1// SPDX-License-Identifier: GPL-2.0
2// CCI Cache Coherent Interconnect PMU driver
3// Copyright (C) 2013-2018 Arm Ltd.
4// Author: Punit Agrawal <punit.agrawal@arm.com>, Suzuki Poulose <suzuki.poulose@arm.com>
5
6#include <linux/arm-cci.h>
7#include <linux/io.h>
8#include <linux/interrupt.h>
9#include <linux/module.h>
10#include <linux/of.h>
11#include <linux/perf_event.h>
12#include <linux/platform_device.h>
13#include <linux/slab.h>
14#include <linux/spinlock.h>
15
16#define DRIVER_NAME		"ARM-CCI PMU"
17
18#define CCI_PMCR		0x0100
19#define CCI_PID2		0x0fe8
20
21#define CCI_PMCR_CEN		0x00000001
22#define CCI_PMCR_NCNT_MASK	0x0000f800
23#define CCI_PMCR_NCNT_SHIFT	11
24
25#define CCI_PID2_REV_MASK	0xf0
26#define CCI_PID2_REV_SHIFT	4
27
28#define CCI_PMU_EVT_SEL		0x000
29#define CCI_PMU_CNTR		0x004
30#define CCI_PMU_CNTR_CTRL	0x008
31#define CCI_PMU_OVRFLW		0x00c
32
33#define CCI_PMU_OVRFLW_FLAG	1
34
35#define CCI_PMU_CNTR_SIZE(model)	((model)->cntr_size)
36#define CCI_PMU_CNTR_BASE(model, idx)	((idx) * CCI_PMU_CNTR_SIZE(model))
37#define CCI_PMU_CNTR_MASK		((1ULL << 32) - 1)
38#define CCI_PMU_CNTR_LAST(cci_pmu)	(cci_pmu->num_cntrs - 1)
39
40#define CCI_PMU_MAX_HW_CNTRS(model) \
41	((model)->num_hw_cntrs + (model)->fixed_hw_cntrs)
42
43/* Types of interfaces that can generate events */
44enum {
45	CCI_IF_SLAVE,
46	CCI_IF_MASTER,
47#ifdef CONFIG_ARM_CCI5xx_PMU
48	CCI_IF_GLOBAL,
49#endif
50	CCI_IF_MAX,
51};
52
53#define NUM_HW_CNTRS_CII_4XX	4
54#define NUM_HW_CNTRS_CII_5XX	8
55#define NUM_HW_CNTRS_MAX	NUM_HW_CNTRS_CII_5XX
56
57#define FIXED_HW_CNTRS_CII_4XX	1
58#define FIXED_HW_CNTRS_CII_5XX	0
59#define FIXED_HW_CNTRS_MAX	FIXED_HW_CNTRS_CII_4XX
60
61#define HW_CNTRS_MAX		(NUM_HW_CNTRS_MAX + FIXED_HW_CNTRS_MAX)
62
63struct event_range {
64	u32 min;
65	u32 max;
66};
67
68struct cci_pmu_hw_events {
69	struct perf_event **events;
70	unsigned long *used_mask;
71	raw_spinlock_t pmu_lock;
72};
73
74struct cci_pmu;
75/*
76 * struct cci_pmu_model:
77 * @fixed_hw_cntrs - Number of fixed event counters
78 * @num_hw_cntrs - Maximum number of programmable event counters
79 * @cntr_size - Size of an event counter mapping
80 */
81struct cci_pmu_model {
82	char *name;
83	u32 fixed_hw_cntrs;
84	u32 num_hw_cntrs;
85	u32 cntr_size;
86	struct attribute **format_attrs;
87	struct attribute **event_attrs;
88	struct event_range event_ranges[CCI_IF_MAX];
89	int (*validate_hw_event)(struct cci_pmu *, unsigned long);
90	int (*get_event_idx)(struct cci_pmu *, struct cci_pmu_hw_events *, unsigned long);
91	void (*write_counters)(struct cci_pmu *, unsigned long *);
92};
93
94static struct cci_pmu_model cci_pmu_models[];
95
96struct cci_pmu {
97	void __iomem *base;
98	void __iomem *ctrl_base;
99	struct pmu pmu;
100	int cpu;
101	int nr_irqs;
102	int *irqs;
103	unsigned long active_irqs;
104	const struct cci_pmu_model *model;
105	struct cci_pmu_hw_events hw_events;
106	struct platform_device *plat_device;
107	int num_cntrs;
108	atomic_t active_events;
109	struct mutex reserve_mutex;
110};
111
112#define to_cci_pmu(c)	(container_of(c, struct cci_pmu, pmu))
113
114static struct cci_pmu *g_cci_pmu;
115
116enum cci_models {
117#ifdef CONFIG_ARM_CCI400_PMU
118	CCI400_R0,
119	CCI400_R1,
120#endif
121#ifdef CONFIG_ARM_CCI5xx_PMU
122	CCI500_R0,
123	CCI550_R0,
124#endif
125	CCI_MODEL_MAX
126};
127
128static void pmu_write_counters(struct cci_pmu *cci_pmu,
129				 unsigned long *mask);
130static ssize_t __maybe_unused cci_pmu_format_show(struct device *dev,
131			struct device_attribute *attr, char *buf);
132static ssize_t __maybe_unused cci_pmu_event_show(struct device *dev,
133			struct device_attribute *attr, char *buf);
134
135#define CCI_EXT_ATTR_ENTRY(_name, _func, _config) 				\
136	&((struct dev_ext_attribute[]) {					\
137		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config }	\
138	})[0].attr.attr
139
140#define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \
141	CCI_EXT_ATTR_ENTRY(_name, cci_pmu_format_show, (char *)_config)
142#define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \
143	CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config)
144
145/* CCI400 PMU Specific definitions */
146
147#ifdef CONFIG_ARM_CCI400_PMU
148
149/* Port ids */
150#define CCI400_PORT_S0		0
151#define CCI400_PORT_S1		1
152#define CCI400_PORT_S2		2
153#define CCI400_PORT_S3		3
154#define CCI400_PORT_S4		4
155#define CCI400_PORT_M0		5
156#define CCI400_PORT_M1		6
157#define CCI400_PORT_M2		7
158
159#define CCI400_R1_PX		5
160
161/*
162 * Instead of an event id to monitor CCI cycles, a dedicated counter is
163 * provided. Use 0xff to represent CCI cycles and hope that no future revisions
164 * make use of this event in hardware.
165 */
166enum cci400_perf_events {
167	CCI400_PMU_CYCLES = 0xff
168};
169
170#define CCI400_PMU_CYCLE_CNTR_IDX	0
171#define CCI400_PMU_CNTR0_IDX		1
172
173/*
174 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
175 * ports and bits 4:0 are event codes. There are different event codes
176 * associated with each port type.
177 *
178 * Additionally, the range of events associated with the port types changed
179 * between Rev0 and Rev1.
180 *
181 * The constants below define the range of valid codes for each port type for
182 * the different revisions and are used to validate the event to be monitored.
183 */
184
185#define CCI400_PMU_EVENT_MASK		0xffUL
186#define CCI400_PMU_EVENT_SOURCE_SHIFT	5
187#define CCI400_PMU_EVENT_SOURCE_MASK	0x7
188#define CCI400_PMU_EVENT_CODE_SHIFT	0
189#define CCI400_PMU_EVENT_CODE_MASK	0x1f
190#define CCI400_PMU_EVENT_SOURCE(event) \
191	((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \
192			CCI400_PMU_EVENT_SOURCE_MASK)
193#define CCI400_PMU_EVENT_CODE(event) \
194	((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK)
195
196#define CCI400_R0_SLAVE_PORT_MIN_EV	0x00
197#define CCI400_R0_SLAVE_PORT_MAX_EV	0x13
198#define CCI400_R0_MASTER_PORT_MIN_EV	0x14
199#define CCI400_R0_MASTER_PORT_MAX_EV	0x1a
200
201#define CCI400_R1_SLAVE_PORT_MIN_EV	0x00
202#define CCI400_R1_SLAVE_PORT_MAX_EV	0x14
203#define CCI400_R1_MASTER_PORT_MIN_EV	0x00
204#define CCI400_R1_MASTER_PORT_MAX_EV	0x11
205
206#define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \
207	CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \
208					(unsigned long)_config)
209
210static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
211			struct device_attribute *attr, char *buf);
212
213static struct attribute *cci400_pmu_format_attrs[] = {
214	CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
215	CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-7"),
216	NULL
217};
218
219static struct attribute *cci400_r0_pmu_event_attrs[] = {
220	/* Slave events */
221	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
222	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
223	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
224	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
225	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
226	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
227	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
228	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
229	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
230	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
231	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
232	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
233	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
234	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
235	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
236	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
237	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
238	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
239	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
240	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
241	/* Master events */
242	CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x14),
243	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard, 0x15),
244	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard, 0x16),
245	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full, 0x17),
246	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x18),
247	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x19),
248	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full, 0x1A),
249	/* Special event for cycles counter */
250	CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
251	NULL
252};
253
254static struct attribute *cci400_r1_pmu_event_attrs[] = {
255	/* Slave events */
256	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
257	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
258	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
259	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
260	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
261	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
262	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
263	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
264	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
265	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
266	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
267	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
268	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
269	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
270	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
271	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
272	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
273	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
274	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
275	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
276	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard, 0x14),
277	/* Master events */
278	CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x0),
279	CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard, 0x1),
280	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard, 0x2),
281	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full, 0x3),
282	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x4),
283	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x5),
284	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full, 0x6),
285	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full, 0x7),
286	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full, 0x8),
287	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0, 0x9),
288	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1, 0xA),
289	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2, 0xB),
290	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3, 0xC),
291	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0, 0xD),
292	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1, 0xE),
293	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2, 0xF),
294	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3, 0x10),
295	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard, 0x11),
296	/* Special event for cycles counter */
297	CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
298	NULL
299};
300
301static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
302			struct device_attribute *attr, char *buf)
303{
304	struct dev_ext_attribute *eattr = container_of(attr,
305				struct dev_ext_attribute, attr);
306	return sysfs_emit(buf, "config=0x%lx\n", (unsigned long)eattr->var);
307}
308
309static int cci400_get_event_idx(struct cci_pmu *cci_pmu,
310				struct cci_pmu_hw_events *hw,
311				unsigned long cci_event)
312{
313	int idx;
314
315	/* cycles event idx is fixed */
316	if (cci_event == CCI400_PMU_CYCLES) {
317		if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX, hw->used_mask))
318			return -EAGAIN;
319
320		return CCI400_PMU_CYCLE_CNTR_IDX;
321	}
322
323	for (idx = CCI400_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
324		if (!test_and_set_bit(idx, hw->used_mask))
325			return idx;
326
327	/* No counters available */
328	return -EAGAIN;
329}
330
331static int cci400_validate_hw_event(struct cci_pmu *cci_pmu, unsigned long hw_event)
332{
333	u8 ev_source = CCI400_PMU_EVENT_SOURCE(hw_event);
334	u8 ev_code = CCI400_PMU_EVENT_CODE(hw_event);
335	int if_type;
336
337	if (hw_event & ~CCI400_PMU_EVENT_MASK)
338		return -ENOENT;
339
340	if (hw_event == CCI400_PMU_CYCLES)
341		return hw_event;
342
343	switch (ev_source) {
344	case CCI400_PORT_S0:
345	case CCI400_PORT_S1:
346	case CCI400_PORT_S2:
347	case CCI400_PORT_S3:
348	case CCI400_PORT_S4:
349		/* Slave Interface */
350		if_type = CCI_IF_SLAVE;
351		break;
352	case CCI400_PORT_M0:
353	case CCI400_PORT_M1:
354	case CCI400_PORT_M2:
355		/* Master Interface */
356		if_type = CCI_IF_MASTER;
357		break;
358	default:
359		return -ENOENT;
360	}
361
362	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
363		ev_code <= cci_pmu->model->event_ranges[if_type].max)
364		return hw_event;
365
366	return -ENOENT;
367}
368
369static int probe_cci400_revision(struct cci_pmu *cci_pmu)
370{
371	int rev;
372	rev = readl_relaxed(cci_pmu->ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
373	rev >>= CCI_PID2_REV_SHIFT;
374
375	if (rev < CCI400_R1_PX)
376		return CCI400_R0;
377	else
378		return CCI400_R1;
379}
380
381static const struct cci_pmu_model *probe_cci_model(struct cci_pmu *cci_pmu)
382{
383	if (platform_has_secure_cci_access())
384		return &cci_pmu_models[probe_cci400_revision(cci_pmu)];
385	return NULL;
386}
387#else	/* !CONFIG_ARM_CCI400_PMU */
388static inline struct cci_pmu_model *probe_cci_model(struct cci_pmu *cci_pmu)
389{
390	return NULL;
391}
392#endif	/* CONFIG_ARM_CCI400_PMU */
393
394#ifdef CONFIG_ARM_CCI5xx_PMU
395
396/*
397 * CCI5xx PMU event id is an 9-bit value made of two parts.
398 *	 bits [8:5] - Source for the event
399 *	 bits [4:0] - Event code (specific to type of interface)
400 *
401 *
402 */
403
404/* Port ids */
405#define CCI5xx_PORT_S0			0x0
406#define CCI5xx_PORT_S1			0x1
407#define CCI5xx_PORT_S2			0x2
408#define CCI5xx_PORT_S3			0x3
409#define CCI5xx_PORT_S4			0x4
410#define CCI5xx_PORT_S5			0x5
411#define CCI5xx_PORT_S6			0x6
412
413#define CCI5xx_PORT_M0			0x8
414#define CCI5xx_PORT_M1			0x9
415#define CCI5xx_PORT_M2			0xa
416#define CCI5xx_PORT_M3			0xb
417#define CCI5xx_PORT_M4			0xc
418#define CCI5xx_PORT_M5			0xd
419#define CCI5xx_PORT_M6			0xe
420
421#define CCI5xx_PORT_GLOBAL		0xf
422
423#define CCI5xx_PMU_EVENT_MASK		0x1ffUL
424#define CCI5xx_PMU_EVENT_SOURCE_SHIFT	0x5
425#define CCI5xx_PMU_EVENT_SOURCE_MASK	0xf
426#define CCI5xx_PMU_EVENT_CODE_SHIFT	0x0
427#define CCI5xx_PMU_EVENT_CODE_MASK	0x1f
428
429#define CCI5xx_PMU_EVENT_SOURCE(event)	\
430	((event >> CCI5xx_PMU_EVENT_SOURCE_SHIFT) & CCI5xx_PMU_EVENT_SOURCE_MASK)
431#define CCI5xx_PMU_EVENT_CODE(event)	\
432	((event >> CCI5xx_PMU_EVENT_CODE_SHIFT) & CCI5xx_PMU_EVENT_CODE_MASK)
433
434#define CCI5xx_SLAVE_PORT_MIN_EV	0x00
435#define CCI5xx_SLAVE_PORT_MAX_EV	0x1f
436#define CCI5xx_MASTER_PORT_MIN_EV	0x00
437#define CCI5xx_MASTER_PORT_MAX_EV	0x06
438#define CCI5xx_GLOBAL_PORT_MIN_EV	0x00
439#define CCI5xx_GLOBAL_PORT_MAX_EV	0x0f
440
441
442#define CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \
443	CCI_EXT_ATTR_ENTRY(_name, cci5xx_pmu_global_event_show, \
444					(unsigned long) _config)
445
446static ssize_t cci5xx_pmu_global_event_show(struct device *dev,
447				struct device_attribute *attr, char *buf);
448
449static struct attribute *cci5xx_pmu_format_attrs[] = {
450	CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
451	CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-8"),
452	NULL,
453};
454
455static struct attribute *cci5xx_pmu_event_attrs[] = {
456	/* Slave events */
457	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid, 0x0),
458	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev, 0x1),
459	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable, 0x2),
460	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc, 0x3),
461	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc, 0x4),
462	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate, 0x5),
463	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint, 0x6),
464	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
465	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval, 0x8),
466	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop, 0x9),
467	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid, 0xA),
468	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev, 0xB),
469	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable, 0xC),
470	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb, 0xD),
471	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu, 0xE),
472	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique, 0xF),
473	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict, 0x10),
474	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict, 0x11),
475	CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat, 0x12),
476	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid, 0x13),
477	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read, 0x14),
478	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean, 0x15),
479	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low, 0x16),
480	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid, 0x17),
481	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall, 0x18),
482	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall, 0x19),
483	CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall, 0x1A),
484	CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall, 0x1B),
485	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall, 0x1C),
486	CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall, 0x1D),
487	CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit, 0x1E),
488	CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit, 0x1F),
489
490	/* Master events */
491	CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any, 0x0),
492	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any, 0x1),
493	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall, 0x2),
494	CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall, 0x3),
495	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall, 0x4),
496	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall, 0x5),
497	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall, 0x6),
498
499	/* Global events */
500	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1, 0x0),
501	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3, 0x1),
502	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5, 0x2),
503	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7, 0x3),
504	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1, 0x4),
505	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3, 0x5),
506	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5, 0x6),
507	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7, 0x7),
508	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation, 0x8),
509	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy, 0x9),
510	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full, 0xA),
511	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq, 0xB),
512	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs, 0xC),
513	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard, 0xD),
514	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_stall_tt_full, 0xE),
515	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot, 0xF),
516	NULL
517};
518
519static ssize_t cci5xx_pmu_global_event_show(struct device *dev,
520				struct device_attribute *attr, char *buf)
521{
522	struct dev_ext_attribute *eattr = container_of(attr,
523					struct dev_ext_attribute, attr);
524	/* Global events have single fixed source code */
525	return sysfs_emit(buf, "event=0x%lx,source=0x%x\n",
526			  (unsigned long)eattr->var, CCI5xx_PORT_GLOBAL);
527}
528
529/*
530 * CCI500 provides 8 independent event counters that can count
531 * any of the events available.
532 * CCI500 PMU event source ids
533 *	0x0-0x6 - Slave interfaces
534 *	0x8-0xD - Master interfaces
535 *	0xf     - Global Events
536 *	0x7,0xe - Reserved
537 */
538static int cci500_validate_hw_event(struct cci_pmu *cci_pmu,
539					unsigned long hw_event)
540{
541	u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event);
542	u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event);
543	int if_type;
544
545	if (hw_event & ~CCI5xx_PMU_EVENT_MASK)
546		return -ENOENT;
547
548	switch (ev_source) {
549	case CCI5xx_PORT_S0:
550	case CCI5xx_PORT_S1:
551	case CCI5xx_PORT_S2:
552	case CCI5xx_PORT_S3:
553	case CCI5xx_PORT_S4:
554	case CCI5xx_PORT_S5:
555	case CCI5xx_PORT_S6:
556		if_type = CCI_IF_SLAVE;
557		break;
558	case CCI5xx_PORT_M0:
559	case CCI5xx_PORT_M1:
560	case CCI5xx_PORT_M2:
561	case CCI5xx_PORT_M3:
562	case CCI5xx_PORT_M4:
563	case CCI5xx_PORT_M5:
564		if_type = CCI_IF_MASTER;
565		break;
566	case CCI5xx_PORT_GLOBAL:
567		if_type = CCI_IF_GLOBAL;
568		break;
569	default:
570		return -ENOENT;
571	}
572
573	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
574		ev_code <= cci_pmu->model->event_ranges[if_type].max)
575		return hw_event;
576
577	return -ENOENT;
578}
579
580/*
581 * CCI550 provides 8 independent event counters that can count
582 * any of the events available.
583 * CCI550 PMU event source ids
584 *	0x0-0x6 - Slave interfaces
585 *	0x8-0xe - Master interfaces
586 *	0xf     - Global Events
587 *	0x7	- Reserved
588 */
589static int cci550_validate_hw_event(struct cci_pmu *cci_pmu,
590					unsigned long hw_event)
591{
592	u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event);
593	u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event);
594	int if_type;
595
596	if (hw_event & ~CCI5xx_PMU_EVENT_MASK)
597		return -ENOENT;
598
599	switch (ev_source) {
600	case CCI5xx_PORT_S0:
601	case CCI5xx_PORT_S1:
602	case CCI5xx_PORT_S2:
603	case CCI5xx_PORT_S3:
604	case CCI5xx_PORT_S4:
605	case CCI5xx_PORT_S5:
606	case CCI5xx_PORT_S6:
607		if_type = CCI_IF_SLAVE;
608		break;
609	case CCI5xx_PORT_M0:
610	case CCI5xx_PORT_M1:
611	case CCI5xx_PORT_M2:
612	case CCI5xx_PORT_M3:
613	case CCI5xx_PORT_M4:
614	case CCI5xx_PORT_M5:
615	case CCI5xx_PORT_M6:
616		if_type = CCI_IF_MASTER;
617		break;
618	case CCI5xx_PORT_GLOBAL:
619		if_type = CCI_IF_GLOBAL;
620		break;
621	default:
622		return -ENOENT;
623	}
624
625	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
626		ev_code <= cci_pmu->model->event_ranges[if_type].max)
627		return hw_event;
628
629	return -ENOENT;
630}
631
632#endif	/* CONFIG_ARM_CCI5xx_PMU */
633
634/*
635 * Program the CCI PMU counters which have PERF_HES_ARCH set
636 * with the event period and mark them ready before we enable
637 * PMU.
638 */
639static void cci_pmu_sync_counters(struct cci_pmu *cci_pmu)
640{
641	int i;
642	struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
643	DECLARE_BITMAP(mask, HW_CNTRS_MAX);
644
645	bitmap_zero(mask, HW_CNTRS_MAX);
646	for_each_set_bit(i, cci_pmu->hw_events.used_mask, cci_pmu->num_cntrs) {
647		struct perf_event *event = cci_hw->events[i];
648
649		if (WARN_ON(!event))
650			continue;
651
652		/* Leave the events which are not counting */
653		if (event->hw.state & PERF_HES_STOPPED)
654			continue;
655		if (event->hw.state & PERF_HES_ARCH) {
656			__set_bit(i, mask);
657			event->hw.state &= ~PERF_HES_ARCH;
658		}
659	}
660
661	pmu_write_counters(cci_pmu, mask);
662}
663
664/* Should be called with cci_pmu->hw_events->pmu_lock held */
665static void __cci_pmu_enable_nosync(struct cci_pmu *cci_pmu)
666{
667	u32 val;
668
669	/* Enable all the PMU counters. */
670	val = readl_relaxed(cci_pmu->ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
671	writel(val, cci_pmu->ctrl_base + CCI_PMCR);
672}
673
674/* Should be called with cci_pmu->hw_events->pmu_lock held */
675static void __cci_pmu_enable_sync(struct cci_pmu *cci_pmu)
676{
677	cci_pmu_sync_counters(cci_pmu);
678	__cci_pmu_enable_nosync(cci_pmu);
679}
680
681/* Should be called with cci_pmu->hw_events->pmu_lock held */
682static void __cci_pmu_disable(struct cci_pmu *cci_pmu)
683{
684	u32 val;
685
686	/* Disable all the PMU counters. */
687	val = readl_relaxed(cci_pmu->ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
688	writel(val, cci_pmu->ctrl_base + CCI_PMCR);
689}
690
691static ssize_t cci_pmu_format_show(struct device *dev,
692			struct device_attribute *attr, char *buf)
693{
694	struct dev_ext_attribute *eattr = container_of(attr,
695				struct dev_ext_attribute, attr);
696	return sysfs_emit(buf, "%s\n", (char *)eattr->var);
697}
698
699static ssize_t cci_pmu_event_show(struct device *dev,
700			struct device_attribute *attr, char *buf)
701{
702	struct dev_ext_attribute *eattr = container_of(attr,
703				struct dev_ext_attribute, attr);
704	/* source parameter is mandatory for normal PMU events */
705	return sysfs_emit(buf, "source=?,event=0x%lx\n",
706			  (unsigned long)eattr->var);
707}
708
709static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
710{
711	return 0 <= idx && idx <= CCI_PMU_CNTR_LAST(cci_pmu);
712}
713
714static u32 pmu_read_register(struct cci_pmu *cci_pmu, int idx, unsigned int offset)
715{
716	return readl_relaxed(cci_pmu->base +
717			     CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
718}
719
720static void pmu_write_register(struct cci_pmu *cci_pmu, u32 value,
721			       int idx, unsigned int offset)
722{
723	writel_relaxed(value, cci_pmu->base +
724		       CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
725}
726
727static void pmu_disable_counter(struct cci_pmu *cci_pmu, int idx)
728{
729	pmu_write_register(cci_pmu, 0, idx, CCI_PMU_CNTR_CTRL);
730}
731
732static void pmu_enable_counter(struct cci_pmu *cci_pmu, int idx)
733{
734	pmu_write_register(cci_pmu, 1, idx, CCI_PMU_CNTR_CTRL);
735}
736
737static bool __maybe_unused
738pmu_counter_is_enabled(struct cci_pmu *cci_pmu, int idx)
739{
740	return (pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR_CTRL) & 0x1) != 0;
741}
742
743static void pmu_set_event(struct cci_pmu *cci_pmu, int idx, unsigned long event)
744{
745	pmu_write_register(cci_pmu, event, idx, CCI_PMU_EVT_SEL);
746}
747
748/*
749 * For all counters on the CCI-PMU, disable any 'enabled' counters,
750 * saving the changed counters in the mask, so that we can restore
751 * it later using pmu_restore_counters. The mask is private to the
752 * caller. We cannot rely on the used_mask maintained by the CCI_PMU
753 * as it only tells us if the counter is assigned to perf_event or not.
754 * The state of the perf_event cannot be locked by the PMU layer, hence
755 * we check the individual counter status (which can be locked by
756 * cci_pm->hw_events->pmu_lock).
757 *
758 * @mask should be initialised to empty by the caller.
759 */
760static void __maybe_unused
761pmu_save_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
762{
763	int i;
764
765	for (i = 0; i < cci_pmu->num_cntrs; i++) {
766		if (pmu_counter_is_enabled(cci_pmu, i)) {
767			set_bit(i, mask);
768			pmu_disable_counter(cci_pmu, i);
769		}
770	}
771}
772
773/*
774 * Restore the status of the counters. Reversal of the pmu_save_counters().
775 * For each counter set in the mask, enable the counter back.
776 */
777static void __maybe_unused
778pmu_restore_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
779{
780	int i;
781
782	for_each_set_bit(i, mask, cci_pmu->num_cntrs)
783		pmu_enable_counter(cci_pmu, i);
784}
785
786/*
787 * Returns the number of programmable counters actually implemented
788 * by the cci
789 */
790static u32 pmu_get_max_counters(struct cci_pmu *cci_pmu)
791{
792	return (readl_relaxed(cci_pmu->ctrl_base + CCI_PMCR) &
793		CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
794}
795
796static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
797{
798	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
799	unsigned long cci_event = event->hw.config_base;
800	int idx;
801
802	if (cci_pmu->model->get_event_idx)
803		return cci_pmu->model->get_event_idx(cci_pmu, hw, cci_event);
804
805	/* Generic code to find an unused idx from the mask */
806	for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++)
807		if (!test_and_set_bit(idx, hw->used_mask))
808			return idx;
809
810	/* No counters available */
811	return -EAGAIN;
812}
813
814static int pmu_map_event(struct perf_event *event)
815{
816	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
817
818	if (event->attr.type < PERF_TYPE_MAX ||
819			!cci_pmu->model->validate_hw_event)
820		return -ENOENT;
821
822	return	cci_pmu->model->validate_hw_event(cci_pmu, event->attr.config);
823}
824
825static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
826{
827	int i;
828	struct platform_device *pmu_device = cci_pmu->plat_device;
829
830	if (unlikely(!pmu_device))
831		return -ENODEV;
832
833	if (cci_pmu->nr_irqs < 1) {
834		dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
835		return -ENODEV;
836	}
837
838	/*
839	 * Register all available CCI PMU interrupts. In the interrupt handler
840	 * we iterate over the counters checking for interrupt source (the
841	 * overflowing counter) and clear it.
842	 *
843	 * This should allow handling of non-unique interrupt for the counters.
844	 */
845	for (i = 0; i < cci_pmu->nr_irqs; i++) {
846		int err = request_irq(cci_pmu->irqs[i], handler, IRQF_SHARED,
847				"arm-cci-pmu", cci_pmu);
848		if (err) {
849			dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
850				cci_pmu->irqs[i]);
851			return err;
852		}
853
854		set_bit(i, &cci_pmu->active_irqs);
855	}
856
857	return 0;
858}
859
860static void pmu_free_irq(struct cci_pmu *cci_pmu)
861{
862	int i;
863
864	for (i = 0; i < cci_pmu->nr_irqs; i++) {
865		if (!test_and_clear_bit(i, &cci_pmu->active_irqs))
866			continue;
867
868		free_irq(cci_pmu->irqs[i], cci_pmu);
869	}
870}
871
872static u32 pmu_read_counter(struct perf_event *event)
873{
874	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
875	struct hw_perf_event *hw_counter = &event->hw;
876	int idx = hw_counter->idx;
877	u32 value;
878
879	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
880		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
881		return 0;
882	}
883	value = pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR);
884
885	return value;
886}
887
888static void pmu_write_counter(struct cci_pmu *cci_pmu, u32 value, int idx)
889{
890	pmu_write_register(cci_pmu, value, idx, CCI_PMU_CNTR);
891}
892
893static void __pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
894{
895	int i;
896	struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
897
898	for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
899		struct perf_event *event = cci_hw->events[i];
900
901		if (WARN_ON(!event))
902			continue;
903		pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
904	}
905}
906
907static void pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
908{
909	if (cci_pmu->model->write_counters)
910		cci_pmu->model->write_counters(cci_pmu, mask);
911	else
912		__pmu_write_counters(cci_pmu, mask);
913}
914
915#ifdef CONFIG_ARM_CCI5xx_PMU
916
917/*
918 * CCI-500/CCI-550 has advanced power saving policies, which could gate the
919 * clocks to the PMU counters, which makes the writes to them ineffective.
920 * The only way to write to those counters is when the global counters
921 * are enabled and the particular counter is enabled.
922 *
923 * So we do the following :
924 *
925 * 1) Disable all the PMU counters, saving their current state
926 * 2) Enable the global PMU profiling, now that all counters are
927 *    disabled.
928 *
929 * For each counter to be programmed, repeat steps 3-7:
930 *
931 * 3) Write an invalid event code to the event control register for the
932      counter, so that the counters are not modified.
933 * 4) Enable the counter control for the counter.
934 * 5) Set the counter value
935 * 6) Disable the counter
936 * 7) Restore the event in the target counter
937 *
938 * 8) Disable the global PMU.
939 * 9) Restore the status of the rest of the counters.
940 *
941 * We choose an event which for CCI-5xx is guaranteed not to count.
942 * We use the highest possible event code (0x1f) for the master interface 0.
943 */
944#define CCI5xx_INVALID_EVENT	((CCI5xx_PORT_M0 << CCI5xx_PMU_EVENT_SOURCE_SHIFT) | \
945				 (CCI5xx_PMU_EVENT_CODE_MASK << CCI5xx_PMU_EVENT_CODE_SHIFT))
946static void cci5xx_pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
947{
948	int i;
949	DECLARE_BITMAP(saved_mask, HW_CNTRS_MAX);
950
951	bitmap_zero(saved_mask, cci_pmu->num_cntrs);
952	pmu_save_counters(cci_pmu, saved_mask);
953
954	/*
955	 * Now that all the counters are disabled, we can safely turn the PMU on,
956	 * without syncing the status of the counters
957	 */
958	__cci_pmu_enable_nosync(cci_pmu);
959
960	for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
961		struct perf_event *event = cci_pmu->hw_events.events[i];
962
963		if (WARN_ON(!event))
964			continue;
965
966		pmu_set_event(cci_pmu, i, CCI5xx_INVALID_EVENT);
967		pmu_enable_counter(cci_pmu, i);
968		pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
969		pmu_disable_counter(cci_pmu, i);
970		pmu_set_event(cci_pmu, i, event->hw.config_base);
971	}
972
973	__cci_pmu_disable(cci_pmu);
974
975	pmu_restore_counters(cci_pmu, saved_mask);
976}
977
978#endif	/* CONFIG_ARM_CCI5xx_PMU */
979
980static u64 pmu_event_update(struct perf_event *event)
981{
982	struct hw_perf_event *hwc = &event->hw;
983	u64 delta, prev_raw_count, new_raw_count;
984
985	do {
986		prev_raw_count = local64_read(&hwc->prev_count);
987		new_raw_count = pmu_read_counter(event);
988	} while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
989		 new_raw_count) != prev_raw_count);
990
991	delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;
992
993	local64_add(delta, &event->count);
994
995	return new_raw_count;
996}
997
998static void pmu_read(struct perf_event *event)
999{
1000	pmu_event_update(event);
1001}
1002
1003static void pmu_event_set_period(struct perf_event *event)
1004{
1005	struct hw_perf_event *hwc = &event->hw;
1006	/*
1007	 * The CCI PMU counters have a period of 2^32. To account for the
1008	 * possiblity of extreme interrupt latency we program for a period of
1009	 * half that. Hopefully we can handle the interrupt before another 2^31
1010	 * events occur and the counter overtakes its previous value.
1011	 */
1012	u64 val = 1ULL << 31;
1013	local64_set(&hwc->prev_count, val);
1014
1015	/*
1016	 * CCI PMU uses PERF_HES_ARCH to keep track of the counters, whose
1017	 * values needs to be sync-ed with the s/w state before the PMU is
1018	 * enabled.
1019	 * Mark this counter for sync.
1020	 */
1021	hwc->state |= PERF_HES_ARCH;
1022}
1023
1024static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
1025{
1026	struct cci_pmu *cci_pmu = dev;
1027	struct cci_pmu_hw_events *events = &cci_pmu->hw_events;
1028	int idx, handled = IRQ_NONE;
1029
1030	raw_spin_lock(&events->pmu_lock);
1031
1032	/* Disable the PMU while we walk through the counters */
1033	__cci_pmu_disable(cci_pmu);
1034	/*
1035	 * Iterate over counters and update the corresponding perf events.
1036	 * This should work regardless of whether we have per-counter overflow
1037	 * interrupt or a combined overflow interrupt.
1038	 */
1039	for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
1040		struct perf_event *event = events->events[idx];
1041
1042		if (!event)
1043			continue;
1044
1045		/* Did this counter overflow? */
1046		if (!(pmu_read_register(cci_pmu, idx, CCI_PMU_OVRFLW) &
1047		      CCI_PMU_OVRFLW_FLAG))
1048			continue;
1049
1050		pmu_write_register(cci_pmu, CCI_PMU_OVRFLW_FLAG, idx,
1051							CCI_PMU_OVRFLW);
1052
1053		pmu_event_update(event);
1054		pmu_event_set_period(event);
1055		handled = IRQ_HANDLED;
1056	}
1057
1058	/* Enable the PMU and sync possibly overflowed counters */
1059	__cci_pmu_enable_sync(cci_pmu);
1060	raw_spin_unlock(&events->pmu_lock);
1061
1062	return IRQ_RETVAL(handled);
1063}
1064
1065static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
1066{
1067	int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
1068	if (ret) {
1069		pmu_free_irq(cci_pmu);
1070		return ret;
1071	}
1072	return 0;
1073}
1074
1075static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
1076{
1077	pmu_free_irq(cci_pmu);
1078}
1079
1080static void hw_perf_event_destroy(struct perf_event *event)
1081{
1082	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1083	atomic_t *active_events = &cci_pmu->active_events;
1084	struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;
1085
1086	if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
1087		cci_pmu_put_hw(cci_pmu);
1088		mutex_unlock(reserve_mutex);
1089	}
1090}
1091
1092static void cci_pmu_enable(struct pmu *pmu)
1093{
1094	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1095	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1096	bool enabled = !bitmap_empty(hw_events->used_mask, cci_pmu->num_cntrs);
1097	unsigned long flags;
1098
1099	if (!enabled)
1100		return;
1101
1102	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1103	__cci_pmu_enable_sync(cci_pmu);
1104	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1105
1106}
1107
1108static void cci_pmu_disable(struct pmu *pmu)
1109{
1110	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1111	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1112	unsigned long flags;
1113
1114	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1115	__cci_pmu_disable(cci_pmu);
1116	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1117}
1118
1119/*
1120 * Check if the idx represents a non-programmable counter.
1121 * All the fixed event counters are mapped before the programmable
1122 * counters.
1123 */
1124static bool pmu_fixed_hw_idx(struct cci_pmu *cci_pmu, int idx)
1125{
1126	return (idx >= 0) && (idx < cci_pmu->model->fixed_hw_cntrs);
1127}
1128
1129static void cci_pmu_start(struct perf_event *event, int pmu_flags)
1130{
1131	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1132	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1133	struct hw_perf_event *hwc = &event->hw;
1134	int idx = hwc->idx;
1135	unsigned long flags;
1136
1137	/*
1138	 * To handle interrupt latency, we always reprogram the period
1139	 * regardless of PERF_EF_RELOAD.
1140	 */
1141	if (pmu_flags & PERF_EF_RELOAD)
1142		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
1143
1144	hwc->state = 0;
1145
1146	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
1147		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
1148		return;
1149	}
1150
1151	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1152
1153	/* Configure the counter unless you are counting a fixed event */
1154	if (!pmu_fixed_hw_idx(cci_pmu, idx))
1155		pmu_set_event(cci_pmu, idx, hwc->config_base);
1156
1157	pmu_event_set_period(event);
1158	pmu_enable_counter(cci_pmu, idx);
1159
1160	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1161}
1162
1163static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
1164{
1165	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1166	struct hw_perf_event *hwc = &event->hw;
1167	int idx = hwc->idx;
1168
1169	if (hwc->state & PERF_HES_STOPPED)
1170		return;
1171
1172	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
1173		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
1174		return;
1175	}
1176
1177	/*
1178	 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
1179	 * cci_pmu_start()
1180	 */
1181	pmu_disable_counter(cci_pmu, idx);
1182	pmu_event_update(event);
1183	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1184}
1185
1186static int cci_pmu_add(struct perf_event *event, int flags)
1187{
1188	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1189	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1190	struct hw_perf_event *hwc = &event->hw;
1191	int idx;
1192
1193	/* If we don't have a space for the counter then finish early. */
1194	idx = pmu_get_event_idx(hw_events, event);
1195	if (idx < 0)
1196		return idx;
1197
1198	event->hw.idx = idx;
1199	hw_events->events[idx] = event;
1200
1201	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1202	if (flags & PERF_EF_START)
1203		cci_pmu_start(event, PERF_EF_RELOAD);
1204
1205	/* Propagate our changes to the userspace mapping. */
1206	perf_event_update_userpage(event);
1207
1208	return 0;
1209}
1210
1211static void cci_pmu_del(struct perf_event *event, int flags)
1212{
1213	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1214	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1215	struct hw_perf_event *hwc = &event->hw;
1216	int idx = hwc->idx;
1217
1218	cci_pmu_stop(event, PERF_EF_UPDATE);
1219	hw_events->events[idx] = NULL;
1220	clear_bit(idx, hw_events->used_mask);
1221
1222	perf_event_update_userpage(event);
1223}
1224
1225static int validate_event(struct pmu *cci_pmu,
1226			  struct cci_pmu_hw_events *hw_events,
1227			  struct perf_event *event)
1228{
1229	if (is_software_event(event))
1230		return 1;
1231
1232	/*
1233	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
1234	 * core perf code won't check that the pmu->ctx == leader->ctx
1235	 * until after pmu->event_init(event).
1236	 */
1237	if (event->pmu != cci_pmu)
1238		return 0;
1239
1240	if (event->state < PERF_EVENT_STATE_OFF)
1241		return 1;
1242
1243	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
1244		return 1;
1245
1246	return pmu_get_event_idx(hw_events, event) >= 0;
1247}
1248
1249static int validate_group(struct perf_event *event)
1250{
1251	struct perf_event *sibling, *leader = event->group_leader;
1252	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1253	unsigned long mask[BITS_TO_LONGS(HW_CNTRS_MAX)];
1254	struct cci_pmu_hw_events fake_pmu = {
1255		/*
1256		 * Initialise the fake PMU. We only need to populate the
1257		 * used_mask for the purposes of validation.
1258		 */
1259		.used_mask = mask,
1260	};
1261	bitmap_zero(mask, cci_pmu->num_cntrs);
1262
1263	if (!validate_event(event->pmu, &fake_pmu, leader))
1264		return -EINVAL;
1265
1266	for_each_sibling_event(sibling, leader) {
1267		if (!validate_event(event->pmu, &fake_pmu, sibling))
1268			return -EINVAL;
1269	}
1270
1271	if (!validate_event(event->pmu, &fake_pmu, event))
1272		return -EINVAL;
1273
1274	return 0;
1275}
1276
1277static int __hw_perf_event_init(struct perf_event *event)
1278{
1279	struct hw_perf_event *hwc = &event->hw;
1280	int mapping;
1281
1282	mapping = pmu_map_event(event);
1283
1284	if (mapping < 0) {
1285		pr_debug("event %x:%llx not supported\n", event->attr.type,
1286			 event->attr.config);
1287		return mapping;
1288	}
1289
1290	/*
1291	 * We don't assign an index until we actually place the event onto
1292	 * hardware. Use -1 to signify that we haven't decided where to put it
1293	 * yet.
1294	 */
1295	hwc->idx		= -1;
1296	hwc->config_base	= 0;
1297	hwc->config		= 0;
1298	hwc->event_base		= 0;
1299
1300	/*
1301	 * Store the event encoding into the config_base field.
1302	 */
1303	hwc->config_base	    |= (unsigned long)mapping;
1304
1305	if (event->group_leader != event) {
1306		if (validate_group(event) != 0)
1307			return -EINVAL;
1308	}
1309
1310	return 0;
1311}
1312
1313static int cci_pmu_event_init(struct perf_event *event)
1314{
1315	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1316	atomic_t *active_events = &cci_pmu->active_events;
1317	int err = 0;
1318
1319	if (event->attr.type != event->pmu->type)
1320		return -ENOENT;
1321
1322	/* Shared by all CPUs, no meaningful state to sample */
1323	if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
1324		return -EOPNOTSUPP;
1325
1326	/*
1327	 * Following the example set by other "uncore" PMUs, we accept any CPU
1328	 * and rewrite its affinity dynamically rather than having perf core
1329	 * handle cpu == -1 and pid == -1 for this case.
1330	 *
1331	 * The perf core will pin online CPUs for the duration of this call and
1332	 * the event being installed into its context, so the PMU's CPU can't
1333	 * change under our feet.
1334	 */
1335	if (event->cpu < 0)
1336		return -EINVAL;
1337	event->cpu = cci_pmu->cpu;
1338
1339	event->destroy = hw_perf_event_destroy;
1340	if (!atomic_inc_not_zero(active_events)) {
1341		mutex_lock(&cci_pmu->reserve_mutex);
1342		if (atomic_read(active_events) == 0)
1343			err = cci_pmu_get_hw(cci_pmu);
1344		if (!err)
1345			atomic_inc(active_events);
1346		mutex_unlock(&cci_pmu->reserve_mutex);
1347	}
1348	if (err)
1349		return err;
1350
1351	err = __hw_perf_event_init(event);
1352	if (err)
1353		hw_perf_event_destroy(event);
1354
1355	return err;
1356}
1357
1358static ssize_t pmu_cpumask_attr_show(struct device *dev,
1359				     struct device_attribute *attr, char *buf)
1360{
1361	struct pmu *pmu = dev_get_drvdata(dev);
1362	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1363
1364	return cpumap_print_to_pagebuf(true, buf, cpumask_of(cci_pmu->cpu));
1365}
1366
1367static struct device_attribute pmu_cpumask_attr =
1368	__ATTR(cpumask, S_IRUGO, pmu_cpumask_attr_show, NULL);
1369
1370static struct attribute *pmu_attrs[] = {
1371	&pmu_cpumask_attr.attr,
1372	NULL,
1373};
1374
1375static const struct attribute_group pmu_attr_group = {
1376	.attrs = pmu_attrs,
1377};
1378
1379static struct attribute_group pmu_format_attr_group = {
1380	.name = "format",
1381	.attrs = NULL,		/* Filled in cci_pmu_init_attrs */
1382};
1383
1384static struct attribute_group pmu_event_attr_group = {
1385	.name = "events",
1386	.attrs = NULL,		/* Filled in cci_pmu_init_attrs */
1387};
1388
1389static const struct attribute_group *pmu_attr_groups[] = {
1390	&pmu_attr_group,
1391	&pmu_format_attr_group,
1392	&pmu_event_attr_group,
1393	NULL
1394};
1395
1396static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
1397{
1398	const struct cci_pmu_model *model = cci_pmu->model;
1399	char *name = model->name;
1400	u32 num_cntrs;
1401
1402	if (WARN_ON(model->num_hw_cntrs > NUM_HW_CNTRS_MAX))
1403		return -EINVAL;
1404	if (WARN_ON(model->fixed_hw_cntrs > FIXED_HW_CNTRS_MAX))
1405		return -EINVAL;
1406
1407	pmu_event_attr_group.attrs = model->event_attrs;
1408	pmu_format_attr_group.attrs = model->format_attrs;
1409
1410	cci_pmu->pmu = (struct pmu) {
1411		.module		= THIS_MODULE,
1412		.name		= cci_pmu->model->name,
1413		.task_ctx_nr	= perf_invalid_context,
1414		.pmu_enable	= cci_pmu_enable,
1415		.pmu_disable	= cci_pmu_disable,
1416		.event_init	= cci_pmu_event_init,
1417		.add		= cci_pmu_add,
1418		.del		= cci_pmu_del,
1419		.start		= cci_pmu_start,
1420		.stop		= cci_pmu_stop,
1421		.read		= pmu_read,
1422		.attr_groups	= pmu_attr_groups,
1423		.capabilities	= PERF_PMU_CAP_NO_EXCLUDE,
1424	};
1425
1426	cci_pmu->plat_device = pdev;
1427	num_cntrs = pmu_get_max_counters(cci_pmu);
1428	if (num_cntrs > cci_pmu->model->num_hw_cntrs) {
1429		dev_warn(&pdev->dev,
1430			"PMU implements more counters(%d) than supported by"
1431			" the model(%d), truncated.",
1432			num_cntrs, cci_pmu->model->num_hw_cntrs);
1433		num_cntrs = cci_pmu->model->num_hw_cntrs;
1434	}
1435	cci_pmu->num_cntrs = num_cntrs + cci_pmu->model->fixed_hw_cntrs;
1436
1437	return perf_pmu_register(&cci_pmu->pmu, name, -1);
1438}
1439
1440static int cci_pmu_offline_cpu(unsigned int cpu)
1441{
1442	int target;
1443
1444	if (!g_cci_pmu || cpu != g_cci_pmu->cpu)
1445		return 0;
1446
1447	target = cpumask_any_but(cpu_online_mask, cpu);
1448	if (target >= nr_cpu_ids)
1449		return 0;
1450
1451	perf_pmu_migrate_context(&g_cci_pmu->pmu, cpu, target);
1452	g_cci_pmu->cpu = target;
1453	return 0;
1454}
1455
1456static __maybe_unused struct cci_pmu_model cci_pmu_models[] = {
1457#ifdef CONFIG_ARM_CCI400_PMU
1458	[CCI400_R0] = {
1459		.name = "CCI_400",
1460		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_4XX, /* Cycle counter */
1461		.num_hw_cntrs = NUM_HW_CNTRS_CII_4XX,
1462		.cntr_size = SZ_4K,
1463		.format_attrs = cci400_pmu_format_attrs,
1464		.event_attrs = cci400_r0_pmu_event_attrs,
1465		.event_ranges = {
1466			[CCI_IF_SLAVE] = {
1467				CCI400_R0_SLAVE_PORT_MIN_EV,
1468				CCI400_R0_SLAVE_PORT_MAX_EV,
1469			},
1470			[CCI_IF_MASTER] = {
1471				CCI400_R0_MASTER_PORT_MIN_EV,
1472				CCI400_R0_MASTER_PORT_MAX_EV,
1473			},
1474		},
1475		.validate_hw_event = cci400_validate_hw_event,
1476		.get_event_idx = cci400_get_event_idx,
1477	},
1478	[CCI400_R1] = {
1479		.name = "CCI_400_r1",
1480		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_4XX, /* Cycle counter */
1481		.num_hw_cntrs = NUM_HW_CNTRS_CII_4XX,
1482		.cntr_size = SZ_4K,
1483		.format_attrs = cci400_pmu_format_attrs,
1484		.event_attrs = cci400_r1_pmu_event_attrs,
1485		.event_ranges = {
1486			[CCI_IF_SLAVE] = {
1487				CCI400_R1_SLAVE_PORT_MIN_EV,
1488				CCI400_R1_SLAVE_PORT_MAX_EV,
1489			},
1490			[CCI_IF_MASTER] = {
1491				CCI400_R1_MASTER_PORT_MIN_EV,
1492				CCI400_R1_MASTER_PORT_MAX_EV,
1493			},
1494		},
1495		.validate_hw_event = cci400_validate_hw_event,
1496		.get_event_idx = cci400_get_event_idx,
1497	},
1498#endif
1499#ifdef CONFIG_ARM_CCI5xx_PMU
1500	[CCI500_R0] = {
1501		.name = "CCI_500",
1502		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_5XX,
1503		.num_hw_cntrs = NUM_HW_CNTRS_CII_5XX,
1504		.cntr_size = SZ_64K,
1505		.format_attrs = cci5xx_pmu_format_attrs,
1506		.event_attrs = cci5xx_pmu_event_attrs,
1507		.event_ranges = {
1508			[CCI_IF_SLAVE] = {
1509				CCI5xx_SLAVE_PORT_MIN_EV,
1510				CCI5xx_SLAVE_PORT_MAX_EV,
1511			},
1512			[CCI_IF_MASTER] = {
1513				CCI5xx_MASTER_PORT_MIN_EV,
1514				CCI5xx_MASTER_PORT_MAX_EV,
1515			},
1516			[CCI_IF_GLOBAL] = {
1517				CCI5xx_GLOBAL_PORT_MIN_EV,
1518				CCI5xx_GLOBAL_PORT_MAX_EV,
1519			},
1520		},
1521		.validate_hw_event = cci500_validate_hw_event,
1522		.write_counters	= cci5xx_pmu_write_counters,
1523	},
1524	[CCI550_R0] = {
1525		.name = "CCI_550",
1526		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_5XX,
1527		.num_hw_cntrs = NUM_HW_CNTRS_CII_5XX,
1528		.cntr_size = SZ_64K,
1529		.format_attrs = cci5xx_pmu_format_attrs,
1530		.event_attrs = cci5xx_pmu_event_attrs,
1531		.event_ranges = {
1532			[CCI_IF_SLAVE] = {
1533				CCI5xx_SLAVE_PORT_MIN_EV,
1534				CCI5xx_SLAVE_PORT_MAX_EV,
1535			},
1536			[CCI_IF_MASTER] = {
1537				CCI5xx_MASTER_PORT_MIN_EV,
1538				CCI5xx_MASTER_PORT_MAX_EV,
1539			},
1540			[CCI_IF_GLOBAL] = {
1541				CCI5xx_GLOBAL_PORT_MIN_EV,
1542				CCI5xx_GLOBAL_PORT_MAX_EV,
1543			},
1544		},
1545		.validate_hw_event = cci550_validate_hw_event,
1546		.write_counters	= cci5xx_pmu_write_counters,
1547	},
1548#endif
1549};
1550
1551static const struct of_device_id arm_cci_pmu_matches[] = {
1552#ifdef CONFIG_ARM_CCI400_PMU
1553	{
1554		.compatible = "arm,cci-400-pmu",
1555		.data	= NULL,
1556	},
1557	{
1558		.compatible = "arm,cci-400-pmu,r0",
1559		.data	= &cci_pmu_models[CCI400_R0],
1560	},
1561	{
1562		.compatible = "arm,cci-400-pmu,r1",
1563		.data	= &cci_pmu_models[CCI400_R1],
1564	},
1565#endif
1566#ifdef CONFIG_ARM_CCI5xx_PMU
1567	{
1568		.compatible = "arm,cci-500-pmu,r0",
1569		.data = &cci_pmu_models[CCI500_R0],
1570	},
1571	{
1572		.compatible = "arm,cci-550-pmu,r0",
1573		.data = &cci_pmu_models[CCI550_R0],
1574	},
1575#endif
1576	{},
1577};
1578MODULE_DEVICE_TABLE(of, arm_cci_pmu_matches);
1579
1580static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
1581{
1582	int i;
1583
1584	for (i = 0; i < nr_irqs; i++)
1585		if (irq == irqs[i])
1586			return true;
1587
1588	return false;
1589}
1590
1591static struct cci_pmu *cci_pmu_alloc(struct device *dev)
1592{
1593	struct cci_pmu *cci_pmu;
1594	const struct cci_pmu_model *model;
1595
1596	/*
1597	 * All allocations are devm_* hence we don't have to free
1598	 * them explicitly on an error, as it would end up in driver
1599	 * detach.
1600	 */
1601	cci_pmu = devm_kzalloc(dev, sizeof(*cci_pmu), GFP_KERNEL);
1602	if (!cci_pmu)
1603		return ERR_PTR(-ENOMEM);
1604
1605	cci_pmu->ctrl_base = *(void __iomem **)dev->platform_data;
1606
1607	model = of_device_get_match_data(dev);
1608	if (!model) {
1609		dev_warn(dev,
1610			 "DEPRECATED compatible property, requires secure access to CCI registers");
1611		model = probe_cci_model(cci_pmu);
1612	}
1613	if (!model) {
1614		dev_warn(dev, "CCI PMU version not supported\n");
1615		return ERR_PTR(-ENODEV);
1616	}
1617
1618	cci_pmu->model = model;
1619	cci_pmu->irqs = devm_kcalloc(dev, CCI_PMU_MAX_HW_CNTRS(model),
1620					sizeof(*cci_pmu->irqs), GFP_KERNEL);
1621	if (!cci_pmu->irqs)
1622		return ERR_PTR(-ENOMEM);
1623	cci_pmu->hw_events.events = devm_kcalloc(dev,
1624					     CCI_PMU_MAX_HW_CNTRS(model),
1625					     sizeof(*cci_pmu->hw_events.events),
1626					     GFP_KERNEL);
1627	if (!cci_pmu->hw_events.events)
1628		return ERR_PTR(-ENOMEM);
1629	cci_pmu->hw_events.used_mask = devm_bitmap_zalloc(dev,
1630							  CCI_PMU_MAX_HW_CNTRS(model),
1631							  GFP_KERNEL);
1632	if (!cci_pmu->hw_events.used_mask)
1633		return ERR_PTR(-ENOMEM);
1634
1635	return cci_pmu;
1636}
1637
1638static int cci_pmu_probe(struct platform_device *pdev)
1639{
1640	struct cci_pmu *cci_pmu;
1641	int i, ret, irq;
1642
1643	cci_pmu = cci_pmu_alloc(&pdev->dev);
1644	if (IS_ERR(cci_pmu))
1645		return PTR_ERR(cci_pmu);
1646
1647	cci_pmu->base = devm_platform_ioremap_resource(pdev, 0);
1648	if (IS_ERR(cci_pmu->base))
1649		return -ENOMEM;
1650
1651	/*
1652	 * CCI PMU has one overflow interrupt per counter; but some may be tied
1653	 * together to a common interrupt.
1654	 */
1655	cci_pmu->nr_irqs = 0;
1656	for (i = 0; i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model); i++) {
1657		irq = platform_get_irq(pdev, i);
1658		if (irq < 0)
1659			break;
1660
1661		if (is_duplicate_irq(irq, cci_pmu->irqs, cci_pmu->nr_irqs))
1662			continue;
1663
1664		cci_pmu->irqs[cci_pmu->nr_irqs++] = irq;
1665	}
1666
1667	/*
1668	 * Ensure that the device tree has as many interrupts as the number
1669	 * of counters.
1670	 */
1671	if (i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)) {
1672		dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
1673			i, CCI_PMU_MAX_HW_CNTRS(cci_pmu->model));
1674		return -EINVAL;
1675	}
1676
1677	raw_spin_lock_init(&cci_pmu->hw_events.pmu_lock);
1678	mutex_init(&cci_pmu->reserve_mutex);
1679	atomic_set(&cci_pmu->active_events, 0);
1680
1681	cci_pmu->cpu = raw_smp_processor_id();
1682	g_cci_pmu = cci_pmu;
1683	cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_CCI_ONLINE,
1684				  "perf/arm/cci:online", NULL,
1685				  cci_pmu_offline_cpu);
1686
1687	ret = cci_pmu_init(cci_pmu, pdev);
1688	if (ret)
1689		goto error_pmu_init;
1690
1691	pr_info("ARM %s PMU driver probed", cci_pmu->model->name);
1692	return 0;
1693
1694error_pmu_init:
1695	cpuhp_remove_state(CPUHP_AP_PERF_ARM_CCI_ONLINE);
1696	g_cci_pmu = NULL;
1697	return ret;
1698}
1699
1700static void cci_pmu_remove(struct platform_device *pdev)
1701{
1702	if (!g_cci_pmu)
1703		return;
1704
1705	cpuhp_remove_state(CPUHP_AP_PERF_ARM_CCI_ONLINE);
1706	perf_pmu_unregister(&g_cci_pmu->pmu);
1707	g_cci_pmu = NULL;
1708}
1709
1710static struct platform_driver cci_pmu_driver = {
1711	.driver = {
1712		   .name = DRIVER_NAME,
1713		   .of_match_table = arm_cci_pmu_matches,
1714		   .suppress_bind_attrs = true,
1715		  },
1716	.probe = cci_pmu_probe,
1717	.remove_new = cci_pmu_remove,
1718};
1719
1720module_platform_driver(cci_pmu_driver);
1721MODULE_LICENSE("GPL v2");
1722MODULE_DESCRIPTION("ARM CCI PMU support");
1723