1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3** I/O Sapic Driver - PCI interrupt line support
4**
5**      (c) Copyright 1999 Grant Grundler
6**      (c) Copyright 1999 Hewlett-Packard Company
7**
8**
9** The I/O sapic driver manages the Interrupt Redirection Table which is
10** the control logic to convert PCI line based interrupts into a Message
11** Signaled Interrupt (aka Transaction Based Interrupt, TBI).
12**
13** Acronyms
14** --------
15** HPA  Hard Physical Address (aka MMIO address)
16** IRQ  Interrupt ReQuest. Implies Line based interrupt.
17** IRT	Interrupt Routing Table (provided by PAT firmware)
18** IRdT Interrupt Redirection Table. IRQ line to TXN ADDR/DATA
19**      table which is implemented in I/O SAPIC.
20** ISR  Interrupt Service Routine. aka Interrupt handler.
21** MSI	Message Signaled Interrupt. PCI 2.2 functionality.
22**      aka Transaction Based Interrupt (or TBI).
23** PA   Precision Architecture. HP's RISC architecture.
24** RISC Reduced Instruction Set Computer.
25**
26**
27** What's a Message Signalled Interrupt?
28** -------------------------------------
29** MSI is a write transaction which targets a processor and is similar
30** to a processor write to memory or MMIO. MSIs can be generated by I/O
31** devices as well as processors and require *architecture* to work.
32**
33** PA only supports MSI. So I/O subsystems must either natively generate
34** MSIs (e.g. GSC or HP-PB) or convert line based interrupts into MSIs
35** (e.g. PCI and EISA).  IA64 supports MSIs via a "local SAPIC" which
36** acts on behalf of a processor.
37**
38** MSI allows any I/O device to interrupt any processor. This makes
39** load balancing of the interrupt processing possible on an SMP platform.
40** Interrupts are also ordered WRT to DMA data.  It's possible on I/O
41** coherent systems to completely eliminate PIO reads from the interrupt
42** path. The device and driver must be designed and implemented to
43** guarantee all DMA has been issued (issues about atomicity here)
44** before the MSI is issued. I/O status can then safely be read from
45** DMA'd data by the ISR.
46**
47**
48** PA Firmware
49** -----------
50** PA-RISC platforms have two fundamentally different types of firmware.
51** For PCI devices, "Legacy" PDC initializes the "INTERRUPT_LINE" register
52** and BARs similar to a traditional PC BIOS.
53** The newer "PAT" firmware supports PDC calls which return tables.
54** PAT firmware only initializes the PCI Console and Boot interface.
55** With these tables, the OS can program all other PCI devices.
56**
57** One such PAT PDC call returns the "Interrupt Routing Table" (IRT).
58** The IRT maps each PCI slot's INTA-D "output" line to an I/O SAPIC
59** input line.  If the IRT is not available, this driver assumes
60** INTERRUPT_LINE register has been programmed by firmware. The latter
61** case also means online addition of PCI cards can NOT be supported
62** even if HW support is present.
63**
64** All platforms with PAT firmware to date (Oct 1999) use one Interrupt
65** Routing Table for the entire platform.
66**
67** Where's the iosapic?
68** --------------------
69** I/O sapic is part of the "Core Electronics Complex". And on HP platforms
70** it's integrated as part of the PCI bus adapter, "lba".  So no bus walk
71** will discover I/O Sapic. I/O Sapic driver learns about each device
72** when lba driver advertises the presence of the I/O sapic by calling
73** iosapic_register().
74**
75**
76** IRQ handling notes
77** ------------------
78** The IO-SAPIC can indicate to the CPU which interrupt was asserted.
79** So, unlike the GSC-ASIC and Dino, we allocate one CPU interrupt per
80** IO-SAPIC interrupt and call the device driver's handler directly.
81** The IO-SAPIC driver hijacks the CPU interrupt handler so it can
82** issue the End Of Interrupt command to the IO-SAPIC.
83**
84** Overview of exported iosapic functions
85** --------------------------------------
86** (caveat: code isn't finished yet - this is just the plan)
87**
88** iosapic_init:
89**   o initialize globals (lock, etc)
90**   o try to read IRT. Presence of IRT determines if this is
91**     a PAT platform or not.
92**
93** iosapic_register():
94**   o create iosapic_info instance data structure
95**   o allocate vector_info array for this iosapic
96**   o initialize vector_info - read corresponding IRdT?
97**
98** iosapic_xlate_pin: (only called by fixup_irq for PAT platform)
99**   o intr_pin = read cfg (INTERRUPT_PIN);
100**   o if (device under PCI-PCI bridge)
101**               translate slot/pin
102**
103** iosapic_fixup_irq:
104**   o if PAT platform (IRT present)
105**	   intr_pin = iosapic_xlate_pin(isi,pcidev):
106**         intr_line = find IRT entry(isi, PCI_SLOT(pcidev), intr_pin)
107**         save IRT entry into vector_info later
108**         write cfg INTERRUPT_LINE (with intr_line)?
109**     else
110**         intr_line = pcidev->irq
111**         IRT pointer = NULL
112**     endif
113**   o locate vector_info (needs: isi, intr_line)
114**   o allocate processor "irq" and get txn_addr/data
115**   o request_irq(processor_irq,  iosapic_interrupt, vector_info,...)
116**
117** iosapic_enable_irq:
118**   o clear any pending IRQ on that line
119**   o enable IRdT - call enable_irq(vector[line]->processor_irq)
120**   o write EOI in case line is already asserted.
121**
122** iosapic_disable_irq:
123**   o disable IRdT - call disable_irq(vector[line]->processor_irq)
124*/
125
126#include <linux/pci.h>
127
128#include <asm/pdc.h>
129#include <asm/pdcpat.h>
130#ifdef CONFIG_SUPERIO
131#include <asm/superio.h>
132#endif
133
134#include <asm/ropes.h>
135#include "iosapic_private.h"
136
137#define MODULE_NAME "iosapic"
138
139/* "local" compile flags */
140#undef PCI_BRIDGE_FUNCS
141#undef DEBUG_IOSAPIC
142#undef DEBUG_IOSAPIC_IRT
143
144
145#ifdef DEBUG_IOSAPIC
146#define DBG(x...) printk(x)
147#else /* DEBUG_IOSAPIC */
148#define DBG(x...)
149#endif /* DEBUG_IOSAPIC */
150
151#ifdef DEBUG_IOSAPIC_IRT
152#define DBG_IRT(x...) printk(x)
153#else
154#define DBG_IRT(x...)
155#endif
156
157#ifdef CONFIG_64BIT
158#define COMPARE_IRTE_ADDR(irte, hpa)	((irte)->dest_iosapic_addr == (hpa))
159#else
160#define COMPARE_IRTE_ADDR(irte, hpa)	\
161		((irte)->dest_iosapic_addr == ((hpa) | 0xffffffff00000000ULL))
162#endif
163
164#define IOSAPIC_REG_SELECT              0x00
165#define IOSAPIC_REG_WINDOW              0x10
166#define IOSAPIC_REG_EOI                 0x40
167
168#define IOSAPIC_REG_VERSION		0x1
169
170#define IOSAPIC_IRDT_ENTRY(idx)		(0x10+(idx)*2)
171#define IOSAPIC_IRDT_ENTRY_HI(idx)	(0x11+(idx)*2)
172
173static inline unsigned int iosapic_read(void __iomem *iosapic, unsigned int reg)
174{
175	writel(reg, iosapic + IOSAPIC_REG_SELECT);
176	return readl(iosapic + IOSAPIC_REG_WINDOW);
177}
178
179static inline void iosapic_write(void __iomem *iosapic, unsigned int reg, u32 val)
180{
181	writel(reg, iosapic + IOSAPIC_REG_SELECT);
182	writel(val, iosapic + IOSAPIC_REG_WINDOW);
183}
184
185#define IOSAPIC_VERSION_MASK	0x000000ff
186#define	IOSAPIC_VERSION(ver)	((int) (ver & IOSAPIC_VERSION_MASK))
187
188#define IOSAPIC_MAX_ENTRY_MASK          0x00ff0000
189#define IOSAPIC_MAX_ENTRY_SHIFT         0x10
190#define	IOSAPIC_IRDT_MAX_ENTRY(ver)	\
191	(int) (((ver) & IOSAPIC_MAX_ENTRY_MASK) >> IOSAPIC_MAX_ENTRY_SHIFT)
192
193/* bits in the "low" I/O Sapic IRdT entry */
194#define IOSAPIC_IRDT_ENABLE       0x10000
195#define IOSAPIC_IRDT_PO_LOW       0x02000
196#define IOSAPIC_IRDT_LEVEL_TRIG   0x08000
197#define IOSAPIC_IRDT_MODE_LPRI    0x00100
198
199/* bits in the "high" I/O Sapic IRdT entry */
200#define IOSAPIC_IRDT_ID_EID_SHIFT              0x10
201
202
203static DEFINE_SPINLOCK(iosapic_lock);
204
205static inline void iosapic_eoi(__le32 __iomem *addr, __le32 data)
206{
207	__raw_writel((__force u32)data, addr);
208}
209
210/*
211** REVISIT: future platforms may have more than one IRT.
212** If so, the following three fields form a structure which
213** then be linked into a list. Names are chosen to make searching
214** for them easy - not necessarily accurate (eg "cell").
215**
216** Alternative: iosapic_info could point to the IRT it's in.
217** iosapic_register() could search a list of IRT's.
218*/
219static struct irt_entry *irt_cell;
220static size_t irt_num_entry;
221
222static struct irt_entry *iosapic_alloc_irt(int num_entries)
223{
224	return kcalloc(num_entries, sizeof(struct irt_entry), GFP_KERNEL);
225}
226
227/**
228 * iosapic_load_irt - Fill in the interrupt routing table
229 * @cell_num: The cell number of the CPU we're currently executing on
230 * @irt: The address to place the new IRT at
231 * @return The number of entries found
232 *
233 * The "Get PCI INT Routing Table Size" option returns the number of
234 * entries in the PCI interrupt routing table for the cell specified
235 * in the cell_number argument.  The cell number must be for a cell
236 * within the caller's protection domain.
237 *
238 * The "Get PCI INT Routing Table" option returns, for the cell
239 * specified in the cell_number argument, the PCI interrupt routing
240 * table in the caller allocated memory pointed to by mem_addr.
241 * We assume the IRT only contains entries for I/O SAPIC and
242 * calculate the size based on the size of I/O sapic entries.
243 *
244 * The PCI interrupt routing table entry format is derived from the
245 * IA64 SAL Specification 2.4.   The PCI interrupt routing table defines
246 * the routing of PCI interrupt signals between the PCI device output
247 * "pins" and the IO SAPICs' input "lines" (including core I/O PCI
248 * devices).  This table does NOT include information for devices/slots
249 * behind PCI to PCI bridges. See PCI to PCI Bridge Architecture Spec.
250 * for the architected method of routing of IRQ's behind PPB's.
251 */
252
253
254static int __init
255iosapic_load_irt(unsigned long cell_num, struct irt_entry **irt)
256{
257	long status;              /* PDC return value status */
258	struct irt_entry *table;  /* start of interrupt routing tbl */
259	unsigned long num_entries = 0UL;
260
261	BUG_ON(!irt);
262
263	if (is_pdc_pat()) {
264		/* Use pat pdc routine to get interrupt routing table size */
265		DBG("calling get_irt_size (cell %ld)\n", cell_num);
266		status = pdc_pat_get_irt_size(&num_entries, cell_num);
267		DBG("get_irt_size: %ld\n", status);
268
269		BUG_ON(status != PDC_OK);
270		BUG_ON(num_entries == 0);
271
272		/*
273		** allocate memory for interrupt routing table
274		** This interface isn't really right. We are assuming
275		** the contents of the table are exclusively
276		** for I/O sapic devices.
277		*/
278		table = iosapic_alloc_irt(num_entries);
279		if (table == NULL) {
280			printk(KERN_WARNING MODULE_NAME ": read_irt : can "
281					"not alloc mem for IRT\n");
282			return 0;
283		}
284
285		/* get PCI INT routing table */
286		status = pdc_pat_get_irt(table, cell_num);
287		DBG("pdc_pat_get_irt: %ld\n", status);
288		WARN_ON(status != PDC_OK);
289	} else {
290		/*
291		** C3000/J5000 (and similar) platforms with Sprockets PDC
292		** will return exactly one IRT for all iosapics.
293		** So if we have one, don't need to get it again.
294		*/
295		if (irt_cell)
296			return 0;
297
298		/* Should be using the Elroy's HPA, but it's ignored anyway */
299		status = pdc_pci_irt_size(&num_entries, 0);
300		DBG("pdc_pci_irt_size: %ld\n", status);
301
302		if (status != PDC_OK) {
303			/* Not a "legacy" system with I/O SAPIC either */
304			return 0;
305		}
306
307		BUG_ON(num_entries == 0);
308
309		table = iosapic_alloc_irt(num_entries);
310		if (!table) {
311			printk(KERN_WARNING MODULE_NAME ": read_irt : can "
312					"not alloc mem for IRT\n");
313			return 0;
314		}
315
316		/* HPA ignored by this call too. */
317		status = pdc_pci_irt(num_entries, 0, table);
318		BUG_ON(status != PDC_OK);
319	}
320
321	/* return interrupt table address */
322	*irt = table;
323
324#ifdef DEBUG_IOSAPIC_IRT
325{
326	struct irt_entry *p = table;
327	int i;
328
329	printk(MODULE_NAME " Interrupt Routing Table (cell %ld)\n", cell_num);
330	printk(MODULE_NAME " start = 0x%p num_entries %ld entry_size %d\n",
331		table,
332		num_entries,
333		(int) sizeof(struct irt_entry));
334
335	for (i = 0 ; i < num_entries ; i++, p++) {
336		printk(MODULE_NAME " %02x %02x %02x %02x %02x %02x %02x %02x %08x%08x\n",
337		p->entry_type, p->entry_length, p->interrupt_type,
338		p->polarity_trigger, p->src_bus_irq_devno, p->src_bus_id,
339		p->src_seg_id, p->dest_iosapic_intin,
340		((u32 *) p)[2],
341		((u32 *) p)[3]
342		);
343	}
344}
345#endif /* DEBUG_IOSAPIC_IRT */
346
347	return num_entries;
348}
349
350
351static int __init iosapic_init(void)
352{
353	unsigned long cell = 0;
354
355#ifdef __LP64__
356	if (is_pdc_pat()) {
357		int status;
358		struct pdc_pat_cell_num cell_info;
359
360		status = pdc_pat_cell_get_number(&cell_info);
361		if (status == PDC_OK) {
362			cell = cell_info.cell_num;
363		}
364	}
365#endif
366
367	/* get interrupt routing table for this cell */
368	irt_num_entry = iosapic_load_irt(cell, &irt_cell);
369	if (irt_num_entry == 0)
370		irt_cell = NULL;	/* old PDC w/o iosapic */
371
372	return 0;
373}
374arch_initcall(iosapic_init);
375
376
377/*
378** Return the IRT entry in case we need to look something else up.
379*/
380static struct irt_entry *
381irt_find_irqline(struct iosapic_info *isi, u8 slot, u8 intr_pin)
382{
383	struct irt_entry *i = irt_cell;
384	int cnt;	/* track how many entries we've looked at */
385	u8 irq_devno = (slot << IRT_DEV_SHIFT) | (intr_pin-1);
386
387	DBG_IRT("irt_find_irqline() SLOT %d pin %d\n", slot, intr_pin);
388
389	for (cnt=0; cnt < irt_num_entry; cnt++, i++) {
390
391		/*
392		** Validate: entry_type, entry_length, interrupt_type
393		**
394		** Difference between validate vs compare is the former
395		** should print debug info and is not expected to "fail"
396		** on current platforms.
397		*/
398		if (i->entry_type != IRT_IOSAPIC_TYPE) {
399			DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d type %d\n", i, cnt, i->entry_type);
400			continue;
401		}
402
403		if (i->entry_length != IRT_IOSAPIC_LENGTH) {
404			DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d  length %d\n", i, cnt, i->entry_length);
405			continue;
406		}
407
408		if (i->interrupt_type != IRT_VECTORED_INTR) {
409			DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry  %d interrupt_type %d\n", i, cnt, i->interrupt_type);
410			continue;
411		}
412
413		if (!COMPARE_IRTE_ADDR(i, isi->isi_hpa))
414			continue;
415
416		if ((i->src_bus_irq_devno & IRT_IRQ_DEVNO_MASK) != irq_devno)
417			continue;
418
419		/*
420		** Ignore: src_bus_id and rc_seg_id correlate with
421		**         iosapic_info->isi_hpa on HP platforms.
422		**         If needed, pass in "PFA" (aka config space addr)
423		**         instead of slot.
424		*/
425
426		/* Found it! */
427		return i;
428	}
429
430	printk(KERN_WARNING MODULE_NAME ": 0x%lx : no IRT entry for slot %d, pin %d\n",
431			isi->isi_hpa, slot, intr_pin);
432	return NULL;
433}
434
435
436/*
437** xlate_pin() supports the skewing of IRQ lines done by subsidiary bridges.
438** Legacy PDC already does this translation for us and stores it in INTR_LINE.
439**
440** PAT PDC needs to basically do what legacy PDC does:
441** o read PIN
442** o adjust PIN in case device is "behind" a PPB
443**     (eg 4-port 100BT and SCSI/LAN "Combo Card")
444** o convert slot/pin to I/O SAPIC input line.
445**
446** HP platforms only support:
447** o one level of skewing for any number of PPBs
448** o only support PCI-PCI Bridges.
449*/
450static struct irt_entry *
451iosapic_xlate_pin(struct iosapic_info *isi, struct pci_dev *pcidev)
452{
453	u8 intr_pin, intr_slot;
454
455	pci_read_config_byte(pcidev, PCI_INTERRUPT_PIN, &intr_pin);
456
457	DBG_IRT("iosapic_xlate_pin(%s) SLOT %d pin %d\n",
458		pcidev->slot_name, PCI_SLOT(pcidev->devfn), intr_pin);
459
460	if (intr_pin == 0) {
461		/* The device does NOT support/use IRQ lines.  */
462		return NULL;
463	}
464
465	/* Check if pcidev behind a PPB */
466	if (pcidev->bus->parent) {
467		/* Convert pcidev INTR_PIN into something we
468		** can lookup in the IRT.
469		*/
470#ifdef PCI_BRIDGE_FUNCS
471		/*
472		** Proposal #1:
473		**
474		** call implementation specific translation function
475		** This is architecturally "cleaner". HP-UX doesn't
476		** support other secondary bus types (eg. E/ISA) directly.
477		** May be needed for other processor (eg IA64) architectures
478		** or by some ambitous soul who wants to watch TV.
479		*/
480		if (pci_bridge_funcs->xlate_intr_line) {
481			intr_pin = pci_bridge_funcs->xlate_intr_line(pcidev);
482		}
483#else	/* PCI_BRIDGE_FUNCS */
484		struct pci_bus *p = pcidev->bus;
485		/*
486		** Proposal #2:
487		** The "pin" is skewed ((pin + dev - 1) % 4).
488		**
489		** This isn't very clean since I/O SAPIC must assume:
490		**   - all platforms only have PCI busses.
491		**   - only PCI-PCI bridge (eg not PCI-EISA, PCI-PCMCIA)
492		**   - IRQ routing is only skewed once regardless of
493		**     the number of PPB's between iosapic and device.
494		**     (Bit3 expansion chassis follows this rule)
495		**
496		** Advantage is it's really easy to implement.
497		*/
498		intr_pin = pci_swizzle_interrupt_pin(pcidev, intr_pin);
499#endif /* PCI_BRIDGE_FUNCS */
500
501		/*
502		 * Locate the host slot of the PPB.
503		 */
504		while (p->parent->parent)
505			p = p->parent;
506
507		intr_slot = PCI_SLOT(p->self->devfn);
508	} else {
509		intr_slot = PCI_SLOT(pcidev->devfn);
510	}
511	DBG_IRT("iosapic_xlate_pin:  bus %d slot %d pin %d\n",
512			pcidev->bus->busn_res.start, intr_slot, intr_pin);
513
514	return irt_find_irqline(isi, intr_slot, intr_pin);
515}
516
517static void iosapic_rd_irt_entry(struct vector_info *vi , u32 *dp0, u32 *dp1)
518{
519	struct iosapic_info *isp = vi->iosapic;
520	u8 idx = vi->irqline;
521
522	*dp0 = iosapic_read(isp->addr, IOSAPIC_IRDT_ENTRY(idx));
523	*dp1 = iosapic_read(isp->addr, IOSAPIC_IRDT_ENTRY_HI(idx));
524}
525
526
527static void iosapic_wr_irt_entry(struct vector_info *vi, u32 dp0, u32 dp1)
528{
529	struct iosapic_info *isp = vi->iosapic;
530
531	DBG_IRT("iosapic_wr_irt_entry(): irq %d hpa %lx 0x%x 0x%x\n",
532		vi->irqline, isp->isi_hpa, dp0, dp1);
533
534	iosapic_write(isp->addr, IOSAPIC_IRDT_ENTRY(vi->irqline), dp0);
535
536	/* Read the window register to flush the writes down to HW  */
537	dp0 = readl(isp->addr+IOSAPIC_REG_WINDOW);
538
539	iosapic_write(isp->addr, IOSAPIC_IRDT_ENTRY_HI(vi->irqline), dp1);
540
541	/* Read the window register to flush the writes down to HW  */
542	dp1 = readl(isp->addr+IOSAPIC_REG_WINDOW);
543}
544
545/*
546** set_irt prepares the data (dp0, dp1) according to the vector_info
547** and target cpu (id_eid).  dp0/dp1 are then used to program I/O SAPIC
548** IRdT for the given "vector" (aka IRQ line).
549*/
550static void
551iosapic_set_irt_data( struct vector_info *vi, u32 *dp0, u32 *dp1)
552{
553	u32 mode = 0;
554	struct irt_entry *p = vi->irte;
555
556	if ((p->polarity_trigger & IRT_PO_MASK) == IRT_ACTIVE_LO)
557		mode |= IOSAPIC_IRDT_PO_LOW;
558
559	if (((p->polarity_trigger >> IRT_EL_SHIFT) & IRT_EL_MASK) == IRT_LEVEL_TRIG)
560		mode |= IOSAPIC_IRDT_LEVEL_TRIG;
561
562	/*
563	** IA64 REVISIT
564	** PA doesn't support EXTINT or LPRIO bits.
565	*/
566
567	*dp0 = mode | (u32) vi->txn_data;
568
569	/*
570	** Extracting id_eid isn't a real clean way of getting it.
571	** But the encoding is the same for both PA and IA64 platforms.
572	*/
573	if (is_pdc_pat()) {
574		/*
575		** PAT PDC just hands it to us "right".
576		** txn_addr comes from cpu_data[x].txn_addr.
577		*/
578		*dp1 = (u32) (vi->txn_addr);
579	} else {
580		/*
581		** eg if base_addr == 0xfffa0000),
582		**    we want to get 0xa0ff0000.
583		**
584		** eid	0x0ff00000 -> 0x00ff0000
585		** id	0x000ff000 -> 0xff000000
586		*/
587		*dp1 = (((u32)vi->txn_addr & 0x0ff00000) >> 4) |
588			(((u32)vi->txn_addr & 0x000ff000) << 12);
589	}
590	DBG_IRT("iosapic_set_irt_data(): 0x%x 0x%x\n", *dp0, *dp1);
591}
592
593
594static void iosapic_mask_irq(struct irq_data *d)
595{
596	unsigned long flags;
597	struct vector_info *vi = irq_data_get_irq_chip_data(d);
598	u32 d0, d1;
599
600	spin_lock_irqsave(&iosapic_lock, flags);
601	iosapic_rd_irt_entry(vi, &d0, &d1);
602	d0 |= IOSAPIC_IRDT_ENABLE;
603	iosapic_wr_irt_entry(vi, d0, d1);
604	spin_unlock_irqrestore(&iosapic_lock, flags);
605}
606
607static void iosapic_unmask_irq(struct irq_data *d)
608{
609	struct vector_info *vi = irq_data_get_irq_chip_data(d);
610	u32 d0, d1;
611
612	/* data is initialized by fixup_irq */
613	WARN_ON(vi->txn_irq  == 0);
614
615	iosapic_set_irt_data(vi, &d0, &d1);
616	iosapic_wr_irt_entry(vi, d0, d1);
617
618#ifdef DEBUG_IOSAPIC_IRT
619{
620	u32 *t = (u32 *) ((ulong) vi->eoi_addr & ~0xffUL);
621	printk("iosapic_enable_irq(): regs %p", vi->eoi_addr);
622	for ( ; t < vi->eoi_addr; t++)
623		printk(" %x", readl(t));
624	printk("\n");
625}
626
627printk("iosapic_enable_irq(): sel ");
628{
629	struct iosapic_info *isp = vi->iosapic;
630
631	for (d0=0x10; d0<0x1e; d0++) {
632		d1 = iosapic_read(isp->addr, d0);
633		printk(" %x", d1);
634	}
635}
636printk("\n");
637#endif
638
639	/*
640	 * Issuing I/O SAPIC an EOI causes an interrupt IFF IRQ line is
641	 * asserted.  IRQ generally should not be asserted when a driver
642	 * enables their IRQ. It can lead to "interesting" race conditions
643	 * in the driver initialization sequence.
644	 */
645	DBG(KERN_DEBUG "enable_irq(%d): eoi(%p, 0x%x)\n", d->irq,
646			vi->eoi_addr, vi->eoi_data);
647	iosapic_eoi(vi->eoi_addr, vi->eoi_data);
648}
649
650static void iosapic_eoi_irq(struct irq_data *d)
651{
652	struct vector_info *vi = irq_data_get_irq_chip_data(d);
653
654	iosapic_eoi(vi->eoi_addr, vi->eoi_data);
655	cpu_eoi_irq(d);
656}
657
658#ifdef CONFIG_SMP
659static int iosapic_set_affinity_irq(struct irq_data *d,
660				    const struct cpumask *dest, bool force)
661{
662	struct vector_info *vi = irq_data_get_irq_chip_data(d);
663	u32 d0, d1, dummy_d0;
664	unsigned long flags;
665	int dest_cpu;
666
667	dest_cpu = cpu_check_affinity(d, dest);
668	if (dest_cpu < 0)
669		return -1;
670
671	irq_data_update_affinity(d, cpumask_of(dest_cpu));
672	vi->txn_addr = txn_affinity_addr(d->irq, dest_cpu);
673
674	spin_lock_irqsave(&iosapic_lock, flags);
675	/* d1 contains the destination CPU, so only want to set that
676	 * entry */
677	iosapic_rd_irt_entry(vi, &d0, &d1);
678	iosapic_set_irt_data(vi, &dummy_d0, &d1);
679	iosapic_wr_irt_entry(vi, d0, d1);
680	spin_unlock_irqrestore(&iosapic_lock, flags);
681
682	return 0;
683}
684#endif
685
686static struct irq_chip iosapic_interrupt_type = {
687	.name		=	"IO-SAPIC-level",
688	.irq_unmask	=	iosapic_unmask_irq,
689	.irq_mask	=	iosapic_mask_irq,
690	.irq_ack	=	cpu_ack_irq,
691	.irq_eoi	=	iosapic_eoi_irq,
692#ifdef CONFIG_SMP
693	.irq_set_affinity =	iosapic_set_affinity_irq,
694#endif
695};
696
697int iosapic_fixup_irq(void *isi_obj, struct pci_dev *pcidev)
698{
699	struct iosapic_info *isi = isi_obj;
700	struct irt_entry *irte = NULL;  /* only used if PAT PDC */
701	struct vector_info *vi;
702	int isi_line;	/* line used by device */
703
704	if (!isi) {
705		printk(KERN_WARNING MODULE_NAME ": hpa not registered for %s\n",
706			pci_name(pcidev));
707		return -1;
708	}
709
710#ifdef CONFIG_SUPERIO
711	/*
712	 * HACK ALERT! (non-compliant PCI device support)
713	 *
714	 * All SuckyIO interrupts are routed through the PIC's on function 1.
715	 * But SuckyIO OHCI USB controller gets an IRT entry anyway because
716	 * it advertises INT D for INT_PIN.  Use that IRT entry to get the
717	 * SuckyIO interrupt routing for PICs on function 1 (*BLEECCHH*).
718	 */
719	if (is_superio_device(pcidev)) {
720		/* We must call superio_fixup_irq() to register the pdev */
721		pcidev->irq = superio_fixup_irq(pcidev);
722
723		/* Don't return if need to program the IOSAPIC's IRT... */
724		if (PCI_FUNC(pcidev->devfn) != SUPERIO_USB_FN)
725			return pcidev->irq;
726	}
727#endif /* CONFIG_SUPERIO */
728
729	/* lookup IRT entry for isi/slot/pin set */
730	irte = iosapic_xlate_pin(isi, pcidev);
731	if (!irte) {
732		printk("iosapic: no IRTE for %s (IRQ not connected?)\n",
733				pci_name(pcidev));
734		return -1;
735	}
736	DBG_IRT("iosapic_fixup_irq(): irte %p %x %x %x %x %x %x %x %x\n",
737		irte,
738		irte->entry_type,
739		irte->entry_length,
740		irte->polarity_trigger,
741		irte->src_bus_irq_devno,
742		irte->src_bus_id,
743		irte->src_seg_id,
744		irte->dest_iosapic_intin,
745		(u32) irte->dest_iosapic_addr);
746	isi_line = irte->dest_iosapic_intin;
747
748	/* get vector info for this input line */
749	vi = isi->isi_vector + isi_line;
750	DBG_IRT("iosapic_fixup_irq:  line %d vi 0x%p\n", isi_line, vi);
751
752	/* If this IRQ line has already been setup, skip it */
753	if (vi->irte)
754		goto out;
755
756	vi->irte = irte;
757
758	/*
759	 * Allocate processor IRQ
760	 *
761	 * XXX/FIXME The txn_alloc_irq() code and related code should be
762	 * moved to enable_irq(). That way we only allocate processor IRQ
763	 * bits for devices that actually have drivers claiming them.
764	 * Right now we assign an IRQ to every PCI device present,
765	 * regardless of whether it's used or not.
766	 */
767	vi->txn_irq = txn_alloc_irq(8);
768
769	if (vi->txn_irq < 0)
770		panic("I/O sapic: couldn't get TXN IRQ\n");
771
772	/* enable_irq() will use txn_* to program IRdT */
773	vi->txn_addr = txn_alloc_addr(vi->txn_irq);
774	vi->txn_data = txn_alloc_data(vi->txn_irq);
775
776	vi->eoi_addr = isi->addr + IOSAPIC_REG_EOI;
777	vi->eoi_data = cpu_to_le32(vi->txn_data);
778
779	cpu_claim_irq(vi->txn_irq, &iosapic_interrupt_type, vi);
780
781 out:
782	pcidev->irq = vi->txn_irq;
783
784	DBG_IRT("iosapic_fixup_irq() %d:%d %x %x line %d irq %d\n",
785		PCI_SLOT(pcidev->devfn), PCI_FUNC(pcidev->devfn),
786		pcidev->vendor, pcidev->device, isi_line, pcidev->irq);
787
788	return pcidev->irq;
789}
790
791static struct iosapic_info *iosapic_list;
792
793#ifdef CONFIG_64BIT
794int iosapic_serial_irq(struct parisc_device *dev)
795{
796	struct iosapic_info *isi;
797	struct irt_entry *irte;
798	struct vector_info *vi;
799	int cnt;
800	int intin;
801
802	intin = (dev->mod_info >> 24) & 15;
803
804	/* lookup IRT entry for isi/slot/pin set */
805	for (cnt = 0; cnt < irt_num_entry; cnt++) {
806		irte = &irt_cell[cnt];
807		if (COMPARE_IRTE_ADDR(irte, dev->mod0) &&
808		    irte->dest_iosapic_intin == intin)
809			break;
810	}
811	if (cnt >= irt_num_entry)
812		return 0; /* no irq found, force polling */
813
814	DBG_IRT("iosapic_serial_irq(): irte %p %x %x %x %x %x %x %x %x\n",
815		irte,
816		irte->entry_type,
817		irte->entry_length,
818		irte->polarity_trigger,
819		irte->src_bus_irq_devno,
820		irte->src_bus_id,
821		irte->src_seg_id,
822		irte->dest_iosapic_intin,
823		(u32) irte->dest_iosapic_addr);
824
825	/* search for iosapic */
826	for (isi = iosapic_list; isi; isi = isi->isi_next)
827		if (isi->isi_hpa == dev->mod0)
828			break;
829	if (!isi)
830		return 0; /* no iosapic found, force polling */
831
832	/* get vector info for this input line */
833	vi = isi->isi_vector + intin;
834	DBG_IRT("iosapic_serial_irq:  line %d vi 0x%p\n", iosapic_intin, vi);
835
836	/* If this IRQ line has already been setup, skip it */
837	if (vi->irte)
838		goto out;
839
840	vi->irte = irte;
841
842	/*
843	 * Allocate processor IRQ
844	 *
845	 * XXX/FIXME The txn_alloc_irq() code and related code should be
846	 * moved to enable_irq(). That way we only allocate processor IRQ
847	 * bits for devices that actually have drivers claiming them.
848	 * Right now we assign an IRQ to every PCI device present,
849	 * regardless of whether it's used or not.
850	 */
851	vi->txn_irq = txn_alloc_irq(8);
852
853	if (vi->txn_irq < 0)
854		panic("I/O sapic: couldn't get TXN IRQ\n");
855
856	/* enable_irq() will use txn_* to program IRdT */
857	vi->txn_addr = txn_alloc_addr(vi->txn_irq);
858	vi->txn_data = txn_alloc_data(vi->txn_irq);
859
860	vi->eoi_addr = isi->addr + IOSAPIC_REG_EOI;
861	vi->eoi_data = cpu_to_le32(vi->txn_data);
862
863	cpu_claim_irq(vi->txn_irq, &iosapic_interrupt_type, vi);
864
865 out:
866
867	return vi->txn_irq;
868}
869EXPORT_SYMBOL(iosapic_serial_irq);
870#endif
871
872
873/*
874** squirrel away the I/O Sapic Version
875*/
876static unsigned int
877iosapic_rd_version(struct iosapic_info *isi)
878{
879	return iosapic_read(isi->addr, IOSAPIC_REG_VERSION);
880}
881
882
883/*
884** iosapic_register() is called by "drivers" with an integrated I/O SAPIC.
885** Caller must be certain they have an I/O SAPIC and know its MMIO address.
886**
887**	o allocate iosapic_info and add it to the list
888**	o read iosapic version and squirrel that away
889**	o read size of IRdT.
890**	o allocate and initialize isi_vector[]
891**	o allocate irq region
892*/
893void *iosapic_register(unsigned long hpa, void __iomem *vaddr)
894{
895	struct iosapic_info *isi = NULL;
896	struct irt_entry *irte = irt_cell;
897	struct vector_info *vip;
898	int cnt;	/* track how many entries we've looked at */
899
900	/*
901	 * Astro based platforms can only support PCI OLARD if they implement
902	 * PAT PDC.  Legacy PDC omits LBAs with no PCI devices from the IRT.
903	 * Search the IRT and ignore iosapic's which aren't in the IRT.
904	 */
905	for (cnt=0; cnt < irt_num_entry; cnt++, irte++) {
906		WARN_ON(IRT_IOSAPIC_TYPE != irte->entry_type);
907		if (COMPARE_IRTE_ADDR(irte, hpa))
908			break;
909	}
910
911	if (cnt >= irt_num_entry) {
912		DBG("iosapic_register() ignoring 0x%lx (NOT FOUND)\n", hpa);
913		return NULL;
914	}
915
916	isi = kzalloc(sizeof(struct iosapic_info), GFP_KERNEL);
917	if (!isi) {
918		BUG();
919		return NULL;
920	}
921
922	isi->addr = vaddr;
923	isi->isi_hpa = hpa;
924	isi->isi_version = iosapic_rd_version(isi);
925	isi->isi_num_vectors = IOSAPIC_IRDT_MAX_ENTRY(isi->isi_version) + 1;
926
927	vip = isi->isi_vector = kcalloc(isi->isi_num_vectors,
928					sizeof(struct vector_info), GFP_KERNEL);
929	if (vip == NULL) {
930		kfree(isi);
931		return NULL;
932	}
933
934	for (cnt=0; cnt < isi->isi_num_vectors; cnt++, vip++) {
935		vip->irqline = (unsigned char) cnt;
936		vip->iosapic = isi;
937	}
938	isi->isi_next = iosapic_list;
939	iosapic_list = isi;
940	return isi;
941}
942
943
944#ifdef DEBUG_IOSAPIC
945
946static void
947iosapic_prt_irt(void *irt, long num_entry)
948{
949	unsigned int i, *irp = (unsigned int *) irt;
950
951
952	printk(KERN_DEBUG MODULE_NAME ": Interrupt Routing Table (%lx entries)\n", num_entry);
953
954	for (i=0; i<num_entry; i++, irp += 4) {
955		printk(KERN_DEBUG "%p : %2d %.8x %.8x %.8x %.8x\n",
956					irp, i, irp[0], irp[1], irp[2], irp[3]);
957	}
958}
959
960
961static void
962iosapic_prt_vi(struct vector_info *vi)
963{
964	printk(KERN_DEBUG MODULE_NAME ": vector_info[%d] is at %p\n", vi->irqline, vi);
965	printk(KERN_DEBUG "\t\tstatus:	 %.4x\n", vi->status);
966	printk(KERN_DEBUG "\t\ttxn_irq:  %d\n",  vi->txn_irq);
967	printk(KERN_DEBUG "\t\ttxn_addr: %lx\n", vi->txn_addr);
968	printk(KERN_DEBUG "\t\ttxn_data: %lx\n", vi->txn_data);
969	printk(KERN_DEBUG "\t\teoi_addr: %p\n",  vi->eoi_addr);
970	printk(KERN_DEBUG "\t\teoi_data: %x\n",  vi->eoi_data);
971}
972
973
974static void
975iosapic_prt_isi(struct iosapic_info *isi)
976{
977	printk(KERN_DEBUG MODULE_NAME ": io_sapic_info at %p\n", isi);
978	printk(KERN_DEBUG "\t\tisi_hpa:       %lx\n", isi->isi_hpa);
979	printk(KERN_DEBUG "\t\tisi_status:    %x\n", isi->isi_status);
980	printk(KERN_DEBUG "\t\tisi_version:   %x\n", isi->isi_version);
981	printk(KERN_DEBUG "\t\tisi_vector:    %p\n", isi->isi_vector);
982}
983#endif /* DEBUG_IOSAPIC */
984