1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *    Interfaces to retrieve and set PDC Stable options (firmware)
4 *
5 *    Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
6 *
7 *    DEV NOTE: the PDC Procedures reference states that:
8 *    "A minimum of 96 bytes of Stable Storage is required. Providing more than
9 *    96 bytes of Stable Storage is optional [...]. Failure to provide the
10 *    optional locations from 96 to 192 results in the loss of certain
11 *    functionality during boot."
12 *
13 *    Since locations between 96 and 192 are the various paths, most (if not
14 *    all) PA-RISC machines should have them. Anyway, for safety reasons, the
15 *    following code can deal with just 96 bytes of Stable Storage, and all
16 *    sizes between 96 and 192 bytes (provided they are multiple of struct
17 *    pdc_module_path size, eg: 128, 160 and 192) to provide full information.
18 *    One last word: there's one path we can always count on: the primary path.
19 *    Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
20 *
21 *    The first OS-dependent area should always be available. Obviously, this is
22 *    not true for the other one. Also bear in mind that reading/writing from/to
23 *    osdep2 is much more expensive than from/to osdep1.
24 *    NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
25 *    2 bytes of storage available right after OSID. That's a total of 4 bytes
26 *    sacrificed: -ETOOLAZY :P
27 *
28 *    The current policy wrt file permissions is:
29 *	- write: root only
30 *	- read: (reading triggers PDC calls) ? root only : everyone
31 *    The rationale is that PDC calls could hog (DoS) the machine.
32 *
33 *	TODO:
34 *	- timer/fastsize write calls
35 */
36
37#undef PDCS_DEBUG
38#ifdef PDCS_DEBUG
39#define DPRINTK(fmt, args...)	printk(KERN_DEBUG fmt, ## args)
40#else
41#define DPRINTK(fmt, args...)
42#endif
43
44#include <linux/module.h>
45#include <linux/init.h>
46#include <linux/kernel.h>
47#include <linux/string.h>
48#include <linux/capability.h>
49#include <linux/ctype.h>
50#include <linux/sysfs.h>
51#include <linux/kobject.h>
52#include <linux/device.h>
53#include <linux/errno.h>
54#include <linux/spinlock.h>
55
56#include <asm/pdc.h>
57#include <asm/page.h>
58#include <linux/uaccess.h>
59#include <asm/hardware.h>
60
61#define PDCS_VERSION	"0.30"
62#define PDCS_PREFIX	"PDC Stable Storage"
63
64#define PDCS_ADDR_PPRI	0x00
65#define PDCS_ADDR_OSID	0x40
66#define PDCS_ADDR_OSD1	0x48
67#define PDCS_ADDR_DIAG	0x58
68#define PDCS_ADDR_FSIZ	0x5C
69#define PDCS_ADDR_PCON	0x60
70#define PDCS_ADDR_PALT	0x80
71#define PDCS_ADDR_PKBD	0xA0
72#define PDCS_ADDR_OSD2	0xE0
73
74MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
75MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
76MODULE_LICENSE("GPL");
77MODULE_VERSION(PDCS_VERSION);
78
79/* holds Stable Storage size. Initialized once and for all, no lock needed */
80static unsigned long pdcs_size __read_mostly;
81
82/* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
83static u16 pdcs_osid __read_mostly;
84
85/* This struct defines what we need to deal with a parisc pdc path entry */
86struct pdcspath_entry {
87	rwlock_t rw_lock;		/* to protect path entry access */
88	short ready;			/* entry record is valid if != 0 */
89	unsigned long addr;		/* entry address in stable storage */
90	char *name;			/* entry name */
91	struct pdc_module_path devpath;	/* device path in parisc representation */
92	struct device *dev;		/* corresponding device */
93	struct kobject kobj;
94};
95
96struct pdcspath_attribute {
97	struct attribute attr;
98	ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
99	ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
100};
101
102#define PDCSPATH_ENTRY(_addr, _name) \
103struct pdcspath_entry pdcspath_entry_##_name = { \
104	.ready = 0, \
105	.addr = _addr, \
106	.name = __stringify(_name), \
107};
108
109#define PDCS_ATTR(_name, _mode, _show, _store) \
110struct kobj_attribute pdcs_attr_##_name = { \
111	.attr = {.name = __stringify(_name), .mode = _mode}, \
112	.show = _show, \
113	.store = _store, \
114};
115
116#define PATHS_ATTR(_name, _mode, _show, _store) \
117struct pdcspath_attribute paths_attr_##_name = { \
118	.attr = {.name = __stringify(_name), .mode = _mode}, \
119	.show = _show, \
120	.store = _store, \
121};
122
123#define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
124#define to_pdcspath_entry(obj)  container_of(obj, struct pdcspath_entry, kobj)
125
126/**
127 * pdcspath_fetch - This function populates the path entry structs.
128 * @entry: A pointer to an allocated pdcspath_entry.
129 *
130 * The general idea is that you don't read from the Stable Storage every time
131 * you access the files provided by the facilities. We store a copy of the
132 * content of the stable storage WRT various paths in these structs. We read
133 * these structs when reading the files, and we will write to these structs when
134 * writing to the files, and only then write them back to the Stable Storage.
135 *
136 * This function expects to be called with @entry->rw_lock write-hold.
137 */
138static int
139pdcspath_fetch(struct pdcspath_entry *entry)
140{
141	struct pdc_module_path *devpath;
142
143	if (!entry)
144		return -EINVAL;
145
146	devpath = &entry->devpath;
147
148	DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
149			entry, devpath, entry->addr);
150
151	/* addr, devpath and count must be word aligned */
152	if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
153		return -EIO;
154
155	/* Find the matching device.
156	   NOTE: hardware_path overlays with pdc_module_path, so the nice cast can
157	   be used */
158	entry->dev = hwpath_to_device((struct hardware_path *)devpath);
159
160	entry->ready = 1;
161
162	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
163
164	return 0;
165}
166
167/**
168 * pdcspath_store - This function writes a path to stable storage.
169 * @entry: A pointer to an allocated pdcspath_entry.
170 *
171 * It can be used in two ways: either by passing it a preset devpath struct
172 * containing an already computed hardware path, or by passing it a device
173 * pointer, from which it'll find out the corresponding hardware path.
174 * For now we do not handle the case where there's an error in writing to the
175 * Stable Storage area, so you'd better not mess up the data :P
176 *
177 * This function expects to be called with @entry->rw_lock write-hold.
178 */
179static void
180pdcspath_store(struct pdcspath_entry *entry)
181{
182	struct pdc_module_path *devpath;
183
184	BUG_ON(!entry);
185
186	devpath = &entry->devpath;
187
188	/* We expect the caller to set the ready flag to 0 if the hardware
189	   path struct provided is invalid, so that we know we have to fill it.
190	   First case, we don't have a preset hwpath... */
191	if (!entry->ready) {
192		/* ...but we have a device, map it */
193		BUG_ON(!entry->dev);
194		device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
195	}
196	/* else, we expect the provided hwpath to be valid. */
197
198	DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
199			entry, devpath, entry->addr);
200
201	/* addr, devpath and count must be word aligned */
202	if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
203		WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n"
204				"It is likely that the Stable Storage data has been corrupted.\n"
205				"Please check it carefully upon next reboot.\n", __func__);
206
207	/* kobject is already registered */
208	entry->ready = 2;
209
210	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
211}
212
213/**
214 * pdcspath_hwpath_read - This function handles hardware path pretty printing.
215 * @entry: An allocated and populated pdscpath_entry struct.
216 * @buf: The output buffer to write to.
217 *
218 * We will call this function to format the output of the hwpath attribute file.
219 */
220static ssize_t
221pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
222{
223	char *out = buf;
224	struct pdc_module_path *devpath;
225	short i;
226
227	if (!entry || !buf)
228		return -EINVAL;
229
230	read_lock(&entry->rw_lock);
231	devpath = &entry->devpath;
232	i = entry->ready;
233	read_unlock(&entry->rw_lock);
234
235	if (!i)	/* entry is not ready */
236		return -ENODATA;
237
238	for (i = 0; i < 6; i++) {
239		if (devpath->path.bc[i] < 0)
240			continue;
241		out += sprintf(out, "%d/", devpath->path.bc[i]);
242	}
243	out += sprintf(out, "%u\n", (unsigned char)devpath->path.mod);
244
245	return out - buf;
246}
247
248/**
249 * pdcspath_hwpath_write - This function handles hardware path modifying.
250 * @entry: An allocated and populated pdscpath_entry struct.
251 * @buf: The input buffer to read from.
252 * @count: The number of bytes to be read.
253 *
254 * We will call this function to change the current hardware path.
255 * Hardware paths are to be given '/'-delimited, without brackets.
256 * We make sure that the provided path actually maps to an existing
257 * device, BUT nothing would prevent some foolish user to set the path to some
258 * PCI bridge or even a CPU...
259 * A better work around would be to make sure we are at the end of a device tree
260 * for instance, but it would be IMHO beyond the simple scope of that driver.
261 * The aim is to provide a facility. Data correctness is left to userland.
262 */
263static ssize_t
264pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
265{
266	struct hardware_path hwpath;
267	unsigned short i;
268	char in[64], *temp;
269	struct device *dev;
270	int ret;
271
272	if (!entry || !buf || !count)
273		return -EINVAL;
274
275	/* We'll use a local copy of buf */
276	count = min_t(size_t, count, sizeof(in)-1);
277	strscpy(in, buf, count + 1);
278
279	/* Let's clean up the target. 0xff is a blank pattern */
280	memset(&hwpath, 0xff, sizeof(hwpath));
281
282	/* First, pick the mod field (the last one of the input string) */
283	if (!(temp = strrchr(in, '/')))
284		return -EINVAL;
285
286	hwpath.mod = simple_strtoul(temp+1, NULL, 10);
287	in[temp-in] = '\0';	/* truncate the remaining string. just precaution */
288	DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
289
290	/* Then, loop for each delimiter, making sure we don't have too many.
291	   we write the bc fields in a down-top way. No matter what, we stop
292	   before writing the last field. If there are too many fields anyway,
293	   then the user is a moron and it'll be caught up later when we'll
294	   check the consistency of the given hwpath. */
295	for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
296		hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
297		in[temp-in] = '\0';
298		DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.path.bc[i]);
299	}
300
301	/* Store the final field */
302	hwpath.bc[i] = simple_strtoul(in, NULL, 10);
303	DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.path.bc[i]);
304
305	/* Now we check that the user isn't trying to lure us */
306	if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
307		printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
308			"hardware path: %s\n", __func__, entry->name, buf);
309		return -EINVAL;
310	}
311
312	/* So far so good, let's get in deep */
313	write_lock(&entry->rw_lock);
314	entry->ready = 0;
315	entry->dev = dev;
316
317	/* Now, dive in. Write back to the hardware */
318	pdcspath_store(entry);
319
320	/* Update the symlink to the real device */
321	sysfs_remove_link(&entry->kobj, "device");
322	write_unlock(&entry->rw_lock);
323
324	ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
325	WARN_ON(ret);
326
327	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
328		entry->name, buf);
329
330	return count;
331}
332
333/**
334 * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
335 * @entry: An allocated and populated pdscpath_entry struct.
336 * @buf: The output buffer to write to.
337 *
338 * We will call this function to format the output of the layer attribute file.
339 */
340static ssize_t
341pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
342{
343	char *out = buf;
344	struct pdc_module_path *devpath;
345	short i;
346
347	if (!entry || !buf)
348		return -EINVAL;
349
350	read_lock(&entry->rw_lock);
351	devpath = &entry->devpath;
352	i = entry->ready;
353	read_unlock(&entry->rw_lock);
354
355	if (!i)	/* entry is not ready */
356		return -ENODATA;
357
358	for (i = 0; i < 6 && devpath->layers[i]; i++)
359		out += sprintf(out, "%u ", devpath->layers[i]);
360
361	out += sprintf(out, "\n");
362
363	return out - buf;
364}
365
366/**
367 * pdcspath_layer_write - This function handles extended layer modifying.
368 * @entry: An allocated and populated pdscpath_entry struct.
369 * @buf: The input buffer to read from.
370 * @count: The number of bytes to be read.
371 *
372 * We will call this function to change the current layer value.
373 * Layers are to be given '.'-delimited, without brackets.
374 * XXX beware we are far less checky WRT input data provided than for hwpath.
375 * Potential harm can be done, since there's no way to check the validity of
376 * the layer fields.
377 */
378static ssize_t
379pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
380{
381	unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
382	unsigned short i;
383	char in[64], *temp;
384
385	if (!entry || !buf || !count)
386		return -EINVAL;
387
388	/* We'll use a local copy of buf */
389	count = min_t(size_t, count, sizeof(in)-1);
390	strscpy(in, buf, count + 1);
391
392	/* Let's clean up the target. 0 is a blank pattern */
393	memset(&layers, 0, sizeof(layers));
394
395	/* First, pick the first layer */
396	if (unlikely(!isdigit(*in)))
397		return -EINVAL;
398	layers[0] = simple_strtoul(in, NULL, 10);
399	DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
400
401	temp = in;
402	for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
403		if (unlikely(!isdigit(*(++temp))))
404			return -EINVAL;
405		layers[i] = simple_strtoul(temp, NULL, 10);
406		DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
407	}
408
409	/* So far so good, let's get in deep */
410	write_lock(&entry->rw_lock);
411
412	/* First, overwrite the current layers with the new ones, not touching
413	   the hardware path. */
414	memcpy(&entry->devpath.layers, &layers, sizeof(layers));
415
416	/* Now, dive in. Write back to the hardware */
417	pdcspath_store(entry);
418	write_unlock(&entry->rw_lock);
419
420	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
421		entry->name, buf);
422
423	return count;
424}
425
426/**
427 * pdcspath_attr_show - Generic read function call wrapper.
428 * @kobj: The kobject to get info from.
429 * @attr: The attribute looked upon.
430 * @buf: The output buffer.
431 */
432static ssize_t
433pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
434{
435	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
436	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
437	ssize_t ret = 0;
438
439	if (pdcs_attr->show)
440		ret = pdcs_attr->show(entry, buf);
441
442	return ret;
443}
444
445/**
446 * pdcspath_attr_store - Generic write function call wrapper.
447 * @kobj: The kobject to write info to.
448 * @attr: The attribute to be modified.
449 * @buf: The input buffer.
450 * @count: The size of the buffer.
451 */
452static ssize_t
453pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
454			const char *buf, size_t count)
455{
456	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
457	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
458	ssize_t ret = 0;
459
460	if (!capable(CAP_SYS_ADMIN))
461		return -EACCES;
462
463	if (pdcs_attr->store)
464		ret = pdcs_attr->store(entry, buf, count);
465
466	return ret;
467}
468
469static const struct sysfs_ops pdcspath_attr_ops = {
470	.show = pdcspath_attr_show,
471	.store = pdcspath_attr_store,
472};
473
474/* These are the two attributes of any PDC path. */
475static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
476static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
477
478static struct attribute *paths_subsys_attrs[] = {
479	&paths_attr_hwpath.attr,
480	&paths_attr_layer.attr,
481	NULL,
482};
483ATTRIBUTE_GROUPS(paths_subsys);
484
485/* Specific kobject type for our PDC paths */
486static struct kobj_type ktype_pdcspath = {
487	.sysfs_ops = &pdcspath_attr_ops,
488	.default_groups = paths_subsys_groups,
489};
490
491/* We hard define the 4 types of path we expect to find */
492static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
493static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
494static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
495static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
496
497/* An array containing all PDC paths we will deal with */
498static struct pdcspath_entry *pdcspath_entries[] = {
499	&pdcspath_entry_primary,
500	&pdcspath_entry_alternative,
501	&pdcspath_entry_console,
502	&pdcspath_entry_keyboard,
503	NULL,
504};
505
506
507/* For more insight of what's going on here, refer to PDC Procedures doc,
508 * Section PDC_STABLE */
509
510/**
511 * pdcs_size_read - Stable Storage size output.
512 * @kobj: The kobject used to share data with userspace.
513 * @attr: The kobject attributes.
514 * @buf: The output buffer to write to.
515 */
516static ssize_t pdcs_size_read(struct kobject *kobj,
517			      struct kobj_attribute *attr,
518			      char *buf)
519{
520	char *out = buf;
521
522	if (!buf)
523		return -EINVAL;
524
525	/* show the size of the stable storage */
526	out += sprintf(out, "%ld\n", pdcs_size);
527
528	return out - buf;
529}
530
531/**
532 * pdcs_auto_read - Stable Storage autoboot/search flag output.
533 * @kobj: The kobject used to share data with userspace.
534 * @attr: The kobject attributes.
535 * @buf: The output buffer to write to.
536 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
537 */
538static ssize_t pdcs_auto_read(struct kobject *kobj,
539			      struct kobj_attribute *attr,
540			      char *buf, int knob)
541{
542	char *out = buf;
543	struct pdcspath_entry *pathentry;
544
545	if (!buf)
546		return -EINVAL;
547
548	/* Current flags are stored in primary boot path entry */
549	pathentry = &pdcspath_entry_primary;
550
551	read_lock(&pathentry->rw_lock);
552	out += sprintf(out, "%s\n", (pathentry->devpath.path.flags & knob) ?
553					"On" : "Off");
554	read_unlock(&pathentry->rw_lock);
555
556	return out - buf;
557}
558
559/**
560 * pdcs_autoboot_read - Stable Storage autoboot flag output.
561 * @kobj: The kobject used to share data with userspace.
562 * @attr: The kobject attributes.
563 * @buf: The output buffer to write to.
564 */
565static ssize_t pdcs_autoboot_read(struct kobject *kobj,
566				  struct kobj_attribute *attr, char *buf)
567{
568	return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT);
569}
570
571/**
572 * pdcs_autosearch_read - Stable Storage autoboot flag output.
573 * @kobj: The kobject used to share data with userspace.
574 * @attr: The kobject attributes.
575 * @buf: The output buffer to write to.
576 */
577static ssize_t pdcs_autosearch_read(struct kobject *kobj,
578				    struct kobj_attribute *attr, char *buf)
579{
580	return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH);
581}
582
583/**
584 * pdcs_timer_read - Stable Storage timer count output (in seconds).
585 * @kobj: The kobject used to share data with userspace.
586 * @attr: The kobject attributes.
587 * @buf: The output buffer to write to.
588 *
589 * The value of the timer field correponds to a number of seconds in powers of 2.
590 */
591static ssize_t pdcs_timer_read(struct kobject *kobj,
592			       struct kobj_attribute *attr, char *buf)
593{
594	char *out = buf;
595	struct pdcspath_entry *pathentry;
596
597	if (!buf)
598		return -EINVAL;
599
600	/* Current flags are stored in primary boot path entry */
601	pathentry = &pdcspath_entry_primary;
602
603	/* print the timer value in seconds */
604	read_lock(&pathentry->rw_lock);
605	out += sprintf(out, "%u\n", (pathentry->devpath.path.flags & PF_TIMER) ?
606				(1 << (pathentry->devpath.path.flags & PF_TIMER)) : 0);
607	read_unlock(&pathentry->rw_lock);
608
609	return out - buf;
610}
611
612/**
613 * pdcs_osid_read - Stable Storage OS ID register output.
614 * @kobj: The kobject used to share data with userspace.
615 * @attr: The kobject attributes.
616 * @buf: The output buffer to write to.
617 */
618static ssize_t pdcs_osid_read(struct kobject *kobj,
619			      struct kobj_attribute *attr, char *buf)
620{
621	char *out = buf;
622
623	if (!buf)
624		return -EINVAL;
625
626	out += sprintf(out, "%s dependent data (0x%.4x)\n",
627		os_id_to_string(pdcs_osid), pdcs_osid);
628
629	return out - buf;
630}
631
632/**
633 * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
634 * @kobj: The kobject used to share data with userspace.
635 * @attr: The kobject attributes.
636 * @buf: The output buffer to write to.
637 *
638 * This can hold 16 bytes of OS-Dependent data.
639 */
640static ssize_t pdcs_osdep1_read(struct kobject *kobj,
641				struct kobj_attribute *attr, char *buf)
642{
643	char *out = buf;
644	u32 result[4];
645
646	if (!buf)
647		return -EINVAL;
648
649	if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
650		return -EIO;
651
652	out += sprintf(out, "0x%.8x\n", result[0]);
653	out += sprintf(out, "0x%.8x\n", result[1]);
654	out += sprintf(out, "0x%.8x\n", result[2]);
655	out += sprintf(out, "0x%.8x\n", result[3]);
656
657	return out - buf;
658}
659
660/**
661 * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
662 * @kobj: The kobject used to share data with userspace.
663 * @attr: The kobject attributes.
664 * @buf: The output buffer to write to.
665 *
666 * I have NFC how to interpret the content of that register ;-).
667 */
668static ssize_t pdcs_diagnostic_read(struct kobject *kobj,
669				    struct kobj_attribute *attr, char *buf)
670{
671	char *out = buf;
672	u32 result;
673
674	if (!buf)
675		return -EINVAL;
676
677	/* get diagnostic */
678	if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
679		return -EIO;
680
681	out += sprintf(out, "0x%.4x\n", (result >> 16));
682
683	return out - buf;
684}
685
686/**
687 * pdcs_fastsize_read - Stable Storage FastSize register output.
688 * @kobj: The kobject used to share data with userspace.
689 * @attr: The kobject attributes.
690 * @buf: The output buffer to write to.
691 *
692 * This register holds the amount of system RAM to be tested during boot sequence.
693 */
694static ssize_t pdcs_fastsize_read(struct kobject *kobj,
695				  struct kobj_attribute *attr, char *buf)
696{
697	char *out = buf;
698	u32 result;
699
700	if (!buf)
701		return -EINVAL;
702
703	/* get fast-size */
704	if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
705		return -EIO;
706
707	if ((result & 0x0F) < 0x0E)
708		out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
709	else
710		out += sprintf(out, "All");
711	out += sprintf(out, "\n");
712
713	return out - buf;
714}
715
716/**
717 * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
718 * @kobj: The kobject used to share data with userspace.
719 * @attr: The kobject attributes.
720 * @buf: The output buffer to write to.
721 *
722 * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
723 */
724static ssize_t pdcs_osdep2_read(struct kobject *kobj,
725				struct kobj_attribute *attr, char *buf)
726{
727	char *out = buf;
728	unsigned long size;
729	unsigned short i;
730	u32 result;
731
732	if (unlikely(pdcs_size <= 224))
733		return -ENODATA;
734
735	size = pdcs_size - 224;
736
737	if (!buf)
738		return -EINVAL;
739
740	for (i=0; i<size; i+=4) {
741		if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
742					sizeof(result)) != PDC_OK))
743			return -EIO;
744		out += sprintf(out, "0x%.8x\n", result);
745	}
746
747	return out - buf;
748}
749
750/**
751 * pdcs_auto_write - This function handles autoboot/search flag modifying.
752 * @kobj: The kobject used to share data with userspace.
753 * @attr: The kobject attributes.
754 * @buf: The input buffer to read from.
755 * @count: The number of bytes to be read.
756 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
757 *
758 * We will call this function to change the current autoboot flag.
759 * We expect a precise syntax:
760 *	\"n\" (n == 0 or 1) to toggle AutoBoot Off or On
761 */
762static ssize_t pdcs_auto_write(struct kobject *kobj,
763			       struct kobj_attribute *attr, const char *buf,
764			       size_t count, int knob)
765{
766	struct pdcspath_entry *pathentry;
767	unsigned char flags;
768	char in[8], *temp;
769	char c;
770
771	if (!capable(CAP_SYS_ADMIN))
772		return -EACCES;
773
774	if (!buf || !count)
775		return -EINVAL;
776
777	/* We'll use a local copy of buf */
778	count = min_t(size_t, count, sizeof(in)-1);
779	strscpy(in, buf, count + 1);
780
781	/* Current flags are stored in primary boot path entry */
782	pathentry = &pdcspath_entry_primary;
783
784	/* Be nice to the existing flag record */
785	read_lock(&pathentry->rw_lock);
786	flags = pathentry->devpath.path.flags;
787	read_unlock(&pathentry->rw_lock);
788
789	DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
790
791	temp = skip_spaces(in);
792
793	c = *temp++ - '0';
794	if ((c != 0) && (c != 1))
795		goto parse_error;
796	if (c == 0)
797		flags &= ~knob;
798	else
799		flags |= knob;
800
801	DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
802
803	/* So far so good, let's get in deep */
804	write_lock(&pathentry->rw_lock);
805
806	/* Change the path entry flags first */
807	pathentry->devpath.path.flags = flags;
808
809	/* Now, dive in. Write back to the hardware */
810	pdcspath_store(pathentry);
811	write_unlock(&pathentry->rw_lock);
812
813	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
814		(knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
815		(flags & knob) ? "On" : "Off");
816
817	return count;
818
819parse_error:
820	printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
821	return -EINVAL;
822}
823
824/**
825 * pdcs_autoboot_write - This function handles autoboot flag modifying.
826 * @kobj: The kobject used to share data with userspace.
827 * @attr: The kobject attributes.
828 * @buf: The input buffer to read from.
829 * @count: The number of bytes to be read.
830 *
831 * We will call this function to change the current boot flags.
832 * We expect a precise syntax:
833 *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
834 */
835static ssize_t pdcs_autoboot_write(struct kobject *kobj,
836				   struct kobj_attribute *attr,
837				   const char *buf, size_t count)
838{
839	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT);
840}
841
842/**
843 * pdcs_autosearch_write - This function handles autosearch flag modifying.
844 * @kobj: The kobject used to share data with userspace.
845 * @attr: The kobject attributes.
846 * @buf: The input buffer to read from.
847 * @count: The number of bytes to be read.
848 *
849 * We will call this function to change the current boot flags.
850 * We expect a precise syntax:
851 *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
852 */
853static ssize_t pdcs_autosearch_write(struct kobject *kobj,
854				     struct kobj_attribute *attr,
855				     const char *buf, size_t count)
856{
857	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH);
858}
859
860/**
861 * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
862 * @kobj: The kobject used to share data with userspace.
863 * @attr: The kobject attributes.
864 * @buf: The input buffer to read from.
865 * @count: The number of bytes to be read.
866 *
867 * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
868 * write approach. It's up to userspace to deal with it when constructing
869 * its input buffer.
870 */
871static ssize_t pdcs_osdep1_write(struct kobject *kobj,
872				 struct kobj_attribute *attr,
873				 const char *buf, size_t count)
874{
875	u8 in[16];
876
877	if (!capable(CAP_SYS_ADMIN))
878		return -EACCES;
879
880	if (!buf || !count)
881		return -EINVAL;
882
883	if (unlikely(pdcs_osid != OS_ID_LINUX))
884		return -EPERM;
885
886	if (count > 16)
887		return -EMSGSIZE;
888
889	/* We'll use a local copy of buf */
890	memset(in, 0, 16);
891	memcpy(in, buf, count);
892
893	if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
894		return -EIO;
895
896	return count;
897}
898
899/**
900 * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
901 * @kobj: The kobject used to share data with userspace.
902 * @attr: The kobject attributes.
903 * @buf: The input buffer to read from.
904 * @count: The number of bytes to be read.
905 *
906 * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
907 * byte-by-byte write approach. It's up to userspace to deal with it when
908 * constructing its input buffer.
909 */
910static ssize_t pdcs_osdep2_write(struct kobject *kobj,
911				 struct kobj_attribute *attr,
912				 const char *buf, size_t count)
913{
914	unsigned long size;
915	unsigned short i;
916	u8 in[4];
917
918	if (!capable(CAP_SYS_ADMIN))
919		return -EACCES;
920
921	if (!buf || !count)
922		return -EINVAL;
923
924	if (unlikely(pdcs_size <= 224))
925		return -ENOSYS;
926
927	if (unlikely(pdcs_osid != OS_ID_LINUX))
928		return -EPERM;
929
930	size = pdcs_size - 224;
931
932	if (count > size)
933		return -EMSGSIZE;
934
935	/* We'll use a local copy of buf */
936
937	for (i=0; i<count; i+=4) {
938		memset(in, 0, 4);
939		memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
940		if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
941					sizeof(in)) != PDC_OK))
942			return -EIO;
943	}
944
945	return count;
946}
947
948/* The remaining attributes. */
949static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
950static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
951static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
952static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
953static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
954static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
955static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
956static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
957static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
958
959static struct attribute *pdcs_subsys_attrs[] = {
960	&pdcs_attr_size.attr,
961	&pdcs_attr_autoboot.attr,
962	&pdcs_attr_autosearch.attr,
963	&pdcs_attr_timer.attr,
964	&pdcs_attr_osid.attr,
965	&pdcs_attr_osdep1.attr,
966	&pdcs_attr_diagnostic.attr,
967	&pdcs_attr_fastsize.attr,
968	&pdcs_attr_osdep2.attr,
969	NULL,
970};
971
972static const struct attribute_group pdcs_attr_group = {
973	.attrs = pdcs_subsys_attrs,
974};
975
976static struct kobject *stable_kobj;
977static struct kset *paths_kset;
978
979/**
980 * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
981 *
982 * It creates kobjects corresponding to each path entry with nice sysfs
983 * links to the real device. This is where the magic takes place: when
984 * registering the subsystem attributes during module init, each kobject hereby
985 * created will show in the sysfs tree as a folder containing files as defined
986 * by path_subsys_attr[].
987 */
988static inline int __init
989pdcs_register_pathentries(void)
990{
991	unsigned short i;
992	struct pdcspath_entry *entry;
993	int err;
994
995	/* Initialize the entries rw_lock before anything else */
996	for (i = 0; (entry = pdcspath_entries[i]); i++)
997		rwlock_init(&entry->rw_lock);
998
999	for (i = 0; (entry = pdcspath_entries[i]); i++) {
1000		write_lock(&entry->rw_lock);
1001		err = pdcspath_fetch(entry);
1002		write_unlock(&entry->rw_lock);
1003
1004		if (err < 0)
1005			continue;
1006
1007		entry->kobj.kset = paths_kset;
1008		err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL,
1009					   "%s", entry->name);
1010		if (err) {
1011			kobject_put(&entry->kobj);
1012			return err;
1013		}
1014
1015		/* kobject is now registered */
1016		write_lock(&entry->rw_lock);
1017		entry->ready = 2;
1018		write_unlock(&entry->rw_lock);
1019
1020		/* Add a nice symlink to the real device */
1021		if (entry->dev) {
1022			err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
1023			WARN_ON(err);
1024		}
1025
1026		kobject_uevent(&entry->kobj, KOBJ_ADD);
1027	}
1028
1029	return 0;
1030}
1031
1032/**
1033 * pdcs_unregister_pathentries - Routine called when unregistering the module.
1034 */
1035static inline void
1036pdcs_unregister_pathentries(void)
1037{
1038	unsigned short i;
1039	struct pdcspath_entry *entry;
1040
1041	for (i = 0; (entry = pdcspath_entries[i]); i++) {
1042		read_lock(&entry->rw_lock);
1043		if (entry->ready >= 2)
1044			kobject_put(&entry->kobj);
1045		read_unlock(&entry->rw_lock);
1046	}
1047}
1048
1049/*
1050 * For now we register the stable subsystem with the firmware subsystem
1051 * and the paths subsystem with the stable subsystem
1052 */
1053static int __init
1054pdc_stable_init(void)
1055{
1056	int rc = 0, error;
1057	u32 result;
1058
1059	/* find the size of the stable storage */
1060	if (pdc_stable_get_size(&pdcs_size) != PDC_OK)
1061		return -ENODEV;
1062
1063	/* make sure we have enough data */
1064	if (pdcs_size < 96)
1065		return -ENODATA;
1066
1067	printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
1068
1069	/* get OSID */
1070	if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
1071		return -EIO;
1072
1073	/* the actual result is 16 bits away */
1074	pdcs_osid = (u16)(result >> 16);
1075
1076	/* For now we'll register the directory at /sys/firmware/stable */
1077	stable_kobj = kobject_create_and_add("stable", firmware_kobj);
1078	if (!stable_kobj) {
1079		rc = -ENOMEM;
1080		goto fail_firmreg;
1081	}
1082
1083	/* Don't forget the root entries */
1084	error = sysfs_create_group(stable_kobj, &pdcs_attr_group);
1085	if (error) {
1086		rc = -ENOMEM;
1087		goto fail_ksetreg;
1088	}
1089
1090	/* register the paths kset as a child of the stable kset */
1091	paths_kset = kset_create_and_add("paths", NULL, stable_kobj);
1092	if (!paths_kset) {
1093		rc = -ENOMEM;
1094		goto fail_ksetreg;
1095	}
1096
1097	/* now we create all "files" for the paths kset */
1098	if ((rc = pdcs_register_pathentries()))
1099		goto fail_pdcsreg;
1100
1101	return rc;
1102
1103fail_pdcsreg:
1104	pdcs_unregister_pathentries();
1105	kset_unregister(paths_kset);
1106
1107fail_ksetreg:
1108	kobject_put(stable_kobj);
1109
1110fail_firmreg:
1111	printk(KERN_INFO PDCS_PREFIX " bailing out\n");
1112	return rc;
1113}
1114
1115static void __exit
1116pdc_stable_exit(void)
1117{
1118	pdcs_unregister_pathentries();
1119	kset_unregister(paths_kset);
1120	kobject_put(stable_kobj);
1121}
1122
1123
1124module_init(pdc_stable_init);
1125module_exit(pdc_stable_exit);
1126