1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7#include <linux/acpi.h>
8#include <linux/async.h>
9#include <linux/blkdev.h>
10#include <linux/blk-mq.h>
11#include <linux/blk-mq-pci.h>
12#include <linux/blk-integrity.h>
13#include <linux/dmi.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/kstrtox.h>
18#include <linux/memremap.h>
19#include <linux/mm.h>
20#include <linux/module.h>
21#include <linux/mutex.h>
22#include <linux/once.h>
23#include <linux/pci.h>
24#include <linux/suspend.h>
25#include <linux/t10-pi.h>
26#include <linux/types.h>
27#include <linux/io-64-nonatomic-lo-hi.h>
28#include <linux/io-64-nonatomic-hi-lo.h>
29#include <linux/sed-opal.h>
30#include <linux/pci-p2pdma.h>
31
32#include "trace.h"
33#include "nvme.h"
34
35#define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36#define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37
38#define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39
40/*
41 * These can be higher, but we need to ensure that any command doesn't
42 * require an sg allocation that needs more than a page of data.
43 */
44#define NVME_MAX_KB_SZ	8192
45#define NVME_MAX_SEGS	128
46#define NVME_MAX_NR_ALLOCATIONS	5
47
48static int use_threaded_interrupts;
49module_param(use_threaded_interrupts, int, 0444);
50
51static bool use_cmb_sqes = true;
52module_param(use_cmb_sqes, bool, 0444);
53MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55static unsigned int max_host_mem_size_mb = 128;
56module_param(max_host_mem_size_mb, uint, 0444);
57MODULE_PARM_DESC(max_host_mem_size_mb,
58	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60static unsigned int sgl_threshold = SZ_32K;
61module_param(sgl_threshold, uint, 0644);
62MODULE_PARM_DESC(sgl_threshold,
63		"Use SGLs when average request segment size is larger or equal to "
64		"this size. Use 0 to disable SGLs.");
65
66#define NVME_PCI_MIN_QUEUE_SIZE 2
67#define NVME_PCI_MAX_QUEUE_SIZE 4095
68static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69static const struct kernel_param_ops io_queue_depth_ops = {
70	.set = io_queue_depth_set,
71	.get = param_get_uint,
72};
73
74static unsigned int io_queue_depth = 1024;
75module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77
78static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79{
80	unsigned int n;
81	int ret;
82
83	ret = kstrtouint(val, 10, &n);
84	if (ret != 0 || n > num_possible_cpus())
85		return -EINVAL;
86	return param_set_uint(val, kp);
87}
88
89static const struct kernel_param_ops io_queue_count_ops = {
90	.set = io_queue_count_set,
91	.get = param_get_uint,
92};
93
94static unsigned int write_queues;
95module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96MODULE_PARM_DESC(write_queues,
97	"Number of queues to use for writes. If not set, reads and writes "
98	"will share a queue set.");
99
100static unsigned int poll_queues;
101module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103
104static bool noacpi;
105module_param(noacpi, bool, 0444);
106MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107
108struct nvme_dev;
109struct nvme_queue;
110
111static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112static void nvme_delete_io_queues(struct nvme_dev *dev);
113static void nvme_update_attrs(struct nvme_dev *dev);
114
115/*
116 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
117 */
118struct nvme_dev {
119	struct nvme_queue *queues;
120	struct blk_mq_tag_set tagset;
121	struct blk_mq_tag_set admin_tagset;
122	u32 __iomem *dbs;
123	struct device *dev;
124	struct dma_pool *prp_page_pool;
125	struct dma_pool *prp_small_pool;
126	unsigned online_queues;
127	unsigned max_qid;
128	unsigned io_queues[HCTX_MAX_TYPES];
129	unsigned int num_vecs;
130	u32 q_depth;
131	int io_sqes;
132	u32 db_stride;
133	void __iomem *bar;
134	unsigned long bar_mapped_size;
135	struct mutex shutdown_lock;
136	bool subsystem;
137	u64 cmb_size;
138	bool cmb_use_sqes;
139	u32 cmbsz;
140	u32 cmbloc;
141	struct nvme_ctrl ctrl;
142	u32 last_ps;
143	bool hmb;
144
145	mempool_t *iod_mempool;
146
147	/* shadow doorbell buffer support: */
148	__le32 *dbbuf_dbs;
149	dma_addr_t dbbuf_dbs_dma_addr;
150	__le32 *dbbuf_eis;
151	dma_addr_t dbbuf_eis_dma_addr;
152
153	/* host memory buffer support: */
154	u64 host_mem_size;
155	u32 nr_host_mem_descs;
156	dma_addr_t host_mem_descs_dma;
157	struct nvme_host_mem_buf_desc *host_mem_descs;
158	void **host_mem_desc_bufs;
159	unsigned int nr_allocated_queues;
160	unsigned int nr_write_queues;
161	unsigned int nr_poll_queues;
162};
163
164static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
165{
166	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
167			NVME_PCI_MAX_QUEUE_SIZE);
168}
169
170static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171{
172	return qid * 2 * stride;
173}
174
175static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176{
177	return (qid * 2 + 1) * stride;
178}
179
180static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181{
182	return container_of(ctrl, struct nvme_dev, ctrl);
183}
184
185/*
186 * An NVM Express queue.  Each device has at least two (one for admin
187 * commands and one for I/O commands).
188 */
189struct nvme_queue {
190	struct nvme_dev *dev;
191	spinlock_t sq_lock;
192	void *sq_cmds;
193	 /* only used for poll queues: */
194	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195	struct nvme_completion *cqes;
196	dma_addr_t sq_dma_addr;
197	dma_addr_t cq_dma_addr;
198	u32 __iomem *q_db;
199	u32 q_depth;
200	u16 cq_vector;
201	u16 sq_tail;
202	u16 last_sq_tail;
203	u16 cq_head;
204	u16 qid;
205	u8 cq_phase;
206	u8 sqes;
207	unsigned long flags;
208#define NVMEQ_ENABLED		0
209#define NVMEQ_SQ_CMB		1
210#define NVMEQ_DELETE_ERROR	2
211#define NVMEQ_POLLED		3
212	__le32 *dbbuf_sq_db;
213	__le32 *dbbuf_cq_db;
214	__le32 *dbbuf_sq_ei;
215	__le32 *dbbuf_cq_ei;
216	struct completion delete_done;
217};
218
219union nvme_descriptor {
220	struct nvme_sgl_desc	*sg_list;
221	__le64			*prp_list;
222};
223
224/*
225 * The nvme_iod describes the data in an I/O.
226 *
227 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
228 * to the actual struct scatterlist.
229 */
230struct nvme_iod {
231	struct nvme_request req;
232	struct nvme_command cmd;
233	bool aborted;
234	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
235				   pool in use */
236	unsigned int dma_len;	/* length of single DMA segment mapping */
237	dma_addr_t first_dma;
238	dma_addr_t meta_dma;
239	struct sg_table sgt;
240	union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
241};
242
243static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
244{
245	return dev->nr_allocated_queues * 8 * dev->db_stride;
246}
247
248static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
249{
250	unsigned int mem_size = nvme_dbbuf_size(dev);
251
252	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
253		return;
254
255	if (dev->dbbuf_dbs) {
256		/*
257		 * Clear the dbbuf memory so the driver doesn't observe stale
258		 * values from the previous instantiation.
259		 */
260		memset(dev->dbbuf_dbs, 0, mem_size);
261		memset(dev->dbbuf_eis, 0, mem_size);
262		return;
263	}
264
265	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
266					    &dev->dbbuf_dbs_dma_addr,
267					    GFP_KERNEL);
268	if (!dev->dbbuf_dbs)
269		goto fail;
270	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
271					    &dev->dbbuf_eis_dma_addr,
272					    GFP_KERNEL);
273	if (!dev->dbbuf_eis)
274		goto fail_free_dbbuf_dbs;
275	return;
276
277fail_free_dbbuf_dbs:
278	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
279			  dev->dbbuf_dbs_dma_addr);
280	dev->dbbuf_dbs = NULL;
281fail:
282	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
283}
284
285static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
286{
287	unsigned int mem_size = nvme_dbbuf_size(dev);
288
289	if (dev->dbbuf_dbs) {
290		dma_free_coherent(dev->dev, mem_size,
291				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
292		dev->dbbuf_dbs = NULL;
293	}
294	if (dev->dbbuf_eis) {
295		dma_free_coherent(dev->dev, mem_size,
296				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
297		dev->dbbuf_eis = NULL;
298	}
299}
300
301static void nvme_dbbuf_init(struct nvme_dev *dev,
302			    struct nvme_queue *nvmeq, int qid)
303{
304	if (!dev->dbbuf_dbs || !qid)
305		return;
306
307	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
308	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
309	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
310	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
311}
312
313static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
314{
315	if (!nvmeq->qid)
316		return;
317
318	nvmeq->dbbuf_sq_db = NULL;
319	nvmeq->dbbuf_cq_db = NULL;
320	nvmeq->dbbuf_sq_ei = NULL;
321	nvmeq->dbbuf_cq_ei = NULL;
322}
323
324static void nvme_dbbuf_set(struct nvme_dev *dev)
325{
326	struct nvme_command c = { };
327	unsigned int i;
328
329	if (!dev->dbbuf_dbs)
330		return;
331
332	c.dbbuf.opcode = nvme_admin_dbbuf;
333	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
334	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
335
336	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
337		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
338		/* Free memory and continue on */
339		nvme_dbbuf_dma_free(dev);
340
341		for (i = 1; i <= dev->online_queues; i++)
342			nvme_dbbuf_free(&dev->queues[i]);
343	}
344}
345
346static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
347{
348	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
349}
350
351/* Update dbbuf and return true if an MMIO is required */
352static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
353					      volatile __le32 *dbbuf_ei)
354{
355	if (dbbuf_db) {
356		u16 old_value, event_idx;
357
358		/*
359		 * Ensure that the queue is written before updating
360		 * the doorbell in memory
361		 */
362		wmb();
363
364		old_value = le32_to_cpu(*dbbuf_db);
365		*dbbuf_db = cpu_to_le32(value);
366
367		/*
368		 * Ensure that the doorbell is updated before reading the event
369		 * index from memory.  The controller needs to provide similar
370		 * ordering to ensure the envent index is updated before reading
371		 * the doorbell.
372		 */
373		mb();
374
375		event_idx = le32_to_cpu(*dbbuf_ei);
376		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
377			return false;
378	}
379
380	return true;
381}
382
383/*
384 * Will slightly overestimate the number of pages needed.  This is OK
385 * as it only leads to a small amount of wasted memory for the lifetime of
386 * the I/O.
387 */
388static int nvme_pci_npages_prp(void)
389{
390	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
391	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
392	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
393}
394
395static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396				unsigned int hctx_idx)
397{
398	struct nvme_dev *dev = to_nvme_dev(data);
399	struct nvme_queue *nvmeq = &dev->queues[0];
400
401	WARN_ON(hctx_idx != 0);
402	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
403
404	hctx->driver_data = nvmeq;
405	return 0;
406}
407
408static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409			  unsigned int hctx_idx)
410{
411	struct nvme_dev *dev = to_nvme_dev(data);
412	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
413
414	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415	hctx->driver_data = nvmeq;
416	return 0;
417}
418
419static int nvme_pci_init_request(struct blk_mq_tag_set *set,
420		struct request *req, unsigned int hctx_idx,
421		unsigned int numa_node)
422{
423	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
424
425	nvme_req(req)->ctrl = set->driver_data;
426	nvme_req(req)->cmd = &iod->cmd;
427	return 0;
428}
429
430static int queue_irq_offset(struct nvme_dev *dev)
431{
432	/* if we have more than 1 vec, admin queue offsets us by 1 */
433	if (dev->num_vecs > 1)
434		return 1;
435
436	return 0;
437}
438
439static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
440{
441	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
442	int i, qoff, offset;
443
444	offset = queue_irq_offset(dev);
445	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
446		struct blk_mq_queue_map *map = &set->map[i];
447
448		map->nr_queues = dev->io_queues[i];
449		if (!map->nr_queues) {
450			BUG_ON(i == HCTX_TYPE_DEFAULT);
451			continue;
452		}
453
454		/*
455		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
456		 * affinity), so use the regular blk-mq cpu mapping
457		 */
458		map->queue_offset = qoff;
459		if (i != HCTX_TYPE_POLL && offset)
460			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
461		else
462			blk_mq_map_queues(map);
463		qoff += map->nr_queues;
464		offset += map->nr_queues;
465	}
466}
467
468/*
469 * Write sq tail if we are asked to, or if the next command would wrap.
470 */
471static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
472{
473	if (!write_sq) {
474		u16 next_tail = nvmeq->sq_tail + 1;
475
476		if (next_tail == nvmeq->q_depth)
477			next_tail = 0;
478		if (next_tail != nvmeq->last_sq_tail)
479			return;
480	}
481
482	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
483			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
484		writel(nvmeq->sq_tail, nvmeq->q_db);
485	nvmeq->last_sq_tail = nvmeq->sq_tail;
486}
487
488static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
489				    struct nvme_command *cmd)
490{
491	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
492		absolute_pointer(cmd), sizeof(*cmd));
493	if (++nvmeq->sq_tail == nvmeq->q_depth)
494		nvmeq->sq_tail = 0;
495}
496
497static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
498{
499	struct nvme_queue *nvmeq = hctx->driver_data;
500
501	spin_lock(&nvmeq->sq_lock);
502	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
503		nvme_write_sq_db(nvmeq, true);
504	spin_unlock(&nvmeq->sq_lock);
505}
506
507static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
508				     int nseg)
509{
510	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
511	unsigned int avg_seg_size;
512
513	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
514
515	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
516		return false;
517	if (!nvmeq->qid)
518		return false;
519	if (!sgl_threshold || avg_seg_size < sgl_threshold)
520		return false;
521	return true;
522}
523
524static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
525{
526	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
527	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
528	dma_addr_t dma_addr = iod->first_dma;
529	int i;
530
531	for (i = 0; i < iod->nr_allocations; i++) {
532		__le64 *prp_list = iod->list[i].prp_list;
533		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
534
535		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
536		dma_addr = next_dma_addr;
537	}
538}
539
540static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
541{
542	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
543
544	if (iod->dma_len) {
545		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
546			       rq_dma_dir(req));
547		return;
548	}
549
550	WARN_ON_ONCE(!iod->sgt.nents);
551
552	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
553
554	if (iod->nr_allocations == 0)
555		dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
556			      iod->first_dma);
557	else if (iod->nr_allocations == 1)
558		dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
559			      iod->first_dma);
560	else
561		nvme_free_prps(dev, req);
562	mempool_free(iod->sgt.sgl, dev->iod_mempool);
563}
564
565static void nvme_print_sgl(struct scatterlist *sgl, int nents)
566{
567	int i;
568	struct scatterlist *sg;
569
570	for_each_sg(sgl, sg, nents, i) {
571		dma_addr_t phys = sg_phys(sg);
572		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
573			"dma_address:%pad dma_length:%d\n",
574			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
575			sg_dma_len(sg));
576	}
577}
578
579static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
580		struct request *req, struct nvme_rw_command *cmnd)
581{
582	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583	struct dma_pool *pool;
584	int length = blk_rq_payload_bytes(req);
585	struct scatterlist *sg = iod->sgt.sgl;
586	int dma_len = sg_dma_len(sg);
587	u64 dma_addr = sg_dma_address(sg);
588	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
589	__le64 *prp_list;
590	dma_addr_t prp_dma;
591	int nprps, i;
592
593	length -= (NVME_CTRL_PAGE_SIZE - offset);
594	if (length <= 0) {
595		iod->first_dma = 0;
596		goto done;
597	}
598
599	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
600	if (dma_len) {
601		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
602	} else {
603		sg = sg_next(sg);
604		dma_addr = sg_dma_address(sg);
605		dma_len = sg_dma_len(sg);
606	}
607
608	if (length <= NVME_CTRL_PAGE_SIZE) {
609		iod->first_dma = dma_addr;
610		goto done;
611	}
612
613	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
614	if (nprps <= (256 / 8)) {
615		pool = dev->prp_small_pool;
616		iod->nr_allocations = 0;
617	} else {
618		pool = dev->prp_page_pool;
619		iod->nr_allocations = 1;
620	}
621
622	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
623	if (!prp_list) {
624		iod->nr_allocations = -1;
625		return BLK_STS_RESOURCE;
626	}
627	iod->list[0].prp_list = prp_list;
628	iod->first_dma = prp_dma;
629	i = 0;
630	for (;;) {
631		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
632			__le64 *old_prp_list = prp_list;
633			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
634			if (!prp_list)
635				goto free_prps;
636			iod->list[iod->nr_allocations++].prp_list = prp_list;
637			prp_list[0] = old_prp_list[i - 1];
638			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
639			i = 1;
640		}
641		prp_list[i++] = cpu_to_le64(dma_addr);
642		dma_len -= NVME_CTRL_PAGE_SIZE;
643		dma_addr += NVME_CTRL_PAGE_SIZE;
644		length -= NVME_CTRL_PAGE_SIZE;
645		if (length <= 0)
646			break;
647		if (dma_len > 0)
648			continue;
649		if (unlikely(dma_len < 0))
650			goto bad_sgl;
651		sg = sg_next(sg);
652		dma_addr = sg_dma_address(sg);
653		dma_len = sg_dma_len(sg);
654	}
655done:
656	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
657	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
658	return BLK_STS_OK;
659free_prps:
660	nvme_free_prps(dev, req);
661	return BLK_STS_RESOURCE;
662bad_sgl:
663	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
664			"Invalid SGL for payload:%d nents:%d\n",
665			blk_rq_payload_bytes(req), iod->sgt.nents);
666	return BLK_STS_IOERR;
667}
668
669static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
670		struct scatterlist *sg)
671{
672	sge->addr = cpu_to_le64(sg_dma_address(sg));
673	sge->length = cpu_to_le32(sg_dma_len(sg));
674	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
675}
676
677static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
678		dma_addr_t dma_addr, int entries)
679{
680	sge->addr = cpu_to_le64(dma_addr);
681	sge->length = cpu_to_le32(entries * sizeof(*sge));
682	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
683}
684
685static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
686		struct request *req, struct nvme_rw_command *cmd)
687{
688	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
689	struct dma_pool *pool;
690	struct nvme_sgl_desc *sg_list;
691	struct scatterlist *sg = iod->sgt.sgl;
692	unsigned int entries = iod->sgt.nents;
693	dma_addr_t sgl_dma;
694	int i = 0;
695
696	/* setting the transfer type as SGL */
697	cmd->flags = NVME_CMD_SGL_METABUF;
698
699	if (entries == 1) {
700		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
701		return BLK_STS_OK;
702	}
703
704	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
705		pool = dev->prp_small_pool;
706		iod->nr_allocations = 0;
707	} else {
708		pool = dev->prp_page_pool;
709		iod->nr_allocations = 1;
710	}
711
712	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
713	if (!sg_list) {
714		iod->nr_allocations = -1;
715		return BLK_STS_RESOURCE;
716	}
717
718	iod->list[0].sg_list = sg_list;
719	iod->first_dma = sgl_dma;
720
721	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
722	do {
723		nvme_pci_sgl_set_data(&sg_list[i++], sg);
724		sg = sg_next(sg);
725	} while (--entries > 0);
726
727	return BLK_STS_OK;
728}
729
730static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
731		struct request *req, struct nvme_rw_command *cmnd,
732		struct bio_vec *bv)
733{
734	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
735	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
736	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
737
738	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
739	if (dma_mapping_error(dev->dev, iod->first_dma))
740		return BLK_STS_RESOURCE;
741	iod->dma_len = bv->bv_len;
742
743	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
744	if (bv->bv_len > first_prp_len)
745		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
746	else
747		cmnd->dptr.prp2 = 0;
748	return BLK_STS_OK;
749}
750
751static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
752		struct request *req, struct nvme_rw_command *cmnd,
753		struct bio_vec *bv)
754{
755	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
756
757	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
758	if (dma_mapping_error(dev->dev, iod->first_dma))
759		return BLK_STS_RESOURCE;
760	iod->dma_len = bv->bv_len;
761
762	cmnd->flags = NVME_CMD_SGL_METABUF;
763	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
764	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
765	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
766	return BLK_STS_OK;
767}
768
769static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
770		struct nvme_command *cmnd)
771{
772	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
773	blk_status_t ret = BLK_STS_RESOURCE;
774	int rc;
775
776	if (blk_rq_nr_phys_segments(req) == 1) {
777		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
778		struct bio_vec bv = req_bvec(req);
779
780		if (!is_pci_p2pdma_page(bv.bv_page)) {
781			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
782				return nvme_setup_prp_simple(dev, req,
783							     &cmnd->rw, &bv);
784
785			if (nvmeq->qid && sgl_threshold &&
786			    nvme_ctrl_sgl_supported(&dev->ctrl))
787				return nvme_setup_sgl_simple(dev, req,
788							     &cmnd->rw, &bv);
789		}
790	}
791
792	iod->dma_len = 0;
793	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
794	if (!iod->sgt.sgl)
795		return BLK_STS_RESOURCE;
796	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
797	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
798	if (!iod->sgt.orig_nents)
799		goto out_free_sg;
800
801	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
802			     DMA_ATTR_NO_WARN);
803	if (rc) {
804		if (rc == -EREMOTEIO)
805			ret = BLK_STS_TARGET;
806		goto out_free_sg;
807	}
808
809	if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
810		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
811	else
812		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
813	if (ret != BLK_STS_OK)
814		goto out_unmap_sg;
815	return BLK_STS_OK;
816
817out_unmap_sg:
818	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
819out_free_sg:
820	mempool_free(iod->sgt.sgl, dev->iod_mempool);
821	return ret;
822}
823
824static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
825		struct nvme_command *cmnd)
826{
827	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
828
829	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
830			rq_dma_dir(req), 0);
831	if (dma_mapping_error(dev->dev, iod->meta_dma))
832		return BLK_STS_IOERR;
833	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
834	return BLK_STS_OK;
835}
836
837static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
838{
839	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
840	blk_status_t ret;
841
842	iod->aborted = false;
843	iod->nr_allocations = -1;
844	iod->sgt.nents = 0;
845
846	ret = nvme_setup_cmd(req->q->queuedata, req);
847	if (ret)
848		return ret;
849
850	if (blk_rq_nr_phys_segments(req)) {
851		ret = nvme_map_data(dev, req, &iod->cmd);
852		if (ret)
853			goto out_free_cmd;
854	}
855
856	if (blk_integrity_rq(req)) {
857		ret = nvme_map_metadata(dev, req, &iod->cmd);
858		if (ret)
859			goto out_unmap_data;
860	}
861
862	nvme_start_request(req);
863	return BLK_STS_OK;
864out_unmap_data:
865	nvme_unmap_data(dev, req);
866out_free_cmd:
867	nvme_cleanup_cmd(req);
868	return ret;
869}
870
871/*
872 * NOTE: ns is NULL when called on the admin queue.
873 */
874static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
875			 const struct blk_mq_queue_data *bd)
876{
877	struct nvme_queue *nvmeq = hctx->driver_data;
878	struct nvme_dev *dev = nvmeq->dev;
879	struct request *req = bd->rq;
880	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
881	blk_status_t ret;
882
883	/*
884	 * We should not need to do this, but we're still using this to
885	 * ensure we can drain requests on a dying queue.
886	 */
887	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
888		return BLK_STS_IOERR;
889
890	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
891		return nvme_fail_nonready_command(&dev->ctrl, req);
892
893	ret = nvme_prep_rq(dev, req);
894	if (unlikely(ret))
895		return ret;
896	spin_lock(&nvmeq->sq_lock);
897	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
898	nvme_write_sq_db(nvmeq, bd->last);
899	spin_unlock(&nvmeq->sq_lock);
900	return BLK_STS_OK;
901}
902
903static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
904{
905	spin_lock(&nvmeq->sq_lock);
906	while (!rq_list_empty(*rqlist)) {
907		struct request *req = rq_list_pop(rqlist);
908		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
909
910		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
911	}
912	nvme_write_sq_db(nvmeq, true);
913	spin_unlock(&nvmeq->sq_lock);
914}
915
916static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
917{
918	/*
919	 * We should not need to do this, but we're still using this to
920	 * ensure we can drain requests on a dying queue.
921	 */
922	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
923		return false;
924	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
925		return false;
926
927	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
928}
929
930static void nvme_queue_rqs(struct request **rqlist)
931{
932	struct request *req, *next, *prev = NULL;
933	struct request *requeue_list = NULL;
934
935	rq_list_for_each_safe(rqlist, req, next) {
936		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
937
938		if (!nvme_prep_rq_batch(nvmeq, req)) {
939			/* detach 'req' and add to remainder list */
940			rq_list_move(rqlist, &requeue_list, req, prev);
941
942			req = prev;
943			if (!req)
944				continue;
945		}
946
947		if (!next || req->mq_hctx != next->mq_hctx) {
948			/* detach rest of list, and submit */
949			req->rq_next = NULL;
950			nvme_submit_cmds(nvmeq, rqlist);
951			*rqlist = next;
952			prev = NULL;
953		} else
954			prev = req;
955	}
956
957	*rqlist = requeue_list;
958}
959
960static __always_inline void nvme_pci_unmap_rq(struct request *req)
961{
962	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
963	struct nvme_dev *dev = nvmeq->dev;
964
965	if (blk_integrity_rq(req)) {
966	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
967
968		dma_unmap_page(dev->dev, iod->meta_dma,
969			       rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
970	}
971
972	if (blk_rq_nr_phys_segments(req))
973		nvme_unmap_data(dev, req);
974}
975
976static void nvme_pci_complete_rq(struct request *req)
977{
978	nvme_pci_unmap_rq(req);
979	nvme_complete_rq(req);
980}
981
982static void nvme_pci_complete_batch(struct io_comp_batch *iob)
983{
984	nvme_complete_batch(iob, nvme_pci_unmap_rq);
985}
986
987/* We read the CQE phase first to check if the rest of the entry is valid */
988static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
989{
990	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
991
992	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
993}
994
995static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
996{
997	u16 head = nvmeq->cq_head;
998
999	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1000					      nvmeq->dbbuf_cq_ei))
1001		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1002}
1003
1004static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1005{
1006	if (!nvmeq->qid)
1007		return nvmeq->dev->admin_tagset.tags[0];
1008	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1009}
1010
1011static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1012				   struct io_comp_batch *iob, u16 idx)
1013{
1014	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1015	__u16 command_id = READ_ONCE(cqe->command_id);
1016	struct request *req;
1017
1018	/*
1019	 * AEN requests are special as they don't time out and can
1020	 * survive any kind of queue freeze and often don't respond to
1021	 * aborts.  We don't even bother to allocate a struct request
1022	 * for them but rather special case them here.
1023	 */
1024	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1025		nvme_complete_async_event(&nvmeq->dev->ctrl,
1026				cqe->status, &cqe->result);
1027		return;
1028	}
1029
1030	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1031	if (unlikely(!req)) {
1032		dev_warn(nvmeq->dev->ctrl.device,
1033			"invalid id %d completed on queue %d\n",
1034			command_id, le16_to_cpu(cqe->sq_id));
1035		return;
1036	}
1037
1038	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1039	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1040	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1041					nvme_pci_complete_batch))
1042		nvme_pci_complete_rq(req);
1043}
1044
1045static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1046{
1047	u32 tmp = nvmeq->cq_head + 1;
1048
1049	if (tmp == nvmeq->q_depth) {
1050		nvmeq->cq_head = 0;
1051		nvmeq->cq_phase ^= 1;
1052	} else {
1053		nvmeq->cq_head = tmp;
1054	}
1055}
1056
1057static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1058			       struct io_comp_batch *iob)
1059{
1060	int found = 0;
1061
1062	while (nvme_cqe_pending(nvmeq)) {
1063		found++;
1064		/*
1065		 * load-load control dependency between phase and the rest of
1066		 * the cqe requires a full read memory barrier
1067		 */
1068		dma_rmb();
1069		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1070		nvme_update_cq_head(nvmeq);
1071	}
1072
1073	if (found)
1074		nvme_ring_cq_doorbell(nvmeq);
1075	return found;
1076}
1077
1078static irqreturn_t nvme_irq(int irq, void *data)
1079{
1080	struct nvme_queue *nvmeq = data;
1081	DEFINE_IO_COMP_BATCH(iob);
1082
1083	if (nvme_poll_cq(nvmeq, &iob)) {
1084		if (!rq_list_empty(iob.req_list))
1085			nvme_pci_complete_batch(&iob);
1086		return IRQ_HANDLED;
1087	}
1088	return IRQ_NONE;
1089}
1090
1091static irqreturn_t nvme_irq_check(int irq, void *data)
1092{
1093	struct nvme_queue *nvmeq = data;
1094
1095	if (nvme_cqe_pending(nvmeq))
1096		return IRQ_WAKE_THREAD;
1097	return IRQ_NONE;
1098}
1099
1100/*
1101 * Poll for completions for any interrupt driven queue
1102 * Can be called from any context.
1103 */
1104static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1105{
1106	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1107
1108	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1109
1110	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1111	nvme_poll_cq(nvmeq, NULL);
1112	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1113}
1114
1115static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1116{
1117	struct nvme_queue *nvmeq = hctx->driver_data;
1118	bool found;
1119
1120	if (!nvme_cqe_pending(nvmeq))
1121		return 0;
1122
1123	spin_lock(&nvmeq->cq_poll_lock);
1124	found = nvme_poll_cq(nvmeq, iob);
1125	spin_unlock(&nvmeq->cq_poll_lock);
1126
1127	return found;
1128}
1129
1130static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1131{
1132	struct nvme_dev *dev = to_nvme_dev(ctrl);
1133	struct nvme_queue *nvmeq = &dev->queues[0];
1134	struct nvme_command c = { };
1135
1136	c.common.opcode = nvme_admin_async_event;
1137	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1138
1139	spin_lock(&nvmeq->sq_lock);
1140	nvme_sq_copy_cmd(nvmeq, &c);
1141	nvme_write_sq_db(nvmeq, true);
1142	spin_unlock(&nvmeq->sq_lock);
1143}
1144
1145static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1146{
1147	struct nvme_command c = { };
1148
1149	c.delete_queue.opcode = opcode;
1150	c.delete_queue.qid = cpu_to_le16(id);
1151
1152	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1153}
1154
1155static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1156		struct nvme_queue *nvmeq, s16 vector)
1157{
1158	struct nvme_command c = { };
1159	int flags = NVME_QUEUE_PHYS_CONTIG;
1160
1161	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1162		flags |= NVME_CQ_IRQ_ENABLED;
1163
1164	/*
1165	 * Note: we (ab)use the fact that the prp fields survive if no data
1166	 * is attached to the request.
1167	 */
1168	c.create_cq.opcode = nvme_admin_create_cq;
1169	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1170	c.create_cq.cqid = cpu_to_le16(qid);
1171	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1172	c.create_cq.cq_flags = cpu_to_le16(flags);
1173	c.create_cq.irq_vector = cpu_to_le16(vector);
1174
1175	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1176}
1177
1178static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1179						struct nvme_queue *nvmeq)
1180{
1181	struct nvme_ctrl *ctrl = &dev->ctrl;
1182	struct nvme_command c = { };
1183	int flags = NVME_QUEUE_PHYS_CONTIG;
1184
1185	/*
1186	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1187	 * set. Since URGENT priority is zeroes, it makes all queues
1188	 * URGENT.
1189	 */
1190	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1191		flags |= NVME_SQ_PRIO_MEDIUM;
1192
1193	/*
1194	 * Note: we (ab)use the fact that the prp fields survive if no data
1195	 * is attached to the request.
1196	 */
1197	c.create_sq.opcode = nvme_admin_create_sq;
1198	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1199	c.create_sq.sqid = cpu_to_le16(qid);
1200	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1201	c.create_sq.sq_flags = cpu_to_le16(flags);
1202	c.create_sq.cqid = cpu_to_le16(qid);
1203
1204	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1205}
1206
1207static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1208{
1209	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1210}
1211
1212static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1213{
1214	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1215}
1216
1217static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1218{
1219	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1220
1221	dev_warn(nvmeq->dev->ctrl.device,
1222		 "Abort status: 0x%x", nvme_req(req)->status);
1223	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1224	blk_mq_free_request(req);
1225	return RQ_END_IO_NONE;
1226}
1227
1228static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1229{
1230	/* If true, indicates loss of adapter communication, possibly by a
1231	 * NVMe Subsystem reset.
1232	 */
1233	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1234
1235	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1236	switch (nvme_ctrl_state(&dev->ctrl)) {
1237	case NVME_CTRL_RESETTING:
1238	case NVME_CTRL_CONNECTING:
1239		return false;
1240	default:
1241		break;
1242	}
1243
1244	/* We shouldn't reset unless the controller is on fatal error state
1245	 * _or_ if we lost the communication with it.
1246	 */
1247	if (!(csts & NVME_CSTS_CFS) && !nssro)
1248		return false;
1249
1250	return true;
1251}
1252
1253static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1254{
1255	/* Read a config register to help see what died. */
1256	u16 pci_status;
1257	int result;
1258
1259	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1260				      &pci_status);
1261	if (result == PCIBIOS_SUCCESSFUL)
1262		dev_warn(dev->ctrl.device,
1263			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1264			 csts, pci_status);
1265	else
1266		dev_warn(dev->ctrl.device,
1267			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1268			 csts, result);
1269
1270	if (csts != ~0)
1271		return;
1272
1273	dev_warn(dev->ctrl.device,
1274		 "Does your device have a faulty power saving mode enabled?\n");
1275	dev_warn(dev->ctrl.device,
1276		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1277}
1278
1279static enum blk_eh_timer_return nvme_timeout(struct request *req)
1280{
1281	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1282	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1283	struct nvme_dev *dev = nvmeq->dev;
1284	struct request *abort_req;
1285	struct nvme_command cmd = { };
1286	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1287	u8 opcode;
1288
1289	/* If PCI error recovery process is happening, we cannot reset or
1290	 * the recovery mechanism will surely fail.
1291	 */
1292	mb();
1293	if (pci_channel_offline(to_pci_dev(dev->dev)))
1294		return BLK_EH_RESET_TIMER;
1295
1296	/*
1297	 * Reset immediately if the controller is failed
1298	 */
1299	if (nvme_should_reset(dev, csts)) {
1300		nvme_warn_reset(dev, csts);
1301		goto disable;
1302	}
1303
1304	/*
1305	 * Did we miss an interrupt?
1306	 */
1307	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1308		nvme_poll(req->mq_hctx, NULL);
1309	else
1310		nvme_poll_irqdisable(nvmeq);
1311
1312	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1313		dev_warn(dev->ctrl.device,
1314			 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1315			 req->tag, nvme_cid(req), nvmeq->qid);
1316		return BLK_EH_DONE;
1317	}
1318
1319	/*
1320	 * Shutdown immediately if controller times out while starting. The
1321	 * reset work will see the pci device disabled when it gets the forced
1322	 * cancellation error. All outstanding requests are completed on
1323	 * shutdown, so we return BLK_EH_DONE.
1324	 */
1325	switch (nvme_ctrl_state(&dev->ctrl)) {
1326	case NVME_CTRL_CONNECTING:
1327		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1328		fallthrough;
1329	case NVME_CTRL_DELETING:
1330		dev_warn_ratelimited(dev->ctrl.device,
1331			 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1332			 req->tag, nvme_cid(req), nvmeq->qid);
1333		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1334		nvme_dev_disable(dev, true);
1335		return BLK_EH_DONE;
1336	case NVME_CTRL_RESETTING:
1337		return BLK_EH_RESET_TIMER;
1338	default:
1339		break;
1340	}
1341
1342	/*
1343	 * Shutdown the controller immediately and schedule a reset if the
1344	 * command was already aborted once before and still hasn't been
1345	 * returned to the driver, or if this is the admin queue.
1346	 */
1347	opcode = nvme_req(req)->cmd->common.opcode;
1348	if (!nvmeq->qid || iod->aborted) {
1349		dev_warn(dev->ctrl.device,
1350			 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1351			 req->tag, nvme_cid(req), opcode,
1352			 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1353		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1354		goto disable;
1355	}
1356
1357	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1358		atomic_inc(&dev->ctrl.abort_limit);
1359		return BLK_EH_RESET_TIMER;
1360	}
1361	iod->aborted = true;
1362
1363	cmd.abort.opcode = nvme_admin_abort_cmd;
1364	cmd.abort.cid = nvme_cid(req);
1365	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1366
1367	dev_warn(nvmeq->dev->ctrl.device,
1368		 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1369		 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1370		 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1371		 blk_rq_bytes(req));
1372
1373	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1374					 BLK_MQ_REQ_NOWAIT);
1375	if (IS_ERR(abort_req)) {
1376		atomic_inc(&dev->ctrl.abort_limit);
1377		return BLK_EH_RESET_TIMER;
1378	}
1379	nvme_init_request(abort_req, &cmd);
1380
1381	abort_req->end_io = abort_endio;
1382	abort_req->end_io_data = NULL;
1383	blk_execute_rq_nowait(abort_req, false);
1384
1385	/*
1386	 * The aborted req will be completed on receiving the abort req.
1387	 * We enable the timer again. If hit twice, it'll cause a device reset,
1388	 * as the device then is in a faulty state.
1389	 */
1390	return BLK_EH_RESET_TIMER;
1391
1392disable:
1393	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1394		return BLK_EH_DONE;
1395
1396	nvme_dev_disable(dev, false);
1397	if (nvme_try_sched_reset(&dev->ctrl))
1398		nvme_unquiesce_io_queues(&dev->ctrl);
1399	return BLK_EH_DONE;
1400}
1401
1402static void nvme_free_queue(struct nvme_queue *nvmeq)
1403{
1404	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1405				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1406	if (!nvmeq->sq_cmds)
1407		return;
1408
1409	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1410		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1411				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1412	} else {
1413		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1414				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1415	}
1416}
1417
1418static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1419{
1420	int i;
1421
1422	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1423		dev->ctrl.queue_count--;
1424		nvme_free_queue(&dev->queues[i]);
1425	}
1426}
1427
1428static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1429{
1430	struct nvme_queue *nvmeq = &dev->queues[qid];
1431
1432	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1433		return;
1434
1435	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1436	mb();
1437
1438	nvmeq->dev->online_queues--;
1439	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1440		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1441	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1442		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1443}
1444
1445static void nvme_suspend_io_queues(struct nvme_dev *dev)
1446{
1447	int i;
1448
1449	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1450		nvme_suspend_queue(dev, i);
1451}
1452
1453/*
1454 * Called only on a device that has been disabled and after all other threads
1455 * that can check this device's completion queues have synced, except
1456 * nvme_poll(). This is the last chance for the driver to see a natural
1457 * completion before nvme_cancel_request() terminates all incomplete requests.
1458 */
1459static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1460{
1461	int i;
1462
1463	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1464		spin_lock(&dev->queues[i].cq_poll_lock);
1465		nvme_poll_cq(&dev->queues[i], NULL);
1466		spin_unlock(&dev->queues[i].cq_poll_lock);
1467	}
1468}
1469
1470static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1471				int entry_size)
1472{
1473	int q_depth = dev->q_depth;
1474	unsigned q_size_aligned = roundup(q_depth * entry_size,
1475					  NVME_CTRL_PAGE_SIZE);
1476
1477	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1478		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1479
1480		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1481		q_depth = div_u64(mem_per_q, entry_size);
1482
1483		/*
1484		 * Ensure the reduced q_depth is above some threshold where it
1485		 * would be better to map queues in system memory with the
1486		 * original depth
1487		 */
1488		if (q_depth < 64)
1489			return -ENOMEM;
1490	}
1491
1492	return q_depth;
1493}
1494
1495static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1496				int qid)
1497{
1498	struct pci_dev *pdev = to_pci_dev(dev->dev);
1499
1500	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1501		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1502		if (nvmeq->sq_cmds) {
1503			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1504							nvmeq->sq_cmds);
1505			if (nvmeq->sq_dma_addr) {
1506				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1507				return 0;
1508			}
1509
1510			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1511		}
1512	}
1513
1514	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1515				&nvmeq->sq_dma_addr, GFP_KERNEL);
1516	if (!nvmeq->sq_cmds)
1517		return -ENOMEM;
1518	return 0;
1519}
1520
1521static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1522{
1523	struct nvme_queue *nvmeq = &dev->queues[qid];
1524
1525	if (dev->ctrl.queue_count > qid)
1526		return 0;
1527
1528	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1529	nvmeq->q_depth = depth;
1530	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1531					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1532	if (!nvmeq->cqes)
1533		goto free_nvmeq;
1534
1535	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1536		goto free_cqdma;
1537
1538	nvmeq->dev = dev;
1539	spin_lock_init(&nvmeq->sq_lock);
1540	spin_lock_init(&nvmeq->cq_poll_lock);
1541	nvmeq->cq_head = 0;
1542	nvmeq->cq_phase = 1;
1543	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1544	nvmeq->qid = qid;
1545	dev->ctrl.queue_count++;
1546
1547	return 0;
1548
1549 free_cqdma:
1550	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1551			  nvmeq->cq_dma_addr);
1552 free_nvmeq:
1553	return -ENOMEM;
1554}
1555
1556static int queue_request_irq(struct nvme_queue *nvmeq)
1557{
1558	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1559	int nr = nvmeq->dev->ctrl.instance;
1560
1561	if (use_threaded_interrupts) {
1562		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1563				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1564	} else {
1565		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1566				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1567	}
1568}
1569
1570static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1571{
1572	struct nvme_dev *dev = nvmeq->dev;
1573
1574	nvmeq->sq_tail = 0;
1575	nvmeq->last_sq_tail = 0;
1576	nvmeq->cq_head = 0;
1577	nvmeq->cq_phase = 1;
1578	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1579	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1580	nvme_dbbuf_init(dev, nvmeq, qid);
1581	dev->online_queues++;
1582	wmb(); /* ensure the first interrupt sees the initialization */
1583}
1584
1585/*
1586 * Try getting shutdown_lock while setting up IO queues.
1587 */
1588static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1589{
1590	/*
1591	 * Give up if the lock is being held by nvme_dev_disable.
1592	 */
1593	if (!mutex_trylock(&dev->shutdown_lock))
1594		return -ENODEV;
1595
1596	/*
1597	 * Controller is in wrong state, fail early.
1598	 */
1599	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1600		mutex_unlock(&dev->shutdown_lock);
1601		return -ENODEV;
1602	}
1603
1604	return 0;
1605}
1606
1607static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1608{
1609	struct nvme_dev *dev = nvmeq->dev;
1610	int result;
1611	u16 vector = 0;
1612
1613	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1614
1615	/*
1616	 * A queue's vector matches the queue identifier unless the controller
1617	 * has only one vector available.
1618	 */
1619	if (!polled)
1620		vector = dev->num_vecs == 1 ? 0 : qid;
1621	else
1622		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1623
1624	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1625	if (result)
1626		return result;
1627
1628	result = adapter_alloc_sq(dev, qid, nvmeq);
1629	if (result < 0)
1630		return result;
1631	if (result)
1632		goto release_cq;
1633
1634	nvmeq->cq_vector = vector;
1635
1636	result = nvme_setup_io_queues_trylock(dev);
1637	if (result)
1638		return result;
1639	nvme_init_queue(nvmeq, qid);
1640	if (!polled) {
1641		result = queue_request_irq(nvmeq);
1642		if (result < 0)
1643			goto release_sq;
1644	}
1645
1646	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1647	mutex_unlock(&dev->shutdown_lock);
1648	return result;
1649
1650release_sq:
1651	dev->online_queues--;
1652	mutex_unlock(&dev->shutdown_lock);
1653	adapter_delete_sq(dev, qid);
1654release_cq:
1655	adapter_delete_cq(dev, qid);
1656	return result;
1657}
1658
1659static const struct blk_mq_ops nvme_mq_admin_ops = {
1660	.queue_rq	= nvme_queue_rq,
1661	.complete	= nvme_pci_complete_rq,
1662	.init_hctx	= nvme_admin_init_hctx,
1663	.init_request	= nvme_pci_init_request,
1664	.timeout	= nvme_timeout,
1665};
1666
1667static const struct blk_mq_ops nvme_mq_ops = {
1668	.queue_rq	= nvme_queue_rq,
1669	.queue_rqs	= nvme_queue_rqs,
1670	.complete	= nvme_pci_complete_rq,
1671	.commit_rqs	= nvme_commit_rqs,
1672	.init_hctx	= nvme_init_hctx,
1673	.init_request	= nvme_pci_init_request,
1674	.map_queues	= nvme_pci_map_queues,
1675	.timeout	= nvme_timeout,
1676	.poll		= nvme_poll,
1677};
1678
1679static void nvme_dev_remove_admin(struct nvme_dev *dev)
1680{
1681	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1682		/*
1683		 * If the controller was reset during removal, it's possible
1684		 * user requests may be waiting on a stopped queue. Start the
1685		 * queue to flush these to completion.
1686		 */
1687		nvme_unquiesce_admin_queue(&dev->ctrl);
1688		nvme_remove_admin_tag_set(&dev->ctrl);
1689	}
1690}
1691
1692static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1693{
1694	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1695}
1696
1697static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1698{
1699	struct pci_dev *pdev = to_pci_dev(dev->dev);
1700
1701	if (size <= dev->bar_mapped_size)
1702		return 0;
1703	if (size > pci_resource_len(pdev, 0))
1704		return -ENOMEM;
1705	if (dev->bar)
1706		iounmap(dev->bar);
1707	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1708	if (!dev->bar) {
1709		dev->bar_mapped_size = 0;
1710		return -ENOMEM;
1711	}
1712	dev->bar_mapped_size = size;
1713	dev->dbs = dev->bar + NVME_REG_DBS;
1714
1715	return 0;
1716}
1717
1718static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1719{
1720	int result;
1721	u32 aqa;
1722	struct nvme_queue *nvmeq;
1723
1724	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1725	if (result < 0)
1726		return result;
1727
1728	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1729				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1730
1731	if (dev->subsystem &&
1732	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1733		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1734
1735	/*
1736	 * If the device has been passed off to us in an enabled state, just
1737	 * clear the enabled bit.  The spec says we should set the 'shutdown
1738	 * notification bits', but doing so may cause the device to complete
1739	 * commands to the admin queue ... and we don't know what memory that
1740	 * might be pointing at!
1741	 */
1742	result = nvme_disable_ctrl(&dev->ctrl, false);
1743	if (result < 0)
1744		return result;
1745
1746	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1747	if (result)
1748		return result;
1749
1750	dev->ctrl.numa_node = dev_to_node(dev->dev);
1751
1752	nvmeq = &dev->queues[0];
1753	aqa = nvmeq->q_depth - 1;
1754	aqa |= aqa << 16;
1755
1756	writel(aqa, dev->bar + NVME_REG_AQA);
1757	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1758	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1759
1760	result = nvme_enable_ctrl(&dev->ctrl);
1761	if (result)
1762		return result;
1763
1764	nvmeq->cq_vector = 0;
1765	nvme_init_queue(nvmeq, 0);
1766	result = queue_request_irq(nvmeq);
1767	if (result) {
1768		dev->online_queues--;
1769		return result;
1770	}
1771
1772	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1773	return result;
1774}
1775
1776static int nvme_create_io_queues(struct nvme_dev *dev)
1777{
1778	unsigned i, max, rw_queues;
1779	int ret = 0;
1780
1781	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1782		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1783			ret = -ENOMEM;
1784			break;
1785		}
1786	}
1787
1788	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1789	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1790		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1791				dev->io_queues[HCTX_TYPE_READ];
1792	} else {
1793		rw_queues = max;
1794	}
1795
1796	for (i = dev->online_queues; i <= max; i++) {
1797		bool polled = i > rw_queues;
1798
1799		ret = nvme_create_queue(&dev->queues[i], i, polled);
1800		if (ret)
1801			break;
1802	}
1803
1804	/*
1805	 * Ignore failing Create SQ/CQ commands, we can continue with less
1806	 * than the desired amount of queues, and even a controller without
1807	 * I/O queues can still be used to issue admin commands.  This might
1808	 * be useful to upgrade a buggy firmware for example.
1809	 */
1810	return ret >= 0 ? 0 : ret;
1811}
1812
1813static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1814{
1815	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1816
1817	return 1ULL << (12 + 4 * szu);
1818}
1819
1820static u32 nvme_cmb_size(struct nvme_dev *dev)
1821{
1822	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1823}
1824
1825static void nvme_map_cmb(struct nvme_dev *dev)
1826{
1827	u64 size, offset;
1828	resource_size_t bar_size;
1829	struct pci_dev *pdev = to_pci_dev(dev->dev);
1830	int bar;
1831
1832	if (dev->cmb_size)
1833		return;
1834
1835	if (NVME_CAP_CMBS(dev->ctrl.cap))
1836		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1837
1838	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1839	if (!dev->cmbsz)
1840		return;
1841	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1842
1843	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1844	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1845	bar = NVME_CMB_BIR(dev->cmbloc);
1846	bar_size = pci_resource_len(pdev, bar);
1847
1848	if (offset > bar_size)
1849		return;
1850
1851	/*
1852	 * Tell the controller about the host side address mapping the CMB,
1853	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1854	 */
1855	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1856		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1857			     (pci_bus_address(pdev, bar) + offset),
1858			     dev->bar + NVME_REG_CMBMSC);
1859	}
1860
1861	/*
1862	 * Controllers may support a CMB size larger than their BAR,
1863	 * for example, due to being behind a bridge. Reduce the CMB to
1864	 * the reported size of the BAR
1865	 */
1866	if (size > bar_size - offset)
1867		size = bar_size - offset;
1868
1869	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1870		dev_warn(dev->ctrl.device,
1871			 "failed to register the CMB\n");
1872		return;
1873	}
1874
1875	dev->cmb_size = size;
1876	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1877
1878	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1879			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1880		pci_p2pmem_publish(pdev, true);
1881
1882	nvme_update_attrs(dev);
1883}
1884
1885static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1886{
1887	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1888	u64 dma_addr = dev->host_mem_descs_dma;
1889	struct nvme_command c = { };
1890	int ret;
1891
1892	c.features.opcode	= nvme_admin_set_features;
1893	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1894	c.features.dword11	= cpu_to_le32(bits);
1895	c.features.dword12	= cpu_to_le32(host_mem_size);
1896	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1897	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1898	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1899
1900	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1901	if (ret) {
1902		dev_warn(dev->ctrl.device,
1903			 "failed to set host mem (err %d, flags %#x).\n",
1904			 ret, bits);
1905	} else
1906		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1907
1908	return ret;
1909}
1910
1911static void nvme_free_host_mem(struct nvme_dev *dev)
1912{
1913	int i;
1914
1915	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1916		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1917		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1918
1919		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1920			       le64_to_cpu(desc->addr),
1921			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1922	}
1923
1924	kfree(dev->host_mem_desc_bufs);
1925	dev->host_mem_desc_bufs = NULL;
1926	dma_free_coherent(dev->dev,
1927			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1928			dev->host_mem_descs, dev->host_mem_descs_dma);
1929	dev->host_mem_descs = NULL;
1930	dev->nr_host_mem_descs = 0;
1931}
1932
1933static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1934		u32 chunk_size)
1935{
1936	struct nvme_host_mem_buf_desc *descs;
1937	u32 max_entries, len;
1938	dma_addr_t descs_dma;
1939	int i = 0;
1940	void **bufs;
1941	u64 size, tmp;
1942
1943	tmp = (preferred + chunk_size - 1);
1944	do_div(tmp, chunk_size);
1945	max_entries = tmp;
1946
1947	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1948		max_entries = dev->ctrl.hmmaxd;
1949
1950	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1951				   &descs_dma, GFP_KERNEL);
1952	if (!descs)
1953		goto out;
1954
1955	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1956	if (!bufs)
1957		goto out_free_descs;
1958
1959	for (size = 0; size < preferred && i < max_entries; size += len) {
1960		dma_addr_t dma_addr;
1961
1962		len = min_t(u64, chunk_size, preferred - size);
1963		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1964				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1965		if (!bufs[i])
1966			break;
1967
1968		descs[i].addr = cpu_to_le64(dma_addr);
1969		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1970		i++;
1971	}
1972
1973	if (!size)
1974		goto out_free_bufs;
1975
1976	dev->nr_host_mem_descs = i;
1977	dev->host_mem_size = size;
1978	dev->host_mem_descs = descs;
1979	dev->host_mem_descs_dma = descs_dma;
1980	dev->host_mem_desc_bufs = bufs;
1981	return 0;
1982
1983out_free_bufs:
1984	while (--i >= 0) {
1985		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1986
1987		dma_free_attrs(dev->dev, size, bufs[i],
1988			       le64_to_cpu(descs[i].addr),
1989			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1990	}
1991
1992	kfree(bufs);
1993out_free_descs:
1994	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1995			descs_dma);
1996out:
1997	dev->host_mem_descs = NULL;
1998	return -ENOMEM;
1999}
2000
2001static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2002{
2003	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2004	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2005	u64 chunk_size;
2006
2007	/* start big and work our way down */
2008	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2009		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2010			if (!min || dev->host_mem_size >= min)
2011				return 0;
2012			nvme_free_host_mem(dev);
2013		}
2014	}
2015
2016	return -ENOMEM;
2017}
2018
2019static int nvme_setup_host_mem(struct nvme_dev *dev)
2020{
2021	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2022	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2023	u64 min = (u64)dev->ctrl.hmmin * 4096;
2024	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2025	int ret;
2026
2027	if (!dev->ctrl.hmpre)
2028		return 0;
2029
2030	preferred = min(preferred, max);
2031	if (min > max) {
2032		dev_warn(dev->ctrl.device,
2033			"min host memory (%lld MiB) above limit (%d MiB).\n",
2034			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2035		nvme_free_host_mem(dev);
2036		return 0;
2037	}
2038
2039	/*
2040	 * If we already have a buffer allocated check if we can reuse it.
2041	 */
2042	if (dev->host_mem_descs) {
2043		if (dev->host_mem_size >= min)
2044			enable_bits |= NVME_HOST_MEM_RETURN;
2045		else
2046			nvme_free_host_mem(dev);
2047	}
2048
2049	if (!dev->host_mem_descs) {
2050		if (nvme_alloc_host_mem(dev, min, preferred)) {
2051			dev_warn(dev->ctrl.device,
2052				"failed to allocate host memory buffer.\n");
2053			return 0; /* controller must work without HMB */
2054		}
2055
2056		dev_info(dev->ctrl.device,
2057			"allocated %lld MiB host memory buffer.\n",
2058			dev->host_mem_size >> ilog2(SZ_1M));
2059	}
2060
2061	ret = nvme_set_host_mem(dev, enable_bits);
2062	if (ret)
2063		nvme_free_host_mem(dev);
2064	return ret;
2065}
2066
2067static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2068		char *buf)
2069{
2070	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2071
2072	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2073		       ndev->cmbloc, ndev->cmbsz);
2074}
2075static DEVICE_ATTR_RO(cmb);
2076
2077static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2078		char *buf)
2079{
2080	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2081
2082	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2083}
2084static DEVICE_ATTR_RO(cmbloc);
2085
2086static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2087		char *buf)
2088{
2089	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2090
2091	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2092}
2093static DEVICE_ATTR_RO(cmbsz);
2094
2095static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2096			char *buf)
2097{
2098	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2099
2100	return sysfs_emit(buf, "%d\n", ndev->hmb);
2101}
2102
2103static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2104			 const char *buf, size_t count)
2105{
2106	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2107	bool new;
2108	int ret;
2109
2110	if (kstrtobool(buf, &new) < 0)
2111		return -EINVAL;
2112
2113	if (new == ndev->hmb)
2114		return count;
2115
2116	if (new) {
2117		ret = nvme_setup_host_mem(ndev);
2118	} else {
2119		ret = nvme_set_host_mem(ndev, 0);
2120		if (!ret)
2121			nvme_free_host_mem(ndev);
2122	}
2123
2124	if (ret < 0)
2125		return ret;
2126
2127	return count;
2128}
2129static DEVICE_ATTR_RW(hmb);
2130
2131static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2132		struct attribute *a, int n)
2133{
2134	struct nvme_ctrl *ctrl =
2135		dev_get_drvdata(container_of(kobj, struct device, kobj));
2136	struct nvme_dev *dev = to_nvme_dev(ctrl);
2137
2138	if (a == &dev_attr_cmb.attr ||
2139	    a == &dev_attr_cmbloc.attr ||
2140	    a == &dev_attr_cmbsz.attr) {
2141	    	if (!dev->cmbsz)
2142			return 0;
2143	}
2144	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2145		return 0;
2146
2147	return a->mode;
2148}
2149
2150static struct attribute *nvme_pci_attrs[] = {
2151	&dev_attr_cmb.attr,
2152	&dev_attr_cmbloc.attr,
2153	&dev_attr_cmbsz.attr,
2154	&dev_attr_hmb.attr,
2155	NULL,
2156};
2157
2158static const struct attribute_group nvme_pci_dev_attrs_group = {
2159	.attrs		= nvme_pci_attrs,
2160	.is_visible	= nvme_pci_attrs_are_visible,
2161};
2162
2163static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2164	&nvme_dev_attrs_group,
2165	&nvme_pci_dev_attrs_group,
2166	NULL,
2167};
2168
2169static void nvme_update_attrs(struct nvme_dev *dev)
2170{
2171	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2172}
2173
2174/*
2175 * nirqs is the number of interrupts available for write and read
2176 * queues. The core already reserved an interrupt for the admin queue.
2177 */
2178static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2179{
2180	struct nvme_dev *dev = affd->priv;
2181	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2182
2183	/*
2184	 * If there is no interrupt available for queues, ensure that
2185	 * the default queue is set to 1. The affinity set size is
2186	 * also set to one, but the irq core ignores it for this case.
2187	 *
2188	 * If only one interrupt is available or 'write_queue' == 0, combine
2189	 * write and read queues.
2190	 *
2191	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2192	 * queue.
2193	 */
2194	if (!nrirqs) {
2195		nrirqs = 1;
2196		nr_read_queues = 0;
2197	} else if (nrirqs == 1 || !nr_write_queues) {
2198		nr_read_queues = 0;
2199	} else if (nr_write_queues >= nrirqs) {
2200		nr_read_queues = 1;
2201	} else {
2202		nr_read_queues = nrirqs - nr_write_queues;
2203	}
2204
2205	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2206	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2207	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2208	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2209	affd->nr_sets = nr_read_queues ? 2 : 1;
2210}
2211
2212static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2213{
2214	struct pci_dev *pdev = to_pci_dev(dev->dev);
2215	struct irq_affinity affd = {
2216		.pre_vectors	= 1,
2217		.calc_sets	= nvme_calc_irq_sets,
2218		.priv		= dev,
2219	};
2220	unsigned int irq_queues, poll_queues;
2221
2222	/*
2223	 * Poll queues don't need interrupts, but we need at least one I/O queue
2224	 * left over for non-polled I/O.
2225	 */
2226	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2227	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2228
2229	/*
2230	 * Initialize for the single interrupt case, will be updated in
2231	 * nvme_calc_irq_sets().
2232	 */
2233	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2234	dev->io_queues[HCTX_TYPE_READ] = 0;
2235
2236	/*
2237	 * We need interrupts for the admin queue and each non-polled I/O queue,
2238	 * but some Apple controllers require all queues to use the first
2239	 * vector.
2240	 */
2241	irq_queues = 1;
2242	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2243		irq_queues += (nr_io_queues - poll_queues);
2244	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2245			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2246}
2247
2248static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2249{
2250	/*
2251	 * If tags are shared with admin queue (Apple bug), then
2252	 * make sure we only use one IO queue.
2253	 */
2254	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2255		return 1;
2256	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2257}
2258
2259static int nvme_setup_io_queues(struct nvme_dev *dev)
2260{
2261	struct nvme_queue *adminq = &dev->queues[0];
2262	struct pci_dev *pdev = to_pci_dev(dev->dev);
2263	unsigned int nr_io_queues;
2264	unsigned long size;
2265	int result;
2266
2267	/*
2268	 * Sample the module parameters once at reset time so that we have
2269	 * stable values to work with.
2270	 */
2271	dev->nr_write_queues = write_queues;
2272	dev->nr_poll_queues = poll_queues;
2273
2274	nr_io_queues = dev->nr_allocated_queues - 1;
2275	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2276	if (result < 0)
2277		return result;
2278
2279	if (nr_io_queues == 0)
2280		return 0;
2281
2282	/*
2283	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2284	 * from set to unset. If there is a window to it is truely freed,
2285	 * pci_free_irq_vectors() jumping into this window will crash.
2286	 * And take lock to avoid racing with pci_free_irq_vectors() in
2287	 * nvme_dev_disable() path.
2288	 */
2289	result = nvme_setup_io_queues_trylock(dev);
2290	if (result)
2291		return result;
2292	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2293		pci_free_irq(pdev, 0, adminq);
2294
2295	if (dev->cmb_use_sqes) {
2296		result = nvme_cmb_qdepth(dev, nr_io_queues,
2297				sizeof(struct nvme_command));
2298		if (result > 0) {
2299			dev->q_depth = result;
2300			dev->ctrl.sqsize = result - 1;
2301		} else {
2302			dev->cmb_use_sqes = false;
2303		}
2304	}
2305
2306	do {
2307		size = db_bar_size(dev, nr_io_queues);
2308		result = nvme_remap_bar(dev, size);
2309		if (!result)
2310			break;
2311		if (!--nr_io_queues) {
2312			result = -ENOMEM;
2313			goto out_unlock;
2314		}
2315	} while (1);
2316	adminq->q_db = dev->dbs;
2317
2318 retry:
2319	/* Deregister the admin queue's interrupt */
2320	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2321		pci_free_irq(pdev, 0, adminq);
2322
2323	/*
2324	 * If we enable msix early due to not intx, disable it again before
2325	 * setting up the full range we need.
2326	 */
2327	pci_free_irq_vectors(pdev);
2328
2329	result = nvme_setup_irqs(dev, nr_io_queues);
2330	if (result <= 0) {
2331		result = -EIO;
2332		goto out_unlock;
2333	}
2334
2335	dev->num_vecs = result;
2336	result = max(result - 1, 1);
2337	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2338
2339	/*
2340	 * Should investigate if there's a performance win from allocating
2341	 * more queues than interrupt vectors; it might allow the submission
2342	 * path to scale better, even if the receive path is limited by the
2343	 * number of interrupts.
2344	 */
2345	result = queue_request_irq(adminq);
2346	if (result)
2347		goto out_unlock;
2348	set_bit(NVMEQ_ENABLED, &adminq->flags);
2349	mutex_unlock(&dev->shutdown_lock);
2350
2351	result = nvme_create_io_queues(dev);
2352	if (result || dev->online_queues < 2)
2353		return result;
2354
2355	if (dev->online_queues - 1 < dev->max_qid) {
2356		nr_io_queues = dev->online_queues - 1;
2357		nvme_delete_io_queues(dev);
2358		result = nvme_setup_io_queues_trylock(dev);
2359		if (result)
2360			return result;
2361		nvme_suspend_io_queues(dev);
2362		goto retry;
2363	}
2364	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2365					dev->io_queues[HCTX_TYPE_DEFAULT],
2366					dev->io_queues[HCTX_TYPE_READ],
2367					dev->io_queues[HCTX_TYPE_POLL]);
2368	return 0;
2369out_unlock:
2370	mutex_unlock(&dev->shutdown_lock);
2371	return result;
2372}
2373
2374static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2375					     blk_status_t error)
2376{
2377	struct nvme_queue *nvmeq = req->end_io_data;
2378
2379	blk_mq_free_request(req);
2380	complete(&nvmeq->delete_done);
2381	return RQ_END_IO_NONE;
2382}
2383
2384static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2385					  blk_status_t error)
2386{
2387	struct nvme_queue *nvmeq = req->end_io_data;
2388
2389	if (error)
2390		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2391
2392	return nvme_del_queue_end(req, error);
2393}
2394
2395static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2396{
2397	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2398	struct request *req;
2399	struct nvme_command cmd = { };
2400
2401	cmd.delete_queue.opcode = opcode;
2402	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2403
2404	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2405	if (IS_ERR(req))
2406		return PTR_ERR(req);
2407	nvme_init_request(req, &cmd);
2408
2409	if (opcode == nvme_admin_delete_cq)
2410		req->end_io = nvme_del_cq_end;
2411	else
2412		req->end_io = nvme_del_queue_end;
2413	req->end_io_data = nvmeq;
2414
2415	init_completion(&nvmeq->delete_done);
2416	blk_execute_rq_nowait(req, false);
2417	return 0;
2418}
2419
2420static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2421{
2422	int nr_queues = dev->online_queues - 1, sent = 0;
2423	unsigned long timeout;
2424
2425 retry:
2426	timeout = NVME_ADMIN_TIMEOUT;
2427	while (nr_queues > 0) {
2428		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2429			break;
2430		nr_queues--;
2431		sent++;
2432	}
2433	while (sent) {
2434		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2435
2436		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2437				timeout);
2438		if (timeout == 0)
2439			return false;
2440
2441		sent--;
2442		if (nr_queues)
2443			goto retry;
2444	}
2445	return true;
2446}
2447
2448static void nvme_delete_io_queues(struct nvme_dev *dev)
2449{
2450	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2451		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2452}
2453
2454static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2455{
2456	if (dev->io_queues[HCTX_TYPE_POLL])
2457		return 3;
2458	if (dev->io_queues[HCTX_TYPE_READ])
2459		return 2;
2460	return 1;
2461}
2462
2463static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2464{
2465	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2466	/* free previously allocated queues that are no longer usable */
2467	nvme_free_queues(dev, dev->online_queues);
2468}
2469
2470static int nvme_pci_enable(struct nvme_dev *dev)
2471{
2472	int result = -ENOMEM;
2473	struct pci_dev *pdev = to_pci_dev(dev->dev);
2474
2475	if (pci_enable_device_mem(pdev))
2476		return result;
2477
2478	pci_set_master(pdev);
2479
2480	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2481		result = -ENODEV;
2482		goto disable;
2483	}
2484
2485	/*
2486	 * Some devices and/or platforms don't advertise or work with INTx
2487	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2488	 * adjust this later.
2489	 */
2490	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2491	if (result < 0)
2492		goto disable;
2493
2494	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2495
2496	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2497				io_queue_depth);
2498	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2499	dev->dbs = dev->bar + 4096;
2500
2501	/*
2502	 * Some Apple controllers require a non-standard SQE size.
2503	 * Interestingly they also seem to ignore the CC:IOSQES register
2504	 * so we don't bother updating it here.
2505	 */
2506	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2507		dev->io_sqes = 7;
2508	else
2509		dev->io_sqes = NVME_NVM_IOSQES;
2510
2511	/*
2512	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2513	 * some MacBook7,1 to avoid controller resets and data loss.
2514	 */
2515	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2516		dev->q_depth = 2;
2517		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2518			"set queue depth=%u to work around controller resets\n",
2519			dev->q_depth);
2520	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2521		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2522		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2523		dev->q_depth = 64;
2524		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2525                        "set queue depth=%u\n", dev->q_depth);
2526	}
2527
2528	/*
2529	 * Controllers with the shared tags quirk need the IO queue to be
2530	 * big enough so that we get 32 tags for the admin queue
2531	 */
2532	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2533	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2534		dev->q_depth = NVME_AQ_DEPTH + 2;
2535		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2536			 dev->q_depth);
2537	}
2538	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2539
2540	nvme_map_cmb(dev);
2541
2542	pci_save_state(pdev);
2543
2544	result = nvme_pci_configure_admin_queue(dev);
2545	if (result)
2546		goto free_irq;
2547	return result;
2548
2549 free_irq:
2550	pci_free_irq_vectors(pdev);
2551 disable:
2552	pci_disable_device(pdev);
2553	return result;
2554}
2555
2556static void nvme_dev_unmap(struct nvme_dev *dev)
2557{
2558	if (dev->bar)
2559		iounmap(dev->bar);
2560	pci_release_mem_regions(to_pci_dev(dev->dev));
2561}
2562
2563static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2564{
2565	struct pci_dev *pdev = to_pci_dev(dev->dev);
2566	u32 csts;
2567
2568	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2569		return true;
2570	if (pdev->error_state != pci_channel_io_normal)
2571		return true;
2572
2573	csts = readl(dev->bar + NVME_REG_CSTS);
2574	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2575}
2576
2577static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2578{
2579	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2580	struct pci_dev *pdev = to_pci_dev(dev->dev);
2581	bool dead;
2582
2583	mutex_lock(&dev->shutdown_lock);
2584	dead = nvme_pci_ctrl_is_dead(dev);
2585	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2586		if (pci_is_enabled(pdev))
2587			nvme_start_freeze(&dev->ctrl);
2588		/*
2589		 * Give the controller a chance to complete all entered requests
2590		 * if doing a safe shutdown.
2591		 */
2592		if (!dead && shutdown)
2593			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2594	}
2595
2596	nvme_quiesce_io_queues(&dev->ctrl);
2597
2598	if (!dead && dev->ctrl.queue_count > 0) {
2599		nvme_delete_io_queues(dev);
2600		nvme_disable_ctrl(&dev->ctrl, shutdown);
2601		nvme_poll_irqdisable(&dev->queues[0]);
2602	}
2603	nvme_suspend_io_queues(dev);
2604	nvme_suspend_queue(dev, 0);
2605	pci_free_irq_vectors(pdev);
2606	if (pci_is_enabled(pdev))
2607		pci_disable_device(pdev);
2608	nvme_reap_pending_cqes(dev);
2609
2610	nvme_cancel_tagset(&dev->ctrl);
2611	nvme_cancel_admin_tagset(&dev->ctrl);
2612
2613	/*
2614	 * The driver will not be starting up queues again if shutting down so
2615	 * must flush all entered requests to their failed completion to avoid
2616	 * deadlocking blk-mq hot-cpu notifier.
2617	 */
2618	if (shutdown) {
2619		nvme_unquiesce_io_queues(&dev->ctrl);
2620		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2621			nvme_unquiesce_admin_queue(&dev->ctrl);
2622	}
2623	mutex_unlock(&dev->shutdown_lock);
2624}
2625
2626static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2627{
2628	if (!nvme_wait_reset(&dev->ctrl))
2629		return -EBUSY;
2630	nvme_dev_disable(dev, shutdown);
2631	return 0;
2632}
2633
2634static int nvme_setup_prp_pools(struct nvme_dev *dev)
2635{
2636	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2637						NVME_CTRL_PAGE_SIZE,
2638						NVME_CTRL_PAGE_SIZE, 0);
2639	if (!dev->prp_page_pool)
2640		return -ENOMEM;
2641
2642	/* Optimisation for I/Os between 4k and 128k */
2643	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2644						256, 256, 0);
2645	if (!dev->prp_small_pool) {
2646		dma_pool_destroy(dev->prp_page_pool);
2647		return -ENOMEM;
2648	}
2649	return 0;
2650}
2651
2652static void nvme_release_prp_pools(struct nvme_dev *dev)
2653{
2654	dma_pool_destroy(dev->prp_page_pool);
2655	dma_pool_destroy(dev->prp_small_pool);
2656}
2657
2658static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2659{
2660	size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2661
2662	dev->iod_mempool = mempool_create_node(1,
2663			mempool_kmalloc, mempool_kfree,
2664			(void *)alloc_size, GFP_KERNEL,
2665			dev_to_node(dev->dev));
2666	if (!dev->iod_mempool)
2667		return -ENOMEM;
2668	return 0;
2669}
2670
2671static void nvme_free_tagset(struct nvme_dev *dev)
2672{
2673	if (dev->tagset.tags)
2674		nvme_remove_io_tag_set(&dev->ctrl);
2675	dev->ctrl.tagset = NULL;
2676}
2677
2678/* pairs with nvme_pci_alloc_dev */
2679static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2680{
2681	struct nvme_dev *dev = to_nvme_dev(ctrl);
2682
2683	nvme_free_tagset(dev);
2684	put_device(dev->dev);
2685	kfree(dev->queues);
2686	kfree(dev);
2687}
2688
2689static void nvme_reset_work(struct work_struct *work)
2690{
2691	struct nvme_dev *dev =
2692		container_of(work, struct nvme_dev, ctrl.reset_work);
2693	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2694	int result;
2695
2696	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2697		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2698			 dev->ctrl.state);
2699		result = -ENODEV;
2700		goto out;
2701	}
2702
2703	/*
2704	 * If we're called to reset a live controller first shut it down before
2705	 * moving on.
2706	 */
2707	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2708		nvme_dev_disable(dev, false);
2709	nvme_sync_queues(&dev->ctrl);
2710
2711	mutex_lock(&dev->shutdown_lock);
2712	result = nvme_pci_enable(dev);
2713	if (result)
2714		goto out_unlock;
2715	nvme_unquiesce_admin_queue(&dev->ctrl);
2716	mutex_unlock(&dev->shutdown_lock);
2717
2718	/*
2719	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2720	 * initializing procedure here.
2721	 */
2722	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2723		dev_warn(dev->ctrl.device,
2724			"failed to mark controller CONNECTING\n");
2725		result = -EBUSY;
2726		goto out;
2727	}
2728
2729	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2730	if (result)
2731		goto out;
2732
2733	nvme_dbbuf_dma_alloc(dev);
2734
2735	result = nvme_setup_host_mem(dev);
2736	if (result < 0)
2737		goto out;
2738
2739	result = nvme_setup_io_queues(dev);
2740	if (result)
2741		goto out;
2742
2743	/*
2744	 * Freeze and update the number of I/O queues as thos might have
2745	 * changed.  If there are no I/O queues left after this reset, keep the
2746	 * controller around but remove all namespaces.
2747	 */
2748	if (dev->online_queues > 1) {
2749		nvme_dbbuf_set(dev);
2750		nvme_unquiesce_io_queues(&dev->ctrl);
2751		nvme_wait_freeze(&dev->ctrl);
2752		nvme_pci_update_nr_queues(dev);
2753		nvme_unfreeze(&dev->ctrl);
2754	} else {
2755		dev_warn(dev->ctrl.device, "IO queues lost\n");
2756		nvme_mark_namespaces_dead(&dev->ctrl);
2757		nvme_unquiesce_io_queues(&dev->ctrl);
2758		nvme_remove_namespaces(&dev->ctrl);
2759		nvme_free_tagset(dev);
2760	}
2761
2762	/*
2763	 * If only admin queue live, keep it to do further investigation or
2764	 * recovery.
2765	 */
2766	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2767		dev_warn(dev->ctrl.device,
2768			"failed to mark controller live state\n");
2769		result = -ENODEV;
2770		goto out;
2771	}
2772
2773	nvme_start_ctrl(&dev->ctrl);
2774	return;
2775
2776 out_unlock:
2777	mutex_unlock(&dev->shutdown_lock);
2778 out:
2779	/*
2780	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2781	 * may be holding this pci_dev's device lock.
2782	 */
2783	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2784		 result);
2785	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2786	nvme_dev_disable(dev, true);
2787	nvme_sync_queues(&dev->ctrl);
2788	nvme_mark_namespaces_dead(&dev->ctrl);
2789	nvme_unquiesce_io_queues(&dev->ctrl);
2790	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2791}
2792
2793static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2794{
2795	*val = readl(to_nvme_dev(ctrl)->bar + off);
2796	return 0;
2797}
2798
2799static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2800{
2801	writel(val, to_nvme_dev(ctrl)->bar + off);
2802	return 0;
2803}
2804
2805static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2806{
2807	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2808	return 0;
2809}
2810
2811static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2812{
2813	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2814
2815	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2816}
2817
2818static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2819{
2820	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2821	struct nvme_subsystem *subsys = ctrl->subsys;
2822
2823	dev_err(ctrl->device,
2824		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2825		pdev->vendor, pdev->device,
2826		nvme_strlen(subsys->model, sizeof(subsys->model)),
2827		subsys->model, nvme_strlen(subsys->firmware_rev,
2828					   sizeof(subsys->firmware_rev)),
2829		subsys->firmware_rev);
2830}
2831
2832static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2833{
2834	struct nvme_dev *dev = to_nvme_dev(ctrl);
2835
2836	return dma_pci_p2pdma_supported(dev->dev);
2837}
2838
2839static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2840	.name			= "pcie",
2841	.module			= THIS_MODULE,
2842	.flags			= NVME_F_METADATA_SUPPORTED,
2843	.dev_attr_groups	= nvme_pci_dev_attr_groups,
2844	.reg_read32		= nvme_pci_reg_read32,
2845	.reg_write32		= nvme_pci_reg_write32,
2846	.reg_read64		= nvme_pci_reg_read64,
2847	.free_ctrl		= nvme_pci_free_ctrl,
2848	.submit_async_event	= nvme_pci_submit_async_event,
2849	.get_address		= nvme_pci_get_address,
2850	.print_device_info	= nvme_pci_print_device_info,
2851	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
2852};
2853
2854static int nvme_dev_map(struct nvme_dev *dev)
2855{
2856	struct pci_dev *pdev = to_pci_dev(dev->dev);
2857
2858	if (pci_request_mem_regions(pdev, "nvme"))
2859		return -ENODEV;
2860
2861	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2862		goto release;
2863
2864	return 0;
2865  release:
2866	pci_release_mem_regions(pdev);
2867	return -ENODEV;
2868}
2869
2870static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2871{
2872	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2873		/*
2874		 * Several Samsung devices seem to drop off the PCIe bus
2875		 * randomly when APST is on and uses the deepest sleep state.
2876		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2877		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2878		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2879		 * laptops.
2880		 */
2881		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2882		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2883		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2884			return NVME_QUIRK_NO_DEEPEST_PS;
2885	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2886		/*
2887		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2888		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2889		 * within few minutes after bootup on a Coffee Lake board -
2890		 * ASUS PRIME Z370-A
2891		 */
2892		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2893		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2894		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2895			return NVME_QUIRK_NO_APST;
2896	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2897		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2898		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2899		/*
2900		 * Forcing to use host managed nvme power settings for
2901		 * lowest idle power with quick resume latency on
2902		 * Samsung and Toshiba SSDs based on suspend behavior
2903		 * on Coffee Lake board for LENOVO C640
2904		 */
2905		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2906		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2907			return NVME_QUIRK_SIMPLE_SUSPEND;
2908	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
2909		   pdev->device == 0x500f)) {
2910		/*
2911		 * Exclude some Kingston NV1 and A2000 devices from
2912		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
2913		 * lot fo energy with s2idle sleep on some TUXEDO platforms.
2914		 */
2915		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
2916		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
2917		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
2918		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
2919			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2920	}
2921
2922	return 0;
2923}
2924
2925static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2926		const struct pci_device_id *id)
2927{
2928	unsigned long quirks = id->driver_data;
2929	int node = dev_to_node(&pdev->dev);
2930	struct nvme_dev *dev;
2931	int ret = -ENOMEM;
2932
2933	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2934	if (!dev)
2935		return ERR_PTR(-ENOMEM);
2936	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2937	mutex_init(&dev->shutdown_lock);
2938
2939	dev->nr_write_queues = write_queues;
2940	dev->nr_poll_queues = poll_queues;
2941	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2942	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2943			sizeof(struct nvme_queue), GFP_KERNEL, node);
2944	if (!dev->queues)
2945		goto out_free_dev;
2946
2947	dev->dev = get_device(&pdev->dev);
2948
2949	quirks |= check_vendor_combination_bug(pdev);
2950	if (!noacpi &&
2951	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
2952	    acpi_storage_d3(&pdev->dev)) {
2953		/*
2954		 * Some systems use a bios work around to ask for D3 on
2955		 * platforms that support kernel managed suspend.
2956		 */
2957		dev_info(&pdev->dev,
2958			 "platform quirk: setting simple suspend\n");
2959		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2960	}
2961	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2962			     quirks);
2963	if (ret)
2964		goto out_put_device;
2965
2966	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2967		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2968	else
2969		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2970	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
2971	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
2972
2973	/*
2974	 * Limit the max command size to prevent iod->sg allocations going
2975	 * over a single page.
2976	 */
2977	dev->ctrl.max_hw_sectors = min_t(u32,
2978		NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
2979	dev->ctrl.max_segments = NVME_MAX_SEGS;
2980
2981	/*
2982	 * There is no support for SGLs for metadata (yet), so we are limited to
2983	 * a single integrity segment for the separate metadata pointer.
2984	 */
2985	dev->ctrl.max_integrity_segments = 1;
2986	return dev;
2987
2988out_put_device:
2989	put_device(dev->dev);
2990	kfree(dev->queues);
2991out_free_dev:
2992	kfree(dev);
2993	return ERR_PTR(ret);
2994}
2995
2996static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2997{
2998	struct nvme_dev *dev;
2999	int result = -ENOMEM;
3000
3001	dev = nvme_pci_alloc_dev(pdev, id);
3002	if (IS_ERR(dev))
3003		return PTR_ERR(dev);
3004
3005	result = nvme_dev_map(dev);
3006	if (result)
3007		goto out_uninit_ctrl;
3008
3009	result = nvme_setup_prp_pools(dev);
3010	if (result)
3011		goto out_dev_unmap;
3012
3013	result = nvme_pci_alloc_iod_mempool(dev);
3014	if (result)
3015		goto out_release_prp_pools;
3016
3017	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3018
3019	result = nvme_pci_enable(dev);
3020	if (result)
3021		goto out_release_iod_mempool;
3022
3023	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3024				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3025	if (result)
3026		goto out_disable;
3027
3028	/*
3029	 * Mark the controller as connecting before sending admin commands to
3030	 * allow the timeout handler to do the right thing.
3031	 */
3032	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3033		dev_warn(dev->ctrl.device,
3034			"failed to mark controller CONNECTING\n");
3035		result = -EBUSY;
3036		goto out_disable;
3037	}
3038
3039	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3040	if (result)
3041		goto out_disable;
3042
3043	nvme_dbbuf_dma_alloc(dev);
3044
3045	result = nvme_setup_host_mem(dev);
3046	if (result < 0)
3047		goto out_disable;
3048
3049	result = nvme_setup_io_queues(dev);
3050	if (result)
3051		goto out_disable;
3052
3053	if (dev->online_queues > 1) {
3054		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3055				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3056		nvme_dbbuf_set(dev);
3057	}
3058
3059	if (!dev->ctrl.tagset)
3060		dev_warn(dev->ctrl.device, "IO queues not created\n");
3061
3062	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3063		dev_warn(dev->ctrl.device,
3064			"failed to mark controller live state\n");
3065		result = -ENODEV;
3066		goto out_disable;
3067	}
3068
3069	pci_set_drvdata(pdev, dev);
3070
3071	nvme_start_ctrl(&dev->ctrl);
3072	nvme_put_ctrl(&dev->ctrl);
3073	flush_work(&dev->ctrl.scan_work);
3074	return 0;
3075
3076out_disable:
3077	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3078	nvme_dev_disable(dev, true);
3079	nvme_free_host_mem(dev);
3080	nvme_dev_remove_admin(dev);
3081	nvme_dbbuf_dma_free(dev);
3082	nvme_free_queues(dev, 0);
3083out_release_iod_mempool:
3084	mempool_destroy(dev->iod_mempool);
3085out_release_prp_pools:
3086	nvme_release_prp_pools(dev);
3087out_dev_unmap:
3088	nvme_dev_unmap(dev);
3089out_uninit_ctrl:
3090	nvme_uninit_ctrl(&dev->ctrl);
3091	nvme_put_ctrl(&dev->ctrl);
3092	return result;
3093}
3094
3095static void nvme_reset_prepare(struct pci_dev *pdev)
3096{
3097	struct nvme_dev *dev = pci_get_drvdata(pdev);
3098
3099	/*
3100	 * We don't need to check the return value from waiting for the reset
3101	 * state as pci_dev device lock is held, making it impossible to race
3102	 * with ->remove().
3103	 */
3104	nvme_disable_prepare_reset(dev, false);
3105	nvme_sync_queues(&dev->ctrl);
3106}
3107
3108static void nvme_reset_done(struct pci_dev *pdev)
3109{
3110	struct nvme_dev *dev = pci_get_drvdata(pdev);
3111
3112	if (!nvme_try_sched_reset(&dev->ctrl))
3113		flush_work(&dev->ctrl.reset_work);
3114}
3115
3116static void nvme_shutdown(struct pci_dev *pdev)
3117{
3118	struct nvme_dev *dev = pci_get_drvdata(pdev);
3119
3120	nvme_disable_prepare_reset(dev, true);
3121}
3122
3123/*
3124 * The driver's remove may be called on a device in a partially initialized
3125 * state. This function must not have any dependencies on the device state in
3126 * order to proceed.
3127 */
3128static void nvme_remove(struct pci_dev *pdev)
3129{
3130	struct nvme_dev *dev = pci_get_drvdata(pdev);
3131
3132	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3133	pci_set_drvdata(pdev, NULL);
3134
3135	if (!pci_device_is_present(pdev)) {
3136		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3137		nvme_dev_disable(dev, true);
3138	}
3139
3140	flush_work(&dev->ctrl.reset_work);
3141	nvme_stop_ctrl(&dev->ctrl);
3142	nvme_remove_namespaces(&dev->ctrl);
3143	nvme_dev_disable(dev, true);
3144	nvme_free_host_mem(dev);
3145	nvme_dev_remove_admin(dev);
3146	nvme_dbbuf_dma_free(dev);
3147	nvme_free_queues(dev, 0);
3148	mempool_destroy(dev->iod_mempool);
3149	nvme_release_prp_pools(dev);
3150	nvme_dev_unmap(dev);
3151	nvme_uninit_ctrl(&dev->ctrl);
3152}
3153
3154#ifdef CONFIG_PM_SLEEP
3155static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3156{
3157	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3158}
3159
3160static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3161{
3162	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3163}
3164
3165static int nvme_resume(struct device *dev)
3166{
3167	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3168	struct nvme_ctrl *ctrl = &ndev->ctrl;
3169
3170	if (ndev->last_ps == U32_MAX ||
3171	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3172		goto reset;
3173	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3174		goto reset;
3175
3176	return 0;
3177reset:
3178	return nvme_try_sched_reset(ctrl);
3179}
3180
3181static int nvme_suspend(struct device *dev)
3182{
3183	struct pci_dev *pdev = to_pci_dev(dev);
3184	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3185	struct nvme_ctrl *ctrl = &ndev->ctrl;
3186	int ret = -EBUSY;
3187
3188	ndev->last_ps = U32_MAX;
3189
3190	/*
3191	 * The platform does not remove power for a kernel managed suspend so
3192	 * use host managed nvme power settings for lowest idle power if
3193	 * possible. This should have quicker resume latency than a full device
3194	 * shutdown.  But if the firmware is involved after the suspend or the
3195	 * device does not support any non-default power states, shut down the
3196	 * device fully.
3197	 *
3198	 * If ASPM is not enabled for the device, shut down the device and allow
3199	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3200	 * down, so as to allow the platform to achieve its minimum low-power
3201	 * state (which may not be possible if the link is up).
3202	 */
3203	if (pm_suspend_via_firmware() || !ctrl->npss ||
3204	    !pcie_aspm_enabled(pdev) ||
3205	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3206		return nvme_disable_prepare_reset(ndev, true);
3207
3208	nvme_start_freeze(ctrl);
3209	nvme_wait_freeze(ctrl);
3210	nvme_sync_queues(ctrl);
3211
3212	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3213		goto unfreeze;
3214
3215	/*
3216	 * Host memory access may not be successful in a system suspend state,
3217	 * but the specification allows the controller to access memory in a
3218	 * non-operational power state.
3219	 */
3220	if (ndev->hmb) {
3221		ret = nvme_set_host_mem(ndev, 0);
3222		if (ret < 0)
3223			goto unfreeze;
3224	}
3225
3226	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3227	if (ret < 0)
3228		goto unfreeze;
3229
3230	/*
3231	 * A saved state prevents pci pm from generically controlling the
3232	 * device's power. If we're using protocol specific settings, we don't
3233	 * want pci interfering.
3234	 */
3235	pci_save_state(pdev);
3236
3237	ret = nvme_set_power_state(ctrl, ctrl->npss);
3238	if (ret < 0)
3239		goto unfreeze;
3240
3241	if (ret) {
3242		/* discard the saved state */
3243		pci_load_saved_state(pdev, NULL);
3244
3245		/*
3246		 * Clearing npss forces a controller reset on resume. The
3247		 * correct value will be rediscovered then.
3248		 */
3249		ret = nvme_disable_prepare_reset(ndev, true);
3250		ctrl->npss = 0;
3251	}
3252unfreeze:
3253	nvme_unfreeze(ctrl);
3254	return ret;
3255}
3256
3257static int nvme_simple_suspend(struct device *dev)
3258{
3259	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3260
3261	return nvme_disable_prepare_reset(ndev, true);
3262}
3263
3264static int nvme_simple_resume(struct device *dev)
3265{
3266	struct pci_dev *pdev = to_pci_dev(dev);
3267	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3268
3269	return nvme_try_sched_reset(&ndev->ctrl);
3270}
3271
3272static const struct dev_pm_ops nvme_dev_pm_ops = {
3273	.suspend	= nvme_suspend,
3274	.resume		= nvme_resume,
3275	.freeze		= nvme_simple_suspend,
3276	.thaw		= nvme_simple_resume,
3277	.poweroff	= nvme_simple_suspend,
3278	.restore	= nvme_simple_resume,
3279};
3280#endif /* CONFIG_PM_SLEEP */
3281
3282static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3283						pci_channel_state_t state)
3284{
3285	struct nvme_dev *dev = pci_get_drvdata(pdev);
3286
3287	/*
3288	 * A frozen channel requires a reset. When detected, this method will
3289	 * shutdown the controller to quiesce. The controller will be restarted
3290	 * after the slot reset through driver's slot_reset callback.
3291	 */
3292	switch (state) {
3293	case pci_channel_io_normal:
3294		return PCI_ERS_RESULT_CAN_RECOVER;
3295	case pci_channel_io_frozen:
3296		dev_warn(dev->ctrl.device,
3297			"frozen state error detected, reset controller\n");
3298		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3299			nvme_dev_disable(dev, true);
3300			return PCI_ERS_RESULT_DISCONNECT;
3301		}
3302		nvme_dev_disable(dev, false);
3303		return PCI_ERS_RESULT_NEED_RESET;
3304	case pci_channel_io_perm_failure:
3305		dev_warn(dev->ctrl.device,
3306			"failure state error detected, request disconnect\n");
3307		return PCI_ERS_RESULT_DISCONNECT;
3308	}
3309	return PCI_ERS_RESULT_NEED_RESET;
3310}
3311
3312static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3313{
3314	struct nvme_dev *dev = pci_get_drvdata(pdev);
3315
3316	dev_info(dev->ctrl.device, "restart after slot reset\n");
3317	pci_restore_state(pdev);
3318	if (!nvme_try_sched_reset(&dev->ctrl))
3319		nvme_unquiesce_io_queues(&dev->ctrl);
3320	return PCI_ERS_RESULT_RECOVERED;
3321}
3322
3323static void nvme_error_resume(struct pci_dev *pdev)
3324{
3325	struct nvme_dev *dev = pci_get_drvdata(pdev);
3326
3327	flush_work(&dev->ctrl.reset_work);
3328}
3329
3330static const struct pci_error_handlers nvme_err_handler = {
3331	.error_detected	= nvme_error_detected,
3332	.slot_reset	= nvme_slot_reset,
3333	.resume		= nvme_error_resume,
3334	.reset_prepare	= nvme_reset_prepare,
3335	.reset_done	= nvme_reset_done,
3336};
3337
3338static const struct pci_device_id nvme_id_table[] = {
3339	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3340		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3341				NVME_QUIRK_DEALLOCATE_ZEROES, },
3342	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3343		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3344				NVME_QUIRK_DEALLOCATE_ZEROES, },
3345	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3346		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3347				NVME_QUIRK_DEALLOCATE_ZEROES |
3348				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3349				NVME_QUIRK_BOGUS_NID, },
3350	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3351		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3352				NVME_QUIRK_DEALLOCATE_ZEROES, },
3353	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3354		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3355				NVME_QUIRK_MEDIUM_PRIO_SQ |
3356				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3357				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3358	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3359		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3360	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3361		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3362				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3363				NVME_QUIRK_BOGUS_NID, },
3364	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3365		.driver_data = NVME_QUIRK_BOGUS_NID, },
3366	{ PCI_DEVICE(0x126f, 0x2262),	/* Silicon Motion generic */
3367		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3368				NVME_QUIRK_BOGUS_NID, },
3369	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3370		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3371				NVME_QUIRK_BOGUS_NID, },
3372	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3373		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3374				NVME_QUIRK_NO_NS_DESC_LIST, },
3375	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3376		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3377	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3378		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3379	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3380		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3381	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3382		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3383	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3384		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3385				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3386				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3387	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3388		.driver_data = NVME_QUIRK_BOGUS_NID, },
3389	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3390		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3391				NVME_QUIRK_BOGUS_NID, },
3392	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3393		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3394	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3395		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3396	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3397		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3398				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3399	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3400		.driver_data = NVME_QUIRK_BOGUS_NID, },
3401	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3402		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3403				NVME_QUIRK_BOGUS_NID, },
3404	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3405		.driver_data = NVME_QUIRK_BOGUS_NID, },
3406	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3407		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3408				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3409	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3410		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3411	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3412		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3413	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3414		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3415	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3416		.driver_data = NVME_QUIRK_BOGUS_NID, },
3417	{ PCI_DEVICE(0x1c5c, 0x1D59),   /* SK Hynix BC901 */
3418		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3419	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3420		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3421	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3422		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3423	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3424		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3425				NVME_QUIRK_BOGUS_NID, },
3426	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3427		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3428	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3429		.driver_data = NVME_QUIRK_BOGUS_NID, },
3430	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3431		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3432	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3433		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3434	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3435		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3436	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3437		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3438	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3439		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3440	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3441		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3442	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3443		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3444	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3445		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3446	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3447		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3448	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3449		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3450	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3451		.driver_data = NVME_QUIRK_BOGUS_NID, },
3452	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3453		.driver_data = NVME_QUIRK_BOGUS_NID, },
3454	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3455		.driver_data = NVME_QUIRK_BOGUS_NID, },
3456	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3457		.driver_data = NVME_QUIRK_BOGUS_NID, },
3458	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3459		.driver_data = NVME_QUIRK_BOGUS_NID, },
3460	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3461		.driver_data = NVME_QUIRK_BOGUS_NID, },
3462	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3463		.driver_data = NVME_QUIRK_BOGUS_NID, },
3464	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3465		.driver_data = NVME_QUIRK_BOGUS_NID, },
3466	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3467		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3468	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3469		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3470	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3471		.driver_data = NVME_QUIRK_BOGUS_NID, },
3472	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3473		.driver_data = NVME_QUIRK_BOGUS_NID, },
3474	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3475		.driver_data = NVME_QUIRK_BOGUS_NID, },
3476	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3477		.driver_data = NVME_QUIRK_BOGUS_NID |
3478				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3479	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3480		.driver_data = NVME_QUIRK_BOGUS_NID, },
3481	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3482		.driver_data = NVME_QUIRK_BOGUS_NID, },
3483	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3484		.driver_data = NVME_QUIRK_BOGUS_NID, },
3485	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3486		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3487	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3488		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3489	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3490		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3491	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3492		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3493	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3494		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3495	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3496		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3497	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3498		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3499	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3500	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3501		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3502				NVME_QUIRK_128_BYTES_SQES |
3503				NVME_QUIRK_SHARED_TAGS |
3504				NVME_QUIRK_SKIP_CID_GEN |
3505				NVME_QUIRK_IDENTIFY_CNS },
3506	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3507	{ 0, }
3508};
3509MODULE_DEVICE_TABLE(pci, nvme_id_table);
3510
3511static struct pci_driver nvme_driver = {
3512	.name		= "nvme",
3513	.id_table	= nvme_id_table,
3514	.probe		= nvme_probe,
3515	.remove		= nvme_remove,
3516	.shutdown	= nvme_shutdown,
3517	.driver		= {
3518		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3519#ifdef CONFIG_PM_SLEEP
3520		.pm		= &nvme_dev_pm_ops,
3521#endif
3522	},
3523	.sriov_configure = pci_sriov_configure_simple,
3524	.err_handler	= &nvme_err_handler,
3525};
3526
3527static int __init nvme_init(void)
3528{
3529	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3530	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3531	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3532	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3533	BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3534	BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3535	BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3536
3537	return pci_register_driver(&nvme_driver);
3538}
3539
3540static void __exit nvme_exit(void)
3541{
3542	pci_unregister_driver(&nvme_driver);
3543	flush_workqueue(nvme_wq);
3544}
3545
3546MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3547MODULE_LICENSE("GPL");
3548MODULE_VERSION("1.0");
3549MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3550module_init(nvme_init);
3551module_exit(nvme_exit);
3552