handle can have multiple
3276 * users, so it might be enabled even if regulator_enable() was never
3277 * called for this particular source.
3278 */
3279int regulator_is_enabled(struct regulator *regulator)
3280{
3281	int ret;
3282
3283	if (regulator->always_on)
3284		return 1;
3285
3286	regulator_lock(regulator->rdev);
3287	ret = _regulator_is_enabled(regulator->rdev);
3288	regulator_unlock(regulator->rdev);
3289
3290	return ret;
3291}
3292EXPORT_SYMBOL_GPL(regulator_is_enabled);
3293
3294/**
3295 * regulator_count_voltages - count regulator_list_voltage() selectors
3296 * @regulator: regulator source
3297 *
3298 * Returns number of selectors, or negative errno.  Selectors are
3299 * numbered starting at zero, and typically correspond to bitfields
3300 * in hardware registers.
3301 */
3302int regulator_count_voltages(struct regulator *regulator)
3303{
3304	struct regulator_dev	*rdev = regulator->rdev;
3305
3306	if (rdev->desc->n_voltages)
3307		return rdev->desc->n_voltages;
3308
3309	if (!rdev->is_switch || !rdev->supply)
3310		return -EINVAL;
3311
3312	return regulator_count_voltages(rdev->supply);
3313}
3314EXPORT_SYMBOL_GPL(regulator_count_voltages);
3315
3316/**
3317 * regulator_list_voltage - enumerate supported voltages
3318 * @regulator: regulator source
3319 * @selector: identify voltage to list
3320 * Context: can sleep
3321 *
3322 * Returns a voltage that can be passed to @regulator_set_voltage(),
3323 * zero if this selector code can't be used on this system, or a
3324 * negative errno.
3325 */
3326int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3327{
3328	return _regulator_list_voltage(regulator->rdev, selector, 1);
3329}
3330EXPORT_SYMBOL_GPL(regulator_list_voltage);
3331
3332/**
3333 * regulator_get_regmap - get the regulator's register map
3334 * @regulator: regulator source
3335 *
3336 * Returns the register map for the given regulator, or an ERR_PTR value
3337 * if the regulator doesn't use regmap.
3338 */
3339struct regmap *regulator_get_regmap(struct regulator *regulator)
3340{
3341	struct regmap *map = regulator->rdev->regmap;
3342
3343	return map ? map : ERR_PTR(-EOPNOTSUPP);
3344}
3345
3346/**
3347 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3348 * @regulator: regulator source
3349 * @vsel_reg: voltage selector register, output parameter
3350 * @vsel_mask: mask for voltage selector bitfield, output parameter
3351 *
3352 * Returns the hardware register offset and bitmask used for setting the
3353 * regulator voltage. This might be useful when configuring voltage-scaling
3354 * hardware or firmware that can make I2C requests behind the kernel's back,
3355 * for example.
3356 *
3357 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3358 * and 0 is returned, otherwise a negative errno is returned.
3359 */
3360int regulator_get_hardware_vsel_register(struct regulator *regulator,
3361					 unsigned *vsel_reg,
3362					 unsigned *vsel_mask)
3363{
3364	struct regulator_dev *rdev = regulator->rdev;
3365	const struct regulator_ops *ops = rdev->desc->ops;
3366
3367	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3368		return -EOPNOTSUPP;
3369
3370	*vsel_reg = rdev->desc->vsel_reg;
3371	*vsel_mask = rdev->desc->vsel_mask;
3372
3373	return 0;
3374}
3375EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3376
3377/**
3378 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3379 * @regulator: regulator source
3380 * @selector: identify voltage to list
3381 *
3382 * Converts the selector to a hardware-specific voltage selector that can be
3383 * directly written to the regulator registers. The address of the voltage
3384 * register can be determined by calling @regulator_get_hardware_vsel_register.
3385 *
3386 * On error a negative errno is returned.
3387 */
3388int regulator_list_hardware_vsel(struct regulator *regulator,
3389				 unsigned selector)
3390{
3391	struct regulator_dev *rdev = regulator->rdev;
3392	const struct regulator_ops *ops = rdev->desc->ops;
3393
3394	if (selector >= rdev->desc->n_voltages)
3395		return -EINVAL;
3396	if (selector < rdev->desc->linear_min_sel)
3397		return 0;
3398	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3399		return -EOPNOTSUPP;
3400
3401	return selector;
3402}
3403EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3404
3405/**
3406 * regulator_get_linear_step - return the voltage step size between VSEL values
3407 * @regulator: regulator source
3408 *
3409 * Returns the voltage step size between VSEL values for linear
3410 * regulators, or return 0 if the regulator isn't a linear regulator.
3411 */
3412unsigned int regulator_get_linear_step(struct regulator *regulator)
3413{
3414	struct regulator_dev *rdev = regulator->rdev;
3415
3416	return rdev->desc->uV_step;
3417}
3418EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3419
3420/**
3421 * regulator_is_supported_voltage - check if a voltage range can be supported
3422 *
3423 * @regulator: Regulator to check.
3424 * @min_uV: Minimum required voltage in uV.
3425 * @max_uV: Maximum required voltage in uV.
3426 *
3427 * Returns a boolean.
3428 */
3429int regulator_is_supported_voltage(struct regulator *regulator,
3430				   int min_uV, int max_uV)
3431{
3432	struct regulator_dev *rdev = regulator->rdev;
3433	int i, voltages, ret;
3434
3435	/* If we can't change voltage check the current voltage */
3436	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3437		ret = regulator_get_voltage(regulator);
3438		if (ret >= 0)
3439			return min_uV <= ret && ret <= max_uV;
3440		else
3441			return ret;
3442	}
3443
3444	/* Any voltage within constrains range is fine? */
3445	if (rdev->desc->continuous_voltage_range)
3446		return min_uV >= rdev->constraints->min_uV &&
3447				max_uV <= rdev->constraints->max_uV;
3448
3449	ret = regulator_count_voltages(regulator);
3450	if (ret < 0)
3451		return 0;
3452	voltages = ret;
3453
3454	for (i = 0; i < voltages; i++) {
3455		ret = regulator_list_voltage(regulator, i);
3456
3457		if (ret >= min_uV && ret <= max_uV)
3458			return 1;
3459	}
3460
3461	return 0;
3462}
3463EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3464
3465static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3466				 int max_uV)
3467{
3468	const struct regulator_desc *desc = rdev->desc;
3469
3470	if (desc->ops->map_voltage)
3471		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3472
3473	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3474		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3475
3476	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3477		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3478
3479	if (desc->ops->list_voltage ==
3480		regulator_list_voltage_pickable_linear_range)
3481		return regulator_map_voltage_pickable_linear_range(rdev,
3482							min_uV, max_uV);
3483
3484	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3485}
3486
3487static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3488				       int min_uV, int max_uV,
3489				       unsigned *selector)
3490{
3491	struct pre_voltage_change_data data;
3492	int ret;
3493
3494	data.old_uV = regulator_get_voltage_rdev(rdev);
3495	data.min_uV = min_uV;
3496	data.max_uV = max_uV;
3497	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3498				   &data);
3499	if (ret & NOTIFY_STOP_MASK)
3500		return -EINVAL;
3501
3502	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3503	if (ret >= 0)
3504		return ret;
3505
3506	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3507			     (void *)data.old_uV);
3508
3509	return ret;
3510}
3511
3512static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3513					   int uV, unsigned selector)
3514{
3515	struct pre_voltage_change_data data;
3516	int ret;
3517
3518	data.old_uV = regulator_get_voltage_rdev(rdev);
3519	data.min_uV = uV;
3520	data.max_uV = uV;
3521	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3522				   &data);
3523	if (ret & NOTIFY_STOP_MASK)
3524		return -EINVAL;
3525
3526	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3527	if (ret >= 0)
3528		return ret;
3529
3530	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3531			     (void *)data.old_uV);
3532
3533	return ret;
3534}
3535
3536static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3537					   int uV, int new_selector)
3538{
3539	const struct regulator_ops *ops = rdev->desc->ops;
3540	int diff, old_sel, curr_sel, ret;
3541
3542	/* Stepping is only needed if the regulator is enabled. */
3543	if (!_regulator_is_enabled(rdev))
3544		goto final_set;
3545
3546	if (!ops->get_voltage_sel)
3547		return -EINVAL;
3548
3549	old_sel = ops->get_voltage_sel(rdev);
3550	if (old_sel < 0)
3551		return old_sel;
3552
3553	diff = new_selector - old_sel;
3554	if (diff == 0)
3555		return 0; /* No change needed. */
3556
3557	if (diff > 0) {
3558		/* Stepping up. */
3559		for (curr_sel = old_sel + rdev->desc->vsel_step;
3560		     curr_sel < new_selector;
3561		     curr_sel += rdev->desc->vsel_step) {
3562			/*
3563			 * Call the callback directly instead of using
3564			 * _regulator_call_set_voltage_sel() as we don't
3565			 * want to notify anyone yet. Same in the branch
3566			 * below.
3567			 */
3568			ret = ops->set_voltage_sel(rdev, curr_sel);
3569			if (ret)
3570				goto try_revert;
3571		}
3572	} else {
3573		/* Stepping down. */
3574		for (curr_sel = old_sel - rdev->desc->vsel_step;
3575		     curr_sel > new_selector;
3576		     curr_sel -= rdev->desc->vsel_step) {
3577			ret = ops->set_voltage_sel(rdev, curr_sel);
3578			if (ret)
3579				goto try_revert;
3580		}
3581	}
3582
3583final_set:
3584	/* The final selector will trigger the notifiers. */
3585	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3586
3587try_revert:
3588	/*
3589	 * At least try to return to the previous voltage if setting a new
3590	 * one failed.
3591	 */
3592	(void)ops->set_voltage_sel(rdev, old_sel);
3593	return ret;
3594}
3595
3596static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3597				       int old_uV, int new_uV)
3598{
3599	unsigned int ramp_delay = 0;
3600
3601	if (rdev->constraints->ramp_delay)
3602		ramp_delay = rdev->constraints->ramp_delay;
3603	else if (rdev->desc->ramp_delay)
3604		ramp_delay = rdev->desc->ramp_delay;
3605	else if (rdev->constraints->settling_time)
3606		return rdev->constraints->settling_time;
3607	else if (rdev->constraints->settling_time_up &&
3608		 (new_uV > old_uV))
3609		return rdev->constraints->settling_time_up;
3610	else if (rdev->constraints->settling_time_down &&
3611		 (new_uV < old_uV))
3612		return rdev->constraints->settling_time_down;
3613
3614	if (ramp_delay == 0)
3615		return 0;
3616
3617	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3618}
3619
3620static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3621				     int min_uV, int max_uV)
3622{
3623	int ret;
3624	int delay = 0;
3625	int best_val = 0;
3626	unsigned int selector;
3627	int old_selector = -1;
3628	const struct regulator_ops *ops = rdev->desc->ops;
3629	int old_uV = regulator_get_voltage_rdev(rdev);
3630
3631	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3632
3633	min_uV += rdev->constraints->uV_offset;
3634	max_uV += rdev->constraints->uV_offset;
3635
3636	/*
3637	 * If we can't obtain the old selector there is not enough
3638	 * info to call set_voltage_time_sel().
3639	 */
3640	if (_regulator_is_enabled(rdev) &&
3641	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3642		old_selector = ops->get_voltage_sel(rdev);
3643		if (old_selector < 0)
3644			return old_selector;
3645	}
3646
3647	if (ops->set_voltage) {
3648		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3649						  &selector);
3650
3651		if (ret >= 0) {
3652			if (ops->list_voltage)
3653				best_val = ops->list_voltage(rdev,
3654							     selector);
3655			else
3656				best_val = regulator_get_voltage_rdev(rdev);
3657		}
3658
3659	} else if (ops->set_voltage_sel) {
3660		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3661		if (ret >= 0) {
3662			best_val = ops->list_voltage(rdev, ret);
3663			if (min_uV <= best_val && max_uV >= best_val) {
3664				selector = ret;
3665				if (old_selector == selector)
3666					ret = 0;
3667				else if (rdev->desc->vsel_step)
3668					ret = _regulator_set_voltage_sel_step(
3669						rdev, best_val, selector);
3670				else
3671					ret = _regulator_call_set_voltage_sel(
3672						rdev, best_val, selector);
3673			} else {
3674				ret = -EINVAL;
3675			}
3676		}
3677	} else {
3678		ret = -EINVAL;
3679	}
3680
3681	if (ret)
3682		goto out;
3683
3684	if (ops->set_voltage_time_sel) {
3685		/*
3686		 * Call set_voltage_time_sel if successfully obtained
3687		 * old_selector
3688		 */
3689		if (old_selector >= 0 && old_selector != selector)
3690			delay = ops->set_voltage_time_sel(rdev, old_selector,
3691							  selector);
3692	} else {
3693		if (old_uV != best_val) {
3694			if (ops->set_voltage_time)
3695				delay = ops->set_voltage_time(rdev, old_uV,
3696							      best_val);
3697			else
3698				delay = _regulator_set_voltage_time(rdev,
3699								    old_uV,
3700								    best_val);
3701		}
3702	}
3703
3704	if (delay < 0) {
3705		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3706		delay = 0;
3707	}
3708
3709	/* Insert any necessary delays */
3710	_regulator_delay_helper(delay);
3711
3712	if (best_val >= 0) {
3713		unsigned long data = best_val;
3714
3715		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3716				     (void *)data);
3717	}
3718
3719out:
3720	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3721
3722	return ret;
3723}
3724
3725static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3726				  int min_uV, int max_uV, suspend_state_t state)
3727{
3728	struct regulator_state *rstate;
3729	int uV, sel;
3730
3731	rstate = regulator_get_suspend_state(rdev, state);
3732	if (rstate == NULL)
3733		return -EINVAL;
3734
3735	if (min_uV < rstate->min_uV)
3736		min_uV = rstate->min_uV;
3737	if (max_uV > rstate->max_uV)
3738		max_uV = rstate->max_uV;
3739
3740	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3741	if (sel < 0)
3742		return sel;
3743
3744	uV = rdev->desc->ops->list_voltage(rdev, sel);
3745	if (uV >= min_uV && uV <= max_uV)
3746		rstate->uV = uV;
3747
3748	return 0;
3749}
3750
3751static int regulator_set_voltage_unlocked(struct regulator *regulator,
3752					  int min_uV, int max_uV,
3753					  suspend_state_t state)
3754{
3755	struct regulator_dev *rdev = regulator->rdev;
3756	struct regulator_voltage *voltage = &regulator->voltage[state];
3757	int ret = 0;
3758	int old_min_uV, old_max_uV;
3759	int current_uV;
3760
3761	/* If we're setting the same range as last time the change
3762	 * should be a noop (some cpufreq implementations use the same
3763	 * voltage for multiple frequencies, for example).
3764	 */
3765	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3766		goto out;
3767
3768	/* If we're trying to set a range that overlaps the current voltage,
3769	 * return successfully even though the regulator does not support
3770	 * changing the voltage.
3771	 */
3772	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3773		current_uV = regulator_get_voltage_rdev(rdev);
3774		if (min_uV <= current_uV && current_uV <= max_uV) {
3775			voltage->min_uV = min_uV;
3776			voltage->max_uV = max_uV;
3777			goto out;
3778		}
3779	}
3780
3781	/* sanity check */
3782	if (!rdev->desc->ops->set_voltage &&
3783	    !rdev->desc->ops->set_voltage_sel) {
3784		ret = -EINVAL;
3785		goto out;
3786	}
3787
3788	/* constraints check */
3789	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3790	if (ret < 0)
3791		goto out;
3792
3793	/* restore original values in case of error */
3794	old_min_uV = voltage->min_uV;
3795	old_max_uV = voltage->max_uV;
3796	voltage->min_uV = min_uV;
3797	voltage->max_uV = max_uV;
3798
3799	/* for not coupled regulators this will just set the voltage */
3800	ret = regulator_balance_voltage(rdev, state);
3801	if (ret < 0) {
3802		voltage->min_uV = old_min_uV;
3803		voltage->max_uV = old_max_uV;
3804	}
3805
3806out:
3807	return ret;
3808}
3809
3810int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3811			       int max_uV, suspend_state_t state)
3812{
3813	int best_supply_uV = 0;
3814	int supply_change_uV = 0;
3815	int ret;
3816
3817	if (rdev->supply &&
3818	    regulator_ops_is_valid(rdev->supply->rdev,
3819				   REGULATOR_CHANGE_VOLTAGE) &&
3820	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3821					   rdev->desc->ops->get_voltage_sel))) {
3822		int current_supply_uV;
3823		int selector;
3824
3825		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3826		if (selector < 0) {
3827			ret = selector;
3828			goto out;
3829		}
3830
3831		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3832		if (best_supply_uV < 0) {
3833			ret = best_supply_uV;
3834			goto out;
3835		}
3836
3837		best_supply_uV += rdev->desc->min_dropout_uV;
3838
3839		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3840		if (current_supply_uV < 0) {
3841			ret = current_supply_uV;
3842			goto out;
3843		}
3844
3845		supply_change_uV = best_supply_uV - current_supply_uV;
3846	}
3847
3848	if (supply_change_uV > 0) {
3849		ret = regulator_set_voltage_unlocked(rdev->supply,
3850				best_supply_uV, INT_MAX, state);
3851		if (ret) {
3852			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3853				ERR_PTR(ret));
3854			goto out;
3855		}
3856	}
3857
3858	if (state == PM_SUSPEND_ON)
3859		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3860	else
3861		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3862							max_uV, state);
3863	if (ret < 0)
3864		goto out;
3865
3866	if (supply_change_uV < 0) {
3867		ret = regulator_set_voltage_unlocked(rdev->supply,
3868				best_supply_uV, INT_MAX, state);
3869		if (ret)
3870			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3871				 ERR_PTR(ret));
3872		/* No need to fail here */
3873		ret = 0;
3874	}
3875
3876out:
3877	return ret;
3878}
3879EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3880
3881static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3882					int *current_uV, int *min_uV)
3883{
3884	struct regulation_constraints *constraints = rdev->constraints;
3885
3886	/* Limit voltage change only if necessary */
3887	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3888		return 1;
3889
3890	if (*current_uV < 0) {
3891		*current_uV = regulator_get_voltage_rdev(rdev);
3892
3893		if (*current_uV < 0)
3894			return *current_uV;
3895	}
3896
3897	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3898		return 1;
3899
3900	/* Clamp target voltage within the given step */
3901	if (*current_uV < *min_uV)
3902		*min_uV = min(*current_uV + constraints->max_uV_step,
3903			      *min_uV);
3904	else
3905		*min_uV = max(*current_uV - constraints->max_uV_step,
3906			      *min_uV);
3907
3908	return 0;
3909}
3910
3911static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3912					 int *current_uV,
3913					 int *min_uV, int *max_uV,
3914					 suspend_state_t state,
3915					 int n_coupled)
3916{
3917	struct coupling_desc *c_desc = &rdev->coupling_desc;
3918	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3919	struct regulation_constraints *constraints = rdev->constraints;
3920	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3921	int max_current_uV = 0, min_current_uV = INT_MAX;
3922	int highest_min_uV = 0, target_uV, possible_uV;
3923	int i, ret, max_spread;
3924	bool done;
3925
3926	*current_uV = -1;
3927
3928	/*
3929	 * If there are no coupled regulators, simply set the voltage
3930	 * demanded by consumers.
3931	 */
3932	if (n_coupled == 1) {
3933		/*
3934		 * If consumers don't provide any demands, set voltage
3935		 * to min_uV
3936		 */
3937		desired_min_uV = constraints->min_uV;
3938		desired_max_uV = constraints->max_uV;
3939
3940		ret = regulator_check_consumers(rdev,
3941						&desired_min_uV,
3942						&desired_max_uV, state);
3943		if (ret < 0)
3944			return ret;
3945
3946		done = true;
3947
3948		goto finish;
3949	}
3950
3951	/* Find highest min desired voltage */
3952	for (i = 0; i < n_coupled; i++) {
3953		int tmp_min = 0;
3954		int tmp_max = INT_MAX;
3955
3956		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3957
3958		ret = regulator_check_consumers(c_rdevs[i],
3959						&tmp_min,
3960						&tmp_max, state);
3961		if (ret < 0)
3962			return ret;
3963
3964		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3965		if (ret < 0)
3966			return ret;
3967
3968		highest_min_uV = max(highest_min_uV, tmp_min);
3969
3970		if (i == 0) {
3971			desired_min_uV = tmp_min;
3972			desired_max_uV = tmp_max;
3973		}
3974	}
3975
3976	max_spread = constraints->max_spread[0];
3977
3978	/*
3979	 * Let target_uV be equal to the desired one if possible.
3980	 * If not, set it to minimum voltage, allowed by other coupled
3981	 * regulators.
3982	 */
3983	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3984
3985	/*
3986	 * Find min and max voltages, which currently aren't violating
3987	 * max_spread.
3988	 */
3989	for (i = 1; i < n_coupled; i++) {
3990		int tmp_act;
3991
3992		if (!_regulator_is_enabled(c_rdevs[i]))
3993			continue;
3994
3995		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3996		if (tmp_act < 0)
3997			return tmp_act;
3998
3999		min_current_uV = min(tmp_act, min_current_uV);
4000		max_current_uV = max(tmp_act, max_current_uV);
4001	}
4002
4003	/* There aren't any other regulators enabled */
4004	if (max_current_uV == 0) {
4005		possible_uV = target_uV;
4006	} else {
4007		/*
4008		 * Correct target voltage, so as it currently isn't
4009		 * violating max_spread
4010		 */
4011		possible_uV = max(target_uV, max_current_uV - max_spread);
4012		possible_uV = min(possible_uV, min_current_uV + max_spread);
4013	}
4014
4015	if (possible_uV > desired_max_uV)
4016		return -EINVAL;
4017
4018	done = (possible_uV == target_uV);
4019	desired_min_uV = possible_uV;
4020
4021finish:
4022	/* Apply max_uV_step constraint if necessary */
4023	if (state == PM_SUSPEND_ON) {
4024		ret = regulator_limit_voltage_step(rdev, current_uV,
4025						   &desired_min_uV);
4026		if (ret < 0)
4027			return ret;
4028
4029		if (ret == 0)
4030			done = false;
4031	}
4032
4033	/* Set current_uV if wasn't done earlier in the code and if necessary */
4034	if (n_coupled > 1 && *current_uV == -1) {
4035
4036		if (_regulator_is_enabled(rdev)) {
4037			ret = regulator_get_voltage_rdev(rdev);
4038			if (ret < 0)
4039				return ret;
4040
4041			*current_uV = ret;
4042		} else {
4043			*current_uV = desired_min_uV;
4044		}
4045	}
4046
4047	*min_uV = desired_min_uV;
4048	*max_uV = desired_max_uV;
4049
4050	return done;
4051}
4052
4053int regulator_do_balance_voltage(struct regulator_dev *rdev,
4054				 suspend_state_t state, bool skip_coupled)
4055{
4056	struct regulator_dev **c_rdevs;
4057	struct regulator_dev *best_rdev;
4058	struct coupling_desc *c_desc = &rdev->coupling_desc;
4059	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4060	unsigned int delta, best_delta;
4061	unsigned long c_rdev_done = 0;
4062	bool best_c_rdev_done;
4063
4064	c_rdevs = c_desc->coupled_rdevs;
4065	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4066
4067	/*
4068	 * Find the best possible voltage change on each loop. Leave the loop
4069	 * if there isn't any possible change.
4070	 */
4071	do {
4072		best_c_rdev_done = false;
4073		best_delta = 0;
4074		best_min_uV = 0;
4075		best_max_uV = 0;
4076		best_c_rdev = 0;
4077		best_rdev = NULL;
4078
4079		/*
4080		 * Find highest difference between optimal voltage
4081		 * and current voltage.
4082		 */
4083		for (i = 0; i < n_coupled; i++) {
4084			/*
4085			 * optimal_uV is the best voltage that can be set for
4086			 * i-th regulator at the moment without violating
4087			 * max_spread constraint in order to balance
4088			 * the coupled voltages.
4089			 */
4090			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4091
4092			if (test_bit(i, &c_rdev_done))
4093				continue;
4094
4095			ret = regulator_get_optimal_voltage(c_rdevs[i],
4096							    &current_uV,
4097							    &optimal_uV,
4098							    &optimal_max_uV,
4099							    state, n_coupled);
4100			if (ret < 0)
4101				goto out;
4102
4103			delta = abs(optimal_uV - current_uV);
4104
4105			if (delta && best_delta <= delta) {
4106				best_c_rdev_done = ret;
4107				best_delta = delta;
4108				best_rdev = c_rdevs[i];
4109				best_min_uV = optimal_uV;
4110				best_max_uV = optimal_max_uV;
4111				best_c_rdev = i;
4112			}
4113		}
4114
4115		/* Nothing to change, return successfully */
4116		if (!best_rdev) {
4117			ret = 0;
4118			goto out;
4119		}
4120
4121		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4122						 best_max_uV, state);
4123
4124		if (ret < 0)
4125			goto out;
4126
4127		if (best_c_rdev_done)
4128			set_bit(best_c_rdev, &c_rdev_done);
4129
4130	} while (n_coupled > 1);
4131
4132out:
4133	return ret;
4134}
4135
4136static int regulator_balance_voltage(struct regulator_dev *rdev,
4137				     suspend_state_t state)
4138{
4139	struct coupling_desc *c_desc = &rdev->coupling_desc;
4140	struct regulator_coupler *coupler = c_desc->coupler;
4141	bool skip_coupled = false;
4142
4143	/*
4144	 * If system is in a state other than PM_SUSPEND_ON, don't check
4145	 * other coupled regulators.
4146	 */
4147	if (state != PM_SUSPEND_ON)
4148		skip_coupled = true;
4149
4150	if (c_desc->n_resolved < c_desc->n_coupled) {
4151		rdev_err(rdev, "Not all coupled regulators registered\n");
4152		return -EPERM;
4153	}
4154
4155	/* Invoke custom balancer for customized couplers */
4156	if (coupler && coupler->balance_voltage)
4157		return coupler->balance_voltage(coupler, rdev, state);
4158
4159	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4160}
4161
4162/**
4163 * regulator_set_voltage - set regulator output voltage
4164 * @regulator: regulator source
4165 * @min_uV: Minimum required voltage in uV
4166 * @max_uV: Maximum acceptable voltage in uV
4167 *
4168 * Sets a voltage regulator to the desired output voltage. This can be set
4169 * during any regulator state. IOW, regulator can be disabled or enabled.
4170 *
4171 * If the regulator is enabled then the voltage will change to the new value
4172 * immediately otherwise if the regulator is disabled the regulator will
4173 * output at the new voltage when enabled.
4174 *
4175 * NOTE: If the regulator is shared between several devices then the lowest
4176 * request voltage that meets the system constraints will be used.
4177 * Regulator system constraints must be set for this regulator before
4178 * calling this function otherwise this call will fail.
4179 */
4180int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4181{
4182	struct ww_acquire_ctx ww_ctx;
4183	int ret;
4184
4185	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4186
4187	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4188					     PM_SUSPEND_ON);
4189
4190	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4191
4192	return ret;
4193}
4194EXPORT_SYMBOL_GPL(regulator_set_voltage);
4195
4196static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4197					   suspend_state_t state, bool en)
4198{
4199	struct regulator_state *rstate;
4200
4201	rstate = regulator_get_suspend_state(rdev, state);
4202	if (rstate == NULL)
4203		return -EINVAL;
4204
4205	if (!rstate->changeable)
4206		return -EPERM;
4207
4208	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4209
4210	return 0;
4211}
4212
4213int regulator_suspend_enable(struct regulator_dev *rdev,
4214				    suspend_state_t state)
4215{
4216	return regulator_suspend_toggle(rdev, state, true);
4217}
4218EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4219
4220int regulator_suspend_disable(struct regulator_dev *rdev,
4221				     suspend_state_t state)
4222{
4223	struct regulator *regulator;
4224	struct regulator_voltage *voltage;
4225
4226	/*
4227	 * if any consumer wants this regulator device keeping on in
4228	 * suspend states, don't set it as disabled.
4229	 */
4230	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4231		voltage = &regulator->voltage[state];
4232		if (voltage->min_uV || voltage->max_uV)
4233			return 0;
4234	}
4235
4236	return regulator_suspend_toggle(rdev, state, false);
4237}
4238EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4239
4240static int _regulator_set_suspend_voltage(struct regulator *regulator,
4241					  int min_uV, int max_uV,
4242					  suspend_state_t state)
4243{
4244	struct regulator_dev *rdev = regulator->rdev;
4245	struct regulator_state *rstate;
4246
4247	rstate = regulator_get_suspend_state(rdev, state);
4248	if (rstate == NULL)
4249		return -EINVAL;
4250
4251	if (rstate->min_uV == rstate->max_uV) {
4252		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4253		return -EPERM;
4254	}
4255
4256	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4257}
4258
4259int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4260				  int max_uV, suspend_state_t state)
4261{
4262	struct ww_acquire_ctx ww_ctx;
4263	int ret;
4264
4265	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4266	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4267		return -EINVAL;
4268
4269	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4270
4271	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4272					     max_uV, state);
4273
4274	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4275
4276	return ret;
4277}
4278EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4279
4280/**
4281 * regulator_set_voltage_time - get raise/fall time
4282 * @regulator: regulator source
4283 * @old_uV: starting voltage in microvolts
4284 * @new_uV: target voltage in microvolts
4285 *
4286 * Provided with the starting and ending voltage, this function attempts to
4287 * calculate the time in microseconds required to rise or fall to this new
4288 * voltage.
4289 */
4290int regulator_set_voltage_time(struct regulator *regulator,
4291			       int old_uV, int new_uV)
4292{
4293	struct regulator_dev *rdev = regulator->rdev;
4294	const struct regulator_ops *ops = rdev->desc->ops;
4295	int old_sel = -1;
4296	int new_sel = -1;
4297	int voltage;
4298	int i;
4299
4300	if (ops->set_voltage_time)
4301		return ops->set_voltage_time(rdev, old_uV, new_uV);
4302	else if (!ops->set_voltage_time_sel)
4303		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4304
4305	/* Currently requires operations to do this */
4306	if (!ops->list_voltage || !rdev->desc->n_voltages)
4307		return -EINVAL;
4308
4309	for (i = 0; i < rdev->desc->n_voltages; i++) {
4310		/* We only look for exact voltage matches here */
4311		if (i < rdev->desc->linear_min_sel)
4312			continue;
4313
4314		if (old_sel >= 0 && new_sel >= 0)
4315			break;
4316
4317		voltage = regulator_list_voltage(regulator, i);
4318		if (voltage < 0)
4319			return -EINVAL;
4320		if (voltage == 0)
4321			continue;
4322		if (voltage == old_uV)
4323			old_sel = i;
4324		if (voltage == new_uV)
4325			new_sel = i;
4326	}
4327
4328	if (old_sel < 0 || new_sel < 0)
4329		return -EINVAL;
4330
4331	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4332}
4333EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4334
4335/**
4336 * regulator_set_voltage_time_sel - get raise/fall time
4337 * @rdev: regulator source device
4338 * @old_selector: selector for starting voltage
4339 * @new_selector: selector for target voltage
4340 *
4341 * Provided with the starting and target voltage selectors, this function
4342 * returns time in microseconds required to rise or fall to this new voltage
4343 *
4344 * Drivers providing ramp_delay in regulation_constraints can use this as their
4345 * set_voltage_time_sel() operation.
4346 */
4347int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4348				   unsigned int old_selector,
4349				   unsigned int new_selector)
4350{
4351	int old_volt, new_volt;
4352
4353	/* sanity check */
4354	if (!rdev->desc->ops->list_voltage)
4355		return -EINVAL;
4356
4357	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4358	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4359
4360	if (rdev->desc->ops->set_voltage_time)
4361		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4362							 new_volt);
4363	else
4364		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4365}
4366EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4367
4368int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4369{
4370	int ret;
4371
4372	regulator_lock(rdev);
4373
4374	if (!rdev->desc->ops->set_voltage &&
4375	    !rdev->desc->ops->set_voltage_sel) {
4376		ret = -EINVAL;
4377		goto out;
4378	}
4379
4380	/* balance only, if regulator is coupled */
4381	if (rdev->coupling_desc.n_coupled > 1)
4382		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4383	else
4384		ret = -EOPNOTSUPP;
4385
4386out:
4387	regulator_unlock(rdev);
4388	return ret;
4389}
4390
4391/**
4392 * regulator_sync_voltage - re-apply last regulator output voltage
4393 * @regulator: regulator source
4394 *
4395 * Re-apply the last configured voltage.  This is intended to be used
4396 * where some external control source the consumer is cooperating with
4397 * has caused the configured voltage to change.
4398 */
4399int regulator_sync_voltage(struct regulator *regulator)
4400{
4401	struct regulator_dev *rdev = regulator->rdev;
4402	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4403	int ret, min_uV, max_uV;
4404
4405	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4406		return 0;
4407
4408	regulator_lock(rdev);
4409
4410	if (!rdev->desc->ops->set_voltage &&
4411	    !rdev->desc->ops->set_voltage_sel) {
4412		ret = -EINVAL;
4413		goto out;
4414	}
4415
4416	/* This is only going to work if we've had a voltage configured. */
4417	if (!voltage->min_uV && !voltage->max_uV) {
4418		ret = -EINVAL;
4419		goto out;
4420	}
4421
4422	min_uV = voltage->min_uV;
4423	max_uV = voltage->max_uV;
4424
4425	/* This should be a paranoia check... */
4426	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4427	if (ret < 0)
4428		goto out;
4429
4430	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4431	if (ret < 0)
4432		goto out;
4433
4434	/* balance only, if regulator is coupled */
4435	if (rdev->coupling_desc.n_coupled > 1)
4436		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4437	else
4438		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4439
4440out:
4441	regulator_unlock(rdev);
4442	return ret;
4443}
4444EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4445
4446int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4447{
4448	int sel, ret;
4449	bool bypassed;
4450
4451	if (rdev->desc->ops->get_bypass) {
4452		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4453		if (ret < 0)
4454			return ret;
4455		if (bypassed) {
4456			/* if bypassed the regulator must have a supply */
4457			if (!rdev->supply) {
4458				rdev_err(rdev,
4459					 "bypassed regulator has no supply!\n");
4460				return -EPROBE_DEFER;
4461			}
4462
4463			return regulator_get_voltage_rdev(rdev->supply->rdev);
4464		}
4465	}
4466
4467	if (rdev->desc->ops->get_voltage_sel) {
4468		sel = rdev->desc->ops->get_voltage_sel(rdev);
4469		if (sel < 0)
4470			return sel;
4471		ret = rdev->desc->ops->list_voltage(rdev, sel);
4472	} else if (rdev->desc->ops->get_voltage) {
4473		ret = rdev->desc->ops->get_voltage(rdev);
4474	} else if (rdev->desc->ops->list_voltage) {
4475		ret = rdev->desc->ops->list_voltage(rdev, 0);
4476	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4477		ret = rdev->desc->fixed_uV;
4478	} else if (rdev->supply) {
4479		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4480	} else if (rdev->supply_name) {
4481		return -EPROBE_DEFER;
4482	} else {
4483		return -EINVAL;
4484	}
4485
4486	if (ret < 0)
4487		return ret;
4488	return ret - rdev->constraints->uV_offset;
4489}
4490EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4491
4492/**
4493 * regulator_get_voltage - get regulator output voltage
4494 * @regulator: regulator source
4495 *
4496 * This returns the current regulator voltage in uV.
4497 *
4498 * NOTE: If the regulator is disabled it will return the voltage value. This
4499 * function should not be used to determine regulator state.
4500 */
4501int regulator_get_voltage(struct regulator *regulator)
4502{
4503	struct ww_acquire_ctx ww_ctx;
4504	int ret;
4505
4506	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4507	ret = regulator_get_voltage_rdev(regulator->rdev);
4508	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4509
4510	return ret;
4511}
4512EXPORT_SYMBOL_GPL(regulator_get_voltage);
4513
4514/**
4515 * regulator_set_current_limit - set regulator output current limit
4516 * @regulator: regulator source
4517 * @min_uA: Minimum supported current in uA
4518 * @max_uA: Maximum supported current in uA
4519 *
4520 * Sets current sink to the desired output current. This can be set during
4521 * any regulator state. IOW, regulator can be disabled or enabled.
4522 *
4523 * If the regulator is enabled then the current will change to the new value
4524 * immediately otherwise if the regulator is disabled the regulator will
4525 * output at the new current when enabled.
4526 *
4527 * NOTE: Regulator system constraints must be set for this regulator before
4528 * calling this function otherwise this call will fail.
4529 */
4530int regulator_set_current_limit(struct regulator *regulator,
4531			       int min_uA, int max_uA)
4532{
4533	struct regulator_dev *rdev = regulator->rdev;
4534	int ret;
4535
4536	regulator_lock(rdev);
4537
4538	/* sanity check */
4539	if (!rdev->desc->ops->set_current_limit) {
4540		ret = -EINVAL;
4541		goto out;
4542	}
4543
4544	/* constraints check */
4545	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4546	if (ret < 0)
4547		goto out;
4548
4549	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4550out:
4551	regulator_unlock(rdev);
4552	return ret;
4553}
4554EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4555
4556static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4557{
4558	/* sanity check */
4559	if (!rdev->desc->ops->get_current_limit)
4560		return -EINVAL;
4561
4562	return rdev->desc->ops->get_current_limit(rdev);
4563}
4564
4565static int _regulator_get_current_limit(struct regulator_dev *rdev)
4566{
4567	int ret;
4568
4569	regulator_lock(rdev);
4570	ret = _regulator_get_current_limit_unlocked(rdev);
4571	regulator_unlock(rdev);
4572
4573	return ret;
4574}
4575
4576/**
4577 * regulator_get_current_limit - get regulator output current
4578 * @regulator: regulator source
4579 *
4580 * This returns the current supplied by the specified current sink in uA.
4581 *
4582 * NOTE: If the regulator is disabled it will return the current value. This
4583 * function should not be used to determine regulator state.
4584 */
4585int regulator_get_current_limit(struct regulator *regulator)
4586{
4587	return _regulator_get_current_limit(regulator->rdev);
4588}
4589EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4590
4591/**
4592 * regulator_set_mode - set regulator operating mode
4593 * @regulator: regulator source
4594 * @mode: operating mode - one of the REGULATOR_MODE constants
4595 *
4596 * Set regulator operating mode to increase regulator efficiency or improve
4597 * regulation performance.
4598 *
4599 * NOTE: Regulator system constraints must be set for this regulator before
4600 * calling this function otherwise this call will fail.
4601 */
4602int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4603{
4604	struct regulator_dev *rdev = regulator->rdev;
4605	int ret;
4606	int regulator_curr_mode;
4607
4608	regulator_lock(rdev);
4609
4610	/* sanity check */
4611	if (!rdev->desc->ops->set_mode) {
4612		ret = -EINVAL;
4613		goto out;
4614	}
4615
4616	/* return if the same mode is requested */
4617	if (rdev->desc->ops->get_mode) {
4618		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4619		if (regulator_curr_mode == mode) {
4620			ret = 0;
4621			goto out;
4622		}
4623	}
4624
4625	/* constraints check */
4626	ret = regulator_mode_constrain(rdev, &mode);
4627	if (ret < 0)
4628		goto out;
4629
4630	ret = rdev->desc->ops->set_mode(rdev, mode);
4631out:
4632	regulator_unlock(rdev);
4633	return ret;
4634}
4635EXPORT_SYMBOL_GPL(regulator_set_mode);
4636
4637static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4638{
4639	/* sanity check */
4640	if (!rdev->desc->ops->get_mode)
4641		return -EINVAL;
4642
4643	return rdev->desc->ops->get_mode(rdev);
4644}
4645
4646static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4647{
4648	int ret;
4649
4650	regulator_lock(rdev);
4651	ret = _regulator_get_mode_unlocked(rdev);
4652	regulator_unlock(rdev);
4653
4654	return ret;
4655}
4656
4657/**
4658 * regulator_get_mode - get regulator operating mode
4659 * @regulator: regulator source
4660 *
4661 * Get the current regulator operating mode.
4662 */
4663unsigned int regulator_get_mode(struct regulator *regulator)
4664{
4665	return _regulator_get_mode(regulator->rdev);
4666}
4667EXPORT_SYMBOL_GPL(regulator_get_mode);
4668
4669static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4670{
4671	int ret = 0;
4672
4673	if (rdev->use_cached_err) {
4674		spin_lock(&rdev->err_lock);
4675		ret = rdev->cached_err;
4676		spin_unlock(&rdev->err_lock);
4677	}
4678	return ret;
4679}
4680
4681static int _regulator_get_error_flags(struct regulator_dev *rdev,
4682					unsigned int *flags)
4683{
4684	int cached_flags, ret = 0;
4685
4686	regulator_lock(rdev);
4687
4688	cached_flags = rdev_get_cached_err_flags(rdev);
4689
4690	if (rdev->desc->ops->get_error_flags)
4691		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4692	else if (!rdev->use_cached_err)
4693		ret = -EINVAL;
4694
4695	*flags |= cached_flags;
4696
4697	regulator_unlock(rdev);
4698
4699	return ret;
4700}
4701
4702/**
4703 * regulator_get_error_flags - get regulator error information
4704 * @regulator: regulator source
4705 * @flags: pointer to store error flags
4706 *
4707 * Get the current regulator error information.
4708 */
4709int regulator_get_error_flags(struct regulator *regulator,
4710				unsigned int *flags)
4711{
4712	return _regulator_get_error_flags(regulator->rdev, flags);
4713}
4714EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4715
4716/**
4717 * regulator_set_load - set regulator load
4718 * @regulator: regulator source
4719 * @uA_load: load current
4720 *
4721 * Notifies the regulator core of a new device load. This is then used by
4722 * DRMS (if enabled by constraints) to set the most efficient regulator
4723 * operating mode for the new regulator loading.
4724 *
4725 * Consumer devices notify their supply regulator of the maximum power
4726 * they will require (can be taken from device datasheet in the power
4727 * consumption tables) when they change operational status and hence power
4728 * state. Examples of operational state changes that can affect power
4729 * consumption are :-
4730 *
4731 *    o Device is opened / closed.
4732 *    o Device I/O is about to begin or has just finished.
4733 *    o Device is idling in between work.
4734 *
4735 * This information is also exported via sysfs to userspace.
4736 *
4737 * DRMS will sum the total requested load on the regulator and change
4738 * to the most efficient operating mode if platform constraints allow.
4739 *
4740 * NOTE: when a regulator consumer requests to have a regulator
4741 * disabled then any load that consumer requested no longer counts
4742 * toward the total requested load.  If the regulator is re-enabled
4743 * then the previously requested load will start counting again.
4744 *
4745 * If a regulator is an always-on regulator then an individual consumer's
4746 * load will still be removed if that consumer is fully disabled.
4747 *
4748 * On error a negative errno is returned.
4749 */
4750int regulator_set_load(struct regulator *regulator, int uA_load)
4751{
4752	struct regulator_dev *rdev = regulator->rdev;
4753	int old_uA_load;
4754	int ret = 0;
4755
4756	regulator_lock(rdev);
4757	old_uA_load = regulator->uA_load;
4758	regulator->uA_load = uA_load;
4759	if (regulator->enable_count && old_uA_load != uA_load) {
4760		ret = drms_uA_update(rdev);
4761		if (ret < 0)
4762			regulator->uA_load = old_uA_load;
4763	}
4764	regulator_unlock(rdev);
4765
4766	return ret;
4767}
4768EXPORT_SYMBOL_GPL(regulator_set_load);
4769
4770/**
4771 * regulator_allow_bypass - allow the regulator to go into bypass mode
4772 *
4773 * @regulator: Regulator to configure
4774 * @enable: enable or disable bypass mode
4775 *
4776 * Allow the regulator to go into bypass mode if all other consumers
4777 * for the regulator also enable bypass mode and the machine
4778 * constraints allow this.  Bypass mode means that the regulator is
4779 * simply passing the input directly to the output with no regulation.
4780 */
4781int regulator_allow_bypass(struct regulator *regulator, bool enable)
4782{
4783	struct regulator_dev *rdev = regulator->rdev;
4784	const char *name = rdev_get_name(rdev);
4785	int ret = 0;
4786
4787	if (!rdev->desc->ops->set_bypass)
4788		return 0;
4789
4790	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4791		return 0;
4792
4793	regulator_lock(rdev);
4794
4795	if (enable && !regulator->bypass) {
4796		rdev->bypass_count++;
4797
4798		if (rdev->bypass_count == rdev->open_count) {
4799			trace_regulator_bypass_enable(name);
4800
4801			ret = rdev->desc->ops->set_bypass(rdev, enable);
4802			if (ret != 0)
4803				rdev->bypass_count--;
4804			else
4805				trace_regulator_bypass_enable_complete(name);
4806		}
4807
4808	} else if (!enable && regulator->bypass) {
4809		rdev->bypass_count--;
4810
4811		if (rdev->bypass_count != rdev->open_count) {
4812			trace_regulator_bypass_disable(name);
4813
4814			ret = rdev->desc->ops->set_bypass(rdev, enable);
4815			if (ret != 0)
4816				rdev->bypass_count++;
4817			else
4818				trace_regulator_bypass_disable_complete(name);
4819		}
4820	}
4821
4822	if (ret == 0)
4823		regulator->bypass = enable;
4824
4825	regulator_unlock(rdev);
4826
4827	return ret;
4828}
4829EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4830
4831/**
4832 * regulator_register_notifier - register regulator event notifier
4833 * @regulator: regulator source
4834 * @nb: notifier block
4835 *
4836 * Register notifier block to receive regulator events.
4837 */
4838int regulator_register_notifier(struct regulator *regulator,
4839			      struct notifier_block *nb)
4840{
4841	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4842						nb);
4843}
4844EXPORT_SYMBOL_GPL(regulator_register_notifier);
4845
4846/**
4847 * regulator_unregister_notifier - unregister regulator event notifier
4848 * @regulator: regulator source
4849 * @nb: notifier block
4850 *
4851 * Unregister regulator event notifier block.
4852 */
4853int regulator_unregister_notifier(struct regulator *regulator,
4854				struct notifier_block *nb)
4855{
4856	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4857						  nb);
4858}
4859EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4860
4861/* notify regulator consumers and downstream regulator consumers.
4862 * Note mutex must be held by caller.
4863 */
4864static int _notifier_call_chain(struct regulator_dev *rdev,
4865				  unsigned long event, void *data)
4866{
4867	/* call rdev chain first */
4868	int ret =  blocking_notifier_call_chain(&rdev->notifier, event, data);
4869
4870	if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4871		struct device *parent = rdev->dev.parent;
4872		const char *rname = rdev_get_name(rdev);
4873		char name[32];
4874
4875		/* Avoid duplicate debugfs directory names */
4876		if (parent && rname == rdev->desc->name) {
4877			snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4878				 rname);
4879			rname = name;
4880		}
4881		reg_generate_netlink_event(rname, event);
4882	}
4883
4884	return ret;
4885}
4886
4887int _regulator_bulk_get(struct device *dev, int num_consumers,
4888			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4889{
4890	int i;
4891	int ret;
4892
4893	for (i = 0; i < num_consumers; i++)
4894		consumers[i].consumer = NULL;
4895
4896	for (i = 0; i < num_consumers; i++) {
4897		consumers[i].consumer = _regulator_get(dev,
4898						       consumers[i].supply, get_type);
4899		if (IS_ERR(consumers[i].consumer)) {
4900			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4901					    "Failed to get supply '%s'",
4902					    consumers[i].supply);
4903			consumers[i].consumer = NULL;
4904			goto err;
4905		}
4906
4907		if (consumers[i].init_load_uA > 0) {
4908			ret = regulator_set_load(consumers[i].consumer,
4909						 consumers[i].init_load_uA);
4910			if (ret) {
4911				i++;
4912				goto err;
4913			}
4914		}
4915	}
4916
4917	return 0;
4918
4919err:
4920	while (--i >= 0)
4921		regulator_put(consumers[i].consumer);
4922
4923	return ret;
4924}
4925
4926/**
4927 * regulator_bulk_get - get multiple regulator consumers
4928 *
4929 * @dev:           Device to supply
4930 * @num_consumers: Number of consumers to register
4931 * @consumers:     Configuration of consumers; clients are stored here.
4932 *
4933 * @return 0 on success, an errno on failure.
4934 *
4935 * This helper function allows drivers to get several regulator
4936 * consumers in one operation.  If any of the regulators cannot be
4937 * acquired then any regulators that were allocated will be freed
4938 * before returning to the caller.
4939 */
4940int regulator_bulk_get(struct device *dev, int num_consumers,
4941		       struct regulator_bulk_data *consumers)
4942{
4943	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4944}
4945EXPORT_SYMBOL_GPL(regulator_bulk_get);
4946
4947static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4948{
4949	struct regulator_bulk_data *bulk = data;
4950
4951	bulk->ret = regulator_enable(bulk->consumer);
4952}
4953
4954/**
4955 * regulator_bulk_enable - enable multiple regulator consumers
4956 *
4957 * @num_consumers: Number of consumers
4958 * @consumers:     Consumer data; clients are stored here.
4959 * @return         0 on success, an errno on failure
4960 *
4961 * This convenience API allows consumers to enable multiple regulator
4962 * clients in a single API call.  If any consumers cannot be enabled
4963 * then any others that were enabled will be disabled again prior to
4964 * return.
4965 */
4966int regulator_bulk_enable(int num_consumers,
4967			  struct regulator_bulk_data *consumers)
4968{
4969	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4970	int i;
4971	int ret = 0;
4972
4973	for (i = 0; i < num_consumers; i++) {
4974		async_schedule_domain(regulator_bulk_enable_async,
4975				      &consumers[i], &async_domain);
4976	}
4977
4978	async_synchronize_full_domain(&async_domain);
4979
4980	/* If any consumer failed we need to unwind any that succeeded */
4981	for (i = 0; i < num_consumers; i++) {
4982		if (consumers[i].ret != 0) {
4983			ret = consumers[i].ret;
4984			goto err;
4985		}
4986	}
4987
4988	return 0;
4989
4990err:
4991	for (i = 0; i < num_consumers; i++) {
4992		if (consumers[i].ret < 0)
4993			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4994			       ERR_PTR(consumers[i].ret));
4995		else
4996			regulator_disable(consumers[i].consumer);
4997	}
4998
4999	return ret;
5000}
5001EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5002
5003/**
5004 * regulator_bulk_disable - disable multiple regulator consumers
5005 *
5006 * @num_consumers: Number of consumers
5007 * @consumers:     Consumer data; clients are stored here.
5008 * @return         0 on success, an errno on failure
5009 *
5010 * This convenience API allows consumers to disable multiple regulator
5011 * clients in a single API call.  If any consumers cannot be disabled
5012 * then any others that were disabled will be enabled again prior to
5013 * return.
5014 */
5015int regulator_bulk_disable(int num_consumers,
5016			   struct regulator_bulk_data *consumers)
5017{
5018	int i;
5019	int ret, r;
5020
5021	for (i = num_consumers - 1; i >= 0; --i) {
5022		ret = regulator_disable(consumers[i].consumer);
5023		if (ret != 0)
5024			goto err;
5025	}
5026
5027	return 0;
5028
5029err:
5030	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5031	for (++i; i < num_consumers; ++i) {
5032		r = regulator_enable(consumers[i].consumer);
5033		if (r != 0)
5034			pr_err("Failed to re-enable %s: %pe\n",
5035			       consumers[i].supply, ERR_PTR(r));
5036	}
5037
5038	return ret;
5039}
5040EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5041
5042/**
5043 * regulator_bulk_force_disable - force disable multiple regulator consumers
5044 *
5045 * @num_consumers: Number of consumers
5046 * @consumers:     Consumer data; clients are stored here.
5047 * @return         0 on success, an errno on failure
5048 *
5049 * This convenience API allows consumers to forcibly disable multiple regulator
5050 * clients in a single API call.
5051 * NOTE: This should be used for situations when device damage will
5052 * likely occur if the regulators are not disabled (e.g. over temp).
5053 * Although regulator_force_disable function call for some consumers can
5054 * return error numbers, the function is called for all consumers.
5055 */
5056int regulator_bulk_force_disable(int num_consumers,
5057			   struct regulator_bulk_data *consumers)
5058{
5059	int i;
5060	int ret = 0;
5061
5062	for (i = 0; i < num_consumers; i++) {
5063		consumers[i].ret =
5064			    regulator_force_disable(consumers[i].consumer);
5065
5066		/* Store first error for reporting */
5067		if (consumers[i].ret && !ret)
5068			ret = consumers[i].ret;
5069	}
5070
5071	return ret;
5072}
5073EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5074
5075/**
5076 * regulator_bulk_free - free multiple regulator consumers
5077 *
5078 * @num_consumers: Number of consumers
5079 * @consumers:     Consumer data; clients are stored here.
5080 *
5081 * This convenience API allows consumers to free multiple regulator
5082 * clients in a single API call.
5083 */
5084void regulator_bulk_free(int num_consumers,
5085			 struct regulator_bulk_data *consumers)
5086{
5087	int i;
5088
5089	for (i = 0; i < num_consumers; i++) {
5090		regulator_put(consumers[i].consumer);
5091		consumers[i].consumer = NULL;
5092	}
5093}
5094EXPORT_SYMBOL_GPL(regulator_bulk_free);
5095
5096/**
5097 * regulator_handle_critical - Handle events for system-critical regulators.
5098 * @rdev: The regulator device.
5099 * @event: The event being handled.
5100 *
5101 * This function handles critical events such as under-voltage, over-current,
5102 * and unknown errors for regulators deemed system-critical. On detecting such
5103 * events, it triggers a hardware protection shutdown with a defined timeout.
5104 */
5105static void regulator_handle_critical(struct regulator_dev *rdev,
5106				      unsigned long event)
5107{
5108	const char *reason = NULL;
5109
5110	if (!rdev->constraints->system_critical)
5111		return;
5112
5113	switch (event) {
5114	case REGULATOR_EVENT_UNDER_VOLTAGE:
5115		reason = "System critical regulator: voltage drop detected";
5116		break;
5117	case REGULATOR_EVENT_OVER_CURRENT:
5118		reason = "System critical regulator: over-current detected";
5119		break;
5120	case REGULATOR_EVENT_FAIL:
5121		reason = "System critical regulator: unknown error";
5122	}
5123
5124	if (!reason)
5125		return;
5126
5127	hw_protection_shutdown(reason,
5128			       rdev->constraints->uv_less_critical_window_ms);
5129}
5130
5131/**
5132 * regulator_notifier_call_chain - call regulator event notifier
5133 * @rdev: regulator source
5134 * @event: notifier block
5135 * @data: callback-specific data.
5136 *
5137 * Called by regulator drivers to notify clients a regulator event has
5138 * occurred.
5139 */
5140int regulator_notifier_call_chain(struct regulator_dev *rdev,
5141				  unsigned long event, void *data)
5142{
5143	regulator_handle_critical(rdev, event);
5144
5145	_notifier_call_chain(rdev, event, data);
5146	return NOTIFY_DONE;
5147
5148}
5149EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5150
5151/**
5152 * regulator_mode_to_status - convert a regulator mode into a status
5153 *
5154 * @mode: Mode to convert
5155 *
5156 * Convert a regulator mode into a status.
5157 */
5158int regulator_mode_to_status(unsigned int mode)
5159{
5160	switch (mode) {
5161	case REGULATOR_MODE_FAST:
5162		return REGULATOR_STATUS_FAST;
5163	case REGULATOR_MODE_NORMAL:
5164		return REGULATOR_STATUS_NORMAL;
5165	case REGULATOR_MODE_IDLE:
5166		return REGULATOR_STATUS_IDLE;
5167	case REGULATOR_MODE_STANDBY:
5168		return REGULATOR_STATUS_STANDBY;
5169	default:
5170		return REGULATOR_STATUS_UNDEFINED;
5171	}
5172}
5173EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5174
5175static struct attribute *regulator_dev_attrs[] = {
5176	&dev_attr_name.attr,
5177	&dev_attr_num_users.attr,
5178	&dev_attr_type.attr,
5179	&dev_attr_microvolts.attr,
5180	&dev_attr_microamps.attr,
5181	&dev_attr_opmode.attr,
5182	&dev_attr_state.attr,
5183	&dev_attr_status.attr,
5184	&dev_attr_bypass.attr,
5185	&dev_attr_requested_microamps.attr,
5186	&dev_attr_min_microvolts.attr,
5187	&dev_attr_max_microvolts.attr,
5188	&dev_attr_min_microamps.attr,
5189	&dev_attr_max_microamps.attr,
5190	&dev_attr_under_voltage.attr,
5191	&dev_attr_over_current.attr,
5192	&dev_attr_regulation_out.attr,
5193	&dev_attr_fail.attr,
5194	&dev_attr_over_temp.attr,
5195	&dev_attr_under_voltage_warn.attr,
5196	&dev_attr_over_current_warn.attr,
5197	&dev_attr_over_voltage_warn.attr,
5198	&dev_attr_over_temp_warn.attr,
5199	&dev_attr_suspend_standby_state.attr,
5200	&dev_attr_suspend_mem_state.attr,
5201	&dev_attr_suspend_disk_state.attr,
5202	&dev_attr_suspend_standby_microvolts.attr,
5203	&dev_attr_suspend_mem_microvolts.attr,
5204	&dev_attr_suspend_disk_microvolts.attr,
5205	&dev_attr_suspend_standby_mode.attr,
5206	&dev_attr_suspend_mem_mode.attr,
5207	&dev_attr_suspend_disk_mode.attr,
5208	NULL
5209};
5210
5211/*
5212 * To avoid cluttering sysfs (and memory) with useless state, only
5213 * create attributes that can be meaningfully displayed.
5214 */
5215static umode_t regulator_attr_is_visible(struct kobject *kobj,
5216					 struct attribute *attr, int idx)
5217{
5218	struct device *dev = kobj_to_dev(kobj);
5219	struct regulator_dev *rdev = dev_to_rdev(dev);
5220	const struct regulator_ops *ops = rdev->desc->ops;
5221	umode_t mode = attr->mode;
5222
5223	/* these three are always present */
5224	if (attr == &dev_attr_name.attr ||
5225	    attr == &dev_attr_num_users.attr ||
5226	    attr == &dev_attr_type.attr)
5227		return mode;
5228
5229	/* some attributes need specific methods to be displayed */
5230	if (attr == &dev_attr_microvolts.attr) {
5231		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5232		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5233		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5234		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5235			return mode;
5236		return 0;
5237	}
5238
5239	if (attr == &dev_attr_microamps.attr)
5240		return ops->get_current_limit ? mode : 0;
5241
5242	if (attr == &dev_attr_opmode.attr)
5243		return ops->get_mode ? mode : 0;
5244
5245	if (attr == &dev_attr_state.attr)
5246		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5247
5248	if (attr == &dev_attr_status.attr)
5249		return ops->get_status ? mode : 0;
5250
5251	if (attr == &dev_attr_bypass.attr)
5252		return ops->get_bypass ? mode : 0;
5253
5254	if (attr == &dev_attr_under_voltage.attr ||
5255	    attr == &dev_attr_over_current.attr ||
5256	    attr == &dev_attr_regulation_out.attr ||
5257	    attr == &dev_attr_fail.attr ||
5258	    attr == &dev_attr_over_temp.attr ||
5259	    attr == &dev_attr_under_voltage_warn.attr ||
5260	    attr == &dev_attr_over_current_warn.attr ||
5261	    attr == &dev_attr_over_voltage_warn.attr ||
5262	    attr == &dev_attr_over_temp_warn.attr)
5263		return ops->get_error_flags ? mode : 0;
5264
5265	/* constraints need specific supporting methods */
5266	if (attr == &dev_attr_min_microvolts.attr ||
5267	    attr == &dev_attr_max_microvolts.attr)
5268		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5269
5270	if (attr == &dev_attr_min_microamps.attr ||
5271	    attr == &dev_attr_max_microamps.attr)
5272		return ops->set_current_limit ? mode : 0;
5273
5274	if (attr == &dev_attr_suspend_standby_state.attr ||
5275	    attr == &dev_attr_suspend_mem_state.attr ||
5276	    attr == &dev_attr_suspend_disk_state.attr)
5277		return mode;
5278
5279	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5280	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5281	    attr == &dev_attr_suspend_disk_microvolts.attr)
5282		return ops->set_suspend_voltage ? mode : 0;
5283
5284	if (attr == &dev_attr_suspend_standby_mode.attr ||
5285	    attr == &dev_attr_suspend_mem_mode.attr ||
5286	    attr == &dev_attr_suspend_disk_mode.attr)
5287		return ops->set_suspend_mode ? mode : 0;
5288
5289	return mode;
5290}
5291
5292static const struct attribute_group regulator_dev_group = {
5293	.attrs = regulator_dev_attrs,
5294	.is_visible = regulator_attr_is_visible,
5295};
5296
5297static const struct attribute_group *regulator_dev_groups[] = {
5298	&regulator_dev_group,
5299	NULL
5300};
5301
5302static void regulator_dev_release(struct device *dev)
5303{
5304	struct regulator_dev *rdev = dev_get_drvdata(dev);
5305
5306	debugfs_remove_recursive(rdev->debugfs);
5307	kfree(rdev->constraints);
5308	of_node_put(rdev->dev.of_node);
5309	kfree(rdev);
5310}
5311
5312static void rdev_init_debugfs(struct regulator_dev *rdev)
5313{
5314	struct device *parent = rdev->dev.parent;
5315	const char *rname = rdev_get_name(rdev);
5316	char name[NAME_MAX];
5317
5318	/* Avoid duplicate debugfs directory names */
5319	if (parent && rname == rdev->desc->name) {
5320		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5321			 rname);
5322		rname = name;
5323	}
5324
5325	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5326	if (IS_ERR(rdev->debugfs))
5327		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5328
5329	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5330			   &rdev->use_count);
5331	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5332			   &rdev->open_count);
5333	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5334			   &rdev->bypass_count);
5335}
5336
5337static int regulator_register_resolve_supply(struct device *dev, void *data)
5338{
5339	struct regulator_dev *rdev = dev_to_rdev(dev);
5340
5341	if (regulator_resolve_supply(rdev))
5342		rdev_dbg(rdev, "unable to resolve supply\n");
5343
5344	return 0;
5345}
5346
5347int regulator_coupler_register(struct regulator_coupler *coupler)
5348{
5349	mutex_lock(&regulator_list_mutex);
5350	list_add_tail(&coupler->list, &regulator_coupler_list);
5351	mutex_unlock(&regulator_list_mutex);
5352
5353	return 0;
5354}
5355
5356static struct regulator_coupler *
5357regulator_find_coupler(struct regulator_dev *rdev)
5358{
5359	struct regulator_coupler *coupler;
5360	int err;
5361
5362	/*
5363	 * Note that regulators are appended to the list and the generic
5364	 * coupler is registered first, hence it will be attached at last
5365	 * if nobody cared.
5366	 */
5367	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5368		err = coupler->attach_regulator(coupler, rdev);
5369		if (!err) {
5370			if (!coupler->balance_voltage &&
5371			    rdev->coupling_desc.n_coupled > 2)
5372				goto err_unsupported;
5373
5374			return coupler;
5375		}
5376
5377		if (err < 0)
5378			return ERR_PTR(err);
5379
5380		if (err == 1)
5381			continue;
5382
5383		break;
5384	}
5385
5386	return ERR_PTR(-EINVAL);
5387
5388err_unsupported:
5389	if (coupler->detach_regulator)
5390		coupler->detach_regulator(coupler, rdev);
5391
5392	rdev_err(rdev,
5393		"Voltage balancing for multiple regulator couples is unimplemented\n");
5394
5395	return ERR_PTR(-EPERM);
5396}
5397
5398static void regulator_resolve_coupling(struct regulator_dev *rdev)
5399{
5400	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5401	struct coupling_desc *c_desc = &rdev->coupling_desc;
5402	int n_coupled = c_desc->n_coupled;
5403	struct regulator_dev *c_rdev;
5404	int i;
5405
5406	for (i = 1; i < n_coupled; i++) {
5407		/* already resolved */
5408		if (c_desc->coupled_rdevs[i])
5409			continue;
5410
5411		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5412
5413		if (!c_rdev)
5414			continue;
5415
5416		if (c_rdev->coupling_desc.coupler != coupler) {
5417			rdev_err(rdev, "coupler mismatch with %s\n",
5418				 rdev_get_name(c_rdev));
5419			return;
5420		}
5421
5422		c_desc->coupled_rdevs[i] = c_rdev;
5423		c_desc->n_resolved++;
5424
5425		regulator_resolve_coupling(c_rdev);
5426	}
5427}
5428
5429static void regulator_remove_coupling(struct regulator_dev *rdev)
5430{
5431	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5432	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5433	struct regulator_dev *__c_rdev, *c_rdev;
5434	unsigned int __n_coupled, n_coupled;
5435	int i, k;
5436	int err;
5437
5438	n_coupled = c_desc->n_coupled;
5439
5440	for (i = 1; i < n_coupled; i++) {
5441		c_rdev = c_desc->coupled_rdevs[i];
5442
5443		if (!c_rdev)
5444			continue;
5445
5446		regulator_lock(c_rdev);
5447
5448		__c_desc = &c_rdev->coupling_desc;
5449		__n_coupled = __c_desc->n_coupled;
5450
5451		for (k = 1; k < __n_coupled; k++) {
5452			__c_rdev = __c_desc->coupled_rdevs[k];
5453
5454			if (__c_rdev == rdev) {
5455				__c_desc->coupled_rdevs[k] = NULL;
5456				__c_desc->n_resolved--;
5457				break;
5458			}
5459		}
5460
5461		regulator_unlock(c_rdev);
5462
5463		c_desc->coupled_rdevs[i] = NULL;
5464		c_desc->n_resolved--;
5465	}
5466
5467	if (coupler && coupler->detach_regulator) {
5468		err = coupler->detach_regulator(coupler, rdev);
5469		if (err)
5470			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5471				 ERR_PTR(err));
5472	}
5473
5474	kfree(rdev->coupling_desc.coupled_rdevs);
5475	rdev->coupling_desc.coupled_rdevs = NULL;
5476}
5477
5478static int regulator_init_coupling(struct regulator_dev *rdev)
5479{
5480	struct regulator_dev **coupled;
5481	int err, n_phandles;
5482
5483	if (!IS_ENABLED(CONFIG_OF))
5484		n_phandles = 0;
5485	else
5486		n_phandles = of_get_n_coupled(rdev);
5487
5488	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5489	if (!coupled)
5490		return -ENOMEM;
5491
5492	rdev->coupling_desc.coupled_rdevs = coupled;
5493
5494	/*
5495	 * Every regulator should always have coupling descriptor filled with
5496	 * at least pointer to itself.
5497	 */
5498	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5499	rdev->coupling_desc.n_coupled = n_phandles + 1;
5500	rdev->coupling_desc.n_resolved++;
5501
5502	/* regulator isn't coupled */
5503	if (n_phandles == 0)
5504		return 0;
5505
5506	if (!of_check_coupling_data(rdev))
5507		return -EPERM;
5508
5509	mutex_lock(&regulator_list_mutex);
5510	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5511	mutex_unlock(&regulator_list_mutex);
5512
5513	if (IS_ERR(rdev->coupling_desc.coupler)) {
5514		err = PTR_ERR(rdev->coupling_desc.coupler);
5515		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5516		return err;
5517	}
5518
5519	return 0;
5520}
5521
5522static int generic_coupler_attach(struct regulator_coupler *coupler,
5523				  struct regulator_dev *rdev)
5524{
5525	if (rdev->coupling_desc.n_coupled > 2) {
5526		rdev_err(rdev,
5527			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5528		return -EPERM;
5529	}
5530
5531	if (!rdev->constraints->always_on) {
5532		rdev_err(rdev,
5533			 "Coupling of a non always-on regulator is unimplemented\n");
5534		return -ENOTSUPP;
5535	}
5536
5537	return 0;
5538}
5539
5540static struct regulator_coupler generic_regulator_coupler = {
5541	.attach_regulator = generic_coupler_attach,
5542};
5543
5544/**
5545 * regulator_register - register regulator
5546 * @dev: the device that drive the regulator
5547 * @regulator_desc: regulator to register
5548 * @cfg: runtime configuration for regulator
5549 *
5550 * Called by regulator drivers to register a regulator.
5551 * Returns a valid pointer to struct regulator_dev on success
5552 * or an ERR_PTR() on error.
5553 */
5554struct regulator_dev *
5555regulator_register(struct device *dev,
5556		   const struct regulator_desc *regulator_desc,
5557		   const struct regulator_config *cfg)
5558{
5559	const struct regulator_init_data *init_data;
5560	struct regulator_config *config = NULL;
5561	static atomic_t regulator_no = ATOMIC_INIT(-1);
5562	struct regulator_dev *rdev;
5563	bool dangling_cfg_gpiod = false;
5564	bool dangling_of_gpiod = false;
5565	int ret, i;
5566	bool resolved_early = false;
5567
5568	if (cfg == NULL)
5569		return ERR_PTR(-EINVAL);
5570	if (cfg->ena_gpiod)
5571		dangling_cfg_gpiod = true;
5572	if (regulator_desc == NULL) {
5573		ret = -EINVAL;
5574		goto rinse;
5575	}
5576
5577	WARN_ON(!dev || !cfg->dev);
5578
5579	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5580		ret = -EINVAL;
5581		goto rinse;
5582	}
5583
5584	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5585	    regulator_desc->type != REGULATOR_CURRENT) {
5586		ret = -EINVAL;
5587		goto rinse;
5588	}
5589
5590	/* Only one of each should be implemented */
5591	WARN_ON(regulator_desc->ops->get_voltage &&
5592		regulator_desc->ops->get_voltage_sel);
5593	WARN_ON(regulator_desc->ops->set_voltage &&
5594		regulator_desc->ops->set_voltage_sel);
5595
5596	/* If we're using selectors we must implement list_voltage. */
5597	if (regulator_desc->ops->get_voltage_sel &&
5598	    !regulator_desc->ops->list_voltage) {
5599		ret = -EINVAL;
5600		goto rinse;
5601	}
5602	if (regulator_desc->ops->set_voltage_sel &&
5603	    !regulator_desc->ops->list_voltage) {
5604		ret = -EINVAL;
5605		goto rinse;
5606	}
5607
5608	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5609	if (rdev == NULL) {
5610		ret = -ENOMEM;
5611		goto rinse;
5612	}
5613	device_initialize(&rdev->dev);
5614	dev_set_drvdata(&rdev->dev, rdev);
5615	rdev->dev.class = &regulator_class;
5616	spin_lock_init(&rdev->err_lock);
5617
5618	/*
5619	 * Duplicate the config so the driver could override it after
5620	 * parsing init data.
5621	 */
5622	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5623	if (config == NULL) {
5624		ret = -ENOMEM;
5625		goto clean;
5626	}
5627
5628	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5629					       &rdev->dev.of_node);
5630
5631	/*
5632	 * Sometimes not all resources are probed already so we need to take
5633	 * that into account. This happens most the time if the ena_gpiod comes
5634	 * from a gpio extender or something else.
5635	 */
5636	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5637		ret = -EPROBE_DEFER;
5638		goto clean;
5639	}
5640
5641	/*
5642	 * We need to keep track of any GPIO descriptor coming from the
5643	 * device tree until we have handled it over to the core. If the
5644	 * config that was passed in to this function DOES NOT contain
5645	 * a descriptor, and the config after this call DOES contain
5646	 * a descriptor, we definitely got one from parsing the device
5647	 * tree.
5648	 */
5649	if (!cfg->ena_gpiod && config->ena_gpiod)
5650		dangling_of_gpiod = true;
5651	if (!init_data) {
5652		init_data = config->init_data;
5653		rdev->dev.of_node = of_node_get(config->of_node);
5654	}
5655
5656	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5657	rdev->reg_data = config->driver_data;
5658	rdev->owner = regulator_desc->owner;
5659	rdev->desc = regulator_desc;
5660	if (config->regmap)
5661		rdev->regmap = config->regmap;
5662	else if (dev_get_regmap(dev, NULL))
5663		rdev->regmap = dev_get_regmap(dev, NULL);
5664	else if (dev->parent)
5665		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5666	INIT_LIST_HEAD(&rdev->consumer_list);
5667	INIT_LIST_HEAD(&rdev->list);
5668	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5669	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5670
5671	if (init_data && init_data->supply_regulator)
5672		rdev->supply_name = init_data->supply_regulator;
5673	else if (regulator_desc->supply_name)
5674		rdev->supply_name = regulator_desc->supply_name;
5675
5676	/* register with sysfs */
5677	rdev->dev.parent = config->dev;
5678	dev_set_name(&rdev->dev, "regulator.%lu",
5679		    (unsigned long) atomic_inc_return(&regulator_no));
5680
5681	/* set regulator constraints */
5682	if (init_data)
5683		rdev->constraints = kmemdup(&init_data->constraints,
5684					    sizeof(*rdev->constraints),
5685					    GFP_KERNEL);
5686	else
5687		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5688					    GFP_KERNEL);
5689	if (!rdev->constraints) {
5690		ret = -ENOMEM;
5691		goto wash;
5692	}
5693
5694	if ((rdev->supply_name && !rdev->supply) &&
5695		(rdev->constraints->always_on ||
5696		 rdev->constraints->boot_on)) {
5697		ret = regulator_resolve_supply(rdev);
5698		if (ret)
5699			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5700					 ERR_PTR(ret));
5701
5702		resolved_early = true;
5703	}
5704
5705	/* perform any regulator specific init */
5706	if (init_data && init_data->regulator_init) {
5707		ret = init_data->regulator_init(rdev->reg_data);
5708		if (ret < 0)
5709			goto wash;
5710	}
5711
5712	if (config->ena_gpiod) {
5713		ret = regulator_ena_gpio_request(rdev, config);
5714		if (ret != 0) {
5715			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5716				 ERR_PTR(ret));
5717			goto wash;
5718		}
5719		/* The regulator core took over the GPIO descriptor */
5720		dangling_cfg_gpiod = false;
5721		dangling_of_gpiod = false;
5722	}
5723
5724	ret = set_machine_constraints(rdev);
5725	if (ret == -EPROBE_DEFER && !resolved_early) {
5726		/* Regulator might be in bypass mode and so needs its supply
5727		 * to set the constraints
5728		 */
5729		/* FIXME: this currently triggers a chicken-and-egg problem
5730		 * when creating -SUPPLY symlink in sysfs to a regulator
5731		 * that is just being created
5732		 */
5733		rdev_dbg(rdev, "will resolve supply early: %s\n",
5734			 rdev->supply_name);
5735		ret = regulator_resolve_supply(rdev);
5736		if (!ret)
5737			ret = set_machine_constraints(rdev);
5738		else
5739			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5740				 ERR_PTR(ret));
5741	}
5742	if (ret < 0)
5743		goto wash;
5744
5745	ret = regulator_init_coupling(rdev);
5746	if (ret < 0)
5747		goto wash;
5748
5749	/* add consumers devices */
5750	if (init_data) {
5751		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5752			ret = set_consumer_device_supply(rdev,
5753				init_data->consumer_supplies[i].dev_name,
5754				init_data->consumer_supplies[i].supply);
5755			if (ret < 0) {
5756				dev_err(dev, "Failed to set supply %s\n",
5757					init_data->consumer_supplies[i].supply);
5758				goto unset_supplies;
5759			}
5760		}
5761	}
5762
5763	if (!rdev->desc->ops->get_voltage &&
5764	    !rdev->desc->ops->list_voltage &&
5765	    !rdev->desc->fixed_uV)
5766		rdev->is_switch = true;
5767
5768	ret = device_add(&rdev->dev);
5769	if (ret != 0)
5770		goto unset_supplies;
5771
5772	rdev_init_debugfs(rdev);
5773
5774	/* try to resolve regulators coupling since a new one was registered */
5775	mutex_lock(&regulator_list_mutex);
5776	regulator_resolve_coupling(rdev);
5777	mutex_unlock(&regulator_list_mutex);
5778
5779	/* try to resolve regulators supply since a new one was registered */
5780	class_for_each_device(&regulator_class, NULL, NULL,
5781			      regulator_register_resolve_supply);
5782	kfree(config);
5783	return rdev;
5784
5785unset_supplies:
5786	mutex_lock(&regulator_list_mutex);
5787	unset_regulator_supplies(rdev);
5788	regulator_remove_coupling(rdev);
5789	mutex_unlock(&regulator_list_mutex);
5790wash:
5791	regulator_put(rdev->supply);
5792	kfree(rdev->coupling_desc.coupled_rdevs);
5793	mutex_lock(&regulator_list_mutex);
5794	regulator_ena_gpio_free(rdev);
5795	mutex_unlock(&regulator_list_mutex);
5796clean:
5797	if (dangling_of_gpiod)
5798		gpiod_put(config->ena_gpiod);
5799	kfree(config);
5800	put_device(&rdev->dev);
5801rinse:
5802	if (dangling_cfg_gpiod)
5803		gpiod_put(cfg->ena_gpiod);
5804	return ERR_PTR(ret);
5805}
5806EXPORT_SYMBOL_GPL(regulator_register);
5807
5808/**
5809 * regulator_unregister - unregister regulator
5810 * @rdev: regulator to unregister
5811 *
5812 * Called by regulator drivers to unregister a regulator.
5813 */
5814void regulator_unregister(struct regulator_dev *rdev)
5815{
5816	if (rdev == NULL)
5817		return;
5818
5819	if (rdev->supply) {
5820		while (rdev->use_count--)
5821			regulator_disable(rdev->supply);
5822		regulator_put(rdev->supply);
5823	}
5824
5825	flush_work(&rdev->disable_work.work);
5826
5827	mutex_lock(&regulator_list_mutex);
5828
5829	WARN_ON(rdev->open_count);
5830	regulator_remove_coupling(rdev);
5831	unset_regulator_supplies(rdev);
5832	list_del(&rdev->list);
5833	regulator_ena_gpio_free(rdev);
5834	device_unregister(&rdev->dev);
5835
5836	mutex_unlock(&regulator_list_mutex);
5837}
5838EXPORT_SYMBOL_GPL(regulator_unregister);
5839
5840#ifdef CONFIG_SUSPEND
5841/**
5842 * regulator_suspend - prepare regulators for system wide suspend
5843 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5844 *
5845 * Configure each regulator with it's suspend operating parameters for state.
5846 */
5847static int regulator_suspend(struct device *dev)
5848{
5849	struct regulator_dev *rdev = dev_to_rdev(dev);
5850	suspend_state_t state = pm_suspend_target_state;
5851	int ret;
5852	const struct regulator_state *rstate;
5853
5854	rstate = regulator_get_suspend_state_check(rdev, state);
5855	if (!rstate)
5856		return 0;
5857
5858	regulator_lock(rdev);
5859	ret = __suspend_set_state(rdev, rstate);
5860	regulator_unlock(rdev);
5861
5862	return ret;
5863}
5864
5865static int regulator_resume(struct device *dev)
5866{
5867	suspend_state_t state = pm_suspend_target_state;
5868	struct regulator_dev *rdev = dev_to_rdev(dev);
5869	struct regulator_state *rstate;
5870	int ret = 0;
5871
5872	rstate = regulator_get_suspend_state(rdev, state);
5873	if (rstate == NULL)
5874		return 0;
5875
5876	/* Avoid grabbing the lock if we don't need to */
5877	if (!rdev->desc->ops->resume)
5878		return 0;
5879
5880	regulator_lock(rdev);
5881
5882	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5883	    rstate->enabled == DISABLE_IN_SUSPEND)
5884		ret = rdev->desc->ops->resume(rdev);
5885
5886	regulator_unlock(rdev);
5887
5888	return ret;
5889}
5890#else /* !CONFIG_SUSPEND */
5891
5892#define regulator_suspend	NULL
5893#define regulator_resume	NULL
5894
5895#endif /* !CONFIG_SUSPEND */
5896
5897#ifdef CONFIG_PM
5898static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5899	.suspend	= regulator_suspend,
5900	.resume		= regulator_resume,
5901};
5902#endif
5903
5904const struct class regulator_class = {
5905	.name = "regulator",
5906	.dev_release = regulator_dev_release,
5907	.dev_groups = regulator_dev_groups,
5908#ifdef CONFIG_PM
5909	.pm = &regulator_pm_ops,
5910#endif
5911};
5912/**
5913 * regulator_has_full_constraints - the system has fully specified constraints
5914 *
5915 * Calling this function will cause the regulator API to disable all
5916 * regulators which have a zero use count and don't have an always_on
5917 * constraint in a late_initcall.
5918 *
5919 * The intention is that this will become the default behaviour in a
5920 * future kernel release so users are encouraged to use this facility
5921 * now.
5922 */
5923void regulator_has_full_constraints(void)
5924{
5925	has_full_constraints = 1;
5926}
5927EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5928
5929/**
5930 * rdev_get_drvdata - get rdev regulator driver data
5931 * @rdev: regulator
5932 *
5933 * Get rdev regulator driver private data. This call can be used in the
5934 * regulator driver context.
5935 */
5936void *rdev_get_drvdata(struct regulator_dev *rdev)
5937{
5938	return rdev->reg_data;
5939}
5940EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5941
5942/**
5943 * regulator_get_drvdata - get regulator driver data
5944 * @regulator: regulator
5945 *
5946 * Get regulator driver private data. This call can be used in the consumer
5947 * driver context when non API regulator specific functions need to be called.
5948 */
5949void *regulator_get_drvdata(struct regulator *regulator)
5950{
5951	return regulator->rdev->reg_data;
5952}
5953EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5954
5955/**
5956 * regulator_set_drvdata - set regulator driver data
5957 * @regulator: regulator
5958 * @data: data
5959 */
5960void regulator_set_drvdata(struct regulator *regulator, void *data)
5961{
5962	regulator->rdev->reg_data = data;
5963}
5964EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5965
5966/**
5967 * rdev_get_id - get regulator ID
5968 * @rdev: regulator
5969 */
5970int rdev_get_id(struct regulator_dev *rdev)
5971{
5972	return rdev->desc->id;
5973}
5974EXPORT_SYMBOL_GPL(rdev_get_id);
5975
5976struct device *rdev_get_dev(struct regulator_dev *rdev)
5977{
5978	return &rdev->dev;
5979}
5980EXPORT_SYMBOL_GPL(rdev_get_dev);
5981
5982struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5983{
5984	return rdev->regmap;
5985}
5986EXPORT_SYMBOL_GPL(rdev_get_regmap);
5987
5988void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5989{
5990	return reg_init_data->driver_data;
5991}
5992EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5993
5994#ifdef CONFIG_DEBUG_FS
5995static int supply_map_show(struct seq_file *sf, void *data)
5996{
5997	struct regulator_map *map;
5998
5999	list_for_each_entry(map, &regulator_map_list, list) {
6000		seq_printf(sf, "%s -> %s.%s\n",
6001				rdev_get_name(map->regulator), map->dev_name,
6002				map->supply);
6003	}
6004
6005	return 0;
6006}
6007DEFINE_SHOW_ATTRIBUTE(supply_map);
6008
6009struct summary_data {
6010	struct seq_file *s;
6011	struct regulator_dev *parent;
6012	int level;
6013};
6014
6015static void regulator_summary_show_subtree(struct seq_file *s,
6016					   struct regulator_dev *rdev,
6017					   int level);
6018
6019static int regulator_summary_show_children(struct device *dev, void *data)
6020{
6021	struct regulator_dev *rdev = dev_to_rdev(dev);
6022	struct summary_data *summary_data = data;
6023
6024	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6025		regulator_summary_show_subtree(summary_data->s, rdev,
6026					       summary_data->level + 1);
6027
6028	return 0;
6029}
6030
6031static void regulator_summary_show_subtree(struct seq_file *s,
6032					   struct regulator_dev *rdev,
6033					   int level)
6034{
6035	struct regulation_constraints *c;
6036	struct regulator *consumer;
6037	struct summary_data summary_data;
6038	unsigned int opmode;
6039
6040	if (!rdev)
6041		return;
6042
6043	opmode = _regulator_get_mode_unlocked(rdev);
6044	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6045		   level * 3 + 1, "",
6046		   30 - level * 3, rdev_get_name(rdev),
6047		   rdev->use_count, rdev->open_count, rdev->bypass_count,
6048		   regulator_opmode_to_str(opmode));
6049
6050	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6051	seq_printf(s, "%5dmA ",
6052		   _regulator_get_current_limit_unlocked(rdev) / 1000);
6053
6054	c = rdev->constraints;
6055	if (c) {
6056		switch (rdev->desc->type) {
6057		case REGULATOR_VOLTAGE:
6058			seq_printf(s, "%5dmV %5dmV ",
6059				   c->min_uV / 1000, c->max_uV / 1000);
6060			break;
6061		case REGULATOR_CURRENT:
6062			seq_printf(s, "%5dmA %5dmA ",
6063				   c->min_uA / 1000, c->max_uA / 1000);
6064			break;
6065		}
6066	}
6067
6068	seq_puts(s, "\n");
6069
6070	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6071		if (consumer->dev && consumer->dev->class == &regulator_class)
6072			continue;
6073
6074		seq_printf(s, "%*s%-*s ",
6075			   (level + 1) * 3 + 1, "",
6076			   30 - (level + 1) * 3,
6077			   consumer->supply_name ? consumer->supply_name :
6078			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6079
6080		switch (rdev->desc->type) {
6081		case REGULATOR_VOLTAGE:
6082			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6083				   consumer->enable_count,
6084				   consumer->uA_load / 1000,
6085				   consumer->uA_load && !consumer->enable_count ?
6086				   '*' : ' ',
6087				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6088				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6089			break;
6090		case REGULATOR_CURRENT:
6091			break;
6092		}
6093
6094		seq_puts(s, "\n");
6095	}
6096
6097	summary_data.s = s;
6098	summary_data.level = level;
6099	summary_data.parent = rdev;
6100
6101	class_for_each_device(&regulator_class, NULL, &summary_data,
6102			      regulator_summary_show_children);
6103}
6104
6105struct summary_lock_data {
6106	struct ww_acquire_ctx *ww_ctx;
6107	struct regulator_dev **new_contended_rdev;
6108	struct regulator_dev **old_contended_rdev;
6109};
6110
6111static int regulator_summary_lock_one(struct device *dev, void *data)
6112{
6113	struct regulator_dev *rdev = dev_to_rdev(dev);
6114	struct summary_lock_data *lock_data = data;
6115	int ret = 0;
6116
6117	if (rdev != *lock_data->old_contended_rdev) {
6118		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6119
6120		if (ret == -EDEADLK)
6121			*lock_data->new_contended_rdev = rdev;
6122		else
6123			WARN_ON_ONCE(ret);
6124	} else {
6125		*lock_data->old_contended_rdev = NULL;
6126	}
6127
6128	return ret;
6129}
6130
6131static int regulator_summary_unlock_one(struct device *dev, void *data)
6132{
6133	struct regulator_dev *rdev = dev_to_rdev(dev);
6134	struct summary_lock_data *lock_data = data;
6135
6136	if (lock_data) {
6137		if (rdev == *lock_data->new_contended_rdev)
6138			return -EDEADLK;
6139	}
6140
6141	regulator_unlock(rdev);
6142
6143	return 0;
6144}
6145
6146static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6147				      struct regulator_dev **new_contended_rdev,
6148				      struct regulator_dev **old_contended_rdev)
6149{
6150	struct summary_lock_data lock_data;
6151	int ret;
6152
6153	lock_data.ww_ctx = ww_ctx;
6154	lock_data.new_contended_rdev = new_contended_rdev;
6155	lock_data.old_contended_rdev = old_contended_rdev;
6156
6157	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6158				    regulator_summary_lock_one);
6159	if (ret)
6160		class_for_each_device(&regulator_class, NULL, &lock_data,
6161				      regulator_summary_unlock_one);
6162
6163	return ret;
6164}
6165
6166static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6167{
6168	struct regulator_dev *new_contended_rdev = NULL;
6169	struct regulator_dev *old_contended_rdev = NULL;
6170	int err;
6171
6172	mutex_lock(&regulator_list_mutex);
6173
6174	ww_acquire_init(ww_ctx, &regulator_ww_class);
6175
6176	do {
6177		if (new_contended_rdev) {
6178			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6179			old_contended_rdev = new_contended_rdev;
6180			old_contended_rdev->ref_cnt++;
6181			old_contended_rdev->mutex_owner = current;
6182		}
6183
6184		err = regulator_summary_lock_all(ww_ctx,
6185						 &new_contended_rdev,
6186						 &old_contended_rdev);
6187
6188		if (old_contended_rdev)
6189			regulator_unlock(old_contended_rdev);
6190
6191	} while (err == -EDEADLK);
6192
6193	ww_acquire_done(ww_ctx);
6194}
6195
6196static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6197{
6198	class_for_each_device(&regulator_class, NULL, NULL,
6199			      regulator_summary_unlock_one);
6200	ww_acquire_fini(ww_ctx);
6201
6202	mutex_unlock(&regulator_list_mutex);
6203}
6204
6205static int regulator_summary_show_roots(struct device *dev, void *data)
6206{
6207	struct regulator_dev *rdev = dev_to_rdev(dev);
6208	struct seq_file *s = data;
6209
6210	if (!rdev->supply)
6211		regulator_summary_show_subtree(s, rdev, 0);
6212
6213	return 0;
6214}
6215
6216static int regulator_summary_show(struct seq_file *s, void *data)
6217{
6218	struct ww_acquire_ctx ww_ctx;
6219
6220	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6221	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6222
6223	regulator_summary_lock(&ww_ctx);
6224
6225	class_for_each_device(&regulator_class, NULL, s,
6226			      regulator_summary_show_roots);
6227
6228	regulator_summary_unlock(&ww_ctx);
6229
6230	return 0;
6231}
6232DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6233#endif /* CONFIG_DEBUG_FS */
6234
6235static int __init regulator_init(void)
6236{
6237	int ret;
6238
6239	ret = class_register(&regulator_class);
6240
6241	debugfs_root = debugfs_create_dir("regulator", NULL);
6242	if (IS_ERR(debugfs_root))
6243		pr_debug("regulator: Failed to create debugfs directory\n");
6244
6245#ifdef CONFIG_DEBUG_FS
6246	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6247			    &supply_map_fops);
6248
6249	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6250			    NULL, &regulator_summary_fops);
6251#endif
6252	regulator_dummy_init();
6253
6254	regulator_coupler_register(&generic_regulator_coupler);
6255
6256	return ret;
6257}
6258
6259/* init early to allow our consumers to complete system booting */
6260core_initcall(regulator_init);
6261
6262static int regulator_late_cleanup(struct device *dev, void *data)
6263{
6264	struct regulator_dev *rdev = dev_to_rdev(dev);
6265	struct regulation_constraints *c = rdev->constraints;
6266	int ret;
6267
6268	if (c && c->always_on)
6269		return 0;
6270
6271	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6272		return 0;
6273
6274	regulator_lock(rdev);
6275
6276	if (rdev->use_count)
6277		goto unlock;
6278
6279	/* If reading the status failed, assume that it's off. */
6280	if (_regulator_is_enabled(rdev) <= 0)
6281		goto unlock;
6282
6283	if (have_full_constraints()) {
6284		/* We log since this may kill the system if it goes
6285		 * wrong.
6286		 */
6287		rdev_info(rdev, "disabling\n");
6288		ret = _regulator_do_disable(rdev);
6289		if (ret != 0)
6290			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6291	} else {
6292		/* The intention is that in future we will
6293		 * assume that full constraints are provided
6294		 * so warn even if we aren't going to do
6295		 * anything here.
6296		 */
6297		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6298	}
6299
6300unlock:
6301	regulator_unlock(rdev);
6302
6303	return 0;
6304}
6305
6306static bool regulator_ignore_unused;
6307static int __init regulator_ignore_unused_setup(char *__unused)
6308{
6309	regulator_ignore_unused = true;
6310	return 1;
6311}
6312__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6313
6314static void regulator_init_complete_work_function(struct work_struct *work)
6315{
6316	/*
6317	 * Regulators may had failed to resolve their input supplies
6318	 * when were registered, either because the input supply was
6319	 * not registered yet or because its parent device was not
6320	 * bound yet. So attempt to resolve the input supplies for
6321	 * pending regulators before trying to disable unused ones.
6322	 */
6323	class_for_each_device(&regulator_class, NULL, NULL,
6324			      regulator_register_resolve_supply);
6325
6326	/*
6327	 * For debugging purposes, it may be useful to prevent unused
6328	 * regulators from being disabled.
6329	 */
6330	if (regulator_ignore_unused) {
6331		pr_warn("regulator: Not disabling unused regulators\n");
6332		return;
6333	}
6334
6335	/* If we have a full configuration then disable any regulators
6336	 * we have permission to change the status for and which are
6337	 * not in use or always_on.  This is effectively the default
6338	 * for DT and ACPI as they have full constraints.
6339	 */
6340	class_for_each_device(&regulator_class, NULL, NULL,
6341			      regulator_late_cleanup);
6342}
6343
6344static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6345			    regulator_init_complete_work_function);
6346
6347static int __init regulator_init_complete(void)
6348{
6349	/*
6350	 * Since DT doesn't provide an idiomatic mechanism for
6351	 * enabling full constraints and since it's much more natural
6352	 * with DT to provide them just assume that a DT enabled
6353	 * system has full constraints.
6354	 */
6355	if (of_have_populated_dt())
6356		has_full_constraints = true;
6357
6358	/*
6359	 * We punt completion for an arbitrary amount of time since
6360	 * systems like distros will load many drivers from userspace
6361	 * so consumers might not always be ready yet, this is
6362	 * particularly an issue with laptops where this might bounce
6363	 * the display off then on.  Ideally we'd get a notification
6364	 * from userspace when this happens but we don't so just wait
6365	 * a bit and hope we waited long enough.  It'd be better if
6366	 * we'd only do this on systems that need it, and a kernel
6367	 * command line option might be useful.
6368	 */
6369	schedule_delayed_work(&regulator_init_complete_work,
6370			      msecs_to_jiffies(30000));
6371
6372	return 0;
6373}
6374late_initcall_sync(regulator_init_complete);
6375