1// SPDX-License-Identifier: GPL-2.0
2// Copyright (C) 2018 Spreadtrum Communications Inc.
3
4#include <linux/gpio/consumer.h>
5#include <linux/iio/consumer.h>
6#include <linux/interrupt.h>
7#include <linux/kernel.h>
8#include <linux/math64.h>
9#include <linux/module.h>
10#include <linux/nvmem-consumer.h>
11#include <linux/of.h>
12#include <linux/platform_device.h>
13#include <linux/power_supply.h>
14#include <linux/regmap.h>
15#include <linux/slab.h>
16
17/* PMIC global control registers definition */
18#define SC27XX_MODULE_EN0		0xc08
19#define SC27XX_CLK_EN0			0xc18
20#define SC27XX_FGU_EN			BIT(7)
21#define SC27XX_FGU_RTC_EN		BIT(6)
22
23/* FGU registers definition */
24#define SC27XX_FGU_START		0x0
25#define SC27XX_FGU_CONFIG		0x4
26#define SC27XX_FGU_ADC_CONFIG		0x8
27#define SC27XX_FGU_STATUS		0xc
28#define SC27XX_FGU_INT_EN		0x10
29#define SC27XX_FGU_INT_CLR		0x14
30#define SC27XX_FGU_INT_STS		0x1c
31#define SC27XX_FGU_VOLTAGE		0x20
32#define SC27XX_FGU_OCV			0x24
33#define SC27XX_FGU_POCV			0x28
34#define SC27XX_FGU_CURRENT		0x2c
35#define SC27XX_FGU_LOW_OVERLOAD		0x34
36#define SC27XX_FGU_CLBCNT_SETH		0x50
37#define SC27XX_FGU_CLBCNT_SETL		0x54
38#define SC27XX_FGU_CLBCNT_DELTH		0x58
39#define SC27XX_FGU_CLBCNT_DELTL		0x5c
40#define SC27XX_FGU_CLBCNT_VALH		0x68
41#define SC27XX_FGU_CLBCNT_VALL		0x6c
42#define SC27XX_FGU_CLBCNT_QMAXL		0x74
43#define SC27XX_FGU_USER_AREA_SET	0xa0
44#define SC27XX_FGU_USER_AREA_CLEAR	0xa4
45#define SC27XX_FGU_USER_AREA_STATUS	0xa8
46#define SC27XX_FGU_VOLTAGE_BUF		0xd0
47#define SC27XX_FGU_CURRENT_BUF		0xf0
48
49#define SC27XX_WRITE_SELCLB_EN		BIT(0)
50#define SC27XX_FGU_CLBCNT_MASK		GENMASK(15, 0)
51#define SC27XX_FGU_CLBCNT_SHIFT		16
52#define SC27XX_FGU_LOW_OVERLOAD_MASK	GENMASK(12, 0)
53
54#define SC27XX_FGU_INT_MASK		GENMASK(9, 0)
55#define SC27XX_FGU_LOW_OVERLOAD_INT	BIT(0)
56#define SC27XX_FGU_CLBCNT_DELTA_INT	BIT(2)
57
58#define SC27XX_FGU_MODE_AREA_MASK	GENMASK(15, 12)
59#define SC27XX_FGU_CAP_AREA_MASK	GENMASK(11, 0)
60#define SC27XX_FGU_MODE_AREA_SHIFT	12
61
62#define SC27XX_FGU_FIRST_POWERTON	GENMASK(3, 0)
63#define SC27XX_FGU_DEFAULT_CAP		GENMASK(11, 0)
64#define SC27XX_FGU_NORMAIL_POWERTON	0x5
65
66#define SC27XX_FGU_CUR_BASIC_ADC	8192
67#define SC27XX_FGU_SAMPLE_HZ		2
68/* micro Ohms */
69#define SC27XX_FGU_IDEAL_RESISTANCE	20000
70
71/*
72 * struct sc27xx_fgu_data: describe the FGU device
73 * @regmap: regmap for register access
74 * @dev: platform device
75 * @battery: battery power supply
76 * @base: the base offset for the controller
77 * @lock: protect the structure
78 * @gpiod: GPIO for battery detection
79 * @channel: IIO channel to get battery temperature
80 * @charge_chan: IIO channel to get charge voltage
81 * @internal_resist: the battery internal resistance in mOhm
82 * @total_cap: the total capacity of the battery in mAh
83 * @init_cap: the initial capacity of the battery in mAh
84 * @alarm_cap: the alarm capacity
85 * @init_clbcnt: the initial coulomb counter
86 * @max_volt: the maximum constant input voltage in millivolt
87 * @min_volt: the minimum drained battery voltage in microvolt
88 * @boot_volt: the voltage measured during boot in microvolt
89 * @table_len: the capacity table length
90 * @resist_table_len: the resistance table length
91 * @cur_1000ma_adc: ADC value corresponding to 1000 mA
92 * @vol_1000mv_adc: ADC value corresponding to 1000 mV
93 * @calib_resist: the real resistance of coulomb counter chip in uOhm
94 * @cap_table: capacity table with corresponding ocv
95 * @resist_table: resistance percent table with corresponding temperature
96 */
97struct sc27xx_fgu_data {
98	struct regmap *regmap;
99	struct device *dev;
100	struct power_supply *battery;
101	u32 base;
102	struct mutex lock;
103	struct gpio_desc *gpiod;
104	struct iio_channel *channel;
105	struct iio_channel *charge_chan;
106	bool bat_present;
107	int internal_resist;
108	int total_cap;
109	int init_cap;
110	int alarm_cap;
111	int init_clbcnt;
112	int max_volt;
113	int min_volt;
114	int boot_volt;
115	int table_len;
116	int resist_table_len;
117	int cur_1000ma_adc;
118	int vol_1000mv_adc;
119	int calib_resist;
120	struct power_supply_battery_ocv_table *cap_table;
121	struct power_supply_resistance_temp_table *resist_table;
122};
123
124static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity);
125static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
126					    int cap, bool int_mode);
127static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap);
128static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp);
129
130static const char * const sc27xx_charger_supply_name[] = {
131	"sc2731_charger",
132	"sc2720_charger",
133	"sc2721_charger",
134	"sc2723_charger",
135};
136
137static int sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data *data, s64 adc)
138{
139	return DIV_S64_ROUND_CLOSEST(adc * 1000, data->cur_1000ma_adc);
140}
141
142static int sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data *data, s64 adc)
143{
144	return DIV_S64_ROUND_CLOSEST(adc * 1000, data->vol_1000mv_adc);
145}
146
147static int sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data *data, int vol)
148{
149	return DIV_ROUND_CLOSEST(vol * data->vol_1000mv_adc, 1000);
150}
151
152static bool sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data *data)
153{
154	int ret, status, cap, mode;
155
156	ret = regmap_read(data->regmap,
157			  data->base + SC27XX_FGU_USER_AREA_STATUS, &status);
158	if (ret)
159		return false;
160
161	/*
162	 * We use low 4 bits to save the last battery capacity and high 12 bits
163	 * to save the system boot mode.
164	 */
165	mode = (status & SC27XX_FGU_MODE_AREA_MASK) >> SC27XX_FGU_MODE_AREA_SHIFT;
166	cap = status & SC27XX_FGU_CAP_AREA_MASK;
167
168	/*
169	 * When FGU has been powered down, the user area registers became
170	 * default value (0xffff), which can be used to valid if the system is
171	 * first power on or not.
172	 */
173	if (mode == SC27XX_FGU_FIRST_POWERTON || cap == SC27XX_FGU_DEFAULT_CAP)
174		return true;
175
176	return false;
177}
178
179static int sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data *data,
180				     int boot_mode)
181{
182	int ret;
183
184	ret = regmap_update_bits(data->regmap,
185				 data->base + SC27XX_FGU_USER_AREA_CLEAR,
186				 SC27XX_FGU_MODE_AREA_MASK,
187				 SC27XX_FGU_MODE_AREA_MASK);
188	if (ret)
189		return ret;
190
191	/*
192	 * Since the user area registers are put on power always-on region,
193	 * then these registers changing time will be a little long. Thus
194	 * here we should delay 200us to wait until values are updated
195	 * successfully according to the datasheet.
196	 */
197	udelay(200);
198
199	ret = regmap_update_bits(data->regmap,
200				 data->base + SC27XX_FGU_USER_AREA_SET,
201				 SC27XX_FGU_MODE_AREA_MASK,
202				 boot_mode << SC27XX_FGU_MODE_AREA_SHIFT);
203	if (ret)
204		return ret;
205
206	/*
207	 * Since the user area registers are put on power always-on region,
208	 * then these registers changing time will be a little long. Thus
209	 * here we should delay 200us to wait until values are updated
210	 * successfully according to the datasheet.
211	 */
212	udelay(200);
213
214	/*
215	 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
216	 * make the user area data available, otherwise we can not save the user
217	 * area data.
218	 */
219	return regmap_update_bits(data->regmap,
220				  data->base + SC27XX_FGU_USER_AREA_CLEAR,
221				  SC27XX_FGU_MODE_AREA_MASK, 0);
222}
223
224static int sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data *data, int cap)
225{
226	int ret;
227
228	ret = regmap_update_bits(data->regmap,
229				 data->base + SC27XX_FGU_USER_AREA_CLEAR,
230				 SC27XX_FGU_CAP_AREA_MASK,
231				 SC27XX_FGU_CAP_AREA_MASK);
232	if (ret)
233		return ret;
234
235	/*
236	 * Since the user area registers are put on power always-on region,
237	 * then these registers changing time will be a little long. Thus
238	 * here we should delay 200us to wait until values are updated
239	 * successfully according to the datasheet.
240	 */
241	udelay(200);
242
243	ret = regmap_update_bits(data->regmap,
244				 data->base + SC27XX_FGU_USER_AREA_SET,
245				 SC27XX_FGU_CAP_AREA_MASK, cap);
246	if (ret)
247		return ret;
248
249	/*
250	 * Since the user area registers are put on power always-on region,
251	 * then these registers changing time will be a little long. Thus
252	 * here we should delay 200us to wait until values are updated
253	 * successfully according to the datasheet.
254	 */
255	udelay(200);
256
257	/*
258	 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
259	 * make the user area data available, otherwise we can not save the user
260	 * area data.
261	 */
262	return regmap_update_bits(data->regmap,
263				  data->base + SC27XX_FGU_USER_AREA_CLEAR,
264				  SC27XX_FGU_CAP_AREA_MASK, 0);
265}
266
267static int sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data *data, int *cap)
268{
269	int ret, value;
270
271	ret = regmap_read(data->regmap,
272			  data->base + SC27XX_FGU_USER_AREA_STATUS, &value);
273	if (ret)
274		return ret;
275
276	*cap = value & SC27XX_FGU_CAP_AREA_MASK;
277	return 0;
278}
279
280/*
281 * When system boots on, we can not read battery capacity from coulomb
282 * registers, since now the coulomb registers are invalid. So we should
283 * calculate the battery open circuit voltage, and get current battery
284 * capacity according to the capacity table.
285 */
286static int sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data *data, int *cap)
287{
288	int volt, cur, oci, ocv, ret;
289	bool is_first_poweron = sc27xx_fgu_is_first_poweron(data);
290
291	/*
292	 * If system is not the first power on, we should use the last saved
293	 * battery capacity as the initial battery capacity. Otherwise we should
294	 * re-calculate the initial battery capacity.
295	 */
296	if (!is_first_poweron) {
297		ret = sc27xx_fgu_read_last_cap(data, cap);
298		if (ret)
299			return ret;
300
301		return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
302	}
303
304	/*
305	 * After system booting on, the SC27XX_FGU_CLBCNT_QMAXL register saved
306	 * the first sampled open circuit current.
307	 */
308	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_QMAXL,
309			  &cur);
310	if (ret)
311		return ret;
312
313	cur <<= 1;
314	oci = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
315
316	/*
317	 * Should get the OCV from SC27XX_FGU_POCV register at the system
318	 * beginning. It is ADC values reading from registers which need to
319	 * convert the corresponding voltage.
320	 */
321	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_POCV, &volt);
322	if (ret)
323		return ret;
324
325	volt = sc27xx_fgu_adc_to_voltage(data, volt);
326	ocv = volt * 1000 - oci * data->internal_resist;
327	data->boot_volt = ocv;
328
329	/*
330	 * Parse the capacity table to look up the correct capacity percent
331	 * according to current battery's corresponding OCV values.
332	 */
333	*cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len,
334					   ocv);
335
336	ret = sc27xx_fgu_save_last_cap(data, *cap);
337	if (ret)
338		return ret;
339
340	return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
341}
342
343static int sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data *data, int clbcnt)
344{
345	int ret;
346
347	ret = regmap_update_bits(data->regmap,
348				 data->base + SC27XX_FGU_CLBCNT_SETL,
349				 SC27XX_FGU_CLBCNT_MASK, clbcnt);
350	if (ret)
351		return ret;
352
353	ret = regmap_update_bits(data->regmap,
354				 data->base + SC27XX_FGU_CLBCNT_SETH,
355				 SC27XX_FGU_CLBCNT_MASK,
356				 clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
357	if (ret)
358		return ret;
359
360	return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_START,
361				 SC27XX_WRITE_SELCLB_EN,
362				 SC27XX_WRITE_SELCLB_EN);
363}
364
365static int sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data *data, int *clb_cnt)
366{
367	int ccl, cch, ret;
368
369	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALL,
370			  &ccl);
371	if (ret)
372		return ret;
373
374	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALH,
375			  &cch);
376	if (ret)
377		return ret;
378
379	*clb_cnt = ccl & SC27XX_FGU_CLBCNT_MASK;
380	*clb_cnt |= (cch & SC27XX_FGU_CLBCNT_MASK) << SC27XX_FGU_CLBCNT_SHIFT;
381
382	return 0;
383}
384
385static int sc27xx_fgu_get_vol_now(struct sc27xx_fgu_data *data, int *val)
386{
387	int ret;
388	u32 vol;
389
390	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE_BUF,
391			  &vol);
392	if (ret)
393		return ret;
394
395	/*
396	 * It is ADC values reading from registers which need to convert to
397	 * corresponding voltage values.
398	 */
399	*val = sc27xx_fgu_adc_to_voltage(data, vol);
400
401	return 0;
402}
403
404static int sc27xx_fgu_get_cur_now(struct sc27xx_fgu_data *data, int *val)
405{
406	int ret;
407	u32 cur;
408
409	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT_BUF,
410			  &cur);
411	if (ret)
412		return ret;
413
414	/*
415	 * It is ADC values reading from registers which need to convert to
416	 * corresponding current values.
417	 */
418	*val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
419
420	return 0;
421}
422
423static int sc27xx_fgu_get_capacity(struct sc27xx_fgu_data *data, int *cap)
424{
425	int ret, cur_clbcnt, delta_clbcnt, delta_cap, temp;
426
427	/* Get current coulomb counters firstly */
428	ret = sc27xx_fgu_get_clbcnt(data, &cur_clbcnt);
429	if (ret)
430		return ret;
431
432	delta_clbcnt = cur_clbcnt - data->init_clbcnt;
433
434	/*
435	 * Convert coulomb counter to delta capacity (mAh), and set multiplier
436	 * as 10 to improve the precision.
437	 */
438	temp = DIV_ROUND_CLOSEST(delta_clbcnt * 10, 36 * SC27XX_FGU_SAMPLE_HZ);
439	temp = sc27xx_fgu_adc_to_current(data, temp / 1000);
440
441	/*
442	 * Convert to capacity percent of the battery total capacity,
443	 * and multiplier is 100 too.
444	 */
445	delta_cap = DIV_ROUND_CLOSEST(temp * 100, data->total_cap);
446	*cap = delta_cap + data->init_cap;
447
448	/* Calibrate the battery capacity in a normal range. */
449	sc27xx_fgu_capacity_calibration(data, *cap, false);
450
451	return 0;
452}
453
454static int sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data *data, int *val)
455{
456	int ret, vol;
457
458	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE, &vol);
459	if (ret)
460		return ret;
461
462	/*
463	 * It is ADC values reading from registers which need to convert to
464	 * corresponding voltage values.
465	 */
466	*val = sc27xx_fgu_adc_to_voltage(data, vol);
467
468	return 0;
469}
470
471static int sc27xx_fgu_get_current(struct sc27xx_fgu_data *data, int *val)
472{
473	int ret, cur;
474
475	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT, &cur);
476	if (ret)
477		return ret;
478
479	/*
480	 * It is ADC values reading from registers which need to convert to
481	 * corresponding current values.
482	 */
483	*val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
484
485	return 0;
486}
487
488static int sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data *data, int *val)
489{
490	int vol, cur, ret, temp, resistance;
491
492	ret = sc27xx_fgu_get_vbat_vol(data, &vol);
493	if (ret)
494		return ret;
495
496	ret = sc27xx_fgu_get_current(data, &cur);
497	if (ret)
498		return ret;
499
500	resistance = data->internal_resist;
501	if (data->resist_table_len > 0) {
502		ret = sc27xx_fgu_get_temp(data, &temp);
503		if (ret)
504			return ret;
505
506		resistance = power_supply_temp2resist_simple(data->resist_table,
507						data->resist_table_len, temp);
508		resistance = data->internal_resist * resistance / 100;
509	}
510
511	/* Return the battery OCV in micro volts. */
512	*val = vol * 1000 - cur * resistance;
513
514	return 0;
515}
516
517static int sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data *data, int *val)
518{
519	int ret, vol;
520
521	ret = iio_read_channel_processed(data->charge_chan, &vol);
522	if (ret < 0)
523		return ret;
524
525	*val = vol * 1000;
526	return 0;
527}
528
529static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp)
530{
531	return iio_read_channel_processed(data->channel, temp);
532}
533
534static int sc27xx_fgu_get_health(struct sc27xx_fgu_data *data, int *health)
535{
536	int ret, vol;
537
538	ret = sc27xx_fgu_get_vbat_vol(data, &vol);
539	if (ret)
540		return ret;
541
542	if (vol > data->max_volt)
543		*health = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
544	else
545		*health = POWER_SUPPLY_HEALTH_GOOD;
546
547	return 0;
548}
549
550static int sc27xx_fgu_get_status(struct sc27xx_fgu_data *data, int *status)
551{
552	union power_supply_propval val;
553	struct power_supply *psy;
554	int i, ret = -EINVAL;
555
556	for (i = 0; i < ARRAY_SIZE(sc27xx_charger_supply_name); i++) {
557		psy = power_supply_get_by_name(sc27xx_charger_supply_name[i]);
558		if (!psy)
559			continue;
560
561		ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS,
562						&val);
563		power_supply_put(psy);
564		if (ret)
565			return ret;
566
567		*status = val.intval;
568	}
569
570	return ret;
571}
572
573static int sc27xx_fgu_get_property(struct power_supply *psy,
574				   enum power_supply_property psp,
575				   union power_supply_propval *val)
576{
577	struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
578	int ret = 0;
579	int value;
580
581	mutex_lock(&data->lock);
582
583	switch (psp) {
584	case POWER_SUPPLY_PROP_STATUS:
585		ret = sc27xx_fgu_get_status(data, &value);
586		if (ret)
587			goto error;
588
589		val->intval = value;
590		break;
591
592	case POWER_SUPPLY_PROP_HEALTH:
593		ret = sc27xx_fgu_get_health(data, &value);
594		if (ret)
595			goto error;
596
597		val->intval = value;
598		break;
599
600	case POWER_SUPPLY_PROP_PRESENT:
601		val->intval = data->bat_present;
602		break;
603
604	case POWER_SUPPLY_PROP_TEMP:
605		ret = sc27xx_fgu_get_temp(data, &value);
606		if (ret)
607			goto error;
608
609		val->intval = value;
610		break;
611
612	case POWER_SUPPLY_PROP_TECHNOLOGY:
613		val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
614		break;
615
616	case POWER_SUPPLY_PROP_CAPACITY:
617		ret = sc27xx_fgu_get_capacity(data, &value);
618		if (ret)
619			goto error;
620
621		val->intval = value;
622		break;
623
624	case POWER_SUPPLY_PROP_VOLTAGE_AVG:
625		ret = sc27xx_fgu_get_vbat_vol(data, &value);
626		if (ret)
627			goto error;
628
629		val->intval = value * 1000;
630		break;
631
632	case POWER_SUPPLY_PROP_VOLTAGE_OCV:
633		ret = sc27xx_fgu_get_vbat_ocv(data, &value);
634		if (ret)
635			goto error;
636
637		val->intval = value;
638		break;
639
640	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
641		ret = sc27xx_fgu_get_charge_vol(data, &value);
642		if (ret)
643			goto error;
644
645		val->intval = value;
646		break;
647
648	case POWER_SUPPLY_PROP_CURRENT_AVG:
649		ret = sc27xx_fgu_get_current(data, &value);
650		if (ret)
651			goto error;
652
653		val->intval = value * 1000;
654		break;
655
656	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
657		val->intval = data->total_cap * 1000;
658		break;
659
660	case POWER_SUPPLY_PROP_CHARGE_NOW:
661		ret = sc27xx_fgu_get_clbcnt(data, &value);
662		if (ret)
663			goto error;
664
665		value = DIV_ROUND_CLOSEST(value * 10,
666					  36 * SC27XX_FGU_SAMPLE_HZ);
667		val->intval = sc27xx_fgu_adc_to_current(data, value);
668
669		break;
670
671	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
672		ret = sc27xx_fgu_get_vol_now(data, &value);
673		if (ret)
674			goto error;
675
676		val->intval = value * 1000;
677		break;
678
679	case POWER_SUPPLY_PROP_CURRENT_NOW:
680		ret = sc27xx_fgu_get_cur_now(data, &value);
681		if (ret)
682			goto error;
683
684		val->intval = value * 1000;
685		break;
686
687	case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
688		val->intval = data->boot_volt;
689		break;
690
691	default:
692		ret = -EINVAL;
693		break;
694	}
695
696error:
697	mutex_unlock(&data->lock);
698	return ret;
699}
700
701static int sc27xx_fgu_set_property(struct power_supply *psy,
702				   enum power_supply_property psp,
703				   const union power_supply_propval *val)
704{
705	struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
706	int ret;
707
708	mutex_lock(&data->lock);
709
710	switch (psp) {
711	case POWER_SUPPLY_PROP_CAPACITY:
712		ret = sc27xx_fgu_save_last_cap(data, val->intval);
713		if (ret < 0)
714			dev_err(data->dev, "failed to save battery capacity\n");
715		break;
716
717	case POWER_SUPPLY_PROP_CALIBRATE:
718		sc27xx_fgu_adjust_cap(data, val->intval);
719		ret = 0;
720		break;
721
722	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
723		data->total_cap = val->intval / 1000;
724		ret = 0;
725		break;
726
727	default:
728		ret = -EINVAL;
729	}
730
731	mutex_unlock(&data->lock);
732
733	return ret;
734}
735
736static int sc27xx_fgu_property_is_writeable(struct power_supply *psy,
737					    enum power_supply_property psp)
738{
739	return psp == POWER_SUPPLY_PROP_CAPACITY ||
740		psp == POWER_SUPPLY_PROP_CALIBRATE ||
741		psp == POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN;
742}
743
744static enum power_supply_property sc27xx_fgu_props[] = {
745	POWER_SUPPLY_PROP_STATUS,
746	POWER_SUPPLY_PROP_HEALTH,
747	POWER_SUPPLY_PROP_PRESENT,
748	POWER_SUPPLY_PROP_TEMP,
749	POWER_SUPPLY_PROP_TECHNOLOGY,
750	POWER_SUPPLY_PROP_CAPACITY,
751	POWER_SUPPLY_PROP_VOLTAGE_NOW,
752	POWER_SUPPLY_PROP_VOLTAGE_OCV,
753	POWER_SUPPLY_PROP_VOLTAGE_AVG,
754	POWER_SUPPLY_PROP_VOLTAGE_BOOT,
755	POWER_SUPPLY_PROP_CURRENT_NOW,
756	POWER_SUPPLY_PROP_CURRENT_AVG,
757	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
758	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
759	POWER_SUPPLY_PROP_CALIBRATE,
760	POWER_SUPPLY_PROP_CHARGE_NOW
761};
762
763static const struct power_supply_desc sc27xx_fgu_desc = {
764	.name			= "sc27xx-fgu",
765	.type			= POWER_SUPPLY_TYPE_BATTERY,
766	.properties		= sc27xx_fgu_props,
767	.num_properties		= ARRAY_SIZE(sc27xx_fgu_props),
768	.get_property		= sc27xx_fgu_get_property,
769	.set_property		= sc27xx_fgu_set_property,
770	.external_power_changed	= power_supply_changed,
771	.property_is_writeable	= sc27xx_fgu_property_is_writeable,
772	.no_thermal		= true,
773};
774
775static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap)
776{
777	int ret;
778
779	data->init_cap = cap;
780	ret = sc27xx_fgu_get_clbcnt(data, &data->init_clbcnt);
781	if (ret)
782		dev_err(data->dev, "failed to get init coulomb counter\n");
783}
784
785static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
786					    int cap, bool int_mode)
787{
788	int ret, ocv, chg_sts, adc;
789
790	ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
791	if (ret) {
792		dev_err(data->dev, "get battery ocv error.\n");
793		return;
794	}
795
796	ret = sc27xx_fgu_get_status(data, &chg_sts);
797	if (ret) {
798		dev_err(data->dev, "get charger status error.\n");
799		return;
800	}
801
802	/*
803	 * If we are in charging mode, then we do not need to calibrate the
804	 * lower capacity.
805	 */
806	if (chg_sts == POWER_SUPPLY_STATUS_CHARGING)
807		return;
808
809	if ((ocv > data->cap_table[0].ocv && cap < 100) || cap > 100) {
810		/*
811		 * If current OCV value is larger than the max OCV value in
812		 * OCV table, or the current capacity is larger than 100,
813		 * we should force the inititial capacity to 100.
814		 */
815		sc27xx_fgu_adjust_cap(data, 100);
816	} else if (ocv <= data->cap_table[data->table_len - 1].ocv) {
817		/*
818		 * If current OCV value is leass than the minimum OCV value in
819		 * OCV table, we should force the inititial capacity to 0.
820		 */
821		sc27xx_fgu_adjust_cap(data, 0);
822	} else if ((ocv > data->cap_table[data->table_len - 1].ocv && cap <= 0) ||
823		   (ocv > data->min_volt && cap <= data->alarm_cap)) {
824		/*
825		 * If current OCV value is not matchable with current capacity,
826		 * we should re-calculate current capacity by looking up the
827		 * OCV table.
828		 */
829		int cur_cap = power_supply_ocv2cap_simple(data->cap_table,
830							  data->table_len, ocv);
831
832		sc27xx_fgu_adjust_cap(data, cur_cap);
833	} else if (ocv <= data->min_volt) {
834		/*
835		 * If current OCV value is less than the low alarm voltage, but
836		 * current capacity is larger than the alarm capacity, we should
837		 * adjust the inititial capacity to alarm capacity.
838		 */
839		if (cap > data->alarm_cap) {
840			sc27xx_fgu_adjust_cap(data, data->alarm_cap);
841		} else {
842			int cur_cap;
843
844			/*
845			 * If current capacity is equal with 0 or less than 0
846			 * (some error occurs), we should adjust inititial
847			 * capacity to the capacity corresponding to current OCV
848			 * value.
849			 */
850			cur_cap = power_supply_ocv2cap_simple(data->cap_table,
851							      data->table_len,
852							      ocv);
853			sc27xx_fgu_adjust_cap(data, cur_cap);
854		}
855
856		if (!int_mode)
857			return;
858
859		/*
860		 * After adjusting the battery capacity, we should set the
861		 * lowest alarm voltage instead.
862		 */
863		data->min_volt = data->cap_table[data->table_len - 1].ocv;
864		data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
865							      data->table_len,
866							      data->min_volt);
867
868		adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
869		regmap_update_bits(data->regmap,
870				   data->base + SC27XX_FGU_LOW_OVERLOAD,
871				   SC27XX_FGU_LOW_OVERLOAD_MASK, adc);
872	}
873}
874
875static irqreturn_t sc27xx_fgu_interrupt(int irq, void *dev_id)
876{
877	struct sc27xx_fgu_data *data = dev_id;
878	int ret, cap;
879	u32 status;
880
881	mutex_lock(&data->lock);
882
883	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_INT_STS,
884			  &status);
885	if (ret)
886		goto out;
887
888	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
889				 status, status);
890	if (ret)
891		goto out;
892
893	/*
894	 * When low overload voltage interrupt happens, we should calibrate the
895	 * battery capacity in lower voltage stage.
896	 */
897	if (!(status & SC27XX_FGU_LOW_OVERLOAD_INT))
898		goto out;
899
900	ret = sc27xx_fgu_get_capacity(data, &cap);
901	if (ret)
902		goto out;
903
904	sc27xx_fgu_capacity_calibration(data, cap, true);
905
906out:
907	mutex_unlock(&data->lock);
908
909	power_supply_changed(data->battery);
910	return IRQ_HANDLED;
911}
912
913static irqreturn_t sc27xx_fgu_bat_detection(int irq, void *dev_id)
914{
915	struct sc27xx_fgu_data *data = dev_id;
916	int state;
917
918	mutex_lock(&data->lock);
919
920	state = gpiod_get_value_cansleep(data->gpiod);
921	if (state < 0) {
922		dev_err(data->dev, "failed to get gpio state\n");
923		mutex_unlock(&data->lock);
924		return IRQ_RETVAL(state);
925	}
926
927	data->bat_present = !!state;
928
929	mutex_unlock(&data->lock);
930
931	power_supply_changed(data->battery);
932	return IRQ_HANDLED;
933}
934
935static void sc27xx_fgu_disable(void *_data)
936{
937	struct sc27xx_fgu_data *data = _data;
938
939	regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
940	regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
941}
942
943static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity)
944{
945	/*
946	 * Get current capacity (mAh) = battery total capacity (mAh) *
947	 * current capacity percent (capacity / 100).
948	 */
949	int cur_cap = DIV_ROUND_CLOSEST(data->total_cap * capacity, 100);
950
951	/*
952	 * Convert current capacity (mAh) to coulomb counter according to the
953	 * formula: 1 mAh =3.6 coulomb.
954	 */
955	return DIV_ROUND_CLOSEST(cur_cap * 36 * data->cur_1000ma_adc * SC27XX_FGU_SAMPLE_HZ, 10);
956}
957
958static int sc27xx_fgu_calibration(struct sc27xx_fgu_data *data)
959{
960	struct nvmem_cell *cell;
961	int calib_data, cal_4200mv;
962	void *buf;
963	size_t len;
964
965	cell = nvmem_cell_get(data->dev, "fgu_calib");
966	if (IS_ERR(cell))
967		return PTR_ERR(cell);
968
969	buf = nvmem_cell_read(cell, &len);
970	nvmem_cell_put(cell);
971
972	if (IS_ERR(buf))
973		return PTR_ERR(buf);
974
975	memcpy(&calib_data, buf, min(len, sizeof(u32)));
976
977	/*
978	 * Get the ADC value corresponding to 4200 mV from eFuse controller
979	 * according to below formula. Then convert to ADC values corresponding
980	 * to 1000 mV and 1000 mA.
981	 */
982	cal_4200mv = (calib_data & 0x1ff) + 6963 - 4096 - 256;
983	data->vol_1000mv_adc = DIV_ROUND_CLOSEST(cal_4200mv * 10, 42);
984	data->cur_1000ma_adc =
985		DIV_ROUND_CLOSEST(data->vol_1000mv_adc * 4 * data->calib_resist,
986				  SC27XX_FGU_IDEAL_RESISTANCE);
987
988	kfree(buf);
989	return 0;
990}
991
992static int sc27xx_fgu_hw_init(struct sc27xx_fgu_data *data)
993{
994	struct power_supply_battery_info *info;
995	struct power_supply_battery_ocv_table *table;
996	int ret, delta_clbcnt, alarm_adc;
997
998	ret = power_supply_get_battery_info(data->battery, &info);
999	if (ret) {
1000		dev_err(data->dev, "failed to get battery information\n");
1001		return ret;
1002	}
1003
1004	data->total_cap = info->charge_full_design_uah / 1000;
1005	data->max_volt = info->constant_charge_voltage_max_uv / 1000;
1006	data->internal_resist = info->factory_internal_resistance_uohm / 1000;
1007	data->min_volt = info->voltage_min_design_uv;
1008
1009	/*
1010	 * For SC27XX fuel gauge device, we only use one ocv-capacity
1011	 * table in normal temperature 20 Celsius.
1012	 */
1013	table = power_supply_find_ocv2cap_table(info, 20, &data->table_len);
1014	if (!table)
1015		return -EINVAL;
1016
1017	data->cap_table = devm_kmemdup(data->dev, table,
1018				       data->table_len * sizeof(*table),
1019				       GFP_KERNEL);
1020	if (!data->cap_table) {
1021		power_supply_put_battery_info(data->battery, info);
1022		return -ENOMEM;
1023	}
1024
1025	data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
1026						      data->table_len,
1027						      data->min_volt);
1028	if (!data->alarm_cap)
1029		data->alarm_cap += 1;
1030
1031	data->resist_table_len = info->resist_table_size;
1032	if (data->resist_table_len > 0) {
1033		data->resist_table = devm_kmemdup(data->dev, info->resist_table,
1034						  data->resist_table_len *
1035						  sizeof(struct power_supply_resistance_temp_table),
1036						  GFP_KERNEL);
1037		if (!data->resist_table) {
1038			power_supply_put_battery_info(data->battery, info);
1039			return -ENOMEM;
1040		}
1041	}
1042
1043	power_supply_put_battery_info(data->battery, info);
1044
1045	ret = sc27xx_fgu_calibration(data);
1046	if (ret)
1047		return ret;
1048
1049	/* Enable the FGU module */
1050	ret = regmap_update_bits(data->regmap, SC27XX_MODULE_EN0,
1051				 SC27XX_FGU_EN, SC27XX_FGU_EN);
1052	if (ret) {
1053		dev_err(data->dev, "failed to enable fgu\n");
1054		return ret;
1055	}
1056
1057	/* Enable the FGU RTC clock to make it work */
1058	ret = regmap_update_bits(data->regmap, SC27XX_CLK_EN0,
1059				 SC27XX_FGU_RTC_EN, SC27XX_FGU_RTC_EN);
1060	if (ret) {
1061		dev_err(data->dev, "failed to enable fgu RTC clock\n");
1062		goto disable_fgu;
1063	}
1064
1065	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
1066				 SC27XX_FGU_INT_MASK, SC27XX_FGU_INT_MASK);
1067	if (ret) {
1068		dev_err(data->dev, "failed to clear interrupt status\n");
1069		goto disable_clk;
1070	}
1071
1072	/*
1073	 * Set the voltage low overload threshold, which means when the battery
1074	 * voltage is lower than this threshold, the controller will generate
1075	 * one interrupt to notify.
1076	 */
1077	alarm_adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
1078	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_LOW_OVERLOAD,
1079				 SC27XX_FGU_LOW_OVERLOAD_MASK, alarm_adc);
1080	if (ret) {
1081		dev_err(data->dev, "failed to set fgu low overload\n");
1082		goto disable_clk;
1083	}
1084
1085	/*
1086	 * Set the coulomb counter delta threshold, that means when the coulomb
1087	 * counter change is multiples of the delta threshold, the controller
1088	 * will generate one interrupt to notify the users to update the battery
1089	 * capacity. Now we set the delta threshold as a counter value of 1%
1090	 * capacity.
1091	 */
1092	delta_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, 1);
1093
1094	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTL,
1095				 SC27XX_FGU_CLBCNT_MASK, delta_clbcnt);
1096	if (ret) {
1097		dev_err(data->dev, "failed to set low delta coulomb counter\n");
1098		goto disable_clk;
1099	}
1100
1101	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTH,
1102				 SC27XX_FGU_CLBCNT_MASK,
1103				 delta_clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
1104	if (ret) {
1105		dev_err(data->dev, "failed to set high delta coulomb counter\n");
1106		goto disable_clk;
1107	}
1108
1109	/*
1110	 * Get the boot battery capacity when system powers on, which is used to
1111	 * initialize the coulomb counter. After that, we can read the coulomb
1112	 * counter to measure the battery capacity.
1113	 */
1114	ret = sc27xx_fgu_get_boot_capacity(data, &data->init_cap);
1115	if (ret) {
1116		dev_err(data->dev, "failed to get boot capacity\n");
1117		goto disable_clk;
1118	}
1119
1120	/*
1121	 * Convert battery capacity to the corresponding initial coulomb counter
1122	 * and set into coulomb counter registers.
1123	 */
1124	data->init_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, data->init_cap);
1125	ret = sc27xx_fgu_set_clbcnt(data, data->init_clbcnt);
1126	if (ret) {
1127		dev_err(data->dev, "failed to initialize coulomb counter\n");
1128		goto disable_clk;
1129	}
1130
1131	return 0;
1132
1133disable_clk:
1134	regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
1135disable_fgu:
1136	regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
1137
1138	return ret;
1139}
1140
1141static int sc27xx_fgu_probe(struct platform_device *pdev)
1142{
1143	struct device *dev = &pdev->dev;
1144	struct device_node *np = dev->of_node;
1145	struct power_supply_config fgu_cfg = { };
1146	struct sc27xx_fgu_data *data;
1147	int ret, irq;
1148
1149	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
1150	if (!data)
1151		return -ENOMEM;
1152
1153	data->regmap = dev_get_regmap(dev->parent, NULL);
1154	if (!data->regmap) {
1155		dev_err(dev, "failed to get regmap\n");
1156		return -ENODEV;
1157	}
1158
1159	ret = device_property_read_u32(dev, "reg", &data->base);
1160	if (ret) {
1161		dev_err(dev, "failed to get fgu address\n");
1162		return ret;
1163	}
1164
1165	ret = device_property_read_u32(&pdev->dev,
1166				       "sprd,calib-resistance-micro-ohms",
1167				       &data->calib_resist);
1168	if (ret) {
1169		dev_err(&pdev->dev,
1170			"failed to get fgu calibration resistance\n");
1171		return ret;
1172	}
1173
1174	data->channel = devm_iio_channel_get(dev, "bat-temp");
1175	if (IS_ERR(data->channel)) {
1176		dev_err(dev, "failed to get IIO channel\n");
1177		return PTR_ERR(data->channel);
1178	}
1179
1180	data->charge_chan = devm_iio_channel_get(dev, "charge-vol");
1181	if (IS_ERR(data->charge_chan)) {
1182		dev_err(dev, "failed to get charge IIO channel\n");
1183		return PTR_ERR(data->charge_chan);
1184	}
1185
1186	data->gpiod = devm_gpiod_get(dev, "bat-detect", GPIOD_IN);
1187	if (IS_ERR(data->gpiod)) {
1188		dev_err(dev, "failed to get battery detection GPIO\n");
1189		return PTR_ERR(data->gpiod);
1190	}
1191
1192	ret = gpiod_get_value_cansleep(data->gpiod);
1193	if (ret < 0) {
1194		dev_err(dev, "failed to get gpio state\n");
1195		return ret;
1196	}
1197
1198	data->bat_present = !!ret;
1199	mutex_init(&data->lock);
1200	data->dev = dev;
1201	platform_set_drvdata(pdev, data);
1202
1203	fgu_cfg.drv_data = data;
1204	fgu_cfg.of_node = np;
1205	data->battery = devm_power_supply_register(dev, &sc27xx_fgu_desc,
1206						   &fgu_cfg);
1207	if (IS_ERR(data->battery)) {
1208		dev_err(dev, "failed to register power supply\n");
1209		return PTR_ERR(data->battery);
1210	}
1211
1212	ret = sc27xx_fgu_hw_init(data);
1213	if (ret) {
1214		dev_err(dev, "failed to initialize fgu hardware\n");
1215		return ret;
1216	}
1217
1218	ret = devm_add_action_or_reset(dev, sc27xx_fgu_disable, data);
1219	if (ret) {
1220		dev_err(dev, "failed to add fgu disable action\n");
1221		return ret;
1222	}
1223
1224	irq = platform_get_irq(pdev, 0);
1225	if (irq < 0)
1226		return irq;
1227
1228	ret = devm_request_threaded_irq(data->dev, irq, NULL,
1229					sc27xx_fgu_interrupt,
1230					IRQF_NO_SUSPEND | IRQF_ONESHOT,
1231					pdev->name, data);
1232	if (ret) {
1233		dev_err(data->dev, "failed to request fgu IRQ\n");
1234		return ret;
1235	}
1236
1237	irq = gpiod_to_irq(data->gpiod);
1238	if (irq < 0) {
1239		dev_err(dev, "failed to translate GPIO to IRQ\n");
1240		return irq;
1241	}
1242
1243	ret = devm_request_threaded_irq(dev, irq, NULL,
1244					sc27xx_fgu_bat_detection,
1245					IRQF_ONESHOT | IRQF_TRIGGER_RISING |
1246					IRQF_TRIGGER_FALLING,
1247					pdev->name, data);
1248	if (ret) {
1249		dev_err(dev, "failed to request IRQ\n");
1250		return ret;
1251	}
1252
1253	return 0;
1254}
1255
1256#ifdef CONFIG_PM_SLEEP
1257static int sc27xx_fgu_resume(struct device *dev)
1258{
1259	struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
1260	int ret;
1261
1262	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1263				 SC27XX_FGU_LOW_OVERLOAD_INT |
1264				 SC27XX_FGU_CLBCNT_DELTA_INT, 0);
1265	if (ret) {
1266		dev_err(data->dev, "failed to disable fgu interrupts\n");
1267		return ret;
1268	}
1269
1270	return 0;
1271}
1272
1273static int sc27xx_fgu_suspend(struct device *dev)
1274{
1275	struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
1276	int ret, status, ocv;
1277
1278	ret = sc27xx_fgu_get_status(data, &status);
1279	if (ret)
1280		return ret;
1281
1282	/*
1283	 * If we are charging, then no need to enable the FGU interrupts to
1284	 * adjust the battery capacity.
1285	 */
1286	if (status != POWER_SUPPLY_STATUS_NOT_CHARGING &&
1287	    status != POWER_SUPPLY_STATUS_DISCHARGING)
1288		return 0;
1289
1290	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1291				 SC27XX_FGU_LOW_OVERLOAD_INT,
1292				 SC27XX_FGU_LOW_OVERLOAD_INT);
1293	if (ret) {
1294		dev_err(data->dev, "failed to enable low voltage interrupt\n");
1295		return ret;
1296	}
1297
1298	ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
1299	if (ret)
1300		goto disable_int;
1301
1302	/*
1303	 * If current OCV is less than the minimum voltage, we should enable the
1304	 * coulomb counter threshold interrupt to notify events to adjust the
1305	 * battery capacity.
1306	 */
1307	if (ocv < data->min_volt) {
1308		ret = regmap_update_bits(data->regmap,
1309					 data->base + SC27XX_FGU_INT_EN,
1310					 SC27XX_FGU_CLBCNT_DELTA_INT,
1311					 SC27XX_FGU_CLBCNT_DELTA_INT);
1312		if (ret) {
1313			dev_err(data->dev,
1314				"failed to enable coulomb threshold int\n");
1315			goto disable_int;
1316		}
1317	}
1318
1319	return 0;
1320
1321disable_int:
1322	regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1323			   SC27XX_FGU_LOW_OVERLOAD_INT, 0);
1324	return ret;
1325}
1326#endif
1327
1328static const struct dev_pm_ops sc27xx_fgu_pm_ops = {
1329	SET_SYSTEM_SLEEP_PM_OPS(sc27xx_fgu_suspend, sc27xx_fgu_resume)
1330};
1331
1332static const struct of_device_id sc27xx_fgu_of_match[] = {
1333	{ .compatible = "sprd,sc2731-fgu", },
1334	{ }
1335};
1336MODULE_DEVICE_TABLE(of, sc27xx_fgu_of_match);
1337
1338static struct platform_driver sc27xx_fgu_driver = {
1339	.probe = sc27xx_fgu_probe,
1340	.driver = {
1341		.name = "sc27xx-fgu",
1342		.of_match_table = sc27xx_fgu_of_match,
1343		.pm = &sc27xx_fgu_pm_ops,
1344	}
1345};
1346
1347module_platform_driver(sc27xx_fgu_driver);
1348
1349MODULE_DESCRIPTION("Spreadtrum SC27XX PMICs Fual Gauge Unit Driver");
1350MODULE_LICENSE("GPL v2");
1351