1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2017-2018 Christoph Hellwig.
4 */
5
6#include <linux/backing-dev.h>
7#include <linux/moduleparam.h>
8#include <linux/vmalloc.h>
9#include <trace/events/block.h>
10#include "nvme.h"
11
12bool multipath = true;
13module_param(multipath, bool, 0444);
14MODULE_PARM_DESC(multipath,
15	"turn on native support for multiple controllers per subsystem");
16
17static const char *nvme_iopolicy_names[] = {
18	[NVME_IOPOLICY_NUMA]	= "numa",
19	[NVME_IOPOLICY_RR]	= "round-robin",
20};
21
22static int iopolicy = NVME_IOPOLICY_NUMA;
23
24static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
25{
26	if (!val)
27		return -EINVAL;
28	if (!strncmp(val, "numa", 4))
29		iopolicy = NVME_IOPOLICY_NUMA;
30	else if (!strncmp(val, "round-robin", 11))
31		iopolicy = NVME_IOPOLICY_RR;
32	else
33		return -EINVAL;
34
35	return 0;
36}
37
38static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
39{
40	return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
41}
42
43module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
44	&iopolicy, 0644);
45MODULE_PARM_DESC(iopolicy,
46	"Default multipath I/O policy; 'numa' (default) or 'round-robin'");
47
48void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
49{
50	subsys->iopolicy = iopolicy;
51}
52
53void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
54{
55	struct nvme_ns_head *h;
56
57	lockdep_assert_held(&subsys->lock);
58	list_for_each_entry(h, &subsys->nsheads, entry)
59		if (h->disk)
60			blk_mq_unfreeze_queue(h->disk->queue);
61}
62
63void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
64{
65	struct nvme_ns_head *h;
66
67	lockdep_assert_held(&subsys->lock);
68	list_for_each_entry(h, &subsys->nsheads, entry)
69		if (h->disk)
70			blk_mq_freeze_queue_wait(h->disk->queue);
71}
72
73void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
74{
75	struct nvme_ns_head *h;
76
77	lockdep_assert_held(&subsys->lock);
78	list_for_each_entry(h, &subsys->nsheads, entry)
79		if (h->disk)
80			blk_freeze_queue_start(h->disk->queue);
81}
82
83void nvme_failover_req(struct request *req)
84{
85	struct nvme_ns *ns = req->q->queuedata;
86	u16 status = nvme_req(req)->status & 0x7ff;
87	unsigned long flags;
88	struct bio *bio;
89
90	nvme_mpath_clear_current_path(ns);
91
92	/*
93	 * If we got back an ANA error, we know the controller is alive but not
94	 * ready to serve this namespace.  Kick of a re-read of the ANA
95	 * information page, and just try any other available path for now.
96	 */
97	if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
98		set_bit(NVME_NS_ANA_PENDING, &ns->flags);
99		queue_work(nvme_wq, &ns->ctrl->ana_work);
100	}
101
102	spin_lock_irqsave(&ns->head->requeue_lock, flags);
103	for (bio = req->bio; bio; bio = bio->bi_next) {
104		bio_set_dev(bio, ns->head->disk->part0);
105		if (bio->bi_opf & REQ_POLLED) {
106			bio->bi_opf &= ~REQ_POLLED;
107			bio->bi_cookie = BLK_QC_T_NONE;
108		}
109		/*
110		 * The alternate request queue that we may end up submitting
111		 * the bio to may be frozen temporarily, in this case REQ_NOWAIT
112		 * will fail the I/O immediately with EAGAIN to the issuer.
113		 * We are not in the issuer context which cannot block. Clear
114		 * the flag to avoid spurious EAGAIN I/O failures.
115		 */
116		bio->bi_opf &= ~REQ_NOWAIT;
117	}
118	blk_steal_bios(&ns->head->requeue_list, req);
119	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
120
121	blk_mq_end_request(req, 0);
122	kblockd_schedule_work(&ns->head->requeue_work);
123}
124
125void nvme_mpath_start_request(struct request *rq)
126{
127	struct nvme_ns *ns = rq->q->queuedata;
128	struct gendisk *disk = ns->head->disk;
129
130	if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
131		return;
132
133	nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
134	nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
135						      jiffies);
136}
137EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
138
139void nvme_mpath_end_request(struct request *rq)
140{
141	struct nvme_ns *ns = rq->q->queuedata;
142
143	if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
144		return;
145	bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
146			 blk_rq_bytes(rq) >> SECTOR_SHIFT,
147			 nvme_req(rq)->start_time);
148}
149
150void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
151{
152	struct nvme_ns *ns;
153
154	down_read(&ctrl->namespaces_rwsem);
155	list_for_each_entry(ns, &ctrl->namespaces, list) {
156		if (!ns->head->disk)
157			continue;
158		kblockd_schedule_work(&ns->head->requeue_work);
159		if (nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
160			disk_uevent(ns->head->disk, KOBJ_CHANGE);
161	}
162	up_read(&ctrl->namespaces_rwsem);
163}
164
165static const char *nvme_ana_state_names[] = {
166	[0]				= "invalid state",
167	[NVME_ANA_OPTIMIZED]		= "optimized",
168	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
169	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
170	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
171	[NVME_ANA_CHANGE]		= "change",
172};
173
174bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
175{
176	struct nvme_ns_head *head = ns->head;
177	bool changed = false;
178	int node;
179
180	if (!head)
181		goto out;
182
183	for_each_node(node) {
184		if (ns == rcu_access_pointer(head->current_path[node])) {
185			rcu_assign_pointer(head->current_path[node], NULL);
186			changed = true;
187		}
188	}
189out:
190	return changed;
191}
192
193void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
194{
195	struct nvme_ns *ns;
196
197	down_read(&ctrl->namespaces_rwsem);
198	list_for_each_entry(ns, &ctrl->namespaces, list) {
199		nvme_mpath_clear_current_path(ns);
200		kblockd_schedule_work(&ns->head->requeue_work);
201	}
202	up_read(&ctrl->namespaces_rwsem);
203}
204
205void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
206{
207	struct nvme_ns_head *head = ns->head;
208	sector_t capacity = get_capacity(head->disk);
209	int node;
210	int srcu_idx;
211
212	srcu_idx = srcu_read_lock(&head->srcu);
213	list_for_each_entry_rcu(ns, &head->list, siblings) {
214		if (capacity != get_capacity(ns->disk))
215			clear_bit(NVME_NS_READY, &ns->flags);
216	}
217	srcu_read_unlock(&head->srcu, srcu_idx);
218
219	for_each_node(node)
220		rcu_assign_pointer(head->current_path[node], NULL);
221	kblockd_schedule_work(&head->requeue_work);
222}
223
224static bool nvme_path_is_disabled(struct nvme_ns *ns)
225{
226	enum nvme_ctrl_state state = nvme_ctrl_state(ns->ctrl);
227
228	/*
229	 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
230	 * still be able to complete assuming that the controller is connected.
231	 * Otherwise it will fail immediately and return to the requeue list.
232	 */
233	if (state != NVME_CTRL_LIVE && state != NVME_CTRL_DELETING)
234		return true;
235	if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
236	    !test_bit(NVME_NS_READY, &ns->flags))
237		return true;
238	return false;
239}
240
241static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
242{
243	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
244	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
245
246	list_for_each_entry_rcu(ns, &head->list, siblings) {
247		if (nvme_path_is_disabled(ns))
248			continue;
249
250		if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
251			distance = node_distance(node, ns->ctrl->numa_node);
252		else
253			distance = LOCAL_DISTANCE;
254
255		switch (ns->ana_state) {
256		case NVME_ANA_OPTIMIZED:
257			if (distance < found_distance) {
258				found_distance = distance;
259				found = ns;
260			}
261			break;
262		case NVME_ANA_NONOPTIMIZED:
263			if (distance < fallback_distance) {
264				fallback_distance = distance;
265				fallback = ns;
266			}
267			break;
268		default:
269			break;
270		}
271	}
272
273	if (!found)
274		found = fallback;
275	if (found)
276		rcu_assign_pointer(head->current_path[node], found);
277	return found;
278}
279
280static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
281		struct nvme_ns *ns)
282{
283	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
284			siblings);
285	if (ns)
286		return ns;
287	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
288}
289
290static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
291		int node, struct nvme_ns *old)
292{
293	struct nvme_ns *ns, *found = NULL;
294
295	if (list_is_singular(&head->list)) {
296		if (nvme_path_is_disabled(old))
297			return NULL;
298		return old;
299	}
300
301	for (ns = nvme_next_ns(head, old);
302	     ns && ns != old;
303	     ns = nvme_next_ns(head, ns)) {
304		if (nvme_path_is_disabled(ns))
305			continue;
306
307		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
308			found = ns;
309			goto out;
310		}
311		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
312			found = ns;
313	}
314
315	/*
316	 * The loop above skips the current path for round-robin semantics.
317	 * Fall back to the current path if either:
318	 *  - no other optimized path found and current is optimized,
319	 *  - no other usable path found and current is usable.
320	 */
321	if (!nvme_path_is_disabled(old) &&
322	    (old->ana_state == NVME_ANA_OPTIMIZED ||
323	     (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
324		return old;
325
326	if (!found)
327		return NULL;
328out:
329	rcu_assign_pointer(head->current_path[node], found);
330	return found;
331}
332
333static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
334{
335	return nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE &&
336		ns->ana_state == NVME_ANA_OPTIMIZED;
337}
338
339inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
340{
341	int node = numa_node_id();
342	struct nvme_ns *ns;
343
344	ns = srcu_dereference(head->current_path[node], &head->srcu);
345	if (unlikely(!ns))
346		return __nvme_find_path(head, node);
347
348	if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
349		return nvme_round_robin_path(head, node, ns);
350	if (unlikely(!nvme_path_is_optimized(ns)))
351		return __nvme_find_path(head, node);
352	return ns;
353}
354
355static bool nvme_available_path(struct nvme_ns_head *head)
356{
357	struct nvme_ns *ns;
358
359	list_for_each_entry_rcu(ns, &head->list, siblings) {
360		if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
361			continue;
362		switch (nvme_ctrl_state(ns->ctrl)) {
363		case NVME_CTRL_LIVE:
364		case NVME_CTRL_RESETTING:
365		case NVME_CTRL_CONNECTING:
366			/* fallthru */
367			return true;
368		default:
369			break;
370		}
371	}
372	return false;
373}
374
375static void nvme_ns_head_submit_bio(struct bio *bio)
376{
377	struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
378	struct device *dev = disk_to_dev(head->disk);
379	struct nvme_ns *ns;
380	int srcu_idx;
381
382	/*
383	 * The namespace might be going away and the bio might be moved to a
384	 * different queue via blk_steal_bios(), so we need to use the bio_split
385	 * pool from the original queue to allocate the bvecs from.
386	 */
387	bio = bio_split_to_limits(bio);
388	if (!bio)
389		return;
390
391	srcu_idx = srcu_read_lock(&head->srcu);
392	ns = nvme_find_path(head);
393	if (likely(ns)) {
394		bio_set_dev(bio, ns->disk->part0);
395		bio->bi_opf |= REQ_NVME_MPATH;
396		trace_block_bio_remap(bio, disk_devt(ns->head->disk),
397				      bio->bi_iter.bi_sector);
398		submit_bio_noacct(bio);
399	} else if (nvme_available_path(head)) {
400		dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
401
402		spin_lock_irq(&head->requeue_lock);
403		bio_list_add(&head->requeue_list, bio);
404		spin_unlock_irq(&head->requeue_lock);
405	} else {
406		dev_warn_ratelimited(dev, "no available path - failing I/O\n");
407
408		bio_io_error(bio);
409	}
410
411	srcu_read_unlock(&head->srcu, srcu_idx);
412}
413
414static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
415{
416	if (!nvme_tryget_ns_head(disk->private_data))
417		return -ENXIO;
418	return 0;
419}
420
421static void nvme_ns_head_release(struct gendisk *disk)
422{
423	nvme_put_ns_head(disk->private_data);
424}
425
426#ifdef CONFIG_BLK_DEV_ZONED
427static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
428		unsigned int nr_zones, report_zones_cb cb, void *data)
429{
430	struct nvme_ns_head *head = disk->private_data;
431	struct nvme_ns *ns;
432	int srcu_idx, ret = -EWOULDBLOCK;
433
434	srcu_idx = srcu_read_lock(&head->srcu);
435	ns = nvme_find_path(head);
436	if (ns)
437		ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
438	srcu_read_unlock(&head->srcu, srcu_idx);
439	return ret;
440}
441#else
442#define nvme_ns_head_report_zones	NULL
443#endif /* CONFIG_BLK_DEV_ZONED */
444
445const struct block_device_operations nvme_ns_head_ops = {
446	.owner		= THIS_MODULE,
447	.submit_bio	= nvme_ns_head_submit_bio,
448	.open		= nvme_ns_head_open,
449	.release	= nvme_ns_head_release,
450	.ioctl		= nvme_ns_head_ioctl,
451	.compat_ioctl	= blkdev_compat_ptr_ioctl,
452	.getgeo		= nvme_getgeo,
453	.report_zones	= nvme_ns_head_report_zones,
454	.pr_ops		= &nvme_pr_ops,
455};
456
457static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
458{
459	return container_of(cdev, struct nvme_ns_head, cdev);
460}
461
462static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
463{
464	if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
465		return -ENXIO;
466	return 0;
467}
468
469static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
470{
471	nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
472	return 0;
473}
474
475static const struct file_operations nvme_ns_head_chr_fops = {
476	.owner		= THIS_MODULE,
477	.open		= nvme_ns_head_chr_open,
478	.release	= nvme_ns_head_chr_release,
479	.unlocked_ioctl	= nvme_ns_head_chr_ioctl,
480	.compat_ioctl	= compat_ptr_ioctl,
481	.uring_cmd	= nvme_ns_head_chr_uring_cmd,
482	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
483};
484
485static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
486{
487	int ret;
488
489	head->cdev_device.parent = &head->subsys->dev;
490	ret = dev_set_name(&head->cdev_device, "ng%dn%d",
491			   head->subsys->instance, head->instance);
492	if (ret)
493		return ret;
494	ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
495			    &nvme_ns_head_chr_fops, THIS_MODULE);
496	return ret;
497}
498
499static void nvme_requeue_work(struct work_struct *work)
500{
501	struct nvme_ns_head *head =
502		container_of(work, struct nvme_ns_head, requeue_work);
503	struct bio *bio, *next;
504
505	spin_lock_irq(&head->requeue_lock);
506	next = bio_list_get(&head->requeue_list);
507	spin_unlock_irq(&head->requeue_lock);
508
509	while ((bio = next) != NULL) {
510		next = bio->bi_next;
511		bio->bi_next = NULL;
512
513		submit_bio_noacct(bio);
514	}
515}
516
517int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
518{
519	struct queue_limits lim;
520	bool vwc = false;
521
522	mutex_init(&head->lock);
523	bio_list_init(&head->requeue_list);
524	spin_lock_init(&head->requeue_lock);
525	INIT_WORK(&head->requeue_work, nvme_requeue_work);
526
527	/*
528	 * Add a multipath node if the subsystems supports multiple controllers.
529	 * We also do this for private namespaces as the namespace sharing flag
530	 * could change after a rescan.
531	 */
532	if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
533	    !nvme_is_unique_nsid(ctrl, head) || !multipath)
534		return 0;
535
536	blk_set_stacking_limits(&lim);
537	lim.dma_alignment = 3;
538	if (head->ids.csi != NVME_CSI_ZNS)
539		lim.max_zone_append_sectors = 0;
540
541	head->disk = blk_alloc_disk(&lim, ctrl->numa_node);
542	if (IS_ERR(head->disk))
543		return PTR_ERR(head->disk);
544	head->disk->fops = &nvme_ns_head_ops;
545	head->disk->private_data = head;
546	sprintf(head->disk->disk_name, "nvme%dn%d",
547			ctrl->subsys->instance, head->instance);
548
549	blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
550	blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
551	blk_queue_flag_set(QUEUE_FLAG_IO_STAT, head->disk->queue);
552	/*
553	 * This assumes all controllers that refer to a namespace either
554	 * support poll queues or not.  That is not a strict guarantee,
555	 * but if the assumption is wrong the effect is only suboptimal
556	 * performance but not correctness problem.
557	 */
558	if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
559	    ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
560		blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
561
562	/* we need to propagate up the VMC settings */
563	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
564		vwc = true;
565	blk_queue_write_cache(head->disk->queue, vwc, vwc);
566	return 0;
567}
568
569static void nvme_mpath_set_live(struct nvme_ns *ns)
570{
571	struct nvme_ns_head *head = ns->head;
572	int rc;
573
574	if (!head->disk)
575		return;
576
577	/*
578	 * test_and_set_bit() is used because it is protecting against two nvme
579	 * paths simultaneously calling device_add_disk() on the same namespace
580	 * head.
581	 */
582	if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
583		rc = device_add_disk(&head->subsys->dev, head->disk,
584				     nvme_ns_attr_groups);
585		if (rc) {
586			clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
587			return;
588		}
589		nvme_add_ns_head_cdev(head);
590	}
591
592	mutex_lock(&head->lock);
593	if (nvme_path_is_optimized(ns)) {
594		int node, srcu_idx;
595
596		srcu_idx = srcu_read_lock(&head->srcu);
597		for_each_node(node)
598			__nvme_find_path(head, node);
599		srcu_read_unlock(&head->srcu, srcu_idx);
600	}
601	mutex_unlock(&head->lock);
602
603	synchronize_srcu(&head->srcu);
604	kblockd_schedule_work(&head->requeue_work);
605}
606
607static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
608		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
609			void *))
610{
611	void *base = ctrl->ana_log_buf;
612	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
613	int error, i;
614
615	lockdep_assert_held(&ctrl->ana_lock);
616
617	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
618		struct nvme_ana_group_desc *desc = base + offset;
619		u32 nr_nsids;
620		size_t nsid_buf_size;
621
622		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
623			return -EINVAL;
624
625		nr_nsids = le32_to_cpu(desc->nnsids);
626		nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
627
628		if (WARN_ON_ONCE(desc->grpid == 0))
629			return -EINVAL;
630		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
631			return -EINVAL;
632		if (WARN_ON_ONCE(desc->state == 0))
633			return -EINVAL;
634		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
635			return -EINVAL;
636
637		offset += sizeof(*desc);
638		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
639			return -EINVAL;
640
641		error = cb(ctrl, desc, data);
642		if (error)
643			return error;
644
645		offset += nsid_buf_size;
646	}
647
648	return 0;
649}
650
651static inline bool nvme_state_is_live(enum nvme_ana_state state)
652{
653	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
654}
655
656static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
657		struct nvme_ns *ns)
658{
659	ns->ana_grpid = le32_to_cpu(desc->grpid);
660	ns->ana_state = desc->state;
661	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
662	/*
663	 * nvme_mpath_set_live() will trigger I/O to the multipath path device
664	 * and in turn to this path device.  However we cannot accept this I/O
665	 * if the controller is not live.  This may deadlock if called from
666	 * nvme_mpath_init_identify() and the ctrl will never complete
667	 * initialization, preventing I/O from completing.  For this case we
668	 * will reprocess the ANA log page in nvme_mpath_update() once the
669	 * controller is ready.
670	 */
671	if (nvme_state_is_live(ns->ana_state) &&
672	    nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
673		nvme_mpath_set_live(ns);
674}
675
676static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
677		struct nvme_ana_group_desc *desc, void *data)
678{
679	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
680	unsigned *nr_change_groups = data;
681	struct nvme_ns *ns;
682
683	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
684			le32_to_cpu(desc->grpid),
685			nvme_ana_state_names[desc->state]);
686
687	if (desc->state == NVME_ANA_CHANGE)
688		(*nr_change_groups)++;
689
690	if (!nr_nsids)
691		return 0;
692
693	down_read(&ctrl->namespaces_rwsem);
694	list_for_each_entry(ns, &ctrl->namespaces, list) {
695		unsigned nsid;
696again:
697		nsid = le32_to_cpu(desc->nsids[n]);
698		if (ns->head->ns_id < nsid)
699			continue;
700		if (ns->head->ns_id == nsid)
701			nvme_update_ns_ana_state(desc, ns);
702		if (++n == nr_nsids)
703			break;
704		if (ns->head->ns_id > nsid)
705			goto again;
706	}
707	up_read(&ctrl->namespaces_rwsem);
708	return 0;
709}
710
711static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
712{
713	u32 nr_change_groups = 0;
714	int error;
715
716	mutex_lock(&ctrl->ana_lock);
717	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
718			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
719	if (error) {
720		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
721		goto out_unlock;
722	}
723
724	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
725			nvme_update_ana_state);
726	if (error)
727		goto out_unlock;
728
729	/*
730	 * In theory we should have an ANATT timer per group as they might enter
731	 * the change state at different times.  But that is a lot of overhead
732	 * just to protect against a target that keeps entering new changes
733	 * states while never finishing previous ones.  But we'll still
734	 * eventually time out once all groups are in change state, so this
735	 * isn't a big deal.
736	 *
737	 * We also double the ANATT value to provide some slack for transports
738	 * or AEN processing overhead.
739	 */
740	if (nr_change_groups)
741		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
742	else
743		del_timer_sync(&ctrl->anatt_timer);
744out_unlock:
745	mutex_unlock(&ctrl->ana_lock);
746	return error;
747}
748
749static void nvme_ana_work(struct work_struct *work)
750{
751	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
752
753	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
754		return;
755
756	nvme_read_ana_log(ctrl);
757}
758
759void nvme_mpath_update(struct nvme_ctrl *ctrl)
760{
761	u32 nr_change_groups = 0;
762
763	if (!ctrl->ana_log_buf)
764		return;
765
766	mutex_lock(&ctrl->ana_lock);
767	nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
768	mutex_unlock(&ctrl->ana_lock);
769}
770
771static void nvme_anatt_timeout(struct timer_list *t)
772{
773	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
774
775	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
776	nvme_reset_ctrl(ctrl);
777}
778
779void nvme_mpath_stop(struct nvme_ctrl *ctrl)
780{
781	if (!nvme_ctrl_use_ana(ctrl))
782		return;
783	del_timer_sync(&ctrl->anatt_timer);
784	cancel_work_sync(&ctrl->ana_work);
785}
786
787#define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
788	struct device_attribute subsys_attr_##_name =	\
789		__ATTR(_name, _mode, _show, _store)
790
791static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
792		struct device_attribute *attr, char *buf)
793{
794	struct nvme_subsystem *subsys =
795		container_of(dev, struct nvme_subsystem, dev);
796
797	return sysfs_emit(buf, "%s\n",
798			  nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
799}
800
801static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
802		struct device_attribute *attr, const char *buf, size_t count)
803{
804	struct nvme_subsystem *subsys =
805		container_of(dev, struct nvme_subsystem, dev);
806	int i;
807
808	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
809		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
810			WRITE_ONCE(subsys->iopolicy, i);
811			return count;
812		}
813	}
814
815	return -EINVAL;
816}
817SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
818		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
819
820static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
821		char *buf)
822{
823	return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
824}
825DEVICE_ATTR_RO(ana_grpid);
826
827static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
828		char *buf)
829{
830	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
831
832	return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
833}
834DEVICE_ATTR_RO(ana_state);
835
836static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
837		struct nvme_ana_group_desc *desc, void *data)
838{
839	struct nvme_ana_group_desc *dst = data;
840
841	if (desc->grpid != dst->grpid)
842		return 0;
843
844	*dst = *desc;
845	return -ENXIO; /* just break out of the loop */
846}
847
848void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
849{
850	if (nvme_ctrl_use_ana(ns->ctrl)) {
851		struct nvme_ana_group_desc desc = {
852			.grpid = anagrpid,
853			.state = 0,
854		};
855
856		mutex_lock(&ns->ctrl->ana_lock);
857		ns->ana_grpid = le32_to_cpu(anagrpid);
858		nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
859		mutex_unlock(&ns->ctrl->ana_lock);
860		if (desc.state) {
861			/* found the group desc: update */
862			nvme_update_ns_ana_state(&desc, ns);
863		} else {
864			/* group desc not found: trigger a re-read */
865			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
866			queue_work(nvme_wq, &ns->ctrl->ana_work);
867		}
868	} else {
869		ns->ana_state = NVME_ANA_OPTIMIZED;
870		nvme_mpath_set_live(ns);
871	}
872
873	if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
874		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
875				   ns->head->disk->queue);
876#ifdef CONFIG_BLK_DEV_ZONED
877	if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
878		ns->head->disk->nr_zones = ns->disk->nr_zones;
879#endif
880}
881
882void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
883{
884	if (!head->disk)
885		return;
886	kblockd_schedule_work(&head->requeue_work);
887	if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
888		nvme_cdev_del(&head->cdev, &head->cdev_device);
889		del_gendisk(head->disk);
890	}
891}
892
893void nvme_mpath_remove_disk(struct nvme_ns_head *head)
894{
895	if (!head->disk)
896		return;
897	/* make sure all pending bios are cleaned up */
898	kblockd_schedule_work(&head->requeue_work);
899	flush_work(&head->requeue_work);
900	put_disk(head->disk);
901}
902
903void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
904{
905	mutex_init(&ctrl->ana_lock);
906	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
907	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
908}
909
910int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
911{
912	size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
913	size_t ana_log_size;
914	int error = 0;
915
916	/* check if multipath is enabled and we have the capability */
917	if (!multipath || !ctrl->subsys ||
918	    !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
919		return 0;
920
921	if (!ctrl->max_namespaces ||
922	    ctrl->max_namespaces > le32_to_cpu(id->nn)) {
923		dev_err(ctrl->device,
924			"Invalid MNAN value %u\n", ctrl->max_namespaces);
925		return -EINVAL;
926	}
927
928	ctrl->anacap = id->anacap;
929	ctrl->anatt = id->anatt;
930	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
931	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
932
933	ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
934		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
935		ctrl->max_namespaces * sizeof(__le32);
936	if (ana_log_size > max_transfer_size) {
937		dev_err(ctrl->device,
938			"ANA log page size (%zd) larger than MDTS (%zd).\n",
939			ana_log_size, max_transfer_size);
940		dev_err(ctrl->device, "disabling ANA support.\n");
941		goto out_uninit;
942	}
943	if (ana_log_size > ctrl->ana_log_size) {
944		nvme_mpath_stop(ctrl);
945		nvme_mpath_uninit(ctrl);
946		ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
947		if (!ctrl->ana_log_buf)
948			return -ENOMEM;
949	}
950	ctrl->ana_log_size = ana_log_size;
951	error = nvme_read_ana_log(ctrl);
952	if (error)
953		goto out_uninit;
954	return 0;
955
956out_uninit:
957	nvme_mpath_uninit(ctrl);
958	return error;
959}
960
961void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
962{
963	kvfree(ctrl->ana_log_buf);
964	ctrl->ana_log_buf = NULL;
965	ctrl->ana_log_size = 0;
966}
967