1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Battery driver for CPCAP PMIC
4 *
5 * Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
6 *
7 * Some parts of the code based on earlier Motorola mapphone Linux kernel
8 * drivers:
9 *
10 * Copyright (C) 2009-2010 Motorola, Inc.
11 */
12
13#include <linux/delay.h>
14#include <linux/err.h>
15#include <linux/interrupt.h>
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/of.h>
19#include <linux/platform_device.h>
20#include <linux/power_supply.h>
21#include <linux/reboot.h>
22#include <linux/regmap.h>
23#include <linux/nvmem-consumer.h>
24#include <linux/moduleparam.h>
25
26#include <linux/iio/consumer.h>
27#include <linux/iio/types.h>
28#include <linux/mfd/motorola-cpcap.h>
29
30/*
31 * Register bit defines for CPCAP_REG_BPEOL. Some of these seem to
32 * map to MC13783UG.pdf "Table 5-19. Register 13, Power Control 0"
33 * to enable BATTDETEN, LOBAT and EOL features. We currently use
34 * LOBAT interrupts instead of EOL.
35 */
36#define CPCAP_REG_BPEOL_BIT_EOL9	BIT(9)	/* Set for EOL irq */
37#define CPCAP_REG_BPEOL_BIT_EOL8	BIT(8)	/* Set for EOL irq */
38#define CPCAP_REG_BPEOL_BIT_UNKNOWN7	BIT(7)
39#define CPCAP_REG_BPEOL_BIT_UNKNOWN6	BIT(6)
40#define CPCAP_REG_BPEOL_BIT_UNKNOWN5	BIT(5)
41#define CPCAP_REG_BPEOL_BIT_EOL_MULTI	BIT(4)	/* Set for multiple EOL irqs */
42#define CPCAP_REG_BPEOL_BIT_UNKNOWN3	BIT(3)
43#define CPCAP_REG_BPEOL_BIT_UNKNOWN2	BIT(2)
44#define CPCAP_REG_BPEOL_BIT_BATTDETEN	BIT(1)	/* Enable battery detect */
45#define CPCAP_REG_BPEOL_BIT_EOLSEL	BIT(0)	/* BPDET = 0, EOL = 1 */
46
47/*
48 * Register bit defines for CPCAP_REG_CCC1. These seem similar to the twl6030
49 * coulomb counter registers rather than the mc13892 registers. Both twl6030
50 * and mc13892 set bits 2 and 1 to reset and clear registers. But mc13892
51 * sets bit 0 to start the coulomb counter while twl6030 sets bit 0 to stop
52 * the coulomb counter like cpcap does. So for now, we use the twl6030 style
53 * naming for the registers.
54 */
55#define CPCAP_REG_CCC1_ACTIVE_MODE1	BIT(4)	/* Update rate */
56#define CPCAP_REG_CCC1_ACTIVE_MODE0	BIT(3)	/* Update rate */
57#define CPCAP_REG_CCC1_AUTOCLEAR	BIT(2)	/* Resets sample registers */
58#define CPCAP_REG_CCC1_CAL_EN		BIT(1)	/* Clears after write in 1s */
59#define CPCAP_REG_CCC1_PAUSE		BIT(0)	/* Stop counters, allow write */
60#define CPCAP_REG_CCC1_RESET_MASK	(CPCAP_REG_CCC1_AUTOCLEAR | \
61					 CPCAP_REG_CCC1_CAL_EN)
62
63#define CPCAP_REG_CCCC2_RATE1		BIT(5)
64#define CPCAP_REG_CCCC2_RATE0		BIT(4)
65#define CPCAP_REG_CCCC2_ENABLE		BIT(3)
66
67#define CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS	250
68
69#define CPCAP_BATTERY_EB41_HW4X_ID 0x9E
70#define CPCAP_BATTERY_BW8X_ID 0x98
71
72enum {
73	CPCAP_BATTERY_IIO_BATTDET,
74	CPCAP_BATTERY_IIO_VOLTAGE,
75	CPCAP_BATTERY_IIO_CHRG_CURRENT,
76	CPCAP_BATTERY_IIO_BATT_CURRENT,
77	CPCAP_BATTERY_IIO_NR,
78};
79
80enum cpcap_battery_irq_action {
81	CPCAP_BATTERY_IRQ_ACTION_NONE,
82	CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE,
83	CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW,
84	CPCAP_BATTERY_IRQ_ACTION_POWEROFF,
85};
86
87struct cpcap_interrupt_desc {
88	const char *name;
89	struct list_head node;
90	int irq;
91	enum cpcap_battery_irq_action action;
92};
93
94struct cpcap_battery_config {
95	int cd_factor;
96	struct power_supply_info info;
97	struct power_supply_battery_info bat;
98};
99
100struct cpcap_coulomb_counter_data {
101	s32 sample;		/* 24 or 32 bits */
102	s32 accumulator;
103	s16 offset;		/* 9 bits */
104	s16 integrator;		/* 13 or 16 bits */
105};
106
107enum cpcap_battery_state {
108	CPCAP_BATTERY_STATE_PREVIOUS,
109	CPCAP_BATTERY_STATE_LATEST,
110	CPCAP_BATTERY_STATE_EMPTY,
111	CPCAP_BATTERY_STATE_FULL,
112	CPCAP_BATTERY_STATE_NR,
113};
114
115struct cpcap_battery_state_data {
116	int voltage;
117	int current_ua;
118	int counter_uah;
119	int temperature;
120	ktime_t time;
121	struct cpcap_coulomb_counter_data cc;
122};
123
124struct cpcap_battery_ddata {
125	struct device *dev;
126	struct regmap *reg;
127	struct list_head irq_list;
128	struct iio_channel *channels[CPCAP_BATTERY_IIO_NR];
129	struct power_supply *psy;
130	struct cpcap_battery_config config;
131	struct cpcap_battery_state_data state[CPCAP_BATTERY_STATE_NR];
132	u32 cc_lsb;		/* ��Ams per LSB */
133	atomic_t active;
134	int charge_full;
135	int status;
136	u16 vendor;
137	bool check_nvmem;
138	unsigned int is_full:1;
139};
140
141#define CPCAP_NO_BATTERY	-400
142
143static bool ignore_temperature_probe;
144module_param(ignore_temperature_probe, bool, 0660);
145
146static struct cpcap_battery_state_data *
147cpcap_battery_get_state(struct cpcap_battery_ddata *ddata,
148			enum cpcap_battery_state state)
149{
150	if (state >= CPCAP_BATTERY_STATE_NR)
151		return NULL;
152
153	return &ddata->state[state];
154}
155
156static struct cpcap_battery_state_data *
157cpcap_battery_latest(struct cpcap_battery_ddata *ddata)
158{
159	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_LATEST);
160}
161
162static struct cpcap_battery_state_data *
163cpcap_battery_previous(struct cpcap_battery_ddata *ddata)
164{
165	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_PREVIOUS);
166}
167
168static struct cpcap_battery_state_data *
169cpcap_battery_get_empty(struct cpcap_battery_ddata *ddata)
170{
171	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_EMPTY);
172}
173
174static struct cpcap_battery_state_data *
175cpcap_battery_get_full(struct cpcap_battery_ddata *ddata)
176{
177	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_FULL);
178}
179
180static int cpcap_charger_battery_temperature(struct cpcap_battery_ddata *ddata,
181					     int *value)
182{
183	struct iio_channel *channel;
184	int error;
185
186	channel = ddata->channels[CPCAP_BATTERY_IIO_BATTDET];
187	error = iio_read_channel_processed(channel, value);
188	if (error < 0) {
189		if (!ignore_temperature_probe)
190			dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
191		*value = CPCAP_NO_BATTERY;
192
193		return error;
194	}
195
196	*value /= 100;
197
198	return 0;
199}
200
201static int cpcap_battery_get_voltage(struct cpcap_battery_ddata *ddata)
202{
203	struct iio_channel *channel;
204	int error, value = 0;
205
206	channel = ddata->channels[CPCAP_BATTERY_IIO_VOLTAGE];
207	error = iio_read_channel_processed(channel, &value);
208	if (error < 0) {
209		dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
210
211		return 0;
212	}
213
214	return value * 1000;
215}
216
217static int cpcap_battery_get_current(struct cpcap_battery_ddata *ddata)
218{
219	struct iio_channel *channel;
220	int error, value = 0;
221
222	channel = ddata->channels[CPCAP_BATTERY_IIO_BATT_CURRENT];
223	error = iio_read_channel_processed(channel, &value);
224	if (error < 0) {
225		dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
226
227		return 0;
228	}
229
230	return value * 1000;
231}
232
233/**
234 * cpcap_battery_cc_raw_div - calculate and divide coulomb counter ��Ams values
235 * @ddata: device driver data
236 * @sample: coulomb counter sample value
237 * @accumulator: coulomb counter integrator value
238 * @offset: coulomb counter offset value
239 * @divider: conversion divider
240 *
241 * Note that cc_lsb and cc_dur values are from Motorola Linux kernel
242 * function data_get_avg_curr_ua() and seem to be based on measured test
243 * results. It also has the following comment:
244 *
245 * Adjustment factors are applied here as a temp solution per the test
246 * results. Need to work out a formal solution for this adjustment.
247 *
248 * A coulomb counter for similar hardware seems to be documented in
249 * "TWL6030 Gas Gauging Basics (Rev. A)" swca095a.pdf in chapter
250 * "10 Calculating Accumulated Current". We however follow what the
251 * Motorola mapphone Linux kernel is doing as there may be either a
252 * TI or ST coulomb counter in the PMIC.
253 */
254static int cpcap_battery_cc_raw_div(struct cpcap_battery_ddata *ddata,
255				    s32 sample, s32 accumulator,
256				    s16 offset, u32 divider)
257{
258	s64 acc;
259
260	if (!divider)
261		return 0;
262
263	acc = accumulator;
264	acc -= (s64)sample * offset;
265	acc *= ddata->cc_lsb;
266	acc *= -1;
267	acc = div_s64(acc, divider);
268
269	return acc;
270}
271
272/* 3600000��Ams = 1��Ah */
273static int cpcap_battery_cc_to_uah(struct cpcap_battery_ddata *ddata,
274				   s32 sample, s32 accumulator,
275				   s16 offset)
276{
277	return cpcap_battery_cc_raw_div(ddata, sample,
278					accumulator, offset,
279					3600000);
280}
281
282static int cpcap_battery_cc_to_ua(struct cpcap_battery_ddata *ddata,
283				  s32 sample, s32 accumulator,
284				  s16 offset)
285{
286	return cpcap_battery_cc_raw_div(ddata, sample,
287					accumulator, offset,
288					sample *
289					CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS);
290}
291
292/**
293 * cpcap_battery_read_accumulated - reads cpcap coulomb counter
294 * @ddata: device driver data
295 * @ccd: coulomb counter values
296 *
297 * Based on Motorola mapphone kernel function data_read_regs().
298 * Looking at the registers, the coulomb counter seems similar to
299 * the coulomb counter in TWL6030. See "TWL6030 Gas Gauging Basics
300 * (Rev. A) swca095a.pdf for "10 Calculating Accumulated Current".
301 *
302 * Note that swca095a.pdf instructs to stop the coulomb counter
303 * before reading to avoid values changing. Motorola mapphone
304 * Linux kernel does not do it, so let's assume they've verified
305 * the data produced is correct.
306 */
307static int
308cpcap_battery_read_accumulated(struct cpcap_battery_ddata *ddata,
309			       struct cpcap_coulomb_counter_data *ccd)
310{
311	u16 buf[7];	/* CPCAP_REG_CCS1 to CCI */
312	int error;
313
314	ccd->sample = 0;
315	ccd->accumulator = 0;
316	ccd->offset = 0;
317	ccd->integrator = 0;
318
319	/* Read coulomb counter register range */
320	error = regmap_bulk_read(ddata->reg, CPCAP_REG_CCS1,
321				 buf, ARRAY_SIZE(buf));
322	if (error)
323		return 0;
324
325	/* Sample value CPCAP_REG_CCS1 & 2 */
326	ccd->sample = (buf[1] & 0x0fff) << 16;
327	ccd->sample |= buf[0];
328	if (ddata->vendor == CPCAP_VENDOR_TI)
329		ccd->sample = sign_extend32(24, ccd->sample);
330
331	/* Accumulator value CPCAP_REG_CCA1 & 2 */
332	ccd->accumulator = ((s16)buf[3]) << 16;
333	ccd->accumulator |= buf[2];
334
335	/*
336	 * Coulomb counter calibration offset is CPCAP_REG_CCM,
337	 * REG_CCO seems unused
338	 */
339	ccd->offset = buf[4];
340	ccd->offset = sign_extend32(ccd->offset, 9);
341
342	/* Integrator register CPCAP_REG_CCI */
343	if (ddata->vendor == CPCAP_VENDOR_TI)
344		ccd->integrator = sign_extend32(buf[6], 13);
345	else
346		ccd->integrator = (s16)buf[6];
347
348	return cpcap_battery_cc_to_uah(ddata,
349				       ccd->sample,
350				       ccd->accumulator,
351				       ccd->offset);
352}
353
354
355/*
356 * Based on the values from Motorola mapphone Linux kernel for the
357 * stock Droid 4 battery eb41. In the Motorola mapphone Linux
358 * kernel tree the value for pm_cd_factor is passed to the kernel
359 * via device tree. If it turns out to be something device specific
360 * we can consider that too later. These values are also fine for
361 * Bionic's hw4x.
362 *
363 * And looking at the battery full and shutdown values for the stock
364 * kernel on droid 4, full is 4351000 and software initiates shutdown
365 * at 3078000. The device will die around 2743000.
366 */
367static const struct cpcap_battery_config cpcap_battery_eb41_data = {
368	.cd_factor = 0x3cc,
369	.info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
370	.info.voltage_max_design = 4351000,
371	.info.voltage_min_design = 3100000,
372	.info.charge_full_design = 1740000,
373	.bat.constant_charge_voltage_max_uv = 4200000,
374};
375
376/* Values for the extended Droid Bionic battery bw8x. */
377static const struct cpcap_battery_config cpcap_battery_bw8x_data = {
378	.cd_factor = 0x3cc,
379	.info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
380	.info.voltage_max_design = 4200000,
381	.info.voltage_min_design = 3200000,
382	.info.charge_full_design = 2760000,
383	.bat.constant_charge_voltage_max_uv = 4200000,
384};
385
386/*
387 * Safe values for any lipo battery likely to fit into a mapphone
388 * battery bay.
389 */
390static const struct cpcap_battery_config cpcap_battery_unkown_data = {
391	.cd_factor = 0x3cc,
392	.info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
393	.info.voltage_max_design = 4200000,
394	.info.voltage_min_design = 3200000,
395	.info.charge_full_design = 3000000,
396	.bat.constant_charge_voltage_max_uv = 4200000,
397};
398
399static int cpcap_battery_match_nvmem(struct device *dev, const void *data)
400{
401	if (strcmp(dev_name(dev), "89-500029ba0f73") == 0)
402		return 1;
403	else
404		return 0;
405}
406
407static void cpcap_battery_detect_battery_type(struct cpcap_battery_ddata *ddata)
408{
409	struct nvmem_device *nvmem;
410	u8 battery_id = 0;
411
412	ddata->check_nvmem = false;
413
414	nvmem = nvmem_device_find(NULL, &cpcap_battery_match_nvmem);
415	if (IS_ERR_OR_NULL(nvmem)) {
416		ddata->check_nvmem = true;
417		dev_info_once(ddata->dev, "Can not find battery nvmem device. Assuming generic lipo battery\n");
418	} else if (nvmem_device_read(nvmem, 2, 1, &battery_id) < 0) {
419		battery_id = 0;
420		ddata->check_nvmem = true;
421		dev_warn(ddata->dev, "Can not read battery nvmem device. Assuming generic lipo battery\n");
422	}
423
424	switch (battery_id) {
425	case CPCAP_BATTERY_EB41_HW4X_ID:
426		ddata->config = cpcap_battery_eb41_data;
427		break;
428	case CPCAP_BATTERY_BW8X_ID:
429		ddata->config = cpcap_battery_bw8x_data;
430		break;
431	default:
432		ddata->config = cpcap_battery_unkown_data;
433	}
434}
435
436/**
437 * cpcap_battery_cc_get_avg_current - read cpcap coulumb counter
438 * @ddata: cpcap battery driver device data
439 */
440static int cpcap_battery_cc_get_avg_current(struct cpcap_battery_ddata *ddata)
441{
442	int value, acc, error;
443	s32 sample;
444	s16 offset;
445
446	/* Coulomb counter integrator */
447	error = regmap_read(ddata->reg, CPCAP_REG_CCI, &value);
448	if (error)
449		return error;
450
451	if (ddata->vendor == CPCAP_VENDOR_TI) {
452		acc = sign_extend32(value, 13);
453		sample = 1;
454	} else {
455		acc = (s16)value;
456		sample = 4;
457	}
458
459	/* Coulomb counter calibration offset  */
460	error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
461	if (error)
462		return error;
463
464	offset = sign_extend32(value, 9);
465
466	return cpcap_battery_cc_to_ua(ddata, sample, acc, offset);
467}
468
469static int cpcap_battery_get_charger_status(struct cpcap_battery_ddata *ddata,
470					    int *val)
471{
472	union power_supply_propval prop;
473	struct power_supply *charger;
474	int error;
475
476	charger = power_supply_get_by_name("usb");
477	if (!charger)
478		return -ENODEV;
479
480	error = power_supply_get_property(charger, POWER_SUPPLY_PROP_STATUS,
481					  &prop);
482	if (error)
483		*val = POWER_SUPPLY_STATUS_UNKNOWN;
484	else
485		*val = prop.intval;
486
487	power_supply_put(charger);
488
489	return error;
490}
491
492static bool cpcap_battery_full(struct cpcap_battery_ddata *ddata)
493{
494	struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
495	unsigned int vfull;
496	int error, val;
497
498	error = cpcap_battery_get_charger_status(ddata, &val);
499	if (!error) {
500		switch (val) {
501		case POWER_SUPPLY_STATUS_DISCHARGING:
502			dev_dbg(ddata->dev, "charger disconnected\n");
503			ddata->is_full = 0;
504			break;
505		case POWER_SUPPLY_STATUS_FULL:
506			dev_dbg(ddata->dev, "charger full status\n");
507			ddata->is_full = 1;
508			break;
509		default:
510			break;
511		}
512	}
513
514	/*
515	 * The full battery voltage here can be inaccurate, it's used just to
516	 * filter out any trickle charging events. We clear the is_full status
517	 * on charger disconnect above anyways.
518	 */
519	vfull = ddata->config.bat.constant_charge_voltage_max_uv - 120000;
520
521	if (ddata->is_full && state->voltage < vfull)
522		ddata->is_full = 0;
523
524	return ddata->is_full;
525}
526
527static bool cpcap_battery_low(struct cpcap_battery_ddata *ddata)
528{
529	struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
530	static bool is_low;
531
532	if (state->current_ua > 0 && (state->voltage <= 3350000 || is_low))
533		is_low = true;
534	else
535		is_low = false;
536
537	return is_low;
538}
539
540static int cpcap_battery_update_status(struct cpcap_battery_ddata *ddata)
541{
542	struct cpcap_battery_state_data state, *latest, *previous,
543					*empty, *full;
544	ktime_t now;
545	int error;
546
547	memset(&state, 0, sizeof(state));
548	now = ktime_get();
549
550	latest = cpcap_battery_latest(ddata);
551	if (latest) {
552		s64 delta_ms = ktime_to_ms(ktime_sub(now, latest->time));
553
554		if (delta_ms < CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS)
555			return delta_ms;
556	}
557
558	state.time = now;
559	state.voltage = cpcap_battery_get_voltage(ddata);
560	state.current_ua = cpcap_battery_get_current(ddata);
561	state.counter_uah = cpcap_battery_read_accumulated(ddata, &state.cc);
562
563	error = cpcap_charger_battery_temperature(ddata,
564						  &state.temperature);
565	if (error)
566		return error;
567
568	previous = cpcap_battery_previous(ddata);
569	memcpy(previous, latest, sizeof(*previous));
570	memcpy(latest, &state, sizeof(*latest));
571
572	if (cpcap_battery_full(ddata)) {
573		full = cpcap_battery_get_full(ddata);
574		memcpy(full, latest, sizeof(*full));
575
576		empty = cpcap_battery_get_empty(ddata);
577		if (empty->voltage && empty->voltage != -1) {
578			empty->voltage = -1;
579			ddata->charge_full =
580				empty->counter_uah - full->counter_uah;
581		} else if (ddata->charge_full) {
582			empty->voltage = -1;
583			empty->counter_uah =
584				full->counter_uah + ddata->charge_full;
585		}
586	} else if (cpcap_battery_low(ddata)) {
587		empty = cpcap_battery_get_empty(ddata);
588		memcpy(empty, latest, sizeof(*empty));
589
590		full = cpcap_battery_get_full(ddata);
591		if (full->voltage) {
592			full->voltage = 0;
593			ddata->charge_full =
594				empty->counter_uah - full->counter_uah;
595		}
596	}
597
598	return 0;
599}
600
601/*
602 * Update battery status when cpcap-charger calls power_supply_changed().
603 * This allows us to detect battery full condition before the charger
604 * disconnects.
605 */
606static void cpcap_battery_external_power_changed(struct power_supply *psy)
607{
608	union power_supply_propval prop;
609
610	power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS, &prop);
611}
612
613static enum power_supply_property cpcap_battery_props[] = {
614	POWER_SUPPLY_PROP_STATUS,
615	POWER_SUPPLY_PROP_PRESENT,
616	POWER_SUPPLY_PROP_TECHNOLOGY,
617	POWER_SUPPLY_PROP_VOLTAGE_NOW,
618	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
619	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
620	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
621	POWER_SUPPLY_PROP_CURRENT_AVG,
622	POWER_SUPPLY_PROP_CURRENT_NOW,
623	POWER_SUPPLY_PROP_CHARGE_FULL,
624	POWER_SUPPLY_PROP_CHARGE_NOW,
625	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
626	POWER_SUPPLY_PROP_CHARGE_COUNTER,
627	POWER_SUPPLY_PROP_POWER_NOW,
628	POWER_SUPPLY_PROP_POWER_AVG,
629	POWER_SUPPLY_PROP_CAPACITY,
630	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
631	POWER_SUPPLY_PROP_SCOPE,
632	POWER_SUPPLY_PROP_TEMP,
633};
634
635static int cpcap_battery_get_property(struct power_supply *psy,
636				      enum power_supply_property psp,
637				      union power_supply_propval *val)
638{
639	struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
640	struct cpcap_battery_state_data *latest, *previous, *empty;
641	u32 sample;
642	s32 accumulator;
643	int cached;
644	s64 tmp;
645
646	cached = cpcap_battery_update_status(ddata);
647	if (cached < 0)
648		return cached;
649
650	latest = cpcap_battery_latest(ddata);
651	previous = cpcap_battery_previous(ddata);
652
653	if (ddata->check_nvmem)
654		cpcap_battery_detect_battery_type(ddata);
655
656	switch (psp) {
657	case POWER_SUPPLY_PROP_PRESENT:
658		if (latest->temperature > CPCAP_NO_BATTERY || ignore_temperature_probe)
659			val->intval = 1;
660		else
661			val->intval = 0;
662		break;
663	case POWER_SUPPLY_PROP_STATUS:
664		if (cpcap_battery_full(ddata)) {
665			val->intval = POWER_SUPPLY_STATUS_FULL;
666			break;
667		}
668		if (cpcap_battery_cc_get_avg_current(ddata) < 0)
669			val->intval = POWER_SUPPLY_STATUS_CHARGING;
670		else
671			val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
672		break;
673	case POWER_SUPPLY_PROP_TECHNOLOGY:
674		val->intval = ddata->config.info.technology;
675		break;
676	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
677		val->intval = cpcap_battery_get_voltage(ddata);
678		break;
679	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
680		val->intval = ddata->config.info.voltage_max_design;
681		break;
682	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
683		val->intval = ddata->config.info.voltage_min_design;
684		break;
685	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
686		val->intval = ddata->config.bat.constant_charge_voltage_max_uv;
687		break;
688	case POWER_SUPPLY_PROP_CURRENT_AVG:
689		sample = latest->cc.sample - previous->cc.sample;
690		if (!sample) {
691			val->intval = cpcap_battery_cc_get_avg_current(ddata);
692			break;
693		}
694		accumulator = latest->cc.accumulator - previous->cc.accumulator;
695		val->intval = cpcap_battery_cc_to_ua(ddata, sample,
696						     accumulator,
697						     latest->cc.offset);
698		break;
699	case POWER_SUPPLY_PROP_CURRENT_NOW:
700		val->intval = latest->current_ua;
701		break;
702	case POWER_SUPPLY_PROP_CHARGE_COUNTER:
703		val->intval = latest->counter_uah;
704		break;
705	case POWER_SUPPLY_PROP_POWER_NOW:
706		tmp = (latest->voltage / 10000) * latest->current_ua;
707		val->intval = div64_s64(tmp, 100);
708		break;
709	case POWER_SUPPLY_PROP_POWER_AVG:
710		sample = latest->cc.sample - previous->cc.sample;
711		if (!sample) {
712			tmp = cpcap_battery_cc_get_avg_current(ddata);
713			tmp *= (latest->voltage / 10000);
714			val->intval = div64_s64(tmp, 100);
715			break;
716		}
717		accumulator = latest->cc.accumulator - previous->cc.accumulator;
718		tmp = cpcap_battery_cc_to_ua(ddata, sample, accumulator,
719					     latest->cc.offset);
720		tmp *= ((latest->voltage + previous->voltage) / 20000);
721		val->intval = div64_s64(tmp, 100);
722		break;
723	case POWER_SUPPLY_PROP_CAPACITY:
724		empty = cpcap_battery_get_empty(ddata);
725		if (!empty->voltage || !ddata->charge_full)
726			return -ENODATA;
727		/* (ddata->charge_full / 200) is needed for rounding */
728		val->intval = empty->counter_uah - latest->counter_uah +
729			ddata->charge_full / 200;
730		val->intval = clamp(val->intval, 0, ddata->charge_full);
731		val->intval = val->intval * 100 / ddata->charge_full;
732		break;
733	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
734		if (cpcap_battery_full(ddata))
735			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
736		else if (latest->voltage >= 3750000)
737			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
738		else if (latest->voltage >= 3300000)
739			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
740		else if (latest->voltage > 3100000)
741			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
742		else if (latest->voltage <= 3100000)
743			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
744		else
745			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
746		break;
747	case POWER_SUPPLY_PROP_CHARGE_NOW:
748		empty = cpcap_battery_get_empty(ddata);
749		if (!empty->voltage)
750			return -ENODATA;
751		val->intval = empty->counter_uah - latest->counter_uah;
752		if (val->intval < 0) {
753			/* Assume invalid config if CHARGE_NOW is -20% */
754			if (ddata->charge_full && abs(val->intval) > ddata->charge_full/5) {
755				empty->voltage = 0;
756				ddata->charge_full = 0;
757				return -ENODATA;
758			}
759			val->intval = 0;
760		} else if (ddata->charge_full && ddata->charge_full < val->intval) {
761			/* Assume invalid config if CHARGE_NOW exceeds CHARGE_FULL by 20% */
762			if (val->intval > (6*ddata->charge_full)/5) {
763				empty->voltage = 0;
764				ddata->charge_full = 0;
765				return -ENODATA;
766			}
767			val->intval = ddata->charge_full;
768		}
769		break;
770	case POWER_SUPPLY_PROP_CHARGE_FULL:
771		if (!ddata->charge_full)
772			return -ENODATA;
773		val->intval = ddata->charge_full;
774		break;
775	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
776		val->intval = ddata->config.info.charge_full_design;
777		break;
778	case POWER_SUPPLY_PROP_SCOPE:
779		val->intval = POWER_SUPPLY_SCOPE_SYSTEM;
780		break;
781	case POWER_SUPPLY_PROP_TEMP:
782		if (ignore_temperature_probe)
783			return -ENODATA;
784		val->intval = latest->temperature;
785		break;
786	default:
787		return -EINVAL;
788	}
789
790	return 0;
791}
792
793static int cpcap_battery_update_charger(struct cpcap_battery_ddata *ddata,
794					int const_charge_voltage)
795{
796	union power_supply_propval prop;
797	union power_supply_propval val;
798	struct power_supply *charger;
799	int error;
800
801	charger = power_supply_get_by_name("usb");
802	if (!charger)
803		return -ENODEV;
804
805	error = power_supply_get_property(charger,
806				POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
807				&prop);
808	if (error)
809		goto out_put;
810
811	/* Allow charger const voltage lower than battery const voltage */
812	if (const_charge_voltage > prop.intval)
813		goto out_put;
814
815	val.intval = const_charge_voltage;
816
817	error = power_supply_set_property(charger,
818			POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
819			&val);
820out_put:
821	power_supply_put(charger);
822
823	return error;
824}
825
826static int cpcap_battery_set_property(struct power_supply *psy,
827				      enum power_supply_property psp,
828				      const union power_supply_propval *val)
829{
830	struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
831
832	switch (psp) {
833	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
834		if (val->intval < ddata->config.info.voltage_min_design)
835			return -EINVAL;
836		if (val->intval > ddata->config.info.voltage_max_design)
837			return -EINVAL;
838
839		ddata->config.bat.constant_charge_voltage_max_uv = val->intval;
840
841		return cpcap_battery_update_charger(ddata, val->intval);
842	case POWER_SUPPLY_PROP_CHARGE_FULL:
843		if (val->intval < 0)
844			return -EINVAL;
845		if (val->intval > (6*ddata->config.info.charge_full_design)/5)
846			return -EINVAL;
847
848		ddata->charge_full = val->intval;
849
850		return 0;
851	default:
852		return -EINVAL;
853	}
854
855	return 0;
856}
857
858static int cpcap_battery_property_is_writeable(struct power_supply *psy,
859					       enum power_supply_property psp)
860{
861	switch (psp) {
862	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
863	case POWER_SUPPLY_PROP_CHARGE_FULL:
864		return 1;
865	default:
866		return 0;
867	}
868}
869
870static irqreturn_t cpcap_battery_irq_thread(int irq, void *data)
871{
872	struct cpcap_battery_ddata *ddata = data;
873	struct cpcap_battery_state_data *latest;
874	struct cpcap_interrupt_desc *d;
875
876	if (!atomic_read(&ddata->active))
877		return IRQ_NONE;
878
879	list_for_each_entry(d, &ddata->irq_list, node) {
880		if (irq == d->irq)
881			break;
882	}
883
884	if (list_entry_is_head(d, &ddata->irq_list, node))
885		return IRQ_NONE;
886
887	latest = cpcap_battery_latest(ddata);
888
889	switch (d->action) {
890	case CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE:
891		dev_info(ddata->dev, "Coulomb counter calibration done\n");
892		break;
893	case CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW:
894		if (latest->current_ua >= 0)
895			dev_warn(ddata->dev, "Battery low at %imV!\n",
896				latest->voltage / 1000);
897		break;
898	case CPCAP_BATTERY_IRQ_ACTION_POWEROFF:
899		if (latest->current_ua >= 0 && latest->voltage <= 3200000) {
900			dev_emerg(ddata->dev,
901				  "Battery empty at %imV, powering off\n",
902				  latest->voltage / 1000);
903			orderly_poweroff(true);
904		}
905		break;
906	default:
907		break;
908	}
909
910	power_supply_changed(ddata->psy);
911
912	return IRQ_HANDLED;
913}
914
915static int cpcap_battery_init_irq(struct platform_device *pdev,
916				  struct cpcap_battery_ddata *ddata,
917				  const char *name)
918{
919	struct cpcap_interrupt_desc *d;
920	int irq, error;
921
922	irq = platform_get_irq_byname(pdev, name);
923	if (irq < 0)
924		return irq;
925
926	error = devm_request_threaded_irq(ddata->dev, irq, NULL,
927					  cpcap_battery_irq_thread,
928					  IRQF_SHARED | IRQF_ONESHOT,
929					  name, ddata);
930	if (error) {
931		dev_err(ddata->dev, "could not get irq %s: %i\n",
932			name, error);
933
934		return error;
935	}
936
937	d = devm_kzalloc(ddata->dev, sizeof(*d), GFP_KERNEL);
938	if (!d)
939		return -ENOMEM;
940
941	d->name = name;
942	d->irq = irq;
943
944	if (!strncmp(name, "cccal", 5))
945		d->action = CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE;
946	else if (!strncmp(name, "lowbph", 6))
947		d->action = CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW;
948	else if (!strncmp(name, "lowbpl", 6))
949		d->action = CPCAP_BATTERY_IRQ_ACTION_POWEROFF;
950
951	list_add(&d->node, &ddata->irq_list);
952
953	return 0;
954}
955
956static int cpcap_battery_init_interrupts(struct platform_device *pdev,
957					 struct cpcap_battery_ddata *ddata)
958{
959	static const char * const cpcap_battery_irqs[] = {
960		"eol", "lowbph", "lowbpl",
961		"chrgcurr1", "battdetb"
962	};
963	int i, error;
964
965	for (i = 0; i < ARRAY_SIZE(cpcap_battery_irqs); i++) {
966		error = cpcap_battery_init_irq(pdev, ddata,
967					       cpcap_battery_irqs[i]);
968		if (error)
969			return error;
970	}
971
972	/* Enable calibration interrupt if already available in dts */
973	cpcap_battery_init_irq(pdev, ddata, "cccal");
974
975	/* Enable low battery interrupts for 3.3V high and 3.1V low */
976	error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
977				   0xffff,
978				   CPCAP_REG_BPEOL_BIT_BATTDETEN);
979	if (error)
980		return error;
981
982	return 0;
983}
984
985static int cpcap_battery_init_iio(struct cpcap_battery_ddata *ddata)
986{
987	const char * const names[CPCAP_BATTERY_IIO_NR] = {
988		"battdetb", "battp", "chg_isense", "batti",
989	};
990	int error, i;
991
992	for (i = 0; i < CPCAP_BATTERY_IIO_NR; i++) {
993		ddata->channels[i] = devm_iio_channel_get(ddata->dev,
994							  names[i]);
995		if (IS_ERR(ddata->channels[i])) {
996			error = PTR_ERR(ddata->channels[i]);
997			goto out_err;
998		}
999
1000		if (!ddata->channels[i]->indio_dev) {
1001			error = -ENXIO;
1002			goto out_err;
1003		}
1004	}
1005
1006	return 0;
1007
1008out_err:
1009	return dev_err_probe(ddata->dev, error,
1010			     "could not initialize VBUS or ID IIO\n");
1011}
1012
1013/* Calibrate coulomb counter */
1014static int cpcap_battery_calibrate(struct cpcap_battery_ddata *ddata)
1015{
1016	int error, ccc1, value;
1017	unsigned long timeout;
1018
1019	error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &ccc1);
1020	if (error)
1021		return error;
1022
1023	timeout = jiffies + msecs_to_jiffies(6000);
1024
1025	/* Start calibration */
1026	error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
1027				   0xffff,
1028				   CPCAP_REG_CCC1_CAL_EN);
1029	if (error)
1030		goto restore;
1031
1032	while (time_before(jiffies, timeout)) {
1033		error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &value);
1034		if (error)
1035			goto restore;
1036
1037		if (!(value & CPCAP_REG_CCC1_CAL_EN))
1038			break;
1039
1040		error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
1041		if (error)
1042			goto restore;
1043
1044		msleep(300);
1045	}
1046
1047	/* Read calibration offset from CCM */
1048	error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
1049	if (error)
1050		goto restore;
1051
1052	dev_info(ddata->dev, "calibration done: 0x%04x\n", value);
1053
1054restore:
1055	if (error)
1056		dev_err(ddata->dev, "%s: error %i\n", __func__, error);
1057
1058	error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
1059				   0xffff, ccc1);
1060	if (error)
1061		dev_err(ddata->dev, "%s: restore error %i\n",
1062			__func__, error);
1063
1064	return error;
1065}
1066
1067#ifdef CONFIG_OF
1068static const struct of_device_id cpcap_battery_id_table[] = {
1069	{
1070		.compatible = "motorola,cpcap-battery",
1071	},
1072	{},
1073};
1074MODULE_DEVICE_TABLE(of, cpcap_battery_id_table);
1075#endif
1076
1077static const struct power_supply_desc cpcap_charger_battery_desc = {
1078	.name		= "battery",
1079	.type		= POWER_SUPPLY_TYPE_BATTERY,
1080	.properties	= cpcap_battery_props,
1081	.num_properties	= ARRAY_SIZE(cpcap_battery_props),
1082	.get_property	= cpcap_battery_get_property,
1083	.set_property	= cpcap_battery_set_property,
1084	.property_is_writeable = cpcap_battery_property_is_writeable,
1085	.external_power_changed = cpcap_battery_external_power_changed,
1086};
1087
1088static int cpcap_battery_probe(struct platform_device *pdev)
1089{
1090	struct cpcap_battery_ddata *ddata;
1091	struct power_supply_config psy_cfg = {};
1092	int error;
1093
1094	ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
1095	if (!ddata)
1096		return -ENOMEM;
1097
1098	cpcap_battery_detect_battery_type(ddata);
1099
1100	INIT_LIST_HEAD(&ddata->irq_list);
1101	ddata->dev = &pdev->dev;
1102
1103	ddata->reg = dev_get_regmap(ddata->dev->parent, NULL);
1104	if (!ddata->reg)
1105		return -ENODEV;
1106
1107	error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
1108	if (error)
1109		return error;
1110
1111	switch (ddata->vendor) {
1112	case CPCAP_VENDOR_ST:
1113		ddata->cc_lsb = 95374;	/* ��Ams per LSB */
1114		break;
1115	case CPCAP_VENDOR_TI:
1116		ddata->cc_lsb = 91501;	/* ��Ams per LSB */
1117		break;
1118	default:
1119		return -EINVAL;
1120	}
1121	ddata->cc_lsb = (ddata->cc_lsb * ddata->config.cd_factor) / 1000;
1122
1123	platform_set_drvdata(pdev, ddata);
1124
1125	error = cpcap_battery_init_interrupts(pdev, ddata);
1126	if (error)
1127		return error;
1128
1129	error = cpcap_battery_init_iio(ddata);
1130	if (error)
1131		return error;
1132
1133	psy_cfg.of_node = pdev->dev.of_node;
1134	psy_cfg.drv_data = ddata;
1135
1136	ddata->psy = devm_power_supply_register(ddata->dev,
1137						&cpcap_charger_battery_desc,
1138						&psy_cfg);
1139	error = PTR_ERR_OR_ZERO(ddata->psy);
1140	if (error) {
1141		dev_err(ddata->dev, "failed to register power supply\n");
1142		return error;
1143	}
1144
1145	atomic_set(&ddata->active, 1);
1146
1147	error = cpcap_battery_calibrate(ddata);
1148	if (error)
1149		return error;
1150
1151	return 0;
1152}
1153
1154static void cpcap_battery_remove(struct platform_device *pdev)
1155{
1156	struct cpcap_battery_ddata *ddata = platform_get_drvdata(pdev);
1157	int error;
1158
1159	atomic_set(&ddata->active, 0);
1160	error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
1161				   0xffff, 0);
1162	if (error)
1163		dev_err(&pdev->dev, "could not disable: %i\n", error);
1164}
1165
1166static struct platform_driver cpcap_battery_driver = {
1167	.driver	= {
1168		.name		= "cpcap_battery",
1169		.of_match_table = of_match_ptr(cpcap_battery_id_table),
1170	},
1171	.probe	= cpcap_battery_probe,
1172	.remove_new = cpcap_battery_remove,
1173};
1174module_platform_driver(cpcap_battery_driver);
1175
1176MODULE_LICENSE("GPL v2");
1177MODULE_AUTHOR("Tony Lindgren <tony@atomide.com>");
1178MODULE_DESCRIPTION("CPCAP PMIC Battery Driver");
1179