1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (c) 2011-2014, Intel Corporation.
4 */
5
6#ifndef _NVME_H
7#define _NVME_H
8
9#include <linux/nvme.h>
10#include <linux/cdev.h>
11#include <linux/pci.h>
12#include <linux/kref.h>
13#include <linux/blk-mq.h>
14#include <linux/sed-opal.h>
15#include <linux/fault-inject.h>
16#include <linux/rcupdate.h>
17#include <linux/wait.h>
18#include <linux/t10-pi.h>
19#include <linux/ratelimit_types.h>
20
21#include <trace/events/block.h>
22
23extern const struct pr_ops nvme_pr_ops;
24
25extern unsigned int nvme_io_timeout;
26#define NVME_IO_TIMEOUT	(nvme_io_timeout * HZ)
27
28extern unsigned int admin_timeout;
29#define NVME_ADMIN_TIMEOUT	(admin_timeout * HZ)
30
31#define NVME_DEFAULT_KATO	5
32
33#ifdef CONFIG_ARCH_NO_SG_CHAIN
34#define  NVME_INLINE_SG_CNT  0
35#define  NVME_INLINE_METADATA_SG_CNT  0
36#else
37#define  NVME_INLINE_SG_CNT  2
38#define  NVME_INLINE_METADATA_SG_CNT  1
39#endif
40
41/*
42 * Default to a 4K page size, with the intention to update this
43 * path in the future to accommodate architectures with differing
44 * kernel and IO page sizes.
45 */
46#define NVME_CTRL_PAGE_SHIFT	12
47#define NVME_CTRL_PAGE_SIZE	(1 << NVME_CTRL_PAGE_SHIFT)
48
49extern struct workqueue_struct *nvme_wq;
50extern struct workqueue_struct *nvme_reset_wq;
51extern struct workqueue_struct *nvme_delete_wq;
52
53/*
54 * List of workarounds for devices that required behavior not specified in
55 * the standard.
56 */
57enum nvme_quirks {
58	/*
59	 * Prefers I/O aligned to a stripe size specified in a vendor
60	 * specific Identify field.
61	 */
62	NVME_QUIRK_STRIPE_SIZE			= (1 << 0),
63
64	/*
65	 * The controller doesn't handle Identify value others than 0 or 1
66	 * correctly.
67	 */
68	NVME_QUIRK_IDENTIFY_CNS			= (1 << 1),
69
70	/*
71	 * The controller deterministically returns O's on reads to
72	 * logical blocks that deallocate was called on.
73	 */
74	NVME_QUIRK_DEALLOCATE_ZEROES		= (1 << 2),
75
76	/*
77	 * The controller needs a delay before starts checking the device
78	 * readiness, which is done by reading the NVME_CSTS_RDY bit.
79	 */
80	NVME_QUIRK_DELAY_BEFORE_CHK_RDY		= (1 << 3),
81
82	/*
83	 * APST should not be used.
84	 */
85	NVME_QUIRK_NO_APST			= (1 << 4),
86
87	/*
88	 * The deepest sleep state should not be used.
89	 */
90	NVME_QUIRK_NO_DEEPEST_PS		= (1 << 5),
91
92	/*
93	 * Set MEDIUM priority on SQ creation
94	 */
95	NVME_QUIRK_MEDIUM_PRIO_SQ		= (1 << 7),
96
97	/*
98	 * Ignore device provided subnqn.
99	 */
100	NVME_QUIRK_IGNORE_DEV_SUBNQN		= (1 << 8),
101
102	/*
103	 * Broken Write Zeroes.
104	 */
105	NVME_QUIRK_DISABLE_WRITE_ZEROES		= (1 << 9),
106
107	/*
108	 * Force simple suspend/resume path.
109	 */
110	NVME_QUIRK_SIMPLE_SUSPEND		= (1 << 10),
111
112	/*
113	 * Use only one interrupt vector for all queues
114	 */
115	NVME_QUIRK_SINGLE_VECTOR		= (1 << 11),
116
117	/*
118	 * Use non-standard 128 bytes SQEs.
119	 */
120	NVME_QUIRK_128_BYTES_SQES		= (1 << 12),
121
122	/*
123	 * Prevent tag overlap between queues
124	 */
125	NVME_QUIRK_SHARED_TAGS                  = (1 << 13),
126
127	/*
128	 * Don't change the value of the temperature threshold feature
129	 */
130	NVME_QUIRK_NO_TEMP_THRESH_CHANGE	= (1 << 14),
131
132	/*
133	 * The controller doesn't handle the Identify Namespace
134	 * Identification Descriptor list subcommand despite claiming
135	 * NVMe 1.3 compliance.
136	 */
137	NVME_QUIRK_NO_NS_DESC_LIST		= (1 << 15),
138
139	/*
140	 * The controller does not properly handle DMA addresses over
141	 * 48 bits.
142	 */
143	NVME_QUIRK_DMA_ADDRESS_BITS_48		= (1 << 16),
144
145	/*
146	 * The controller requires the command_id value be limited, so skip
147	 * encoding the generation sequence number.
148	 */
149	NVME_QUIRK_SKIP_CID_GEN			= (1 << 17),
150
151	/*
152	 * Reports garbage in the namespace identifiers (eui64, nguid, uuid).
153	 */
154	NVME_QUIRK_BOGUS_NID			= (1 << 18),
155
156	/*
157	 * No temperature thresholds for channels other than 0 (Composite).
158	 */
159	NVME_QUIRK_NO_SECONDARY_TEMP_THRESH	= (1 << 19),
160
161	/*
162	 * Disables simple suspend/resume path.
163	 */
164	NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND	= (1 << 20),
165};
166
167/*
168 * Common request structure for NVMe passthrough.  All drivers must have
169 * this structure as the first member of their request-private data.
170 */
171struct nvme_request {
172	struct nvme_command	*cmd;
173	union nvme_result	result;
174	u8			genctr;
175	u8			retries;
176	u8			flags;
177	u16			status;
178#ifdef CONFIG_NVME_MULTIPATH
179	unsigned long		start_time;
180#endif
181	struct nvme_ctrl	*ctrl;
182};
183
184/*
185 * Mark a bio as coming in through the mpath node.
186 */
187#define REQ_NVME_MPATH		REQ_DRV
188
189enum {
190	NVME_REQ_CANCELLED		= (1 << 0),
191	NVME_REQ_USERCMD		= (1 << 1),
192	NVME_MPATH_IO_STATS		= (1 << 2),
193};
194
195static inline struct nvme_request *nvme_req(struct request *req)
196{
197	return blk_mq_rq_to_pdu(req);
198}
199
200static inline u16 nvme_req_qid(struct request *req)
201{
202	if (!req->q->queuedata)
203		return 0;
204
205	return req->mq_hctx->queue_num + 1;
206}
207
208/* The below value is the specific amount of delay needed before checking
209 * readiness in case of the PCI_DEVICE(0x1c58, 0x0003), which needs the
210 * NVME_QUIRK_DELAY_BEFORE_CHK_RDY quirk enabled. The value (in ms) was
211 * found empirically.
212 */
213#define NVME_QUIRK_DELAY_AMOUNT		2300
214
215/*
216 * enum nvme_ctrl_state: Controller state
217 *
218 * @NVME_CTRL_NEW:		New controller just allocated, initial state
219 * @NVME_CTRL_LIVE:		Controller is connected and I/O capable
220 * @NVME_CTRL_RESETTING:	Controller is resetting (or scheduled reset)
221 * @NVME_CTRL_CONNECTING:	Controller is disconnected, now connecting the
222 *				transport
223 * @NVME_CTRL_DELETING:		Controller is deleting (or scheduled deletion)
224 * @NVME_CTRL_DELETING_NOIO:	Controller is deleting and I/O is not
225 *				disabled/failed immediately. This state comes
226 * 				after all async event processing took place and
227 * 				before ns removal and the controller deletion
228 * 				progress
229 * @NVME_CTRL_DEAD:		Controller is non-present/unresponsive during
230 *				shutdown or removal. In this case we forcibly
231 *				kill all inflight I/O as they have no chance to
232 *				complete
233 */
234enum nvme_ctrl_state {
235	NVME_CTRL_NEW,
236	NVME_CTRL_LIVE,
237	NVME_CTRL_RESETTING,
238	NVME_CTRL_CONNECTING,
239	NVME_CTRL_DELETING,
240	NVME_CTRL_DELETING_NOIO,
241	NVME_CTRL_DEAD,
242};
243
244struct nvme_fault_inject {
245#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
246	struct fault_attr attr;
247	struct dentry *parent;
248	bool dont_retry;	/* DNR, do not retry */
249	u16 status;		/* status code */
250#endif
251};
252
253enum nvme_ctrl_flags {
254	NVME_CTRL_FAILFAST_EXPIRED	= 0,
255	NVME_CTRL_ADMIN_Q_STOPPED	= 1,
256	NVME_CTRL_STARTED_ONCE		= 2,
257	NVME_CTRL_STOPPED		= 3,
258	NVME_CTRL_SKIP_ID_CNS_CS	= 4,
259	NVME_CTRL_DIRTY_CAPABILITY	= 5,
260	NVME_CTRL_FROZEN		= 6,
261};
262
263struct nvme_ctrl {
264	bool comp_seen;
265	bool identified;
266	bool passthru_err_log_enabled;
267	enum nvme_ctrl_state state;
268	spinlock_t lock;
269	struct mutex scan_lock;
270	const struct nvme_ctrl_ops *ops;
271	struct request_queue *admin_q;
272	struct request_queue *connect_q;
273	struct request_queue *fabrics_q;
274	struct device *dev;
275	int instance;
276	int numa_node;
277	struct blk_mq_tag_set *tagset;
278	struct blk_mq_tag_set *admin_tagset;
279	struct list_head namespaces;
280	struct rw_semaphore namespaces_rwsem;
281	struct device ctrl_device;
282	struct device *device;	/* char device */
283#ifdef CONFIG_NVME_HWMON
284	struct device *hwmon_device;
285#endif
286	struct cdev cdev;
287	struct work_struct reset_work;
288	struct work_struct delete_work;
289	wait_queue_head_t state_wq;
290
291	struct nvme_subsystem *subsys;
292	struct list_head subsys_entry;
293
294	struct opal_dev *opal_dev;
295
296	char name[12];
297	u16 cntlid;
298
299	u16 mtfa;
300	u32 ctrl_config;
301	u32 queue_count;
302
303	u64 cap;
304	u32 max_hw_sectors;
305	u32 max_segments;
306	u32 max_integrity_segments;
307	u32 max_zeroes_sectors;
308#ifdef CONFIG_BLK_DEV_ZONED
309	u32 max_zone_append;
310#endif
311	u16 crdt[3];
312	u16 oncs;
313	u8 dmrl;
314	u32 dmrsl;
315	u16 oacs;
316	u16 sqsize;
317	u32 max_namespaces;
318	atomic_t abort_limit;
319	u8 vwc;
320	u32 vs;
321	u32 sgls;
322	u16 kas;
323	u8 npss;
324	u8 apsta;
325	u16 wctemp;
326	u16 cctemp;
327	u32 oaes;
328	u32 aen_result;
329	u32 ctratt;
330	unsigned int shutdown_timeout;
331	unsigned int kato;
332	bool subsystem;
333	unsigned long quirks;
334	struct nvme_id_power_state psd[32];
335	struct nvme_effects_log *effects;
336	struct xarray cels;
337	struct work_struct scan_work;
338	struct work_struct async_event_work;
339	struct delayed_work ka_work;
340	struct delayed_work failfast_work;
341	struct nvme_command ka_cmd;
342	unsigned long ka_last_check_time;
343	struct work_struct fw_act_work;
344	unsigned long events;
345
346#ifdef CONFIG_NVME_MULTIPATH
347	/* asymmetric namespace access: */
348	u8 anacap;
349	u8 anatt;
350	u32 anagrpmax;
351	u32 nanagrpid;
352	struct mutex ana_lock;
353	struct nvme_ana_rsp_hdr *ana_log_buf;
354	size_t ana_log_size;
355	struct timer_list anatt_timer;
356	struct work_struct ana_work;
357#endif
358
359#ifdef CONFIG_NVME_HOST_AUTH
360	struct work_struct dhchap_auth_work;
361	struct mutex dhchap_auth_mutex;
362	struct nvme_dhchap_queue_context *dhchap_ctxs;
363	struct nvme_dhchap_key *host_key;
364	struct nvme_dhchap_key *ctrl_key;
365	u16 transaction;
366#endif
367	struct key *tls_key;
368
369	/* Power saving configuration */
370	u64 ps_max_latency_us;
371	bool apst_enabled;
372
373	/* PCIe only: */
374	u16 hmmaxd;
375	u32 hmpre;
376	u32 hmmin;
377	u32 hmminds;
378
379	/* Fabrics only */
380	u32 ioccsz;
381	u32 iorcsz;
382	u16 icdoff;
383	u16 maxcmd;
384	int nr_reconnects;
385	unsigned long flags;
386	struct nvmf_ctrl_options *opts;
387
388	struct page *discard_page;
389	unsigned long discard_page_busy;
390
391	struct nvme_fault_inject fault_inject;
392
393	enum nvme_ctrl_type cntrltype;
394	enum nvme_dctype dctype;
395};
396
397static inline enum nvme_ctrl_state nvme_ctrl_state(struct nvme_ctrl *ctrl)
398{
399	return READ_ONCE(ctrl->state);
400}
401
402enum nvme_iopolicy {
403	NVME_IOPOLICY_NUMA,
404	NVME_IOPOLICY_RR,
405};
406
407struct nvme_subsystem {
408	int			instance;
409	struct device		dev;
410	/*
411	 * Because we unregister the device on the last put we need
412	 * a separate refcount.
413	 */
414	struct kref		ref;
415	struct list_head	entry;
416	struct mutex		lock;
417	struct list_head	ctrls;
418	struct list_head	nsheads;
419	char			subnqn[NVMF_NQN_SIZE];
420	char			serial[20];
421	char			model[40];
422	char			firmware_rev[8];
423	u8			cmic;
424	enum nvme_subsys_type	subtype;
425	u16			vendor_id;
426	u16			awupf;	/* 0's based awupf value. */
427	struct ida		ns_ida;
428#ifdef CONFIG_NVME_MULTIPATH
429	enum nvme_iopolicy	iopolicy;
430#endif
431};
432
433/*
434 * Container structure for uniqueue namespace identifiers.
435 */
436struct nvme_ns_ids {
437	u8	eui64[8];
438	u8	nguid[16];
439	uuid_t	uuid;
440	u8	csi;
441};
442
443/*
444 * Anchor structure for namespaces.  There is one for each namespace in a
445 * NVMe subsystem that any of our controllers can see, and the namespace
446 * structure for each controller is chained of it.  For private namespaces
447 * there is a 1:1 relation to our namespace structures, that is ->list
448 * only ever has a single entry for private namespaces.
449 */
450struct nvme_ns_head {
451	struct list_head	list;
452	struct srcu_struct      srcu;
453	struct nvme_subsystem	*subsys;
454	struct nvme_ns_ids	ids;
455	struct list_head	entry;
456	struct kref		ref;
457	bool			shared;
458	bool			passthru_err_log_enabled;
459	int			instance;
460	struct nvme_effects_log *effects;
461	u64			nuse;
462	unsigned		ns_id;
463	int			lba_shift;
464	u16			ms;
465	u16			pi_size;
466	u8			pi_type;
467	u8			pi_offset;
468	u8			guard_type;
469	u16			sgs;
470	u32			sws;
471#ifdef CONFIG_BLK_DEV_ZONED
472	u64			zsze;
473#endif
474	unsigned long		features;
475
476	struct ratelimit_state	rs_nuse;
477
478	struct cdev		cdev;
479	struct device		cdev_device;
480
481	struct gendisk		*disk;
482#ifdef CONFIG_NVME_MULTIPATH
483	struct bio_list		requeue_list;
484	spinlock_t		requeue_lock;
485	struct work_struct	requeue_work;
486	struct mutex		lock;
487	unsigned long		flags;
488#define NVME_NSHEAD_DISK_LIVE	0
489	struct nvme_ns __rcu	*current_path[];
490#endif
491};
492
493static inline bool nvme_ns_head_multipath(struct nvme_ns_head *head)
494{
495	return IS_ENABLED(CONFIG_NVME_MULTIPATH) && head->disk;
496}
497
498enum nvme_ns_features {
499	NVME_NS_EXT_LBAS = 1 << 0, /* support extended LBA format */
500	NVME_NS_METADATA_SUPPORTED = 1 << 1, /* support getting generated md */
501	NVME_NS_DEAC,		/* DEAC bit in Write Zeores supported */
502};
503
504struct nvme_ns {
505	struct list_head list;
506
507	struct nvme_ctrl *ctrl;
508	struct request_queue *queue;
509	struct gendisk *disk;
510#ifdef CONFIG_NVME_MULTIPATH
511	enum nvme_ana_state ana_state;
512	u32 ana_grpid;
513#endif
514	struct list_head siblings;
515	struct kref kref;
516	struct nvme_ns_head *head;
517
518	unsigned long flags;
519#define NVME_NS_REMOVING	0
520#define NVME_NS_ANA_PENDING	2
521#define NVME_NS_FORCE_RO	3
522#define NVME_NS_READY		4
523
524	struct cdev		cdev;
525	struct device		cdev_device;
526
527	struct nvme_fault_inject fault_inject;
528};
529
530/* NVMe ns supports metadata actions by the controller (generate/strip) */
531static inline bool nvme_ns_has_pi(struct nvme_ns_head *head)
532{
533	return head->pi_type && head->ms == head->pi_size;
534}
535
536struct nvme_ctrl_ops {
537	const char *name;
538	struct module *module;
539	unsigned int flags;
540#define NVME_F_FABRICS			(1 << 0)
541#define NVME_F_METADATA_SUPPORTED	(1 << 1)
542#define NVME_F_BLOCKING			(1 << 2)
543
544	const struct attribute_group **dev_attr_groups;
545	int (*reg_read32)(struct nvme_ctrl *ctrl, u32 off, u32 *val);
546	int (*reg_write32)(struct nvme_ctrl *ctrl, u32 off, u32 val);
547	int (*reg_read64)(struct nvme_ctrl *ctrl, u32 off, u64 *val);
548	void (*free_ctrl)(struct nvme_ctrl *ctrl);
549	void (*submit_async_event)(struct nvme_ctrl *ctrl);
550	void (*delete_ctrl)(struct nvme_ctrl *ctrl);
551	void (*stop_ctrl)(struct nvme_ctrl *ctrl);
552	int (*get_address)(struct nvme_ctrl *ctrl, char *buf, int size);
553	void (*print_device_info)(struct nvme_ctrl *ctrl);
554	bool (*supports_pci_p2pdma)(struct nvme_ctrl *ctrl);
555};
556
557/*
558 * nvme command_id is constructed as such:
559 * | xxxx | xxxxxxxxxxxx |
560 *   gen    request tag
561 */
562#define nvme_genctr_mask(gen)			(gen & 0xf)
563#define nvme_cid_install_genctr(gen)		(nvme_genctr_mask(gen) << 12)
564#define nvme_genctr_from_cid(cid)		((cid & 0xf000) >> 12)
565#define nvme_tag_from_cid(cid)			(cid & 0xfff)
566
567static inline u16 nvme_cid(struct request *rq)
568{
569	return nvme_cid_install_genctr(nvme_req(rq)->genctr) | rq->tag;
570}
571
572static inline struct request *nvme_find_rq(struct blk_mq_tags *tags,
573		u16 command_id)
574{
575	u8 genctr = nvme_genctr_from_cid(command_id);
576	u16 tag = nvme_tag_from_cid(command_id);
577	struct request *rq;
578
579	rq = blk_mq_tag_to_rq(tags, tag);
580	if (unlikely(!rq)) {
581		pr_err("could not locate request for tag %#x\n",
582			tag);
583		return NULL;
584	}
585	if (unlikely(nvme_genctr_mask(nvme_req(rq)->genctr) != genctr)) {
586		dev_err(nvme_req(rq)->ctrl->device,
587			"request %#x genctr mismatch (got %#x expected %#x)\n",
588			tag, genctr, nvme_genctr_mask(nvme_req(rq)->genctr));
589		return NULL;
590	}
591	return rq;
592}
593
594static inline struct request *nvme_cid_to_rq(struct blk_mq_tags *tags,
595                u16 command_id)
596{
597	return blk_mq_tag_to_rq(tags, nvme_tag_from_cid(command_id));
598}
599
600/*
601 * Return the length of the string without the space padding
602 */
603static inline int nvme_strlen(char *s, int len)
604{
605	while (s[len - 1] == ' ')
606		len--;
607	return len;
608}
609
610static inline void nvme_print_device_info(struct nvme_ctrl *ctrl)
611{
612	struct nvme_subsystem *subsys = ctrl->subsys;
613
614	if (ctrl->ops->print_device_info) {
615		ctrl->ops->print_device_info(ctrl);
616		return;
617	}
618
619	dev_err(ctrl->device,
620		"VID:%04x model:%.*s firmware:%.*s\n", subsys->vendor_id,
621		nvme_strlen(subsys->model, sizeof(subsys->model)),
622		subsys->model, nvme_strlen(subsys->firmware_rev,
623					   sizeof(subsys->firmware_rev)),
624		subsys->firmware_rev);
625}
626
627#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
628void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
629			    const char *dev_name);
630void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inject);
631void nvme_should_fail(struct request *req);
632#else
633static inline void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
634					  const char *dev_name)
635{
636}
637static inline void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inj)
638{
639}
640static inline void nvme_should_fail(struct request *req) {}
641#endif
642
643bool nvme_wait_reset(struct nvme_ctrl *ctrl);
644int nvme_try_sched_reset(struct nvme_ctrl *ctrl);
645
646static inline int nvme_reset_subsystem(struct nvme_ctrl *ctrl)
647{
648	int ret;
649
650	if (!ctrl->subsystem)
651		return -ENOTTY;
652	if (!nvme_wait_reset(ctrl))
653		return -EBUSY;
654
655	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_NSSR, 0x4E564D65);
656	if (ret)
657		return ret;
658
659	return nvme_try_sched_reset(ctrl);
660}
661
662/*
663 * Convert a 512B sector number to a device logical block number.
664 */
665static inline u64 nvme_sect_to_lba(struct nvme_ns_head *head, sector_t sector)
666{
667	return sector >> (head->lba_shift - SECTOR_SHIFT);
668}
669
670/*
671 * Convert a device logical block number to a 512B sector number.
672 */
673static inline sector_t nvme_lba_to_sect(struct nvme_ns_head *head, u64 lba)
674{
675	return lba << (head->lba_shift - SECTOR_SHIFT);
676}
677
678/*
679 * Convert byte length to nvme's 0-based num dwords
680 */
681static inline u32 nvme_bytes_to_numd(size_t len)
682{
683	return (len >> 2) - 1;
684}
685
686static inline bool nvme_is_ana_error(u16 status)
687{
688	switch (status & 0x7ff) {
689	case NVME_SC_ANA_TRANSITION:
690	case NVME_SC_ANA_INACCESSIBLE:
691	case NVME_SC_ANA_PERSISTENT_LOSS:
692		return true;
693	default:
694		return false;
695	}
696}
697
698static inline bool nvme_is_path_error(u16 status)
699{
700	/* check for a status code type of 'path related status' */
701	return (status & 0x700) == 0x300;
702}
703
704/*
705 * Fill in the status and result information from the CQE, and then figure out
706 * if blk-mq will need to use IPI magic to complete the request, and if yes do
707 * so.  If not let the caller complete the request without an indirect function
708 * call.
709 */
710static inline bool nvme_try_complete_req(struct request *req, __le16 status,
711		union nvme_result result)
712{
713	struct nvme_request *rq = nvme_req(req);
714	struct nvme_ctrl *ctrl = rq->ctrl;
715
716	if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
717		rq->genctr++;
718
719	rq->status = le16_to_cpu(status) >> 1;
720	rq->result = result;
721	/* inject error when permitted by fault injection framework */
722	nvme_should_fail(req);
723	if (unlikely(blk_should_fake_timeout(req->q)))
724		return true;
725	return blk_mq_complete_request_remote(req);
726}
727
728static inline void nvme_get_ctrl(struct nvme_ctrl *ctrl)
729{
730	get_device(ctrl->device);
731}
732
733static inline void nvme_put_ctrl(struct nvme_ctrl *ctrl)
734{
735	put_device(ctrl->device);
736}
737
738static inline bool nvme_is_aen_req(u16 qid, __u16 command_id)
739{
740	return !qid &&
741		nvme_tag_from_cid(command_id) >= NVME_AQ_BLK_MQ_DEPTH;
742}
743
744void nvme_complete_rq(struct request *req);
745void nvme_complete_batch_req(struct request *req);
746
747static __always_inline void nvme_complete_batch(struct io_comp_batch *iob,
748						void (*fn)(struct request *rq))
749{
750	struct request *req;
751
752	rq_list_for_each(&iob->req_list, req) {
753		fn(req);
754		nvme_complete_batch_req(req);
755	}
756	blk_mq_end_request_batch(iob);
757}
758
759blk_status_t nvme_host_path_error(struct request *req);
760bool nvme_cancel_request(struct request *req, void *data);
761void nvme_cancel_tagset(struct nvme_ctrl *ctrl);
762void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl);
763bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
764		enum nvme_ctrl_state new_state);
765int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown);
766int nvme_enable_ctrl(struct nvme_ctrl *ctrl);
767int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
768		const struct nvme_ctrl_ops *ops, unsigned long quirks);
769void nvme_uninit_ctrl(struct nvme_ctrl *ctrl);
770void nvme_start_ctrl(struct nvme_ctrl *ctrl);
771void nvme_stop_ctrl(struct nvme_ctrl *ctrl);
772int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended);
773int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
774		const struct blk_mq_ops *ops, unsigned int cmd_size);
775void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl);
776int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
777		const struct blk_mq_ops *ops, unsigned int nr_maps,
778		unsigned int cmd_size);
779void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl);
780
781void nvme_remove_namespaces(struct nvme_ctrl *ctrl);
782
783void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
784		volatile union nvme_result *res);
785
786void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl);
787void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl);
788void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl);
789void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl);
790void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl);
791void nvme_sync_queues(struct nvme_ctrl *ctrl);
792void nvme_sync_io_queues(struct nvme_ctrl *ctrl);
793void nvme_unfreeze(struct nvme_ctrl *ctrl);
794void nvme_wait_freeze(struct nvme_ctrl *ctrl);
795int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout);
796void nvme_start_freeze(struct nvme_ctrl *ctrl);
797
798static inline enum req_op nvme_req_op(struct nvme_command *cmd)
799{
800	return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
801}
802
803#define NVME_QID_ANY -1
804void nvme_init_request(struct request *req, struct nvme_command *cmd);
805void nvme_cleanup_cmd(struct request *req);
806blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req);
807blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
808		struct request *req);
809bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
810		bool queue_live, enum nvme_ctrl_state state);
811
812static inline bool nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
813		bool queue_live)
814{
815	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
816
817	if (likely(state == NVME_CTRL_LIVE))
818		return true;
819	if (ctrl->ops->flags & NVME_F_FABRICS && state == NVME_CTRL_DELETING)
820		return queue_live;
821	return __nvme_check_ready(ctrl, rq, queue_live, state);
822}
823
824/*
825 * NSID shall be unique for all shared namespaces, or if at least one of the
826 * following conditions is met:
827 *   1. Namespace Management is supported by the controller
828 *   2. ANA is supported by the controller
829 *   3. NVM Set are supported by the controller
830 *
831 * In other case, private namespace are not required to report a unique NSID.
832 */
833static inline bool nvme_is_unique_nsid(struct nvme_ctrl *ctrl,
834		struct nvme_ns_head *head)
835{
836	return head->shared ||
837		(ctrl->oacs & NVME_CTRL_OACS_NS_MNGT_SUPP) ||
838		(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA) ||
839		(ctrl->ctratt & NVME_CTRL_CTRATT_NVM_SETS);
840}
841
842/*
843 * Flags for __nvme_submit_sync_cmd()
844 */
845typedef __u32 __bitwise nvme_submit_flags_t;
846
847enum {
848	/* Insert request at the head of the queue */
849	NVME_SUBMIT_AT_HEAD  = (__force nvme_submit_flags_t)(1 << 0),
850	/* Set BLK_MQ_REQ_NOWAIT when allocating request */
851	NVME_SUBMIT_NOWAIT = (__force nvme_submit_flags_t)(1 << 1),
852	/* Set BLK_MQ_REQ_RESERVED when allocating request */
853	NVME_SUBMIT_RESERVED = (__force nvme_submit_flags_t)(1 << 2),
854	/* Retry command when NVME_SC_DNR is not set in the result */
855	NVME_SUBMIT_RETRY = (__force nvme_submit_flags_t)(1 << 3),
856};
857
858int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
859		void *buf, unsigned bufflen);
860int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
861		union nvme_result *result, void *buffer, unsigned bufflen,
862		int qid, nvme_submit_flags_t flags);
863int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
864		      unsigned int dword11, void *buffer, size_t buflen,
865		      u32 *result);
866int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
867		      unsigned int dword11, void *buffer, size_t buflen,
868		      u32 *result);
869int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count);
870void nvme_stop_keep_alive(struct nvme_ctrl *ctrl);
871int nvme_reset_ctrl(struct nvme_ctrl *ctrl);
872int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl);
873int nvme_delete_ctrl(struct nvme_ctrl *ctrl);
874void nvme_queue_scan(struct nvme_ctrl *ctrl);
875int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
876		void *log, size_t size, u64 offset);
877bool nvme_tryget_ns_head(struct nvme_ns_head *head);
878void nvme_put_ns_head(struct nvme_ns_head *head);
879int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
880		const struct file_operations *fops, struct module *owner);
881void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device);
882int nvme_ioctl(struct block_device *bdev, blk_mode_t mode,
883		unsigned int cmd, unsigned long arg);
884long nvme_ns_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
885int nvme_ns_head_ioctl(struct block_device *bdev, blk_mode_t mode,
886		unsigned int cmd, unsigned long arg);
887long nvme_ns_head_chr_ioctl(struct file *file, unsigned int cmd,
888		unsigned long arg);
889long nvme_dev_ioctl(struct file *file, unsigned int cmd,
890		unsigned long arg);
891int nvme_ns_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd,
892		struct io_comp_batch *iob, unsigned int poll_flags);
893int nvme_ns_chr_uring_cmd(struct io_uring_cmd *ioucmd,
894		unsigned int issue_flags);
895int nvme_ns_head_chr_uring_cmd(struct io_uring_cmd *ioucmd,
896		unsigned int issue_flags);
897int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
898		struct nvme_id_ns **id);
899int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo);
900int nvme_dev_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
901
902extern const struct attribute_group *nvme_ns_attr_groups[];
903extern const struct pr_ops nvme_pr_ops;
904extern const struct block_device_operations nvme_ns_head_ops;
905extern const struct attribute_group nvme_dev_attrs_group;
906extern const struct attribute_group *nvme_subsys_attrs_groups[];
907extern const struct attribute_group *nvme_dev_attr_groups[];
908extern const struct block_device_operations nvme_bdev_ops;
909
910void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl);
911struct nvme_ns *nvme_find_path(struct nvme_ns_head *head);
912#ifdef CONFIG_NVME_MULTIPATH
913static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
914{
915	return ctrl->ana_log_buf != NULL;
916}
917
918void nvme_mpath_unfreeze(struct nvme_subsystem *subsys);
919void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys);
920void nvme_mpath_start_freeze(struct nvme_subsystem *subsys);
921void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys);
922void nvme_failover_req(struct request *req);
923void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl);
924int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,struct nvme_ns_head *head);
925void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid);
926void nvme_mpath_remove_disk(struct nvme_ns_head *head);
927int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id);
928void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl);
929void nvme_mpath_update(struct nvme_ctrl *ctrl);
930void nvme_mpath_uninit(struct nvme_ctrl *ctrl);
931void nvme_mpath_stop(struct nvme_ctrl *ctrl);
932bool nvme_mpath_clear_current_path(struct nvme_ns *ns);
933void nvme_mpath_revalidate_paths(struct nvme_ns *ns);
934void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl);
935void nvme_mpath_shutdown_disk(struct nvme_ns_head *head);
936void nvme_mpath_start_request(struct request *rq);
937void nvme_mpath_end_request(struct request *rq);
938
939static inline void nvme_trace_bio_complete(struct request *req)
940{
941	struct nvme_ns *ns = req->q->queuedata;
942
943	if ((req->cmd_flags & REQ_NVME_MPATH) && req->bio)
944		trace_block_bio_complete(ns->head->disk->queue, req->bio);
945}
946
947extern bool multipath;
948extern struct device_attribute dev_attr_ana_grpid;
949extern struct device_attribute dev_attr_ana_state;
950extern struct device_attribute subsys_attr_iopolicy;
951
952static inline bool nvme_disk_is_ns_head(struct gendisk *disk)
953{
954	return disk->fops == &nvme_ns_head_ops;
955}
956#else
957#define multipath false
958static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
959{
960	return false;
961}
962static inline void nvme_failover_req(struct request *req)
963{
964}
965static inline void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
966{
967}
968static inline int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,
969		struct nvme_ns_head *head)
970{
971	return 0;
972}
973static inline void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
974{
975}
976static inline void nvme_mpath_remove_disk(struct nvme_ns_head *head)
977{
978}
979static inline bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
980{
981	return false;
982}
983static inline void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
984{
985}
986static inline void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
987{
988}
989static inline void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
990{
991}
992static inline void nvme_trace_bio_complete(struct request *req)
993{
994}
995static inline void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
996{
997}
998static inline int nvme_mpath_init_identify(struct nvme_ctrl *ctrl,
999		struct nvme_id_ctrl *id)
1000{
1001	if (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA)
1002		dev_warn(ctrl->device,
1003"Please enable CONFIG_NVME_MULTIPATH for full support of multi-port devices.\n");
1004	return 0;
1005}
1006static inline void nvme_mpath_update(struct nvme_ctrl *ctrl)
1007{
1008}
1009static inline void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
1010{
1011}
1012static inline void nvme_mpath_stop(struct nvme_ctrl *ctrl)
1013{
1014}
1015static inline void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
1016{
1017}
1018static inline void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
1019{
1020}
1021static inline void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
1022{
1023}
1024static inline void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
1025{
1026}
1027static inline void nvme_mpath_start_request(struct request *rq)
1028{
1029}
1030static inline void nvme_mpath_end_request(struct request *rq)
1031{
1032}
1033static inline bool nvme_disk_is_ns_head(struct gendisk *disk)
1034{
1035	return false;
1036}
1037#endif /* CONFIG_NVME_MULTIPATH */
1038
1039struct nvme_zone_info {
1040	u64 zone_size;
1041	unsigned int max_open_zones;
1042	unsigned int max_active_zones;
1043};
1044
1045int nvme_ns_report_zones(struct nvme_ns *ns, sector_t sector,
1046		unsigned int nr_zones, report_zones_cb cb, void *data);
1047int nvme_query_zone_info(struct nvme_ns *ns, unsigned lbaf,
1048		struct nvme_zone_info *zi);
1049void nvme_update_zone_info(struct nvme_ns *ns, struct queue_limits *lim,
1050		struct nvme_zone_info *zi);
1051#ifdef CONFIG_BLK_DEV_ZONED
1052blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns, struct request *req,
1053				       struct nvme_command *cmnd,
1054				       enum nvme_zone_mgmt_action action);
1055#else
1056static inline blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns,
1057		struct request *req, struct nvme_command *cmnd,
1058		enum nvme_zone_mgmt_action action)
1059{
1060	return BLK_STS_NOTSUPP;
1061}
1062#endif
1063
1064static inline struct nvme_ns *nvme_get_ns_from_dev(struct device *dev)
1065{
1066	struct gendisk *disk = dev_to_disk(dev);
1067
1068	WARN_ON(nvme_disk_is_ns_head(disk));
1069	return disk->private_data;
1070}
1071
1072#ifdef CONFIG_NVME_HWMON
1073int nvme_hwmon_init(struct nvme_ctrl *ctrl);
1074void nvme_hwmon_exit(struct nvme_ctrl *ctrl);
1075#else
1076static inline int nvme_hwmon_init(struct nvme_ctrl *ctrl)
1077{
1078	return 0;
1079}
1080
1081static inline void nvme_hwmon_exit(struct nvme_ctrl *ctrl)
1082{
1083}
1084#endif
1085
1086static inline void nvme_start_request(struct request *rq)
1087{
1088	if (rq->cmd_flags & REQ_NVME_MPATH)
1089		nvme_mpath_start_request(rq);
1090	blk_mq_start_request(rq);
1091}
1092
1093static inline bool nvme_ctrl_sgl_supported(struct nvme_ctrl *ctrl)
1094{
1095	return ctrl->sgls & ((1 << 0) | (1 << 1));
1096}
1097
1098#ifdef CONFIG_NVME_HOST_AUTH
1099int __init nvme_init_auth(void);
1100void __exit nvme_exit_auth(void);
1101int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl);
1102void nvme_auth_stop(struct nvme_ctrl *ctrl);
1103int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid);
1104int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid);
1105void nvme_auth_free(struct nvme_ctrl *ctrl);
1106#else
1107static inline int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl)
1108{
1109	return 0;
1110}
1111static inline int __init nvme_init_auth(void)
1112{
1113	return 0;
1114}
1115static inline void __exit nvme_exit_auth(void)
1116{
1117}
1118static inline void nvme_auth_stop(struct nvme_ctrl *ctrl) {};
1119static inline int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid)
1120{
1121	return -EPROTONOSUPPORT;
1122}
1123static inline int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid)
1124{
1125	return NVME_SC_AUTH_REQUIRED;
1126}
1127static inline void nvme_auth_free(struct nvme_ctrl *ctrl) {};
1128#endif
1129
1130u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1131			 u8 opcode);
1132u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode);
1133int nvme_execute_rq(struct request *rq, bool at_head);
1134void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1135		       struct nvme_command *cmd, int status);
1136struct nvme_ctrl *nvme_ctrl_from_file(struct file *file);
1137struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid);
1138void nvme_put_ns(struct nvme_ns *ns);
1139
1140static inline bool nvme_multi_css(struct nvme_ctrl *ctrl)
1141{
1142	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1143}
1144
1145#ifdef CONFIG_NVME_VERBOSE_ERRORS
1146const char *nvme_get_error_status_str(u16 status);
1147const char *nvme_get_opcode_str(u8 opcode);
1148const char *nvme_get_admin_opcode_str(u8 opcode);
1149const char *nvme_get_fabrics_opcode_str(u8 opcode);
1150#else /* CONFIG_NVME_VERBOSE_ERRORS */
1151static inline const char *nvme_get_error_status_str(u16 status)
1152{
1153	return "I/O Error";
1154}
1155static inline const char *nvme_get_opcode_str(u8 opcode)
1156{
1157	return "I/O Cmd";
1158}
1159static inline const char *nvme_get_admin_opcode_str(u8 opcode)
1160{
1161	return "Admin Cmd";
1162}
1163
1164static inline const char *nvme_get_fabrics_opcode_str(u8 opcode)
1165{
1166	return "Fabrics Cmd";
1167}
1168#endif /* CONFIG_NVME_VERBOSE_ERRORS */
1169
1170static inline const char *nvme_opcode_str(int qid, u8 opcode)
1171{
1172	return qid ? nvme_get_opcode_str(opcode) :
1173		nvme_get_admin_opcode_str(opcode);
1174}
1175
1176static inline const char *nvme_fabrics_opcode_str(
1177		int qid, const struct nvme_command *cmd)
1178{
1179	if (nvme_is_fabrics(cmd))
1180		return nvme_get_fabrics_opcode_str(cmd->fabrics.fctype);
1181
1182	return nvme_opcode_str(qid, cmd->common.opcode);
1183}
1184#endif /* _NVME_H */
1185