1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Chrome OS EC Sensor hub FIFO.
4 *
5 * Copyright 2020 Google LLC
6 */
7
8#include <linux/delay.h>
9#include <linux/device.h>
10#include <linux/iio/iio.h>
11#include <linux/kernel.h>
12#include <linux/module.h>
13#include <linux/platform_data/cros_ec_commands.h>
14#include <linux/platform_data/cros_ec_proto.h>
15#include <linux/platform_data/cros_ec_sensorhub.h>
16#include <linux/platform_device.h>
17#include <linux/sort.h>
18#include <linux/slab.h>
19
20#define CREATE_TRACE_POINTS
21#include "cros_ec_sensorhub_trace.h"
22
23/* Precision of fixed point for the m values from the filter */
24#define M_PRECISION BIT(23)
25
26/* Only activate the filter once we have at least this many elements. */
27#define TS_HISTORY_THRESHOLD 8
28
29/*
30 * If we don't have any history entries for this long, empty the filter to
31 * make sure there are no big discontinuities.
32 */
33#define TS_HISTORY_BORED_US 500000
34
35/* To measure by how much the filter is overshooting, if it happens. */
36#define FUTURE_TS_ANALYTICS_COUNT_MAX 100
37
38static inline int
39cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub,
40			   struct cros_ec_sensors_ring_sample *sample)
41{
42	cros_ec_sensorhub_push_data_cb_t cb;
43	int id = sample->sensor_id;
44	struct iio_dev *indio_dev;
45
46	if (id >= sensorhub->sensor_num)
47		return -EINVAL;
48
49	cb = sensorhub->push_data[id].push_data_cb;
50	if (!cb)
51		return 0;
52
53	indio_dev = sensorhub->push_data[id].indio_dev;
54
55	if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
56		return 0;
57
58	return cb(indio_dev, sample->vector, sample->timestamp);
59}
60
61/**
62 * cros_ec_sensorhub_register_push_data() - register the callback to the hub.
63 *
64 * @sensorhub : Sensor Hub object
65 * @sensor_num : The sensor the caller is interested in.
66 * @indio_dev : The iio device to use when a sample arrives.
67 * @cb : The callback to call when a sample arrives.
68 *
69 * The callback cb will be used by cros_ec_sensorhub_ring to distribute events
70 * from the EC.
71 *
72 * Return: 0 when callback is registered.
73 *         EINVAL is the sensor number is invalid or the slot already used.
74 */
75int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub,
76					 u8 sensor_num,
77					 struct iio_dev *indio_dev,
78					 cros_ec_sensorhub_push_data_cb_t cb)
79{
80	if (sensor_num >= sensorhub->sensor_num)
81		return -EINVAL;
82	if (sensorhub->push_data[sensor_num].indio_dev)
83		return -EINVAL;
84
85	sensorhub->push_data[sensor_num].indio_dev = indio_dev;
86	sensorhub->push_data[sensor_num].push_data_cb = cb;
87
88	return 0;
89}
90EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data);
91
92void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub,
93					    u8 sensor_num)
94{
95	sensorhub->push_data[sensor_num].indio_dev = NULL;
96	sensorhub->push_data[sensor_num].push_data_cb = NULL;
97}
98EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data);
99
100/**
101 * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation
102 *					  for FIFO events.
103 * @sensorhub: Sensor Hub object
104 * @on: true when events are requested.
105 *
106 * To be called before sleeping or when no one is listening.
107 * Return: 0 on success, or an error when we can not communicate with the EC.
108 *
109 */
110int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub,
111				       bool on)
112{
113	int ret, i;
114
115	mutex_lock(&sensorhub->cmd_lock);
116	if (sensorhub->tight_timestamps)
117		for (i = 0; i < sensorhub->sensor_num; i++)
118			sensorhub->batch_state[i].last_len = 0;
119
120	sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE;
121	sensorhub->params->fifo_int_enable.enable = on;
122
123	sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense);
124	sensorhub->msg->insize = sizeof(struct ec_response_motion_sense);
125
126	ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg);
127	mutex_unlock(&sensorhub->cmd_lock);
128
129	/* We expect to receive a payload of 4 bytes, ignore. */
130	if (ret > 0)
131		ret = 0;
132
133	return ret;
134}
135
136static void cros_ec_sensor_ring_median_swap(s64 *a, s64 *b)
137{
138	s64 tmp = *a;
139	*a = *b;
140	*b = tmp;
141}
142
143/*
144 * cros_ec_sensor_ring_median: Gets median of an array of numbers
145 *
146 * It's implemented using the quickselect algorithm, which achieves an
147 * average time complexity of O(n) the middle element. In the worst case,
148 * the runtime of quickselect could regress to O(n^2). To mitigate this,
149 * algorithms like median-of-medians exist, which can guarantee O(n) even
150 * in the worst case. However, these algorithms come with a higher
151 * overhead and are more complex to implement, making quickselect a
152 * pragmatic choice for our use case.
153 *
154 * Warning: the input array gets modified!
155 */
156static s64 cros_ec_sensor_ring_median(s64 *array, size_t length)
157{
158	int lo = 0;
159	int hi = length - 1;
160
161	while (lo <= hi) {
162		int mid = lo + (hi - lo) / 2;
163		int pivot, i;
164
165		if (array[lo] > array[mid])
166			cros_ec_sensor_ring_median_swap(&array[lo], &array[mid]);
167		if (array[lo] > array[hi])
168			cros_ec_sensor_ring_median_swap(&array[lo], &array[hi]);
169		if (array[mid] < array[hi])
170			cros_ec_sensor_ring_median_swap(&array[mid], &array[hi]);
171
172		pivot = array[hi];
173		i = lo - 1;
174
175		for (int j = lo; j < hi; j++)
176			if (array[j] < pivot)
177				cros_ec_sensor_ring_median_swap(&array[++i], &array[j]);
178
179		/* The pivot's index corresponds to i+1. */
180		cros_ec_sensor_ring_median_swap(&array[i + 1], &array[hi]);
181		if (i + 1 == length / 2)
182			return array[i + 1];
183		if (i + 1 > length / 2)
184			hi = i;
185		else
186			lo = i + 2;
187	}
188
189	/* Should never reach here. */
190	return -1;
191}
192
193/*
194 * IRQ Timestamp Filtering
195 *
196 * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event
197 * we have to calculate it's timestamp in the AP timebase. There are 3 time
198 * points:
199 *   a - EC timebase, sensor event
200 *   b - EC timebase, IRQ
201 *   c - AP timebase, IRQ
202 *   a' - what we want: sensor even in AP timebase
203 *
204 * While a and b are recorded at accurate times (due to the EC real time
205 * nature); c is pretty untrustworthy, even though it's recorded the
206 * first thing in ec_irq_handler(). There is a very good chance we'll get
207 * added latency due to:
208 *   other irqs
209 *   ddrfreq
210 *   cpuidle
211 *
212 * Normally a' = c - b + a, but if we do that naive math any jitter in c
213 * will get coupled in a', which we don't want. We want a function
214 * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c.
215 *
216 * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis.
217 * The slope of the line won't be exactly 1, there will be some clock drift
218 * between the 2 chips for various reasons (mechanical stress, temperature,
219 * voltage). We need to extrapolate values for a future x, without trusting
220 * recent y values too much.
221 *
222 * We use a median filter for the slope, then another median filter for the
223 * y-intercept to calculate this function:
224 *   dx[n] = x[n-1] - x[n]
225 *   dy[n] = x[n-1] - x[n]
226 *   m[n] = dy[n] / dx[n]
227 *   median_m = median(m[n-k:n])
228 *   error[i] = y[n-i] - median_m * x[n-i]
229 *   median_error = median(error[:k])
230 *   predicted_y = median_m * x + median_error
231 *
232 * Implementation differences from above:
233 * - Redefined y to be actually c - b, this gives us a lot more precision
234 * to do the math. (c-b)/b variations are more obvious than c/b variations.
235 * - Since we don't have floating point, any operations involving slope are
236 * done using fixed point math (*M_PRECISION)
237 * - Since x and y grow with time, we keep zeroing the graph (relative to
238 * the last sample), this way math involving *x[n-i] will not overflow
239 * - EC timestamps are kept in us, it improves the slope calculation precision
240 */
241
242/**
243 * cros_ec_sensor_ring_ts_filter_update() - Update filter history.
244 *
245 * @state: Filter information.
246 * @b: IRQ timestamp, EC timebase (us)
247 * @c: IRQ timestamp, AP timebase (ns)
248 *
249 * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter
250 * history.
251 */
252static void
253cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state
254				     *state,
255				     s64 b, s64 c)
256{
257	s64 x, y;
258	s64 dx, dy;
259	s64 m; /* stored as *M_PRECISION */
260	s64 *m_history_copy = state->temp_buf;
261	s64 *error = state->temp_buf;
262	int i;
263
264	/* we trust b the most, that'll be our independent variable */
265	x = b;
266	/* y is the offset between AP and EC times, in ns */
267	y = c - b * 1000;
268
269	dx = (state->x_history[0] + state->x_offset) - x;
270	if (dx == 0)
271		return; /* we already have this irq in the history */
272	dy = (state->y_history[0] + state->y_offset) - y;
273	m = div64_s64(dy * M_PRECISION, dx);
274
275	/* Empty filter if we haven't seen any action in a while. */
276	if (-dx > TS_HISTORY_BORED_US)
277		state->history_len = 0;
278
279	/* Move everything over, also update offset to all absolute coords .*/
280	for (i = state->history_len - 1; i >= 1; i--) {
281		state->x_history[i] = state->x_history[i - 1] + dx;
282		state->y_history[i] = state->y_history[i - 1] + dy;
283
284		state->m_history[i] = state->m_history[i - 1];
285		/*
286		 * Also use the same loop to copy m_history for future
287		 * median extraction.
288		 */
289		m_history_copy[i] = state->m_history[i - 1];
290	}
291
292	/* Store the x and y, but remember offset is actually last sample. */
293	state->x_offset = x;
294	state->y_offset = y;
295	state->x_history[0] = 0;
296	state->y_history[0] = 0;
297
298	state->m_history[0] = m;
299	m_history_copy[0] = m;
300
301	if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE)
302		state->history_len++;
303
304	/* Precalculate things for the filter. */
305	if (state->history_len > TS_HISTORY_THRESHOLD) {
306		state->median_m =
307		    cros_ec_sensor_ring_median(m_history_copy,
308					       state->history_len - 1);
309
310		/*
311		 * Calculate y-intercepts as if m_median is the slope and
312		 * points in the history are on the line. median_error will
313		 * still be in the offset coordinate system.
314		 */
315		for (i = 0; i < state->history_len; i++)
316			error[i] = state->y_history[i] -
317				div_s64(state->median_m * state->x_history[i],
318					M_PRECISION);
319		state->median_error =
320			cros_ec_sensor_ring_median(error, state->history_len);
321	} else {
322		state->median_m = 0;
323		state->median_error = 0;
324	}
325	trace_cros_ec_sensorhub_filter(state, dx, dy);
326}
327
328/**
329 * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP
330 *                                   timebase
331 *
332 * @state: filter information.
333 * @x: any ec timestamp (us):
334 *
335 * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase
336 * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ
337 *                           should have happened on the AP, with low jitter
338 *
339 * Note: The filter will only activate once state->history_len goes
340 * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a
341 * transform.
342 *
343 * How to derive the formula, starting from:
344 *   f(x) = median_m * x + median_error
345 * That's the calculated AP - EC offset (at the x point in time)
346 * Undo the coordinate system transform:
347 *   f(x) = median_m * (x - x_offset) + median_error + y_offset
348 * Remember to undo the "y = c - b * 1000" modification:
349 *   f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000
350 *
351 * Return: timestamp in AP timebase (ns)
352 */
353static s64
354cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state,
355			      s64 x)
356{
357	return div_s64(state->median_m * (x - state->x_offset), M_PRECISION)
358	       + state->median_error + state->y_offset + x * 1000;
359}
360
361/*
362 * Since a and b were originally 32 bit values from the EC,
363 * they overflow relatively often, casting is not enough, so we need to
364 * add an offset.
365 */
366static void
367cros_ec_sensor_ring_fix_overflow(s64 *ts,
368				 const s64 overflow_period,
369				 struct cros_ec_sensors_ec_overflow_state
370				 *state)
371{
372	s64 adjust;
373
374	*ts += state->offset;
375	if (abs(state->last - *ts) > (overflow_period / 2)) {
376		adjust = state->last > *ts ? overflow_period : -overflow_period;
377		state->offset += adjust;
378		*ts += adjust;
379	}
380	state->last = *ts;
381}
382
383static void
384cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub
385					     *sensorhub,
386					     struct cros_ec_sensors_ring_sample
387					     *sample)
388{
389	const u8 sensor_id = sample->sensor_id;
390
391	/* If this event is earlier than one we saw before... */
392	if (sensorhub->batch_state[sensor_id].newest_sensor_event >
393	    sample->timestamp)
394		/* mark it for spreading. */
395		sample->timestamp =
396			sensorhub->batch_state[sensor_id].last_ts;
397	else
398		sensorhub->batch_state[sensor_id].newest_sensor_event =
399			sample->timestamp;
400}
401
402/**
403 * cros_ec_sensor_ring_process_event() - Process one EC FIFO event
404 *
405 * @sensorhub: Sensor Hub object.
406 * @fifo_info: FIFO information from the EC (includes b point, EC timebase).
407 * @fifo_timestamp: EC IRQ, kernel timebase (aka c).
408 * @current_timestamp: calculated event timestamp, kernel timebase (aka a').
409 * @in: incoming FIFO event from EC (includes a point, EC timebase).
410 * @out: outgoing event to user space (includes a').
411 *
412 * Process one EC event, add it in the ring if necessary.
413 *
414 * Return: true if out event has been populated.
415 */
416static bool
417cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub,
418				const struct ec_response_motion_sense_fifo_info
419				*fifo_info,
420				const ktime_t fifo_timestamp,
421				ktime_t *current_timestamp,
422				struct ec_response_motion_sensor_data *in,
423				struct cros_ec_sensors_ring_sample *out)
424{
425	const s64 now = cros_ec_get_time_ns();
426	int axis, async_flags;
427
428	/* Do not populate the filter based on asynchronous events. */
429	async_flags = in->flags &
430		(MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH);
431
432	if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) {
433		s64 a = in->timestamp;
434		s64 b = fifo_info->timestamp;
435		s64 c = fifo_timestamp;
436
437		cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32,
438					  &sensorhub->overflow_a);
439		cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32,
440					  &sensorhub->overflow_b);
441
442		if (sensorhub->tight_timestamps) {
443			cros_ec_sensor_ring_ts_filter_update(
444					&sensorhub->filter, b, c);
445			*current_timestamp = cros_ec_sensor_ring_ts_filter(
446					&sensorhub->filter, a);
447		} else {
448			s64 new_timestamp;
449
450			/*
451			 * Disable filtering since we might add more jitter
452			 * if b is in a random point in time.
453			 */
454			new_timestamp = c - b * 1000 + a * 1000;
455			/*
456			 * The timestamp can be stale if we had to use the fifo
457			 * info timestamp.
458			 */
459			if (new_timestamp - *current_timestamp > 0)
460				*current_timestamp = new_timestamp;
461		}
462		trace_cros_ec_sensorhub_timestamp(in->timestamp,
463						  fifo_info->timestamp,
464						  fifo_timestamp,
465						  *current_timestamp,
466						  now);
467	}
468
469	if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) {
470		if (sensorhub->tight_timestamps) {
471			sensorhub->batch_state[in->sensor_num].last_len = 0;
472			sensorhub->batch_state[in->sensor_num].penul_len = 0;
473		}
474		/*
475		 * ODR change is only useful for the sensor_ring, it does not
476		 * convey information to clients.
477		 */
478		return false;
479	}
480
481	if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
482		out->sensor_id = in->sensor_num;
483		out->timestamp = *current_timestamp;
484		out->flag = in->flags;
485		if (sensorhub->tight_timestamps)
486			sensorhub->batch_state[out->sensor_id].last_len = 0;
487		/*
488		 * No other payload information provided with
489		 * flush ack.
490		 */
491		return true;
492	}
493
494	if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP)
495		/* If we just have a timestamp, skip this entry. */
496		return false;
497
498	/* Regular sample */
499	out->sensor_id = in->sensor_num;
500	trace_cros_ec_sensorhub_data(in->sensor_num,
501				     fifo_info->timestamp,
502				     fifo_timestamp,
503				     *current_timestamp,
504				     now);
505
506	if (*current_timestamp - now > 0) {
507		/*
508		 * This fix is needed to overcome the timestamp filter putting
509		 * events in the future.
510		 */
511		sensorhub->future_timestamp_total_ns +=
512			*current_timestamp - now;
513		if (++sensorhub->future_timestamp_count ==
514				FUTURE_TS_ANALYTICS_COUNT_MAX) {
515			s64 avg = div_s64(sensorhub->future_timestamp_total_ns,
516					sensorhub->future_timestamp_count);
517			dev_warn_ratelimited(sensorhub->dev,
518					     "100 timestamps in the future, %lldns shaved on average\n",
519					     avg);
520			sensorhub->future_timestamp_count = 0;
521			sensorhub->future_timestamp_total_ns = 0;
522		}
523		out->timestamp = now;
524	} else {
525		out->timestamp = *current_timestamp;
526	}
527
528	out->flag = in->flags;
529	for (axis = 0; axis < 3; axis++)
530		out->vector[axis] = in->data[axis];
531
532	if (sensorhub->tight_timestamps)
533		cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out);
534	return true;
535}
536
537/*
538 * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to
539 *                                 ringbuffer.
540 *
541 * This is the new spreading code, assumes every sample's timestamp
542 * precedes the sample. Run if tight_timestamps == true.
543 *
544 * Sometimes the EC receives only one interrupt (hence timestamp) for
545 * a batch of samples. Only the first sample will have the correct
546 * timestamp. So we must interpolate the other samples.
547 * We use the previous batch timestamp and our current batch timestamp
548 * as a way to calculate period, then spread the samples evenly.
549 *
550 * s0 int, 0ms
551 * s1 int, 10ms
552 * s2 int, 20ms
553 * 30ms point goes by, no interrupt, previous one is still asserted
554 * downloading s2 and s3
555 * s3 sample, 20ms (incorrect timestamp)
556 * s4 int, 40ms
557 *
558 * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch
559 * has 2 samples in them, we adjust the timestamp of s3.
560 * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have
561 * been part of a bigger batch things would have gotten a little
562 * more complicated.
563 *
564 * Note: we also assume another sensor sample doesn't break up a batch
565 * in 2 or more partitions. Example, there can't ever be a sync sensor
566 * in between S2 and S3. This simplifies the following code.
567 */
568static void
569cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub,
570			       unsigned long sensor_mask,
571			       struct cros_ec_sensors_ring_sample *last_out)
572{
573	struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start;
574	int id;
575
576	for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) {
577		for (batch_start = sensorhub->ring; batch_start < last_out;
578		     batch_start = next_batch_start) {
579			/*
580			 * For each batch (where all samples have the same
581			 * timestamp).
582			 */
583			int batch_len, sample_idx;
584			struct cros_ec_sensors_ring_sample *batch_end =
585				batch_start;
586			struct cros_ec_sensors_ring_sample *s;
587			s64 batch_timestamp = batch_start->timestamp;
588			s64 sample_period;
589
590			/*
591			 * Skip over batches that start with the sensor types
592			 * we're not looking at right now.
593			 */
594			if (batch_start->sensor_id != id) {
595				next_batch_start = batch_start + 1;
596				continue;
597			}
598
599			/*
600			 * Do not start a batch
601			 * from a flush, as it happens asynchronously to the
602			 * regular flow of events.
603			 */
604			if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
605				cros_sensorhub_send_sample(sensorhub,
606							   batch_start);
607				next_batch_start = batch_start + 1;
608				continue;
609			}
610
611			if (batch_start->timestamp <=
612			    sensorhub->batch_state[id].last_ts) {
613				batch_timestamp =
614					sensorhub->batch_state[id].last_ts;
615				batch_len = sensorhub->batch_state[id].last_len;
616
617				sample_idx = batch_len;
618
619				sensorhub->batch_state[id].last_ts =
620				  sensorhub->batch_state[id].penul_ts;
621				sensorhub->batch_state[id].last_len =
622				  sensorhub->batch_state[id].penul_len;
623			} else {
624				/*
625				 * Push first sample in the batch to the,
626				 * kfifo, it's guaranteed to be correct, the
627				 * rest will follow later on.
628				 */
629				sample_idx = 1;
630				batch_len = 1;
631				cros_sensorhub_send_sample(sensorhub,
632							   batch_start);
633				batch_start++;
634			}
635
636			/* Find all samples have the same timestamp. */
637			for (s = batch_start; s < last_out; s++) {
638				if (s->sensor_id != id)
639					/*
640					 * Skip over other sensor types that
641					 * are interleaved, don't count them.
642					 */
643					continue;
644				if (s->timestamp != batch_timestamp)
645					/* we discovered the next batch */
646					break;
647				if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
648					/* break on flush packets */
649					break;
650				batch_end = s;
651				batch_len++;
652			}
653
654			if (batch_len == 1)
655				goto done_with_this_batch;
656
657			/* Can we calculate period? */
658			if (sensorhub->batch_state[id].last_len == 0) {
659				dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n",
660					 id, batch_len - 1);
661				goto done_with_this_batch;
662				/*
663				 * Note: we're dropping the rest of the samples
664				 * in this batch since we have no idea where
665				 * they're supposed to go without a period
666				 * calculation.
667				 */
668			}
669
670			sample_period = div_s64(batch_timestamp -
671				sensorhub->batch_state[id].last_ts,
672				sensorhub->batch_state[id].last_len);
673			dev_dbg(sensorhub->dev,
674				"Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n",
675				batch_len, id,
676				sensorhub->batch_state[id].last_ts,
677				sensorhub->batch_state[id].last_len,
678				batch_timestamp,
679				sample_period);
680
681			/*
682			 * Adjust timestamps of the samples then push them to
683			 * kfifo.
684			 */
685			for (s = batch_start; s <= batch_end; s++) {
686				if (s->sensor_id != id)
687					/*
688					 * Skip over other sensor types that
689					 * are interleaved, don't change them.
690					 */
691					continue;
692
693				s->timestamp = batch_timestamp +
694					sample_period * sample_idx;
695				sample_idx++;
696
697				cros_sensorhub_send_sample(sensorhub, s);
698			}
699
700done_with_this_batch:
701			sensorhub->batch_state[id].penul_ts =
702				sensorhub->batch_state[id].last_ts;
703			sensorhub->batch_state[id].penul_len =
704				sensorhub->batch_state[id].last_len;
705
706			sensorhub->batch_state[id].last_ts =
707				batch_timestamp;
708			sensorhub->batch_state[id].last_len = batch_len;
709
710			next_batch_start = batch_end + 1;
711		}
712	}
713}
714
715/*
716 * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then
717 * add to ringbuffer (legacy).
718 *
719 * Note: This assumes we're running old firmware, where timestamp
720 * is inserted after its sample(s)e. There can be several samples between
721 * timestamps, so several samples can have the same timestamp.
722 *
723 *                        timestamp | count
724 *                        -----------------
725 *          1st sample --> TS1      | 1
726 *                         TS2      | 2
727 *                         TS2      | 3
728 *                         TS3      | 4
729 *           last_out -->
730 *
731 *
732 * We spread time for the samples using period p = (current - TS1)/4.
733 * between TS1 and TS2: [TS1+p/4, TS1+2p/4, TS1+3p/4, current_timestamp].
734 *
735 */
736static void
737cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub,
738				      unsigned long sensor_mask,
739				      s64 current_timestamp,
740				      struct cros_ec_sensors_ring_sample
741				      *last_out)
742{
743	struct cros_ec_sensors_ring_sample *out;
744	int i;
745
746	for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) {
747		s64 timestamp;
748		int count = 0;
749		s64 time_period;
750
751		for (out = sensorhub->ring; out < last_out; out++) {
752			if (out->sensor_id != i)
753				continue;
754
755			/* Timestamp to start with */
756			timestamp = out->timestamp;
757			out++;
758			count = 1;
759			break;
760		}
761		for (; out < last_out; out++) {
762			/* Find last sample. */
763			if (out->sensor_id != i)
764				continue;
765			count++;
766		}
767		if (count == 0)
768			continue;
769
770		/* Spread uniformly between the first and last samples. */
771		time_period = div_s64(current_timestamp - timestamp, count);
772
773		for (out = sensorhub->ring; out < last_out; out++) {
774			if (out->sensor_id != i)
775				continue;
776			timestamp += time_period;
777			out->timestamp = timestamp;
778		}
779	}
780
781	/* Push the event into the kfifo */
782	for (out = sensorhub->ring; out < last_out; out++)
783		cros_sensorhub_send_sample(sensorhub, out);
784}
785
786/**
787 * cros_ec_sensorhub_ring_handler() - The trigger handler function
788 *
789 * @sensorhub: Sensor Hub object.
790 *
791 * Called by the notifier, process the EC sensor FIFO queue.
792 */
793static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub)
794{
795	struct ec_response_motion_sense_fifo_info *fifo_info =
796		sensorhub->fifo_info;
797	struct cros_ec_dev *ec = sensorhub->ec;
798	ktime_t fifo_timestamp, current_timestamp;
799	int i, j, number_data, ret;
800	unsigned long sensor_mask = 0;
801	struct ec_response_motion_sensor_data *in;
802	struct cros_ec_sensors_ring_sample *out, *last_out;
803
804	mutex_lock(&sensorhub->cmd_lock);
805
806	/* Get FIFO information if there are lost vectors. */
807	if (fifo_info->total_lost) {
808		int fifo_info_length =
809			sizeof(struct ec_response_motion_sense_fifo_info) +
810			sizeof(u16) * sensorhub->sensor_num;
811
812		/* Need to retrieve the number of lost vectors per sensor */
813		sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
814		sensorhub->msg->outsize = 1;
815		sensorhub->msg->insize = fifo_info_length;
816
817		if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0)
818			goto error;
819
820		memcpy(fifo_info, &sensorhub->resp->fifo_info,
821		       fifo_info_length);
822
823		/*
824		 * Update collection time, will not be as precise as the
825		 * non-error case.
826		 */
827		fifo_timestamp = cros_ec_get_time_ns();
828	} else {
829		fifo_timestamp = sensorhub->fifo_timestamp[
830			CROS_EC_SENSOR_NEW_TS];
831	}
832
833	if (fifo_info->count > sensorhub->fifo_size ||
834	    fifo_info->size != sensorhub->fifo_size) {
835		dev_warn(sensorhub->dev,
836			 "Mismatch EC data: count %d, size %d - expected %d\n",
837			 fifo_info->count, fifo_info->size,
838			 sensorhub->fifo_size);
839		goto error;
840	}
841
842	/* Copy elements in the main fifo */
843	current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS];
844	out = sensorhub->ring;
845	for (i = 0; i < fifo_info->count; i += number_data) {
846		sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ;
847		sensorhub->params->fifo_read.max_data_vector =
848			fifo_info->count - i;
849		sensorhub->msg->outsize =
850			sizeof(struct ec_params_motion_sense);
851		sensorhub->msg->insize =
852			sizeof(sensorhub->resp->fifo_read) +
853			sensorhub->params->fifo_read.max_data_vector *
854			  sizeof(struct ec_response_motion_sensor_data);
855		ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
856		if (ret < 0) {
857			dev_warn(sensorhub->dev, "Fifo error: %d\n", ret);
858			break;
859		}
860		number_data = sensorhub->resp->fifo_read.number_data;
861		if (number_data == 0) {
862			dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n");
863			break;
864		}
865		if (number_data > fifo_info->count - i) {
866			dev_warn(sensorhub->dev,
867				 "Invalid EC data: too many entry received: %d, expected %d\n",
868				 number_data, fifo_info->count - i);
869			break;
870		}
871		if (out + number_data >
872		    sensorhub->ring + fifo_info->count) {
873			dev_warn(sensorhub->dev,
874				 "Too many samples: %d (%zd data) to %d entries for expected %d entries\n",
875				 i, out - sensorhub->ring, i + number_data,
876				 fifo_info->count);
877			break;
878		}
879
880		for (in = sensorhub->resp->fifo_read.data, j = 0;
881		     j < number_data; j++, in++) {
882			if (cros_ec_sensor_ring_process_event(
883						sensorhub, fifo_info,
884						fifo_timestamp,
885						&current_timestamp,
886						in, out)) {
887				sensor_mask |= BIT(in->sensor_num);
888				out++;
889			}
890		}
891	}
892	mutex_unlock(&sensorhub->cmd_lock);
893	last_out = out;
894
895	if (out == sensorhub->ring)
896		/* Unexpected empty FIFO. */
897		goto ring_handler_end;
898
899	/*
900	 * Check if current_timestamp is ahead of the last sample. Normally,
901	 * the EC appends a timestamp after the last sample, but if the AP
902	 * is slow to respond to the IRQ, the EC may have added new samples.
903	 * Use the FIFO info timestamp as last timestamp then.
904	 */
905	if (!sensorhub->tight_timestamps &&
906	    (last_out - 1)->timestamp == current_timestamp)
907		current_timestamp = fifo_timestamp;
908
909	/* Warn on lost samples. */
910	if (fifo_info->total_lost)
911		for (i = 0; i < sensorhub->sensor_num; i++) {
912			if (fifo_info->lost[i]) {
913				dev_warn_ratelimited(sensorhub->dev,
914						     "Sensor %d: lost: %d out of %d\n",
915						     i, fifo_info->lost[i],
916						     fifo_info->total_lost);
917				if (sensorhub->tight_timestamps)
918					sensorhub->batch_state[i].last_len = 0;
919			}
920		}
921
922	/*
923	 * Spread samples in case of batching, then add them to the
924	 * ringbuffer.
925	 */
926	if (sensorhub->tight_timestamps)
927		cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask,
928					       last_out);
929	else
930		cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask,
931						      current_timestamp,
932						      last_out);
933
934ring_handler_end:
935	sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp;
936	return;
937
938error:
939	mutex_unlock(&sensorhub->cmd_lock);
940}
941
942static int cros_ec_sensorhub_event(struct notifier_block *nb,
943				   unsigned long queued_during_suspend,
944				   void *_notify)
945{
946	struct cros_ec_sensorhub *sensorhub;
947	struct cros_ec_device *ec_dev;
948
949	sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier);
950	ec_dev = sensorhub->ec->ec_dev;
951
952	if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO)
953		return NOTIFY_DONE;
954
955	if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) {
956		dev_warn(ec_dev->dev, "Invalid fifo info size\n");
957		return NOTIFY_DONE;
958	}
959
960	if (queued_during_suspend)
961		return NOTIFY_OK;
962
963	memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info,
964	       sizeof(*sensorhub->fifo_info));
965	sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] =
966		ec_dev->last_event_time;
967	cros_ec_sensorhub_ring_handler(sensorhub);
968
969	return NOTIFY_OK;
970}
971
972/**
973 * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC
974 *				       supports it.
975 *
976 * @sensorhub : Sensor Hub object.
977 *
978 * Return: 0 on success.
979 */
980int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub)
981{
982	int fifo_info_length =
983		sizeof(struct ec_response_motion_sense_fifo_info) +
984		sizeof(u16) * sensorhub->sensor_num;
985
986	/* Allocate the array for lost events. */
987	sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length,
988					    GFP_KERNEL);
989	if (!sensorhub->fifo_info)
990		return -ENOMEM;
991
992	/*
993	 * Allocate the callback area based on the number of sensors.
994	 * Add one for the sensor ring.
995	 */
996	sensorhub->push_data = devm_kcalloc(sensorhub->dev,
997			sensorhub->sensor_num,
998			sizeof(*sensorhub->push_data),
999			GFP_KERNEL);
1000	if (!sensorhub->push_data)
1001		return -ENOMEM;
1002
1003	sensorhub->tight_timestamps = cros_ec_check_features(
1004			sensorhub->ec,
1005			EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS);
1006
1007	if (sensorhub->tight_timestamps) {
1008		sensorhub->batch_state = devm_kcalloc(sensorhub->dev,
1009				sensorhub->sensor_num,
1010				sizeof(*sensorhub->batch_state),
1011				GFP_KERNEL);
1012		if (!sensorhub->batch_state)
1013			return -ENOMEM;
1014	}
1015
1016	return 0;
1017}
1018
1019/**
1020 * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC
1021 *				  supports it.
1022 *
1023 * @sensorhub : Sensor Hub object.
1024 *
1025 * Return: 0 on success.
1026 */
1027int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub)
1028{
1029	struct cros_ec_dev *ec = sensorhub->ec;
1030	int ret;
1031	int fifo_info_length =
1032		sizeof(struct ec_response_motion_sense_fifo_info) +
1033		sizeof(u16) * sensorhub->sensor_num;
1034
1035	/* Retrieve FIFO information */
1036	sensorhub->msg->version = 2;
1037	sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
1038	sensorhub->msg->outsize = 1;
1039	sensorhub->msg->insize = fifo_info_length;
1040
1041	ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
1042	if (ret < 0)
1043		return ret;
1044
1045	/*
1046	 * Allocate the full fifo. We need to copy the whole FIFO to set
1047	 * timestamps properly.
1048	 */
1049	sensorhub->fifo_size = sensorhub->resp->fifo_info.size;
1050	sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size,
1051				       sizeof(*sensorhub->ring), GFP_KERNEL);
1052	if (!sensorhub->ring)
1053		return -ENOMEM;
1054
1055	sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] =
1056		cros_ec_get_time_ns();
1057
1058	/* Register the notifier that will act as a top half interrupt. */
1059	sensorhub->notifier.notifier_call = cros_ec_sensorhub_event;
1060	ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier,
1061					       &sensorhub->notifier);
1062	if (ret < 0)
1063		return ret;
1064
1065	/* Start collection samples. */
1066	return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true);
1067}
1068
1069void cros_ec_sensorhub_ring_remove(void *arg)
1070{
1071	struct cros_ec_sensorhub *sensorhub = arg;
1072	struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev;
1073
1074	/* Disable the ring, prevent EC interrupt to the AP for nothing. */
1075	cros_ec_sensorhub_ring_fifo_enable(sensorhub, false);
1076	blocking_notifier_chain_unregister(&ec_dev->event_notifier,
1077					   &sensorhub->notifier);
1078}
1079