1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Persistent Memory Driver
4 *
5 * Copyright (c) 2014-2015, Intel Corporation.
6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8 */
9
10#include <linux/blkdev.h>
11#include <linux/pagemap.h>
12#include <linux/hdreg.h>
13#include <linux/init.h>
14#include <linux/platform_device.h>
15#include <linux/set_memory.h>
16#include <linux/module.h>
17#include <linux/moduleparam.h>
18#include <linux/badblocks.h>
19#include <linux/memremap.h>
20#include <linux/kstrtox.h>
21#include <linux/vmalloc.h>
22#include <linux/blk-mq.h>
23#include <linux/pfn_t.h>
24#include <linux/slab.h>
25#include <linux/uio.h>
26#include <linux/dax.h>
27#include <linux/nd.h>
28#include <linux/mm.h>
29#include <asm/cacheflush.h>
30#include "pmem.h"
31#include "btt.h"
32#include "pfn.h"
33#include "nd.h"
34
35static struct device *to_dev(struct pmem_device *pmem)
36{
37	/*
38	 * nvdimm bus services need a 'dev' parameter, and we record the device
39	 * at init in bb.dev.
40	 */
41	return pmem->bb.dev;
42}
43
44static struct nd_region *to_region(struct pmem_device *pmem)
45{
46	return to_nd_region(to_dev(pmem)->parent);
47}
48
49static phys_addr_t pmem_to_phys(struct pmem_device *pmem, phys_addr_t offset)
50{
51	return pmem->phys_addr + offset;
52}
53
54static sector_t to_sect(struct pmem_device *pmem, phys_addr_t offset)
55{
56	return (offset - pmem->data_offset) >> SECTOR_SHIFT;
57}
58
59static phys_addr_t to_offset(struct pmem_device *pmem, sector_t sector)
60{
61	return (sector << SECTOR_SHIFT) + pmem->data_offset;
62}
63
64static void pmem_mkpage_present(struct pmem_device *pmem, phys_addr_t offset,
65		unsigned int len)
66{
67	phys_addr_t phys = pmem_to_phys(pmem, offset);
68	unsigned long pfn_start, pfn_end, pfn;
69
70	/* only pmem in the linear map supports HWPoison */
71	if (is_vmalloc_addr(pmem->virt_addr))
72		return;
73
74	pfn_start = PHYS_PFN(phys);
75	pfn_end = pfn_start + PHYS_PFN(len);
76	for (pfn = pfn_start; pfn < pfn_end; pfn++) {
77		struct page *page = pfn_to_page(pfn);
78
79		/*
80		 * Note, no need to hold a get_dev_pagemap() reference
81		 * here since we're in the driver I/O path and
82		 * outstanding I/O requests pin the dev_pagemap.
83		 */
84		if (test_and_clear_pmem_poison(page))
85			clear_mce_nospec(pfn);
86	}
87}
88
89static void pmem_clear_bb(struct pmem_device *pmem, sector_t sector, long blks)
90{
91	if (blks == 0)
92		return;
93	badblocks_clear(&pmem->bb, sector, blks);
94	if (pmem->bb_state)
95		sysfs_notify_dirent(pmem->bb_state);
96}
97
98static long __pmem_clear_poison(struct pmem_device *pmem,
99		phys_addr_t offset, unsigned int len)
100{
101	phys_addr_t phys = pmem_to_phys(pmem, offset);
102	long cleared = nvdimm_clear_poison(to_dev(pmem), phys, len);
103
104	if (cleared > 0) {
105		pmem_mkpage_present(pmem, offset, cleared);
106		arch_invalidate_pmem(pmem->virt_addr + offset, len);
107	}
108	return cleared;
109}
110
111static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
112		phys_addr_t offset, unsigned int len)
113{
114	long cleared = __pmem_clear_poison(pmem, offset, len);
115
116	if (cleared < 0)
117		return BLK_STS_IOERR;
118
119	pmem_clear_bb(pmem, to_sect(pmem, offset), cleared >> SECTOR_SHIFT);
120	if (cleared < len)
121		return BLK_STS_IOERR;
122	return BLK_STS_OK;
123}
124
125static void write_pmem(void *pmem_addr, struct page *page,
126		unsigned int off, unsigned int len)
127{
128	unsigned int chunk;
129	void *mem;
130
131	while (len) {
132		mem = kmap_atomic(page);
133		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
134		memcpy_flushcache(pmem_addr, mem + off, chunk);
135		kunmap_atomic(mem);
136		len -= chunk;
137		off = 0;
138		page++;
139		pmem_addr += chunk;
140	}
141}
142
143static blk_status_t read_pmem(struct page *page, unsigned int off,
144		void *pmem_addr, unsigned int len)
145{
146	unsigned int chunk;
147	unsigned long rem;
148	void *mem;
149
150	while (len) {
151		mem = kmap_atomic(page);
152		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
153		rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk);
154		kunmap_atomic(mem);
155		if (rem)
156			return BLK_STS_IOERR;
157		len -= chunk;
158		off = 0;
159		page++;
160		pmem_addr += chunk;
161	}
162	return BLK_STS_OK;
163}
164
165static blk_status_t pmem_do_read(struct pmem_device *pmem,
166			struct page *page, unsigned int page_off,
167			sector_t sector, unsigned int len)
168{
169	blk_status_t rc;
170	phys_addr_t pmem_off = to_offset(pmem, sector);
171	void *pmem_addr = pmem->virt_addr + pmem_off;
172
173	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
174		return BLK_STS_IOERR;
175
176	rc = read_pmem(page, page_off, pmem_addr, len);
177	flush_dcache_page(page);
178	return rc;
179}
180
181static blk_status_t pmem_do_write(struct pmem_device *pmem,
182			struct page *page, unsigned int page_off,
183			sector_t sector, unsigned int len)
184{
185	phys_addr_t pmem_off = to_offset(pmem, sector);
186	void *pmem_addr = pmem->virt_addr + pmem_off;
187
188	if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) {
189		blk_status_t rc = pmem_clear_poison(pmem, pmem_off, len);
190
191		if (rc != BLK_STS_OK)
192			return rc;
193	}
194
195	flush_dcache_page(page);
196	write_pmem(pmem_addr, page, page_off, len);
197
198	return BLK_STS_OK;
199}
200
201static void pmem_submit_bio(struct bio *bio)
202{
203	int ret = 0;
204	blk_status_t rc = 0;
205	bool do_acct;
206	unsigned long start;
207	struct bio_vec bvec;
208	struct bvec_iter iter;
209	struct pmem_device *pmem = bio->bi_bdev->bd_disk->private_data;
210	struct nd_region *nd_region = to_region(pmem);
211
212	if (bio->bi_opf & REQ_PREFLUSH)
213		ret = nvdimm_flush(nd_region, bio);
214
215	do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue);
216	if (do_acct)
217		start = bio_start_io_acct(bio);
218	bio_for_each_segment(bvec, bio, iter) {
219		if (op_is_write(bio_op(bio)))
220			rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
221				iter.bi_sector, bvec.bv_len);
222		else
223			rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
224				iter.bi_sector, bvec.bv_len);
225		if (rc) {
226			bio->bi_status = rc;
227			break;
228		}
229	}
230	if (do_acct)
231		bio_end_io_acct(bio, start);
232
233	if (bio->bi_opf & REQ_FUA)
234		ret = nvdimm_flush(nd_region, bio);
235
236	if (ret)
237		bio->bi_status = errno_to_blk_status(ret);
238
239	bio_endio(bio);
240}
241
242/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
243__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
244		long nr_pages, enum dax_access_mode mode, void **kaddr,
245		pfn_t *pfn)
246{
247	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
248	sector_t sector = PFN_PHYS(pgoff) >> SECTOR_SHIFT;
249	unsigned int num = PFN_PHYS(nr_pages) >> SECTOR_SHIFT;
250	struct badblocks *bb = &pmem->bb;
251	sector_t first_bad;
252	int num_bad;
253
254	if (kaddr)
255		*kaddr = pmem->virt_addr + offset;
256	if (pfn)
257		*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
258
259	if (bb->count &&
260	    badblocks_check(bb, sector, num, &first_bad, &num_bad)) {
261		long actual_nr;
262
263		if (mode != DAX_RECOVERY_WRITE)
264			return -EHWPOISON;
265
266		/*
267		 * Set the recovery stride is set to kernel page size because
268		 * the underlying driver and firmware clear poison functions
269		 * don't appear to handle large chunk(such as 2MiB) reliably.
270		 */
271		actual_nr = PHYS_PFN(
272			PAGE_ALIGN((first_bad - sector) << SECTOR_SHIFT));
273		dev_dbg(pmem->bb.dev, "start sector(%llu), nr_pages(%ld), first_bad(%llu), actual_nr(%ld)\n",
274				sector, nr_pages, first_bad, actual_nr);
275		if (actual_nr)
276			return actual_nr;
277		return 1;
278	}
279
280	/*
281	 * If badblocks are present but not in the range, limit known good range
282	 * to the requested range.
283	 */
284	if (bb->count)
285		return nr_pages;
286	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
287}
288
289static const struct block_device_operations pmem_fops = {
290	.owner =		THIS_MODULE,
291	.submit_bio =		pmem_submit_bio,
292};
293
294static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
295				    size_t nr_pages)
296{
297	struct pmem_device *pmem = dax_get_private(dax_dev);
298
299	return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
300				   PFN_PHYS(pgoff) >> SECTOR_SHIFT,
301				   PAGE_SIZE));
302}
303
304static long pmem_dax_direct_access(struct dax_device *dax_dev,
305		pgoff_t pgoff, long nr_pages, enum dax_access_mode mode,
306		void **kaddr, pfn_t *pfn)
307{
308	struct pmem_device *pmem = dax_get_private(dax_dev);
309
310	return __pmem_direct_access(pmem, pgoff, nr_pages, mode, kaddr, pfn);
311}
312
313/*
314 * The recovery write thread started out as a normal pwrite thread and
315 * when the filesystem was told about potential media error in the
316 * range, filesystem turns the normal pwrite to a dax_recovery_write.
317 *
318 * The recovery write consists of clearing media poison, clearing page
319 * HWPoison bit, reenable page-wide read-write permission, flush the
320 * caches and finally write.  A competing pread thread will be held
321 * off during the recovery process since data read back might not be
322 * valid, and this is achieved by clearing the badblock records after
323 * the recovery write is complete. Competing recovery write threads
324 * are already serialized by writer lock held by dax_iomap_rw().
325 */
326static size_t pmem_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
327		void *addr, size_t bytes, struct iov_iter *i)
328{
329	struct pmem_device *pmem = dax_get_private(dax_dev);
330	size_t olen, len, off;
331	phys_addr_t pmem_off;
332	struct device *dev = pmem->bb.dev;
333	long cleared;
334
335	off = offset_in_page(addr);
336	len = PFN_PHYS(PFN_UP(off + bytes));
337	if (!is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) >> SECTOR_SHIFT, len))
338		return _copy_from_iter_flushcache(addr, bytes, i);
339
340	/*
341	 * Not page-aligned range cannot be recovered. This should not
342	 * happen unless something else went wrong.
343	 */
344	if (off || !PAGE_ALIGNED(bytes)) {
345		dev_dbg(dev, "Found poison, but addr(%p) or bytes(%#zx) not page aligned\n",
346			addr, bytes);
347		return 0;
348	}
349
350	pmem_off = PFN_PHYS(pgoff) + pmem->data_offset;
351	cleared = __pmem_clear_poison(pmem, pmem_off, len);
352	if (cleared > 0 && cleared < len) {
353		dev_dbg(dev, "poison cleared only %ld out of %zu bytes\n",
354			cleared, len);
355		return 0;
356	}
357	if (cleared < 0) {
358		dev_dbg(dev, "poison clear failed: %ld\n", cleared);
359		return 0;
360	}
361
362	olen = _copy_from_iter_flushcache(addr, bytes, i);
363	pmem_clear_bb(pmem, to_sect(pmem, pmem_off), cleared >> SECTOR_SHIFT);
364
365	return olen;
366}
367
368static const struct dax_operations pmem_dax_ops = {
369	.direct_access = pmem_dax_direct_access,
370	.zero_page_range = pmem_dax_zero_page_range,
371	.recovery_write = pmem_recovery_write,
372};
373
374static ssize_t write_cache_show(struct device *dev,
375		struct device_attribute *attr, char *buf)
376{
377	struct pmem_device *pmem = dev_to_disk(dev)->private_data;
378
379	return sprintf(buf, "%d\n", !!dax_write_cache_enabled(pmem->dax_dev));
380}
381
382static ssize_t write_cache_store(struct device *dev,
383		struct device_attribute *attr, const char *buf, size_t len)
384{
385	struct pmem_device *pmem = dev_to_disk(dev)->private_data;
386	bool write_cache;
387	int rc;
388
389	rc = kstrtobool(buf, &write_cache);
390	if (rc)
391		return rc;
392	dax_write_cache(pmem->dax_dev, write_cache);
393	return len;
394}
395static DEVICE_ATTR_RW(write_cache);
396
397static umode_t dax_visible(struct kobject *kobj, struct attribute *a, int n)
398{
399#ifndef CONFIG_ARCH_HAS_PMEM_API
400	if (a == &dev_attr_write_cache.attr)
401		return 0;
402#endif
403	return a->mode;
404}
405
406static struct attribute *dax_attributes[] = {
407	&dev_attr_write_cache.attr,
408	NULL,
409};
410
411static const struct attribute_group dax_attribute_group = {
412	.name		= "dax",
413	.attrs		= dax_attributes,
414	.is_visible	= dax_visible,
415};
416
417static const struct attribute_group *pmem_attribute_groups[] = {
418	&dax_attribute_group,
419	NULL,
420};
421
422static void pmem_release_disk(void *__pmem)
423{
424	struct pmem_device *pmem = __pmem;
425
426	dax_remove_host(pmem->disk);
427	kill_dax(pmem->dax_dev);
428	put_dax(pmem->dax_dev);
429	del_gendisk(pmem->disk);
430
431	put_disk(pmem->disk);
432}
433
434static int pmem_pagemap_memory_failure(struct dev_pagemap *pgmap,
435		unsigned long pfn, unsigned long nr_pages, int mf_flags)
436{
437	struct pmem_device *pmem =
438			container_of(pgmap, struct pmem_device, pgmap);
439	u64 offset = PFN_PHYS(pfn) - pmem->phys_addr - pmem->data_offset;
440	u64 len = nr_pages << PAGE_SHIFT;
441
442	return dax_holder_notify_failure(pmem->dax_dev, offset, len, mf_flags);
443}
444
445static const struct dev_pagemap_ops fsdax_pagemap_ops = {
446	.memory_failure		= pmem_pagemap_memory_failure,
447};
448
449static int pmem_attach_disk(struct device *dev,
450		struct nd_namespace_common *ndns)
451{
452	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
453	struct nd_region *nd_region = to_nd_region(dev->parent);
454	struct queue_limits lim = {
455		.logical_block_size	= pmem_sector_size(ndns),
456		.physical_block_size	= PAGE_SIZE,
457		.max_hw_sectors		= UINT_MAX,
458	};
459	int nid = dev_to_node(dev), fua;
460	struct resource *res = &nsio->res;
461	struct range bb_range;
462	struct nd_pfn *nd_pfn = NULL;
463	struct dax_device *dax_dev;
464	struct nd_pfn_sb *pfn_sb;
465	struct pmem_device *pmem;
466	struct request_queue *q;
467	struct gendisk *disk;
468	void *addr;
469	int rc;
470
471	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
472	if (!pmem)
473		return -ENOMEM;
474
475	rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
476	if (rc)
477		return rc;
478
479	/* while nsio_rw_bytes is active, parse a pfn info block if present */
480	if (is_nd_pfn(dev)) {
481		nd_pfn = to_nd_pfn(dev);
482		rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
483		if (rc)
484			return rc;
485	}
486
487	/* we're attaching a block device, disable raw namespace access */
488	devm_namespace_disable(dev, ndns);
489
490	dev_set_drvdata(dev, pmem);
491	pmem->phys_addr = res->start;
492	pmem->size = resource_size(res);
493	fua = nvdimm_has_flush(nd_region);
494	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
495		dev_warn(dev, "unable to guarantee persistence of writes\n");
496		fua = 0;
497	}
498
499	if (!devm_request_mem_region(dev, res->start, resource_size(res),
500				dev_name(&ndns->dev))) {
501		dev_warn(dev, "could not reserve region %pR\n", res);
502		return -EBUSY;
503	}
504
505	disk = blk_alloc_disk(&lim, nid);
506	if (IS_ERR(disk))
507		return PTR_ERR(disk);
508	q = disk->queue;
509
510	pmem->disk = disk;
511	pmem->pgmap.owner = pmem;
512	pmem->pfn_flags = PFN_DEV;
513	if (is_nd_pfn(dev)) {
514		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
515		pmem->pgmap.ops = &fsdax_pagemap_ops;
516		addr = devm_memremap_pages(dev, &pmem->pgmap);
517		pfn_sb = nd_pfn->pfn_sb;
518		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
519		pmem->pfn_pad = resource_size(res) -
520			range_len(&pmem->pgmap.range);
521		pmem->pfn_flags |= PFN_MAP;
522		bb_range = pmem->pgmap.range;
523		bb_range.start += pmem->data_offset;
524	} else if (pmem_should_map_pages(dev)) {
525		pmem->pgmap.range.start = res->start;
526		pmem->pgmap.range.end = res->end;
527		pmem->pgmap.nr_range = 1;
528		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
529		pmem->pgmap.ops = &fsdax_pagemap_ops;
530		addr = devm_memremap_pages(dev, &pmem->pgmap);
531		pmem->pfn_flags |= PFN_MAP;
532		bb_range = pmem->pgmap.range;
533	} else {
534		addr = devm_memremap(dev, pmem->phys_addr,
535				pmem->size, ARCH_MEMREMAP_PMEM);
536		bb_range.start =  res->start;
537		bb_range.end = res->end;
538	}
539
540	if (IS_ERR(addr)) {
541		rc = PTR_ERR(addr);
542		goto out;
543	}
544	pmem->virt_addr = addr;
545
546	blk_queue_write_cache(q, true, fua);
547	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
548	blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, q);
549	if (pmem->pfn_flags & PFN_MAP)
550		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
551
552	disk->fops		= &pmem_fops;
553	disk->private_data	= pmem;
554	nvdimm_namespace_disk_name(ndns, disk->disk_name);
555	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
556			/ 512);
557	if (devm_init_badblocks(dev, &pmem->bb))
558		return -ENOMEM;
559	nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range);
560	disk->bb = &pmem->bb;
561
562	dax_dev = alloc_dax(pmem, &pmem_dax_ops);
563	if (IS_ERR(dax_dev)) {
564		rc = PTR_ERR(dax_dev);
565		if (rc != -EOPNOTSUPP)
566			goto out;
567	} else {
568		set_dax_nocache(dax_dev);
569		set_dax_nomc(dax_dev);
570		if (is_nvdimm_sync(nd_region))
571			set_dax_synchronous(dax_dev);
572		pmem->dax_dev = dax_dev;
573		rc = dax_add_host(dax_dev, disk);
574		if (rc)
575			goto out_cleanup_dax;
576		dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
577	}
578	rc = device_add_disk(dev, disk, pmem_attribute_groups);
579	if (rc)
580		goto out_remove_host;
581	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
582		return -ENOMEM;
583
584	nvdimm_check_and_set_ro(disk);
585
586	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
587					  "badblocks");
588	if (!pmem->bb_state)
589		dev_warn(dev, "'badblocks' notification disabled\n");
590	return 0;
591
592out_remove_host:
593	dax_remove_host(pmem->disk);
594out_cleanup_dax:
595	kill_dax(pmem->dax_dev);
596	put_dax(pmem->dax_dev);
597out:
598	put_disk(pmem->disk);
599	return rc;
600}
601
602static int nd_pmem_probe(struct device *dev)
603{
604	int ret;
605	struct nd_namespace_common *ndns;
606
607	ndns = nvdimm_namespace_common_probe(dev);
608	if (IS_ERR(ndns))
609		return PTR_ERR(ndns);
610
611	if (is_nd_btt(dev))
612		return nvdimm_namespace_attach_btt(ndns);
613
614	if (is_nd_pfn(dev))
615		return pmem_attach_disk(dev, ndns);
616
617	ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
618	if (ret)
619		return ret;
620
621	ret = nd_btt_probe(dev, ndns);
622	if (ret == 0)
623		return -ENXIO;
624
625	/*
626	 * We have two failure conditions here, there is no
627	 * info reserver block or we found a valid info reserve block
628	 * but failed to initialize the pfn superblock.
629	 *
630	 * For the first case consider namespace as a raw pmem namespace
631	 * and attach a disk.
632	 *
633	 * For the latter, consider this a success and advance the namespace
634	 * seed.
635	 */
636	ret = nd_pfn_probe(dev, ndns);
637	if (ret == 0)
638		return -ENXIO;
639	else if (ret == -EOPNOTSUPP)
640		return ret;
641
642	ret = nd_dax_probe(dev, ndns);
643	if (ret == 0)
644		return -ENXIO;
645	else if (ret == -EOPNOTSUPP)
646		return ret;
647
648	/* probe complete, attach handles namespace enabling */
649	devm_namespace_disable(dev, ndns);
650
651	return pmem_attach_disk(dev, ndns);
652}
653
654static void nd_pmem_remove(struct device *dev)
655{
656	struct pmem_device *pmem = dev_get_drvdata(dev);
657
658	if (is_nd_btt(dev))
659		nvdimm_namespace_detach_btt(to_nd_btt(dev));
660	else {
661		/*
662		 * Note, this assumes device_lock() context to not
663		 * race nd_pmem_notify()
664		 */
665		sysfs_put(pmem->bb_state);
666		pmem->bb_state = NULL;
667	}
668	nvdimm_flush(to_nd_region(dev->parent), NULL);
669}
670
671static void nd_pmem_shutdown(struct device *dev)
672{
673	nvdimm_flush(to_nd_region(dev->parent), NULL);
674}
675
676static void pmem_revalidate_poison(struct device *dev)
677{
678	struct nd_region *nd_region;
679	resource_size_t offset = 0, end_trunc = 0;
680	struct nd_namespace_common *ndns;
681	struct nd_namespace_io *nsio;
682	struct badblocks *bb;
683	struct range range;
684	struct kernfs_node *bb_state;
685
686	if (is_nd_btt(dev)) {
687		struct nd_btt *nd_btt = to_nd_btt(dev);
688
689		ndns = nd_btt->ndns;
690		nd_region = to_nd_region(ndns->dev.parent);
691		nsio = to_nd_namespace_io(&ndns->dev);
692		bb = &nsio->bb;
693		bb_state = NULL;
694	} else {
695		struct pmem_device *pmem = dev_get_drvdata(dev);
696
697		nd_region = to_region(pmem);
698		bb = &pmem->bb;
699		bb_state = pmem->bb_state;
700
701		if (is_nd_pfn(dev)) {
702			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
703			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
704
705			ndns = nd_pfn->ndns;
706			offset = pmem->data_offset +
707					__le32_to_cpu(pfn_sb->start_pad);
708			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
709		} else {
710			ndns = to_ndns(dev);
711		}
712
713		nsio = to_nd_namespace_io(&ndns->dev);
714	}
715
716	range.start = nsio->res.start + offset;
717	range.end = nsio->res.end - end_trunc;
718	nvdimm_badblocks_populate(nd_region, bb, &range);
719	if (bb_state)
720		sysfs_notify_dirent(bb_state);
721}
722
723static void pmem_revalidate_region(struct device *dev)
724{
725	struct pmem_device *pmem;
726
727	if (is_nd_btt(dev)) {
728		struct nd_btt *nd_btt = to_nd_btt(dev);
729		struct btt *btt = nd_btt->btt;
730
731		nvdimm_check_and_set_ro(btt->btt_disk);
732		return;
733	}
734
735	pmem = dev_get_drvdata(dev);
736	nvdimm_check_and_set_ro(pmem->disk);
737}
738
739static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
740{
741	switch (event) {
742	case NVDIMM_REVALIDATE_POISON:
743		pmem_revalidate_poison(dev);
744		break;
745	case NVDIMM_REVALIDATE_REGION:
746		pmem_revalidate_region(dev);
747		break;
748	default:
749		dev_WARN_ONCE(dev, 1, "notify: unknown event: %d\n", event);
750		break;
751	}
752}
753
754MODULE_ALIAS("pmem");
755MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
756MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
757static struct nd_device_driver nd_pmem_driver = {
758	.probe = nd_pmem_probe,
759	.remove = nd_pmem_remove,
760	.notify = nd_pmem_notify,
761	.shutdown = nd_pmem_shutdown,
762	.drv = {
763		.name = "nd_pmem",
764	},
765	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
766};
767
768module_nd_driver(nd_pmem_driver);
769
770MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
771MODULE_LICENSE("GPL v2");
772