1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) STMicroelectronics 2016
4 *
5 * Author: Gerald Baeza <gerald.baeza@st.com>
6 *
7 * Inspired by timer-stm32.c from Maxime Coquelin
8 *             pwm-atmel.c from Bo Shen
9 */
10
11#include <linux/bitfield.h>
12#include <linux/mfd/stm32-timers.h>
13#include <linux/module.h>
14#include <linux/of.h>
15#include <linux/pinctrl/consumer.h>
16#include <linux/platform_device.h>
17#include <linux/pwm.h>
18
19#define CCMR_CHANNEL_SHIFT 8
20#define CCMR_CHANNEL_MASK  0xFF
21#define MAX_BREAKINPUT 2
22
23struct stm32_breakinput {
24	u32 index;
25	u32 level;
26	u32 filter;
27};
28
29struct stm32_pwm {
30	struct mutex lock; /* protect pwm config/enable */
31	struct clk *clk;
32	struct regmap *regmap;
33	u32 max_arr;
34	bool have_complementary_output;
35	struct stm32_breakinput breakinputs[MAX_BREAKINPUT];
36	unsigned int num_breakinputs;
37	u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
38};
39
40static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
41{
42	return pwmchip_get_drvdata(chip);
43}
44
45static u32 active_channels(struct stm32_pwm *dev)
46{
47	u32 ccer;
48
49	regmap_read(dev->regmap, TIM_CCER, &ccer);
50
51	return ccer & TIM_CCER_CCXE;
52}
53
54#define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
55#define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
56#define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
57#define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
58
59/*
60 * Capture using PWM input mode:
61 *                              ___          ___
62 * TI[1, 2, 3 or 4]: ........._|   |________|
63 *                             ^0  ^1       ^2
64 *                              .   .        .
65 *                              .   .        XXXXX
66 *                              .   .   XXXXX     |
67 *                              .  XXXXX     .    |
68 *                            XXXXX .        .    |
69 * COUNTER:        ______XXXXX  .   .        .    |_XXX
70 *                 start^       .   .        .        ^stop
71 *                      .       .   .        .
72 *                      v       v   .        v
73 *                                  v
74 * CCR1/CCR3:       tx..........t0...........t2
75 * CCR2/CCR4:       tx..............t1.........
76 *
77 * DMA burst transfer:          |            |
78 *                              v            v
79 * DMA buffer:                  { t0, tx }   { t2, t1 }
80 * DMA done:                                 ^
81 *
82 * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
83 *    + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
84 * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
85 * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
86 *    + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
87 *
88 * DMA done, compute:
89 * - Period     = t2 - t0
90 * - Duty cycle = t1 - t0
91 */
92static int stm32_pwm_raw_capture(struct pwm_chip *chip, struct pwm_device *pwm,
93				 unsigned long tmo_ms, u32 *raw_prd,
94				 u32 *raw_dty)
95{
96	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
97	struct device *parent = pwmchip_parent(chip)->parent;
98	enum stm32_timers_dmas dma_id;
99	u32 ccen, ccr;
100	int ret;
101
102	/* Ensure registers have been updated, enable counter and capture */
103	regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
104	regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
105
106	/* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
107	dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
108	ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
109	ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
110	regmap_set_bits(priv->regmap, TIM_CCER, ccen);
111
112	/*
113	 * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
114	 * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
115	 * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
116	 * or { CCR3, CCR4 }, { CCR3, CCR4 }
117	 */
118	ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
119					  2, tmo_ms);
120	if (ret)
121		goto stop;
122
123	/* Period: t2 - t0 (take care of counter overflow) */
124	if (priv->capture[0] <= priv->capture[2])
125		*raw_prd = priv->capture[2] - priv->capture[0];
126	else
127		*raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
128
129	/* Duty cycle capture requires at least two capture units */
130	if (pwm->chip->npwm < 2)
131		*raw_dty = 0;
132	else if (priv->capture[0] <= priv->capture[3])
133		*raw_dty = priv->capture[3] - priv->capture[0];
134	else
135		*raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
136
137	if (*raw_dty > *raw_prd) {
138		/*
139		 * Race beetween PWM input and DMA: it may happen
140		 * falling edge triggers new capture on TI2/4 before DMA
141		 * had a chance to read CCR2/4. It means capture[1]
142		 * contains period + duty_cycle. So, subtract period.
143		 */
144		*raw_dty -= *raw_prd;
145	}
146
147stop:
148	regmap_clear_bits(priv->regmap, TIM_CCER, ccen);
149	regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
150
151	return ret;
152}
153
154static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
155			     struct pwm_capture *result, unsigned long tmo_ms)
156{
157	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
158	unsigned long long prd, div, dty;
159	unsigned long rate;
160	unsigned int psc = 0, icpsc, scale;
161	u32 raw_prd = 0, raw_dty = 0;
162	int ret = 0;
163
164	mutex_lock(&priv->lock);
165
166	if (active_channels(priv)) {
167		ret = -EBUSY;
168		goto unlock;
169	}
170
171	ret = clk_enable(priv->clk);
172	if (ret) {
173		dev_err(pwmchip_parent(chip), "failed to enable counter clock\n");
174		goto unlock;
175	}
176
177	rate = clk_get_rate(priv->clk);
178	if (!rate) {
179		ret = -EINVAL;
180		goto clk_dis;
181	}
182
183	/* prescaler: fit timeout window provided by upper layer */
184	div = (unsigned long long)rate * (unsigned long long)tmo_ms;
185	do_div(div, MSEC_PER_SEC);
186	prd = div;
187	while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
188		psc++;
189		div = prd;
190		do_div(div, psc + 1);
191	}
192	regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
193	regmap_write(priv->regmap, TIM_PSC, psc);
194
195	/* Reset input selector to its default input and disable slave mode */
196	regmap_write(priv->regmap, TIM_TISEL, 0x0);
197	regmap_write(priv->regmap, TIM_SMCR, 0x0);
198
199	/* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
200	regmap_update_bits(priv->regmap,
201			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
202			   TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
203			   TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
204			   TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
205
206	/* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
207	regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
208			   TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
209			   TIM_CCER_CC2P : TIM_CCER_CC4P);
210
211	ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty);
212	if (ret)
213		goto stop;
214
215	/*
216	 * Got a capture. Try to improve accuracy at high rates:
217	 * - decrease counter clock prescaler, scale up to max rate.
218	 * - use input prescaler, capture once every /2 /4 or /8 edges.
219	 */
220	if (raw_prd) {
221		u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
222
223		scale = max_arr / min(max_arr, raw_prd);
224	} else {
225		scale = priv->max_arr; /* bellow resolution, use max scale */
226	}
227
228	if (psc && scale > 1) {
229		/* 2nd measure with new scale */
230		psc /= scale;
231		regmap_write(priv->regmap, TIM_PSC, psc);
232		ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd,
233					    &raw_dty);
234		if (ret)
235			goto stop;
236	}
237
238	/* Compute intermediate period not to exceed timeout at low rates */
239	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
240	do_div(prd, rate);
241
242	for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
243		/* input prescaler: also keep arbitrary margin */
244		if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
245			break;
246		if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
247			break;
248	}
249
250	if (!icpsc)
251		goto done;
252
253	/* Last chance to improve period accuracy, using input prescaler */
254	regmap_update_bits(priv->regmap,
255			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
256			   TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
257			   FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
258			   FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
259
260	ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty);
261	if (ret)
262		goto stop;
263
264	if (raw_dty >= (raw_prd >> icpsc)) {
265		/*
266		 * We may fall here using input prescaler, when input
267		 * capture starts on high side (before falling edge).
268		 * Example with icpsc to capture on each 4 events:
269		 *
270		 *       start   1st capture                     2nd capture
271		 *         v     v                               v
272		 *         ___   _____   _____   _____   _____   ____
273		 * TI1..4     |__|    |__|    |__|    |__|    |__|
274		 *            v  v    .  .    .  .    .       v  v
275		 * icpsc1/3:  .  0    .  1    .  2    .  3    .  0
276		 * icpsc2/4:  0       1       2       3       0
277		 *            v  v                            v  v
278		 * CCR1/3  ......t0..............................t2
279		 * CCR2/4  ..t1..............................t1'...
280		 *               .                            .  .
281		 * Capture0:     .<----------------------------->.
282		 * Capture1:     .<-------------------------->.  .
283		 *               .                            .  .
284		 * Period:       .<------>                    .  .
285		 * Low side:                                  .<>.
286		 *
287		 * Result:
288		 * - Period = Capture0 / icpsc
289		 * - Duty = Period - Low side = Period - (Capture0 - Capture1)
290		 */
291		raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
292	}
293
294done:
295	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
296	result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
297	dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
298	result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
299stop:
300	regmap_write(priv->regmap, TIM_CCER, 0);
301	regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
302	regmap_write(priv->regmap, TIM_PSC, 0);
303clk_dis:
304	clk_disable(priv->clk);
305unlock:
306	mutex_unlock(&priv->lock);
307
308	return ret;
309}
310
311static int stm32_pwm_config(struct stm32_pwm *priv, unsigned int ch,
312			    int duty_ns, int period_ns)
313{
314	unsigned long long prd, div, dty;
315	unsigned int prescaler = 0;
316	u32 ccmr, mask, shift;
317
318	/* Period and prescaler values depends on clock rate */
319	div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
320
321	do_div(div, NSEC_PER_SEC);
322	prd = div;
323
324	while (div > priv->max_arr) {
325		prescaler++;
326		div = prd;
327		do_div(div, prescaler + 1);
328	}
329
330	prd = div;
331
332	if (prescaler > MAX_TIM_PSC)
333		return -EINVAL;
334
335	/*
336	 * All channels share the same prescaler and counter so when two
337	 * channels are active at the same time we can't change them
338	 */
339	if (active_channels(priv) & ~(1 << ch * 4)) {
340		u32 psc, arr;
341
342		regmap_read(priv->regmap, TIM_PSC, &psc);
343		regmap_read(priv->regmap, TIM_ARR, &arr);
344
345		if ((psc != prescaler) || (arr != prd - 1))
346			return -EBUSY;
347	}
348
349	regmap_write(priv->regmap, TIM_PSC, prescaler);
350	regmap_write(priv->regmap, TIM_ARR, prd - 1);
351	regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE);
352
353	/* Calculate the duty cycles */
354	dty = prd * duty_ns;
355	do_div(dty, period_ns);
356
357	regmap_write(priv->regmap, TIM_CCR1 + 4 * ch, dty);
358
359	/* Configure output mode */
360	shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
361	ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
362	mask = CCMR_CHANNEL_MASK << shift;
363
364	if (ch < 2)
365		regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
366	else
367		regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
368
369	regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE);
370
371	return 0;
372}
373
374static int stm32_pwm_set_polarity(struct stm32_pwm *priv, unsigned int ch,
375				  enum pwm_polarity polarity)
376{
377	u32 mask;
378
379	mask = TIM_CCER_CC1P << (ch * 4);
380	if (priv->have_complementary_output)
381		mask |= TIM_CCER_CC1NP << (ch * 4);
382
383	regmap_update_bits(priv->regmap, TIM_CCER, mask,
384			   polarity == PWM_POLARITY_NORMAL ? 0 : mask);
385
386	return 0;
387}
388
389static int stm32_pwm_enable(struct stm32_pwm *priv, unsigned int ch)
390{
391	u32 mask;
392	int ret;
393
394	ret = clk_enable(priv->clk);
395	if (ret)
396		return ret;
397
398	/* Enable channel */
399	mask = TIM_CCER_CC1E << (ch * 4);
400	if (priv->have_complementary_output)
401		mask |= TIM_CCER_CC1NE << (ch * 4);
402
403	regmap_set_bits(priv->regmap, TIM_CCER, mask);
404
405	/* Make sure that registers are updated */
406	regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
407
408	/* Enable controller */
409	regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
410
411	return 0;
412}
413
414static void stm32_pwm_disable(struct stm32_pwm *priv, unsigned int ch)
415{
416	u32 mask;
417
418	/* Disable channel */
419	mask = TIM_CCER_CC1E << (ch * 4);
420	if (priv->have_complementary_output)
421		mask |= TIM_CCER_CC1NE << (ch * 4);
422
423	regmap_clear_bits(priv->regmap, TIM_CCER, mask);
424
425	/* When all channels are disabled, we can disable the controller */
426	if (!active_channels(priv))
427		regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
428
429	clk_disable(priv->clk);
430}
431
432static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
433			   const struct pwm_state *state)
434{
435	bool enabled;
436	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
437	int ret;
438
439	enabled = pwm->state.enabled;
440
441	if (enabled && !state->enabled) {
442		stm32_pwm_disable(priv, pwm->hwpwm);
443		return 0;
444	}
445
446	if (state->polarity != pwm->state.polarity)
447		stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
448
449	ret = stm32_pwm_config(priv, pwm->hwpwm,
450			       state->duty_cycle, state->period);
451	if (ret)
452		return ret;
453
454	if (!enabled && state->enabled)
455		ret = stm32_pwm_enable(priv, pwm->hwpwm);
456
457	return ret;
458}
459
460static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
461				  const struct pwm_state *state)
462{
463	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
464	int ret;
465
466	/* protect common prescaler for all active channels */
467	mutex_lock(&priv->lock);
468	ret = stm32_pwm_apply(chip, pwm, state);
469	mutex_unlock(&priv->lock);
470
471	return ret;
472}
473
474static int stm32_pwm_get_state(struct pwm_chip *chip,
475			       struct pwm_device *pwm, struct pwm_state *state)
476{
477	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
478	int ch = pwm->hwpwm;
479	unsigned long rate;
480	u32 ccer, psc, arr, ccr;
481	u64 dty, prd;
482	int ret;
483
484	mutex_lock(&priv->lock);
485
486	ret = regmap_read(priv->regmap, TIM_CCER, &ccer);
487	if (ret)
488		goto out;
489
490	state->enabled = ccer & (TIM_CCER_CC1E << (ch * 4));
491	state->polarity = (ccer & (TIM_CCER_CC1P << (ch * 4))) ?
492			  PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
493	ret = regmap_read(priv->regmap, TIM_PSC, &psc);
494	if (ret)
495		goto out;
496	ret = regmap_read(priv->regmap, TIM_ARR, &arr);
497	if (ret)
498		goto out;
499	ret = regmap_read(priv->regmap, TIM_CCR1 + 4 * ch, &ccr);
500	if (ret)
501		goto out;
502
503	rate = clk_get_rate(priv->clk);
504
505	prd = (u64)NSEC_PER_SEC * (psc + 1) * (arr + 1);
506	state->period = DIV_ROUND_UP_ULL(prd, rate);
507	dty = (u64)NSEC_PER_SEC * (psc + 1) * ccr;
508	state->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
509
510out:
511	mutex_unlock(&priv->lock);
512	return ret;
513}
514
515static const struct pwm_ops stm32pwm_ops = {
516	.apply = stm32_pwm_apply_locked,
517	.get_state = stm32_pwm_get_state,
518	.capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
519};
520
521static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
522				    const struct stm32_breakinput *bi)
523{
524	u32 shift = TIM_BDTR_BKF_SHIFT(bi->index);
525	u32 bke = TIM_BDTR_BKE(bi->index);
526	u32 bkp = TIM_BDTR_BKP(bi->index);
527	u32 bkf = TIM_BDTR_BKF(bi->index);
528	u32 mask = bkf | bkp | bke;
529	u32 bdtr;
530
531	bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke;
532
533	if (bi->level)
534		bdtr |= bkp;
535
536	regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
537
538	regmap_read(priv->regmap, TIM_BDTR, &bdtr);
539
540	return (bdtr & bke) ? 0 : -EINVAL;
541}
542
543static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv)
544{
545	unsigned int i;
546	int ret;
547
548	for (i = 0; i < priv->num_breakinputs; i++) {
549		ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]);
550		if (ret < 0)
551			return ret;
552	}
553
554	return 0;
555}
556
557static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv,
558				       struct device_node *np)
559{
560	int nb, ret, array_size;
561	unsigned int i;
562
563	nb = of_property_count_elems_of_size(np, "st,breakinput",
564					     sizeof(struct stm32_breakinput));
565
566	/*
567	 * Because "st,breakinput" parameter is optional do not make probe
568	 * failed if it doesn't exist.
569	 */
570	if (nb <= 0)
571		return 0;
572
573	if (nb > MAX_BREAKINPUT)
574		return -EINVAL;
575
576	priv->num_breakinputs = nb;
577	array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
578	ret = of_property_read_u32_array(np, "st,breakinput",
579					 (u32 *)priv->breakinputs, array_size);
580	if (ret)
581		return ret;
582
583	for (i = 0; i < priv->num_breakinputs; i++) {
584		if (priv->breakinputs[i].index > 1 ||
585		    priv->breakinputs[i].level > 1 ||
586		    priv->breakinputs[i].filter > 15)
587			return -EINVAL;
588	}
589
590	return stm32_pwm_apply_breakinputs(priv);
591}
592
593static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
594{
595	u32 ccer;
596
597	/*
598	 * If complementary bit doesn't exist writing 1 will have no
599	 * effect so we can detect it.
600	 */
601	regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
602	regmap_read(priv->regmap, TIM_CCER, &ccer);
603	regmap_clear_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
604
605	priv->have_complementary_output = (ccer != 0);
606}
607
608static unsigned int stm32_pwm_detect_channels(struct regmap *regmap,
609					      unsigned int *num_enabled)
610{
611	u32 ccer, ccer_backup;
612
613	/*
614	 * If channels enable bits don't exist writing 1 will have no
615	 * effect so we can detect and count them.
616	 */
617	regmap_read(regmap, TIM_CCER, &ccer_backup);
618	regmap_set_bits(regmap, TIM_CCER, TIM_CCER_CCXE);
619	regmap_read(regmap, TIM_CCER, &ccer);
620	regmap_write(regmap, TIM_CCER, ccer_backup);
621
622	*num_enabled = hweight32(ccer_backup & TIM_CCER_CCXE);
623
624	return hweight32(ccer & TIM_CCER_CCXE);
625}
626
627static int stm32_pwm_probe(struct platform_device *pdev)
628{
629	struct device *dev = &pdev->dev;
630	struct device_node *np = dev->of_node;
631	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
632	struct pwm_chip *chip;
633	struct stm32_pwm *priv;
634	unsigned int npwm, num_enabled;
635	unsigned int i;
636	int ret;
637
638	npwm = stm32_pwm_detect_channels(ddata->regmap, &num_enabled);
639
640	chip = devm_pwmchip_alloc(dev, npwm, sizeof(*priv));
641	if (IS_ERR(chip))
642		return PTR_ERR(chip);
643	priv = to_stm32_pwm_dev(chip);
644
645	mutex_init(&priv->lock);
646	priv->regmap = ddata->regmap;
647	priv->clk = ddata->clk;
648	priv->max_arr = ddata->max_arr;
649
650	if (!priv->regmap || !priv->clk)
651		return -EINVAL;
652
653	ret = stm32_pwm_probe_breakinputs(priv, np);
654	if (ret)
655		return ret;
656
657	stm32_pwm_detect_complementary(priv);
658
659	chip->ops = &stm32pwm_ops;
660
661	/* Initialize clock refcount to number of enabled PWM channels. */
662	for (i = 0; i < num_enabled; i++)
663		clk_enable(priv->clk);
664
665	ret = devm_pwmchip_add(dev, chip);
666	if (ret < 0)
667		return ret;
668
669	platform_set_drvdata(pdev, chip);
670
671	return 0;
672}
673
674static int stm32_pwm_suspend(struct device *dev)
675{
676	struct pwm_chip *chip = dev_get_drvdata(dev);
677	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
678	unsigned int i;
679	u32 ccer, mask;
680
681	/* Look for active channels */
682	ccer = active_channels(priv);
683
684	for (i = 0; i < chip->npwm; i++) {
685		mask = TIM_CCER_CC1E << (i * 4);
686		if (ccer & mask) {
687			dev_err(dev, "PWM %u still in use by consumer %s\n",
688				i, chip->pwms[i].label);
689			return -EBUSY;
690		}
691	}
692
693	return pinctrl_pm_select_sleep_state(dev);
694}
695
696static int stm32_pwm_resume(struct device *dev)
697{
698	struct pwm_chip *chip = dev_get_drvdata(dev);
699	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
700	int ret;
701
702	ret = pinctrl_pm_select_default_state(dev);
703	if (ret)
704		return ret;
705
706	/* restore breakinput registers that may have been lost in low power */
707	return stm32_pwm_apply_breakinputs(priv);
708}
709
710static DEFINE_SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume);
711
712static const struct of_device_id stm32_pwm_of_match[] = {
713	{ .compatible = "st,stm32-pwm",	},
714	{ /* end node */ },
715};
716MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
717
718static struct platform_driver stm32_pwm_driver = {
719	.probe	= stm32_pwm_probe,
720	.driver	= {
721		.name = "stm32-pwm",
722		.of_match_table = stm32_pwm_of_match,
723		.pm = pm_ptr(&stm32_pwm_pm_ops),
724	},
725};
726module_platform_driver(stm32_pwm_driver);
727
728MODULE_ALIAS("platform:stm32-pwm");
729MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
730MODULE_LICENSE("GPL v2");
731