1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Intel Core SoC Power Management Controller Driver
4 *
5 * Copyright (c) 2016, Intel Corporation.
6 * All Rights Reserved.
7 *
8 * Authors: Rajneesh Bhardwaj <rajneesh.bhardwaj@intel.com>
9 *          Vishwanath Somayaji <vishwanath.somayaji@intel.com>
10 */
11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14#include <linux/bitfield.h>
15#include <linux/debugfs.h>
16#include <linux/delay.h>
17#include <linux/dmi.h>
18#include <linux/io.h>
19#include <linux/module.h>
20#include <linux/pci.h>
21#include <linux/slab.h>
22#include <linux/suspend.h>
23#include <linux/units.h>
24
25#include <asm/cpu_device_id.h>
26#include <asm/intel-family.h>
27#include <asm/msr.h>
28#include <asm/tsc.h>
29
30#include "core.h"
31#include "../pmt/telemetry.h"
32
33/* Maximum number of modes supported by platfoms that has low power mode capability */
34const char *pmc_lpm_modes[] = {
35	"S0i2.0",
36	"S0i2.1",
37	"S0i2.2",
38	"S0i3.0",
39	"S0i3.1",
40	"S0i3.2",
41	"S0i3.3",
42	"S0i3.4",
43	NULL
44};
45
46/* PKGC MSRs are common across Intel Core SoCs */
47const struct pmc_bit_map msr_map[] = {
48	{"Package C2",                  MSR_PKG_C2_RESIDENCY},
49	{"Package C3",                  MSR_PKG_C3_RESIDENCY},
50	{"Package C6",                  MSR_PKG_C6_RESIDENCY},
51	{"Package C7",                  MSR_PKG_C7_RESIDENCY},
52	{"Package C8",                  MSR_PKG_C8_RESIDENCY},
53	{"Package C9",                  MSR_PKG_C9_RESIDENCY},
54	{"Package C10",                 MSR_PKG_C10_RESIDENCY},
55	{}
56};
57
58static inline u32 pmc_core_reg_read(struct pmc *pmc, int reg_offset)
59{
60	return readl(pmc->regbase + reg_offset);
61}
62
63static inline void pmc_core_reg_write(struct pmc *pmc, int reg_offset,
64				      u32 val)
65{
66	writel(val, pmc->regbase + reg_offset);
67}
68
69static inline u64 pmc_core_adjust_slp_s0_step(struct pmc *pmc, u32 value)
70{
71	/*
72	 * ADL PCH does not have the SLP_S0 counter and LPM Residency counters are
73	 * used as a workaround which uses 30.5 usec tick. All other client
74	 * programs have the legacy SLP_S0 residency counter that is using the 122
75	 * usec tick.
76	 */
77	const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2;
78
79	if (pmc->map == &adl_reg_map)
80		return (u64)value * GET_X2_COUNTER((u64)lpm_adj_x2);
81	else
82		return (u64)value * pmc->map->slp_s0_res_counter_step;
83}
84
85static int set_etr3(struct pmc_dev *pmcdev)
86{
87	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
88	const struct pmc_reg_map *map = pmc->map;
89	u32 reg;
90	int err;
91
92	if (!map->etr3_offset)
93		return -EOPNOTSUPP;
94
95	mutex_lock(&pmcdev->lock);
96
97	/* check if CF9 is locked */
98	reg = pmc_core_reg_read(pmc, map->etr3_offset);
99	if (reg & ETR3_CF9LOCK) {
100		err = -EACCES;
101		goto out_unlock;
102	}
103
104	/* write CF9 global reset bit */
105	reg |= ETR3_CF9GR;
106	pmc_core_reg_write(pmc, map->etr3_offset, reg);
107
108	reg = pmc_core_reg_read(pmc, map->etr3_offset);
109	if (!(reg & ETR3_CF9GR)) {
110		err = -EIO;
111		goto out_unlock;
112	}
113
114	err = 0;
115
116out_unlock:
117	mutex_unlock(&pmcdev->lock);
118	return err;
119}
120static umode_t etr3_is_visible(struct kobject *kobj,
121				struct attribute *attr,
122				int idx)
123{
124	struct device *dev = kobj_to_dev(kobj);
125	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
126	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
127	const struct pmc_reg_map *map = pmc->map;
128	u32 reg;
129
130	mutex_lock(&pmcdev->lock);
131	reg = pmc_core_reg_read(pmc, map->etr3_offset);
132	mutex_unlock(&pmcdev->lock);
133
134	return reg & ETR3_CF9LOCK ? attr->mode & (SYSFS_PREALLOC | 0444) : attr->mode;
135}
136
137static ssize_t etr3_show(struct device *dev,
138				 struct device_attribute *attr, char *buf)
139{
140	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
141	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
142	const struct pmc_reg_map *map = pmc->map;
143	u32 reg;
144
145	if (!map->etr3_offset)
146		return -EOPNOTSUPP;
147
148	mutex_lock(&pmcdev->lock);
149
150	reg = pmc_core_reg_read(pmc, map->etr3_offset);
151	reg &= ETR3_CF9GR | ETR3_CF9LOCK;
152
153	mutex_unlock(&pmcdev->lock);
154
155	return sysfs_emit(buf, "0x%08x", reg);
156}
157
158static ssize_t etr3_store(struct device *dev,
159				  struct device_attribute *attr,
160				  const char *buf, size_t len)
161{
162	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
163	int err;
164	u32 reg;
165
166	err = kstrtouint(buf, 16, &reg);
167	if (err)
168		return err;
169
170	/* allow only CF9 writes */
171	if (reg != ETR3_CF9GR)
172		return -EINVAL;
173
174	err = set_etr3(pmcdev);
175	if (err)
176		return err;
177
178	return len;
179}
180static DEVICE_ATTR_RW(etr3);
181
182static struct attribute *pmc_attrs[] = {
183	&dev_attr_etr3.attr,
184	NULL
185};
186
187static const struct attribute_group pmc_attr_group = {
188	.attrs = pmc_attrs,
189	.is_visible = etr3_is_visible,
190};
191
192static const struct attribute_group *pmc_dev_groups[] = {
193	&pmc_attr_group,
194	NULL
195};
196
197static int pmc_core_dev_state_get(void *data, u64 *val)
198{
199	struct pmc *pmc = data;
200	const struct pmc_reg_map *map = pmc->map;
201	u32 value;
202
203	value = pmc_core_reg_read(pmc, map->slp_s0_offset);
204	*val = pmc_core_adjust_slp_s0_step(pmc, value);
205
206	return 0;
207}
208
209DEFINE_DEBUGFS_ATTRIBUTE(pmc_core_dev_state, pmc_core_dev_state_get, NULL, "%llu\n");
210
211static int pmc_core_pson_residency_get(void *data, u64 *val)
212{
213	struct pmc *pmc = data;
214	const struct pmc_reg_map *map = pmc->map;
215	u32 value;
216
217	value = pmc_core_reg_read(pmc, map->pson_residency_offset);
218	*val = (u64)value * map->pson_residency_counter_step;
219
220	return 0;
221}
222
223DEFINE_DEBUGFS_ATTRIBUTE(pmc_core_pson_residency, pmc_core_pson_residency_get, NULL, "%llu\n");
224
225static int pmc_core_check_read_lock_bit(struct pmc *pmc)
226{
227	u32 value;
228
229	value = pmc_core_reg_read(pmc, pmc->map->pm_cfg_offset);
230	return value & BIT(pmc->map->pm_read_disable_bit);
231}
232
233static void pmc_core_slps0_display(struct pmc *pmc, struct device *dev,
234				   struct seq_file *s)
235{
236	const struct pmc_bit_map **maps = pmc->map->slps0_dbg_maps;
237	const struct pmc_bit_map *map;
238	int offset = pmc->map->slps0_dbg_offset;
239	u32 data;
240
241	while (*maps) {
242		map = *maps;
243		data = pmc_core_reg_read(pmc, offset);
244		offset += 4;
245		while (map->name) {
246			if (dev)
247				dev_info(dev, "SLP_S0_DBG: %-32s\tState: %s\n",
248					map->name,
249					data & map->bit_mask ? "Yes" : "No");
250			if (s)
251				seq_printf(s, "SLP_S0_DBG: %-32s\tState: %s\n",
252					   map->name,
253					   data & map->bit_mask ? "Yes" : "No");
254			++map;
255		}
256		++maps;
257	}
258}
259
260static int pmc_core_lpm_get_arr_size(const struct pmc_bit_map **maps)
261{
262	int idx;
263
264	for (idx = 0; maps[idx]; idx++)
265		;/* Nothing */
266
267	return idx;
268}
269
270static void pmc_core_lpm_display(struct pmc *pmc, struct device *dev,
271				 struct seq_file *s, u32 offset, int pmc_index,
272				 const char *str,
273				 const struct pmc_bit_map **maps)
274{
275	int index, idx, len = 32, bit_mask, arr_size;
276	u32 *lpm_regs;
277
278	arr_size = pmc_core_lpm_get_arr_size(maps);
279	lpm_regs = kmalloc_array(arr_size, sizeof(*lpm_regs), GFP_KERNEL);
280	if (!lpm_regs)
281		return;
282
283	for (index = 0; index < arr_size; index++) {
284		lpm_regs[index] = pmc_core_reg_read(pmc, offset);
285		offset += 4;
286	}
287
288	for (idx = 0; idx < arr_size; idx++) {
289		if (dev)
290			dev_info(dev, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx,
291				lpm_regs[idx]);
292		if (s)
293			seq_printf(s, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx,
294				   lpm_regs[idx]);
295		for (index = 0; maps[idx][index].name && index < len; index++) {
296			bit_mask = maps[idx][index].bit_mask;
297			if (dev)
298				dev_info(dev, "PMC%d:%-30s %-30d\n", pmc_index,
299					maps[idx][index].name,
300					lpm_regs[idx] & bit_mask ? 1 : 0);
301			if (s)
302				seq_printf(s, "PMC%d:%-30s %-30d\n", pmc_index,
303					   maps[idx][index].name,
304					   lpm_regs[idx] & bit_mask ? 1 : 0);
305		}
306	}
307
308	kfree(lpm_regs);
309}
310
311static bool slps0_dbg_latch;
312
313static inline u8 pmc_core_reg_read_byte(struct pmc *pmc, int offset)
314{
315	return readb(pmc->regbase + offset);
316}
317
318static void pmc_core_display_map(struct seq_file *s, int index, int idx, int ip,
319				 int pmc_index, u8 pf_reg, const struct pmc_bit_map **pf_map)
320{
321	seq_printf(s, "PMC%d:PCH IP: %-2d - %-32s\tState: %s\n",
322		   pmc_index, ip, pf_map[idx][index].name,
323		   pf_map[idx][index].bit_mask & pf_reg ? "Off" : "On");
324}
325
326static int pmc_core_ppfear_show(struct seq_file *s, void *unused)
327{
328	struct pmc_dev *pmcdev = s->private;
329	int i;
330
331	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
332		struct pmc *pmc = pmcdev->pmcs[i];
333		const struct pmc_bit_map **maps;
334		u8 pf_regs[PPFEAR_MAX_NUM_ENTRIES];
335		int index, iter, idx, ip = 0;
336
337		if (!pmc)
338			continue;
339
340		maps = pmc->map->pfear_sts;
341		iter = pmc->map->ppfear0_offset;
342
343		for (index = 0; index < pmc->map->ppfear_buckets &&
344		     index < PPFEAR_MAX_NUM_ENTRIES; index++, iter++)
345			pf_regs[index] = pmc_core_reg_read_byte(pmc, iter);
346
347		for (idx = 0; maps[idx]; idx++) {
348			for (index = 0; maps[idx][index].name &&
349			     index < pmc->map->ppfear_buckets * 8; ip++, index++)
350				pmc_core_display_map(s, index, idx, ip, i,
351						     pf_regs[index / 8], maps);
352		}
353	}
354
355	return 0;
356}
357DEFINE_SHOW_ATTRIBUTE(pmc_core_ppfear);
358
359/* This function should return link status, 0 means ready */
360static int pmc_core_mtpmc_link_status(struct pmc *pmc)
361{
362	u32 value;
363
364	value = pmc_core_reg_read(pmc, SPT_PMC_PM_STS_OFFSET);
365	return value & BIT(SPT_PMC_MSG_FULL_STS_BIT);
366}
367
368static int pmc_core_send_msg(struct pmc *pmc, u32 *addr_xram)
369{
370	u32 dest;
371	int timeout;
372
373	for (timeout = NUM_RETRIES; timeout > 0; timeout--) {
374		if (pmc_core_mtpmc_link_status(pmc) == 0)
375			break;
376		msleep(5);
377	}
378
379	if (timeout <= 0 && pmc_core_mtpmc_link_status(pmc))
380		return -EBUSY;
381
382	dest = (*addr_xram & MTPMC_MASK) | (1U << 1);
383	pmc_core_reg_write(pmc, SPT_PMC_MTPMC_OFFSET, dest);
384	return 0;
385}
386
387static int pmc_core_mphy_pg_show(struct seq_file *s, void *unused)
388{
389	struct pmc_dev *pmcdev = s->private;
390	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
391	const struct pmc_bit_map *map = pmc->map->mphy_sts;
392	u32 mphy_core_reg_low, mphy_core_reg_high;
393	u32 val_low, val_high;
394	int index, err = 0;
395
396	if (pmcdev->pmc_xram_read_bit) {
397		seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS.");
398		return 0;
399	}
400
401	mphy_core_reg_low  = (SPT_PMC_MPHY_CORE_STS_0 << 16);
402	mphy_core_reg_high = (SPT_PMC_MPHY_CORE_STS_1 << 16);
403
404	mutex_lock(&pmcdev->lock);
405
406	if (pmc_core_send_msg(pmc, &mphy_core_reg_low) != 0) {
407		err = -EBUSY;
408		goto out_unlock;
409	}
410
411	msleep(10);
412	val_low = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
413
414	if (pmc_core_send_msg(pmc, &mphy_core_reg_high) != 0) {
415		err = -EBUSY;
416		goto out_unlock;
417	}
418
419	msleep(10);
420	val_high = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
421
422	for (index = 0; index < 8 && map[index].name; index++) {
423		seq_printf(s, "%-32s\tState: %s\n",
424			   map[index].name,
425			   map[index].bit_mask & val_low ? "Not power gated" :
426			   "Power gated");
427	}
428
429	for (index = 8; map[index].name; index++) {
430		seq_printf(s, "%-32s\tState: %s\n",
431			   map[index].name,
432			   map[index].bit_mask & val_high ? "Not power gated" :
433			   "Power gated");
434	}
435
436out_unlock:
437	mutex_unlock(&pmcdev->lock);
438	return err;
439}
440DEFINE_SHOW_ATTRIBUTE(pmc_core_mphy_pg);
441
442static int pmc_core_pll_show(struct seq_file *s, void *unused)
443{
444	struct pmc_dev *pmcdev = s->private;
445	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
446	const struct pmc_bit_map *map = pmc->map->pll_sts;
447	u32 mphy_common_reg, val;
448	int index, err = 0;
449
450	if (pmcdev->pmc_xram_read_bit) {
451		seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS.");
452		return 0;
453	}
454
455	mphy_common_reg  = (SPT_PMC_MPHY_COM_STS_0 << 16);
456	mutex_lock(&pmcdev->lock);
457
458	if (pmc_core_send_msg(pmc, &mphy_common_reg) != 0) {
459		err = -EBUSY;
460		goto out_unlock;
461	}
462
463	/* Observed PMC HW response latency for MTPMC-MFPMC is ~10 ms */
464	msleep(10);
465	val = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
466
467	for (index = 0; map[index].name ; index++) {
468		seq_printf(s, "%-32s\tState: %s\n",
469			   map[index].name,
470			   map[index].bit_mask & val ? "Active" : "Idle");
471	}
472
473out_unlock:
474	mutex_unlock(&pmcdev->lock);
475	return err;
476}
477DEFINE_SHOW_ATTRIBUTE(pmc_core_pll);
478
479int pmc_core_send_ltr_ignore(struct pmc_dev *pmcdev, u32 value, int ignore)
480{
481	struct pmc *pmc;
482	const struct pmc_reg_map *map;
483	u32 reg;
484	int pmc_index, ltr_index;
485
486	ltr_index = value;
487	/* For platforms with multiple pmcs, ltr index value given by user
488	 * is based on the contiguous indexes from ltr_show output.
489	 * pmc index and ltr index needs to be calculated from it.
490	 */
491	for (pmc_index = 0; pmc_index < ARRAY_SIZE(pmcdev->pmcs) && ltr_index >= 0; pmc_index++) {
492		pmc = pmcdev->pmcs[pmc_index];
493
494		if (!pmc)
495			continue;
496
497		map = pmc->map;
498		if (ltr_index <= map->ltr_ignore_max)
499			break;
500
501		/* Along with IP names, ltr_show map includes CURRENT_PLATFORM
502		 * and AGGREGATED_SYSTEM values per PMC. Take these two index
503		 * values into account in ltr_index calculation. Also, to start
504		 * ltr index from zero for next pmc, subtract it by 1.
505		 */
506		ltr_index = ltr_index - (map->ltr_ignore_max + 2) - 1;
507	}
508
509	if (pmc_index >= ARRAY_SIZE(pmcdev->pmcs) || ltr_index < 0)
510		return -EINVAL;
511
512	pr_debug("ltr_ignore for pmc%d: ltr_index:%d\n", pmc_index, ltr_index);
513
514	mutex_lock(&pmcdev->lock);
515
516	reg = pmc_core_reg_read(pmc, map->ltr_ignore_offset);
517	if (ignore)
518		reg |= BIT(ltr_index);
519	else
520		reg &= ~BIT(ltr_index);
521	pmc_core_reg_write(pmc, map->ltr_ignore_offset, reg);
522
523	mutex_unlock(&pmcdev->lock);
524
525	return 0;
526}
527
528static ssize_t pmc_core_ltr_ignore_write(struct file *file,
529					 const char __user *userbuf,
530					 size_t count, loff_t *ppos)
531{
532	struct seq_file *s = file->private_data;
533	struct pmc_dev *pmcdev = s->private;
534	u32 buf_size, value;
535	int err;
536
537	buf_size = min_t(u32, count, 64);
538
539	err = kstrtou32_from_user(userbuf, buf_size, 10, &value);
540	if (err)
541		return err;
542
543	err = pmc_core_send_ltr_ignore(pmcdev, value, 1);
544
545	return err == 0 ? count : err;
546}
547
548static int pmc_core_ltr_ignore_show(struct seq_file *s, void *unused)
549{
550	return 0;
551}
552
553static int pmc_core_ltr_ignore_open(struct inode *inode, struct file *file)
554{
555	return single_open(file, pmc_core_ltr_ignore_show, inode->i_private);
556}
557
558static const struct file_operations pmc_core_ltr_ignore_ops = {
559	.open           = pmc_core_ltr_ignore_open,
560	.read           = seq_read,
561	.write          = pmc_core_ltr_ignore_write,
562	.llseek         = seq_lseek,
563	.release        = single_release,
564};
565
566static void pmc_core_slps0_dbg_latch(struct pmc_dev *pmcdev, bool reset)
567{
568	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
569	const struct pmc_reg_map *map = pmc->map;
570	u32 fd;
571
572	mutex_lock(&pmcdev->lock);
573
574	if (!reset && !slps0_dbg_latch)
575		goto out_unlock;
576
577	fd = pmc_core_reg_read(pmc, map->slps0_dbg_offset);
578	if (reset)
579		fd &= ~CNP_PMC_LATCH_SLPS0_EVENTS;
580	else
581		fd |= CNP_PMC_LATCH_SLPS0_EVENTS;
582	pmc_core_reg_write(pmc, map->slps0_dbg_offset, fd);
583
584	slps0_dbg_latch = false;
585
586out_unlock:
587	mutex_unlock(&pmcdev->lock);
588}
589
590static int pmc_core_slps0_dbg_show(struct seq_file *s, void *unused)
591{
592	struct pmc_dev *pmcdev = s->private;
593
594	pmc_core_slps0_dbg_latch(pmcdev, false);
595	pmc_core_slps0_display(pmcdev->pmcs[PMC_IDX_MAIN], NULL, s);
596	pmc_core_slps0_dbg_latch(pmcdev, true);
597
598	return 0;
599}
600DEFINE_SHOW_ATTRIBUTE(pmc_core_slps0_dbg);
601
602static u32 convert_ltr_scale(u32 val)
603{
604	/*
605	 * As per PCIE specification supporting document
606	 * ECN_LatencyTolnReporting_14Aug08.pdf the Latency
607	 * Tolerance Reporting data payload is encoded in a
608	 * 3 bit scale and 10 bit value fields. Values are
609	 * multiplied by the indicated scale to yield an absolute time
610	 * value, expressible in a range from 1 nanosecond to
611	 * 2^25*(2^10-1) = 34,326,183,936 nanoseconds.
612	 *
613	 * scale encoding is as follows:
614	 *
615	 * ----------------------------------------------
616	 * |scale factor	|	Multiplier (ns)	|
617	 * ----------------------------------------------
618	 * |	0		|	1		|
619	 * |	1		|	32		|
620	 * |	2		|	1024		|
621	 * |	3		|	32768		|
622	 * |	4		|	1048576		|
623	 * |	5		|	33554432	|
624	 * |	6		|	Invalid		|
625	 * |	7		|	Invalid		|
626	 * ----------------------------------------------
627	 */
628	if (val > 5) {
629		pr_warn("Invalid LTR scale factor.\n");
630		return 0;
631	}
632
633	return 1U << (5 * val);
634}
635
636static int pmc_core_ltr_show(struct seq_file *s, void *unused)
637{
638	struct pmc_dev *pmcdev = s->private;
639	u64 decoded_snoop_ltr, decoded_non_snoop_ltr;
640	u32 ltr_raw_data, scale, val;
641	u16 snoop_ltr, nonsnoop_ltr;
642	int i, index, ltr_index = 0;
643
644	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
645		struct pmc *pmc = pmcdev->pmcs[i];
646		const struct pmc_bit_map *map;
647
648		if (!pmc)
649			continue;
650
651		map = pmc->map->ltr_show_sts;
652		for (index = 0; map[index].name; index++) {
653			decoded_snoop_ltr = decoded_non_snoop_ltr = 0;
654			ltr_raw_data = pmc_core_reg_read(pmc,
655							 map[index].bit_mask);
656			snoop_ltr = ltr_raw_data & ~MTPMC_MASK;
657			nonsnoop_ltr = (ltr_raw_data >> 0x10) & ~MTPMC_MASK;
658
659			if (FIELD_GET(LTR_REQ_NONSNOOP, ltr_raw_data)) {
660				scale = FIELD_GET(LTR_DECODED_SCALE, nonsnoop_ltr);
661				val = FIELD_GET(LTR_DECODED_VAL, nonsnoop_ltr);
662				decoded_non_snoop_ltr = val * convert_ltr_scale(scale);
663			}
664			if (FIELD_GET(LTR_REQ_SNOOP, ltr_raw_data)) {
665				scale = FIELD_GET(LTR_DECODED_SCALE, snoop_ltr);
666				val = FIELD_GET(LTR_DECODED_VAL, snoop_ltr);
667				decoded_snoop_ltr = val * convert_ltr_scale(scale);
668			}
669
670			seq_printf(s, "%d\tPMC%d:%-32s\tLTR: RAW: 0x%-16x\tNon-Snoop(ns): %-16llu\tSnoop(ns): %-16llu\n",
671				   ltr_index, i, map[index].name, ltr_raw_data,
672				   decoded_non_snoop_ltr,
673				   decoded_snoop_ltr);
674			ltr_index++;
675		}
676	}
677	return 0;
678}
679DEFINE_SHOW_ATTRIBUTE(pmc_core_ltr);
680
681static inline u64 adjust_lpm_residency(struct pmc *pmc, u32 offset,
682				       const int lpm_adj_x2)
683{
684	u64 lpm_res = pmc_core_reg_read(pmc, offset);
685
686	return GET_X2_COUNTER((u64)lpm_adj_x2 * lpm_res);
687}
688
689static int pmc_core_substate_res_show(struct seq_file *s, void *unused)
690{
691	struct pmc_dev *pmcdev = s->private;
692	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
693	const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2;
694	u32 offset = pmc->map->lpm_residency_offset;
695	int i, mode;
696
697	seq_printf(s, "%-10s %-15s\n", "Substate", "Residency");
698
699	pmc_for_each_mode(i, mode, pmcdev) {
700		seq_printf(s, "%-10s %-15llu\n", pmc_lpm_modes[mode],
701			   adjust_lpm_residency(pmc, offset + (4 * mode), lpm_adj_x2));
702	}
703
704	return 0;
705}
706DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_res);
707
708static int pmc_core_substate_sts_regs_show(struct seq_file *s, void *unused)
709{
710	struct pmc_dev *pmcdev = s->private;
711	int i;
712
713	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
714		struct pmc *pmc = pmcdev->pmcs[i];
715		const struct pmc_bit_map **maps;
716		u32 offset;
717
718		if (!pmc)
719			continue;
720		maps = pmc->map->lpm_sts;
721		offset = pmc->map->lpm_status_offset;
722		pmc_core_lpm_display(pmc, NULL, s, offset, i, "STATUS", maps);
723	}
724
725	return 0;
726}
727DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_sts_regs);
728
729static int pmc_core_substate_l_sts_regs_show(struct seq_file *s, void *unused)
730{
731	struct pmc_dev *pmcdev = s->private;
732	int i;
733
734	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
735		struct pmc *pmc = pmcdev->pmcs[i];
736		const struct pmc_bit_map **maps;
737		u32 offset;
738
739		if (!pmc)
740			continue;
741		maps = pmc->map->lpm_sts;
742		offset = pmc->map->lpm_live_status_offset;
743		pmc_core_lpm_display(pmc, NULL, s, offset, i, "LIVE_STATUS", maps);
744	}
745
746	return 0;
747}
748DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_l_sts_regs);
749
750static void pmc_core_substate_req_header_show(struct seq_file *s, int pmc_index)
751{
752	struct pmc_dev *pmcdev = s->private;
753	int i, mode;
754
755	seq_printf(s, "%30s |", "Element");
756	pmc_for_each_mode(i, mode, pmcdev)
757		seq_printf(s, " %9s |", pmc_lpm_modes[mode]);
758
759	seq_printf(s, " %9s |\n", "Status");
760}
761
762static int pmc_core_substate_req_regs_show(struct seq_file *s, void *unused)
763{
764	struct pmc_dev *pmcdev = s->private;
765	u32 sts_offset;
766	u32 *lpm_req_regs;
767	int num_maps, mp, pmc_index;
768
769	for (pmc_index = 0; pmc_index < ARRAY_SIZE(pmcdev->pmcs); ++pmc_index) {
770		struct pmc *pmc = pmcdev->pmcs[pmc_index];
771		const struct pmc_bit_map **maps;
772
773		if (!pmc)
774			continue;
775
776		maps = pmc->map->lpm_sts;
777		num_maps = pmc->map->lpm_num_maps;
778		sts_offset = pmc->map->lpm_status_offset;
779		lpm_req_regs = pmc->lpm_req_regs;
780
781		/*
782		 * When there are multiple PMCs, though the PMC may exist, the
783		 * requirement register discovery could have failed so check
784		 * before accessing.
785		 */
786		if (!lpm_req_regs)
787			continue;
788
789		/* Display the header */
790		pmc_core_substate_req_header_show(s, pmc_index);
791
792		/* Loop over maps */
793		for (mp = 0; mp < num_maps; mp++) {
794			u32 req_mask = 0;
795			u32 lpm_status;
796			const struct pmc_bit_map *map;
797			int mode, idx, i, len = 32;
798
799			/*
800			 * Capture the requirements and create a mask so that we only
801			 * show an element if it's required for at least one of the
802			 * enabled low power modes
803			 */
804			pmc_for_each_mode(idx, mode, pmcdev)
805				req_mask |= lpm_req_regs[mp + (mode * num_maps)];
806
807			/* Get the last latched status for this map */
808			lpm_status = pmc_core_reg_read(pmc, sts_offset + (mp * 4));
809
810			/*  Loop over elements in this map */
811			map = maps[mp];
812			for (i = 0; map[i].name && i < len; i++) {
813				u32 bit_mask = map[i].bit_mask;
814
815				if (!(bit_mask & req_mask)) {
816					/*
817					 * Not required for any enabled states
818					 * so don't display
819					 */
820					continue;
821				}
822
823				/* Display the element name in the first column */
824				seq_printf(s, "pmc%d: %26s |", pmc_index, map[i].name);
825
826				/* Loop over the enabled states and display if required */
827				pmc_for_each_mode(idx, mode, pmcdev) {
828					bool required = lpm_req_regs[mp + (mode * num_maps)] &
829							bit_mask;
830					seq_printf(s, " %9s |", required ? "Required" : " ");
831				}
832
833				/* In Status column, show the last captured state of this agent */
834				seq_printf(s, " %9s |", lpm_status & bit_mask ? "Yes" : " ");
835
836				seq_puts(s, "\n");
837			}
838		}
839	}
840	return 0;
841}
842DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_req_regs);
843
844static unsigned int pmc_core_get_crystal_freq(void)
845{
846	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
847
848	if (boot_cpu_data.cpuid_level < 0x15)
849		return 0;
850
851	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
852
853	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
854	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
855
856	if (ebx_numerator == 0 || eax_denominator == 0)
857		return 0;
858
859	return ecx_hz;
860}
861
862static int pmc_core_die_c6_us_show(struct seq_file *s, void *unused)
863{
864	struct pmc_dev *pmcdev = s->private;
865	u64 die_c6_res, count;
866	int ret;
867
868	if (!pmcdev->crystal_freq) {
869		dev_warn_once(&pmcdev->pdev->dev, "Crystal frequency unavailable\n");
870		return -ENXIO;
871	}
872
873	ret = pmt_telem_read(pmcdev->punit_ep, pmcdev->die_c6_offset,
874			     &count, 1);
875	if (ret)
876		return ret;
877
878	die_c6_res = div64_u64(count * HZ_PER_MHZ, pmcdev->crystal_freq);
879	seq_printf(s, "%llu\n", die_c6_res);
880
881	return 0;
882}
883DEFINE_SHOW_ATTRIBUTE(pmc_core_die_c6_us);
884
885static int pmc_core_lpm_latch_mode_show(struct seq_file *s, void *unused)
886{
887	struct pmc_dev *pmcdev = s->private;
888	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
889	bool c10;
890	u32 reg;
891	int idx, mode;
892
893	reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset);
894	if (reg & LPM_STS_LATCH_MODE) {
895		seq_puts(s, "c10");
896		c10 = false;
897	} else {
898		seq_puts(s, "[c10]");
899		c10 = true;
900	}
901
902	pmc_for_each_mode(idx, mode, pmcdev) {
903		if ((BIT(mode) & reg) && !c10)
904			seq_printf(s, " [%s]", pmc_lpm_modes[mode]);
905		else
906			seq_printf(s, " %s", pmc_lpm_modes[mode]);
907	}
908
909	seq_puts(s, " clear\n");
910
911	return 0;
912}
913
914static ssize_t pmc_core_lpm_latch_mode_write(struct file *file,
915					     const char __user *userbuf,
916					     size_t count, loff_t *ppos)
917{
918	struct seq_file *s = file->private_data;
919	struct pmc_dev *pmcdev = s->private;
920	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
921	bool clear = false, c10 = false;
922	unsigned char buf[8];
923	int idx, m, mode;
924	u32 reg;
925
926	if (count > sizeof(buf) - 1)
927		return -EINVAL;
928	if (copy_from_user(buf, userbuf, count))
929		return -EFAULT;
930	buf[count] = '\0';
931
932	/*
933	 * Allowed strings are:
934	 *	Any enabled substate, e.g. 'S0i2.0'
935	 *	'c10'
936	 *	'clear'
937	 */
938	mode = sysfs_match_string(pmc_lpm_modes, buf);
939
940	/* Check string matches enabled mode */
941	pmc_for_each_mode(idx, m, pmcdev)
942		if (mode == m)
943			break;
944
945	if (mode != m || mode < 0) {
946		if (sysfs_streq(buf, "clear"))
947			clear = true;
948		else if (sysfs_streq(buf, "c10"))
949			c10 = true;
950		else
951			return -EINVAL;
952	}
953
954	if (clear) {
955		mutex_lock(&pmcdev->lock);
956
957		reg = pmc_core_reg_read(pmc, pmc->map->etr3_offset);
958		reg |= ETR3_CLEAR_LPM_EVENTS;
959		pmc_core_reg_write(pmc, pmc->map->etr3_offset, reg);
960
961		mutex_unlock(&pmcdev->lock);
962
963		return count;
964	}
965
966	if (c10) {
967		mutex_lock(&pmcdev->lock);
968
969		reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset);
970		reg &= ~LPM_STS_LATCH_MODE;
971		pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg);
972
973		mutex_unlock(&pmcdev->lock);
974
975		return count;
976	}
977
978	/*
979	 * For LPM mode latching we set the latch enable bit and selected mode
980	 * and clear everything else.
981	 */
982	reg = LPM_STS_LATCH_MODE | BIT(mode);
983	mutex_lock(&pmcdev->lock);
984	pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg);
985	mutex_unlock(&pmcdev->lock);
986
987	return count;
988}
989DEFINE_PMC_CORE_ATTR_WRITE(pmc_core_lpm_latch_mode);
990
991static int pmc_core_pkgc_show(struct seq_file *s, void *unused)
992{
993	struct pmc *pmc = s->private;
994	const struct pmc_bit_map *map = pmc->map->msr_sts;
995	u64 pcstate_count;
996	int index;
997
998	for (index = 0; map[index].name ; index++) {
999		if (rdmsrl_safe(map[index].bit_mask, &pcstate_count))
1000			continue;
1001
1002		pcstate_count *= 1000;
1003		do_div(pcstate_count, tsc_khz);
1004		seq_printf(s, "%-8s : %llu\n", map[index].name,
1005			   pcstate_count);
1006	}
1007
1008	return 0;
1009}
1010DEFINE_SHOW_ATTRIBUTE(pmc_core_pkgc);
1011
1012static bool pmc_core_pri_verify(u32 lpm_pri, u8 *mode_order)
1013{
1014	int i, j;
1015
1016	if (!lpm_pri)
1017		return false;
1018	/*
1019	 * Each byte contains the priority level for 2 modes (7:4 and 3:0).
1020	 * In a 32 bit register this allows for describing 8 modes. Store the
1021	 * levels and look for values out of range.
1022	 */
1023	for (i = 0; i < 8; i++) {
1024		int level = lpm_pri & GENMASK(3, 0);
1025
1026		if (level >= LPM_MAX_NUM_MODES)
1027			return false;
1028
1029		mode_order[i] = level;
1030		lpm_pri >>= 4;
1031	}
1032
1033	/* Check that we have unique values */
1034	for (i = 0; i < LPM_MAX_NUM_MODES - 1; i++)
1035		for (j = i + 1; j < LPM_MAX_NUM_MODES; j++)
1036			if (mode_order[i] == mode_order[j])
1037				return false;
1038
1039	return true;
1040}
1041
1042void pmc_core_get_low_power_modes(struct pmc_dev *pmcdev)
1043{
1044	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1045	u8 pri_order[LPM_MAX_NUM_MODES] = LPM_DEFAULT_PRI;
1046	u8 mode_order[LPM_MAX_NUM_MODES];
1047	u32 lpm_pri;
1048	u32 lpm_en;
1049	int mode, i, p;
1050
1051	/* Use LPM Maps to indicate support for substates */
1052	if (!pmc->map->lpm_num_maps)
1053		return;
1054
1055	lpm_en = pmc_core_reg_read(pmc, pmc->map->lpm_en_offset);
1056	/* For MTL, BIT 31 is not an lpm mode but a enable bit.
1057	 * Lower byte is enough to cover the number of lpm modes for all
1058	 * platforms and hence mask the upper 3 bytes.
1059	 */
1060	pmcdev->num_lpm_modes = hweight32(lpm_en & 0xFF);
1061
1062	/* Read 32 bit LPM_PRI register */
1063	lpm_pri = pmc_core_reg_read(pmc, pmc->map->lpm_priority_offset);
1064
1065
1066	/*
1067	 * If lpm_pri value passes verification, then override the default
1068	 * modes here. Otherwise stick with the default.
1069	 */
1070	if (pmc_core_pri_verify(lpm_pri, mode_order))
1071		/* Get list of modes in priority order */
1072		for (mode = 0; mode < LPM_MAX_NUM_MODES; mode++)
1073			pri_order[mode_order[mode]] = mode;
1074	else
1075		dev_warn(&pmcdev->pdev->dev,
1076			 "Assuming a default substate order for this platform\n");
1077
1078	/*
1079	 * Loop through all modes from lowest to highest priority,
1080	 * and capture all enabled modes in order
1081	 */
1082	i = 0;
1083	for (p = LPM_MAX_NUM_MODES - 1; p >= 0; p--) {
1084		int mode = pri_order[p];
1085
1086		if (!(BIT(mode) & lpm_en))
1087			continue;
1088
1089		pmcdev->lpm_en_modes[i++] = mode;
1090	}
1091}
1092
1093int get_primary_reg_base(struct pmc *pmc)
1094{
1095	u64 slp_s0_addr;
1096
1097	if (lpit_read_residency_count_address(&slp_s0_addr)) {
1098		pmc->base_addr = PMC_BASE_ADDR_DEFAULT;
1099
1100		if (page_is_ram(PHYS_PFN(pmc->base_addr)))
1101			return -ENODEV;
1102	} else {
1103		pmc->base_addr = slp_s0_addr - pmc->map->slp_s0_offset;
1104	}
1105
1106	pmc->regbase = ioremap(pmc->base_addr, pmc->map->regmap_length);
1107	if (!pmc->regbase)
1108		return -ENOMEM;
1109	return 0;
1110}
1111
1112void pmc_core_punit_pmt_init(struct pmc_dev *pmcdev, u32 guid)
1113{
1114	struct telem_endpoint *ep;
1115	struct pci_dev *pcidev;
1116
1117	pcidev = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(10, 0));
1118	if (!pcidev) {
1119		dev_err(&pmcdev->pdev->dev, "PUNIT PMT device not found.");
1120		return;
1121	}
1122
1123	ep = pmt_telem_find_and_register_endpoint(pcidev, guid, 0);
1124	pci_dev_put(pcidev);
1125	if (IS_ERR(ep)) {
1126		dev_err(&pmcdev->pdev->dev,
1127			"pmc_core: couldn't get DMU telem endpoint %ld",
1128			PTR_ERR(ep));
1129		return;
1130	}
1131
1132	pmcdev->punit_ep = ep;
1133
1134	pmcdev->has_die_c6 = true;
1135	pmcdev->die_c6_offset = MTL_PMT_DMU_DIE_C6_OFFSET;
1136}
1137
1138void pmc_core_set_device_d3(unsigned int device)
1139{
1140	struct pci_dev *pcidev;
1141
1142	pcidev = pci_get_device(PCI_VENDOR_ID_INTEL, device, NULL);
1143	if (pcidev) {
1144		if (!device_trylock(&pcidev->dev)) {
1145			pci_dev_put(pcidev);
1146			return;
1147		}
1148		if (!pcidev->dev.driver) {
1149			dev_info(&pcidev->dev, "Setting to D3hot\n");
1150			pci_set_power_state(pcidev, PCI_D3hot);
1151		}
1152		device_unlock(&pcidev->dev);
1153		pci_dev_put(pcidev);
1154	}
1155}
1156
1157static bool pmc_core_is_pson_residency_enabled(struct pmc_dev *pmcdev)
1158{
1159	struct platform_device *pdev = pmcdev->pdev;
1160	struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
1161	u8 val;
1162
1163	if (!adev)
1164		return false;
1165
1166	if (fwnode_property_read_u8(acpi_fwnode_handle(adev),
1167				    "intel-cec-pson-switching-enabled-in-s0",
1168				    &val))
1169		return false;
1170
1171	return val == 1;
1172}
1173
1174
1175static void pmc_core_dbgfs_unregister(struct pmc_dev *pmcdev)
1176{
1177	debugfs_remove_recursive(pmcdev->dbgfs_dir);
1178}
1179
1180static void pmc_core_dbgfs_register(struct pmc_dev *pmcdev)
1181{
1182	struct pmc *primary_pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1183	struct dentry *dir;
1184
1185	dir = debugfs_create_dir("pmc_core", NULL);
1186	pmcdev->dbgfs_dir = dir;
1187
1188	debugfs_create_file("slp_s0_residency_usec", 0444, dir, primary_pmc,
1189			    &pmc_core_dev_state);
1190
1191	if (primary_pmc->map->pfear_sts)
1192		debugfs_create_file("pch_ip_power_gating_status", 0444, dir,
1193				    pmcdev, &pmc_core_ppfear_fops);
1194
1195	debugfs_create_file("ltr_ignore", 0644, dir, pmcdev,
1196			    &pmc_core_ltr_ignore_ops);
1197
1198	debugfs_create_file("ltr_show", 0444, dir, pmcdev, &pmc_core_ltr_fops);
1199
1200	debugfs_create_file("package_cstate_show", 0444, dir, primary_pmc,
1201			    &pmc_core_pkgc_fops);
1202
1203	if (primary_pmc->map->pll_sts)
1204		debugfs_create_file("pll_status", 0444, dir, pmcdev,
1205				    &pmc_core_pll_fops);
1206
1207	if (primary_pmc->map->mphy_sts)
1208		debugfs_create_file("mphy_core_lanes_power_gating_status",
1209				    0444, dir, pmcdev,
1210				    &pmc_core_mphy_pg_fops);
1211
1212	if (primary_pmc->map->slps0_dbg_maps) {
1213		debugfs_create_file("slp_s0_debug_status", 0444,
1214				    dir, pmcdev,
1215				    &pmc_core_slps0_dbg_fops);
1216
1217		debugfs_create_bool("slp_s0_dbg_latch", 0644,
1218				    dir, &slps0_dbg_latch);
1219	}
1220
1221	if (primary_pmc->map->lpm_en_offset) {
1222		debugfs_create_file("substate_residencies", 0444,
1223				    pmcdev->dbgfs_dir, pmcdev,
1224				    &pmc_core_substate_res_fops);
1225	}
1226
1227	if (primary_pmc->map->lpm_status_offset) {
1228		debugfs_create_file("substate_status_registers", 0444,
1229				    pmcdev->dbgfs_dir, pmcdev,
1230				    &pmc_core_substate_sts_regs_fops);
1231		debugfs_create_file("substate_live_status_registers", 0444,
1232				    pmcdev->dbgfs_dir, pmcdev,
1233				    &pmc_core_substate_l_sts_regs_fops);
1234		debugfs_create_file("lpm_latch_mode", 0644,
1235				    pmcdev->dbgfs_dir, pmcdev,
1236				    &pmc_core_lpm_latch_mode_fops);
1237	}
1238
1239	if (primary_pmc->lpm_req_regs) {
1240		debugfs_create_file("substate_requirements", 0444,
1241				    pmcdev->dbgfs_dir, pmcdev,
1242				    &pmc_core_substate_req_regs_fops);
1243	}
1244
1245	if (primary_pmc->map->pson_residency_offset && pmc_core_is_pson_residency_enabled(pmcdev)) {
1246		debugfs_create_file("pson_residency_usec", 0444,
1247				    pmcdev->dbgfs_dir, primary_pmc, &pmc_core_pson_residency);
1248	}
1249
1250	if (pmcdev->has_die_c6) {
1251		debugfs_create_file("die_c6_us_show", 0444,
1252				    pmcdev->dbgfs_dir, pmcdev,
1253				    &pmc_core_die_c6_us_fops);
1254	}
1255}
1256
1257static const struct x86_cpu_id intel_pmc_core_ids[] = {
1258	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L,		spt_core_init),
1259	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE,		spt_core_init),
1260	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L,		spt_core_init),
1261	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE,		spt_core_init),
1262	X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L,	cnp_core_init),
1263	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,		icl_core_init),
1264	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI,	icl_core_init),
1265	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE,		cnp_core_init),
1266	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L,		cnp_core_init),
1267	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,		tgl_l_core_init),
1268	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,		tgl_core_init),
1269	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,	tgl_l_core_init),
1270	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,	icl_core_init),
1271	X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE,		tgl_core_init),
1272	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L,		tgl_l_core_init),
1273	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GRACEMONT,	tgl_l_core_init),
1274	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,		adl_core_init),
1275	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P,        tgl_l_core_init),
1276	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE,		adl_core_init),
1277	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S,	adl_core_init),
1278	X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L,	mtl_core_init),
1279	X86_MATCH_INTEL_FAM6_MODEL(ARROWLAKE,		arl_core_init),
1280	X86_MATCH_INTEL_FAM6_MODEL(LUNARLAKE_M,         lnl_core_init),
1281	{}
1282};
1283
1284MODULE_DEVICE_TABLE(x86cpu, intel_pmc_core_ids);
1285
1286static const struct pci_device_id pmc_pci_ids[] = {
1287	{ PCI_VDEVICE(INTEL, SPT_PMC_PCI_DEVICE_ID) },
1288	{ }
1289};
1290
1291/*
1292 * This quirk can be used on those platforms where
1293 * the platform BIOS enforces 24Mhz crystal to shutdown
1294 * before PMC can assert SLP_S0#.
1295 */
1296static bool xtal_ignore;
1297static int quirk_xtal_ignore(const struct dmi_system_id *id)
1298{
1299	xtal_ignore = true;
1300	return 0;
1301}
1302
1303static void pmc_core_xtal_ignore(struct pmc *pmc)
1304{
1305	u32 value;
1306
1307	value = pmc_core_reg_read(pmc, pmc->map->pm_vric1_offset);
1308	/* 24MHz Crystal Shutdown Qualification Disable */
1309	value |= SPT_PMC_VRIC1_XTALSDQDIS;
1310	/* Low Voltage Mode Enable */
1311	value &= ~SPT_PMC_VRIC1_SLPS0LVEN;
1312	pmc_core_reg_write(pmc, pmc->map->pm_vric1_offset, value);
1313}
1314
1315static const struct dmi_system_id pmc_core_dmi_table[]  = {
1316	{
1317	.callback = quirk_xtal_ignore,
1318	.ident = "HP Elite x2 1013 G3",
1319	.matches = {
1320		DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1321		DMI_MATCH(DMI_PRODUCT_NAME, "HP Elite x2 1013 G3"),
1322		},
1323	},
1324	{}
1325};
1326
1327static void pmc_core_do_dmi_quirks(struct pmc *pmc)
1328{
1329	dmi_check_system(pmc_core_dmi_table);
1330
1331	if (xtal_ignore)
1332		pmc_core_xtal_ignore(pmc);
1333}
1334
1335static void pmc_core_clean_structure(struct platform_device *pdev)
1336{
1337	struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
1338	int i;
1339
1340	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
1341		struct pmc *pmc = pmcdev->pmcs[i];
1342
1343		if (pmc)
1344			iounmap(pmc->regbase);
1345	}
1346
1347	if (pmcdev->ssram_pcidev) {
1348		pci_dev_put(pmcdev->ssram_pcidev);
1349		pci_disable_device(pmcdev->ssram_pcidev);
1350	}
1351
1352	if (pmcdev->punit_ep)
1353		pmt_telem_unregister_endpoint(pmcdev->punit_ep);
1354
1355	platform_set_drvdata(pdev, NULL);
1356	mutex_destroy(&pmcdev->lock);
1357}
1358
1359static int pmc_core_probe(struct platform_device *pdev)
1360{
1361	static bool device_initialized;
1362	struct pmc_dev *pmcdev;
1363	const struct x86_cpu_id *cpu_id;
1364	int (*core_init)(struct pmc_dev *pmcdev);
1365	struct pmc *primary_pmc;
1366	int ret;
1367
1368	if (device_initialized)
1369		return -ENODEV;
1370
1371	pmcdev = devm_kzalloc(&pdev->dev, sizeof(*pmcdev), GFP_KERNEL);
1372	if (!pmcdev)
1373		return -ENOMEM;
1374
1375	pmcdev->crystal_freq = pmc_core_get_crystal_freq();
1376
1377	platform_set_drvdata(pdev, pmcdev);
1378	pmcdev->pdev = pdev;
1379
1380	cpu_id = x86_match_cpu(intel_pmc_core_ids);
1381	if (!cpu_id)
1382		return -ENODEV;
1383
1384	core_init = (int (*)(struct pmc_dev *))cpu_id->driver_data;
1385
1386	/* Primary PMC */
1387	primary_pmc = devm_kzalloc(&pdev->dev, sizeof(*primary_pmc), GFP_KERNEL);
1388	if (!primary_pmc)
1389		return -ENOMEM;
1390	pmcdev->pmcs[PMC_IDX_MAIN] = primary_pmc;
1391
1392	/* The last element in msr_map is empty */
1393	pmcdev->num_of_pkgc = ARRAY_SIZE(msr_map) - 1;
1394	pmcdev->pkgc_res_cnt = devm_kcalloc(&pdev->dev,
1395					    pmcdev->num_of_pkgc,
1396					    sizeof(*pmcdev->pkgc_res_cnt),
1397					    GFP_KERNEL);
1398	if (!pmcdev->pkgc_res_cnt)
1399		return -ENOMEM;
1400
1401	/*
1402	 * Coffee Lake has CPU ID of Kaby Lake and Cannon Lake PCH. So here
1403	 * Sunrisepoint PCH regmap can't be used. Use Cannon Lake PCH regmap
1404	 * in this case.
1405	 */
1406	if (core_init == spt_core_init && !pci_dev_present(pmc_pci_ids))
1407		core_init = cnp_core_init;
1408
1409	mutex_init(&pmcdev->lock);
1410	ret = core_init(pmcdev);
1411	if (ret) {
1412		pmc_core_clean_structure(pdev);
1413		return ret;
1414	}
1415
1416	pmcdev->pmc_xram_read_bit = pmc_core_check_read_lock_bit(primary_pmc);
1417	pmc_core_do_dmi_quirks(primary_pmc);
1418
1419	pmc_core_dbgfs_register(pmcdev);
1420	pm_report_max_hw_sleep(FIELD_MAX(SLP_S0_RES_COUNTER_MASK) *
1421			       pmc_core_adjust_slp_s0_step(primary_pmc, 1));
1422
1423	device_initialized = true;
1424	dev_info(&pdev->dev, " initialized\n");
1425
1426	return 0;
1427}
1428
1429static void pmc_core_remove(struct platform_device *pdev)
1430{
1431	struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
1432	pmc_core_dbgfs_unregister(pmcdev);
1433	pmc_core_clean_structure(pdev);
1434}
1435
1436static bool warn_on_s0ix_failures;
1437module_param(warn_on_s0ix_failures, bool, 0644);
1438MODULE_PARM_DESC(warn_on_s0ix_failures, "Check and warn for S0ix failures");
1439
1440static __maybe_unused int pmc_core_suspend(struct device *dev)
1441{
1442	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
1443	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1444	unsigned int i;
1445
1446	if (pmcdev->suspend)
1447		pmcdev->suspend(pmcdev);
1448
1449	/* Check if the syspend will actually use S0ix */
1450	if (pm_suspend_via_firmware())
1451		return 0;
1452
1453	/* Save PKGC residency for checking later */
1454	for (i = 0; i < pmcdev->num_of_pkgc; i++) {
1455		if (rdmsrl_safe(msr_map[i].bit_mask, &pmcdev->pkgc_res_cnt[i]))
1456			return -EIO;
1457	}
1458
1459	/* Save S0ix residency for checking later */
1460	if (pmc_core_dev_state_get(pmc, &pmcdev->s0ix_counter))
1461		return -EIO;
1462
1463	return 0;
1464}
1465
1466static inline bool pmc_core_is_deepest_pkgc_failed(struct pmc_dev *pmcdev)
1467{
1468	u32 deepest_pkgc_msr = msr_map[pmcdev->num_of_pkgc - 1].bit_mask;
1469	u64 deepest_pkgc_residency;
1470
1471	if (rdmsrl_safe(deepest_pkgc_msr, &deepest_pkgc_residency))
1472		return false;
1473
1474	if (deepest_pkgc_residency == pmcdev->pkgc_res_cnt[pmcdev->num_of_pkgc - 1])
1475		return true;
1476
1477	return false;
1478}
1479
1480static inline bool pmc_core_is_s0ix_failed(struct pmc_dev *pmcdev)
1481{
1482	u64 s0ix_counter;
1483
1484	if (pmc_core_dev_state_get(pmcdev->pmcs[PMC_IDX_MAIN], &s0ix_counter))
1485		return false;
1486
1487	pm_report_hw_sleep_time((u32)(s0ix_counter - pmcdev->s0ix_counter));
1488
1489	if (s0ix_counter == pmcdev->s0ix_counter)
1490		return true;
1491
1492	return false;
1493}
1494
1495int pmc_core_resume_common(struct pmc_dev *pmcdev)
1496{
1497	struct device *dev = &pmcdev->pdev->dev;
1498	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1499	const struct pmc_bit_map **maps = pmc->map->lpm_sts;
1500	int offset = pmc->map->lpm_status_offset;
1501	int i;
1502
1503	/* Check if the syspend used S0ix */
1504	if (pm_suspend_via_firmware())
1505		return 0;
1506
1507	if (!pmc_core_is_s0ix_failed(pmcdev))
1508		return 0;
1509
1510	if (!warn_on_s0ix_failures)
1511		return 0;
1512
1513	if (pmc_core_is_deepest_pkgc_failed(pmcdev)) {
1514		/* S0ix failed because of deepest PKGC entry failure */
1515		dev_info(dev, "CPU did not enter %s!!! (%s cnt=0x%llx)\n",
1516			 msr_map[pmcdev->num_of_pkgc - 1].name,
1517			 msr_map[pmcdev->num_of_pkgc - 1].name,
1518			 pmcdev->pkgc_res_cnt[pmcdev->num_of_pkgc - 1]);
1519
1520		for (i = 0; i < pmcdev->num_of_pkgc; i++) {
1521			u64 pc_cnt;
1522
1523			if (!rdmsrl_safe(msr_map[i].bit_mask, &pc_cnt)) {
1524				dev_info(dev, "Prev %s cnt = 0x%llx, Current %s cnt = 0x%llx\n",
1525					 msr_map[i].name, pmcdev->pkgc_res_cnt[i],
1526					 msr_map[i].name, pc_cnt);
1527			}
1528		}
1529		return 0;
1530	}
1531
1532	/* The real interesting case - S0ix failed - lets ask PMC why. */
1533	dev_warn(dev, "CPU did not enter SLP_S0!!! (S0ix cnt=%llu)\n",
1534		 pmcdev->s0ix_counter);
1535
1536	if (pmc->map->slps0_dbg_maps)
1537		pmc_core_slps0_display(pmc, dev, NULL);
1538
1539	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
1540		struct pmc *pmc = pmcdev->pmcs[i];
1541
1542		if (!pmc)
1543			continue;
1544		if (pmc->map->lpm_sts)
1545			pmc_core_lpm_display(pmc, dev, NULL, offset, i, "STATUS", maps);
1546	}
1547
1548	return 0;
1549}
1550
1551static __maybe_unused int pmc_core_resume(struct device *dev)
1552{
1553	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
1554
1555	if (pmcdev->resume)
1556		return pmcdev->resume(pmcdev);
1557
1558	return pmc_core_resume_common(pmcdev);
1559}
1560
1561static const struct dev_pm_ops pmc_core_pm_ops = {
1562	SET_LATE_SYSTEM_SLEEP_PM_OPS(pmc_core_suspend, pmc_core_resume)
1563};
1564
1565static const struct acpi_device_id pmc_core_acpi_ids[] = {
1566	{"INT33A1", 0}, /* _HID for Intel Power Engine, _CID PNP0D80*/
1567	{ }
1568};
1569MODULE_DEVICE_TABLE(acpi, pmc_core_acpi_ids);
1570
1571static struct platform_driver pmc_core_driver = {
1572	.driver = {
1573		.name = "intel_pmc_core",
1574		.acpi_match_table = ACPI_PTR(pmc_core_acpi_ids),
1575		.pm = &pmc_core_pm_ops,
1576		.dev_groups = pmc_dev_groups,
1577	},
1578	.probe = pmc_core_probe,
1579	.remove_new = pmc_core_remove,
1580};
1581
1582module_platform_driver(pmc_core_driver);
1583
1584MODULE_LICENSE("GPL v2");
1585MODULE_DESCRIPTION("Intel PMC Core Driver");
1586