1// SPDX-License-Identifier: GPL-2.0-or-later
2/* ZD1211 USB-WLAN driver for Linux
3 *
4 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
5 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
6 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
7 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
8 */
9
10#include <linux/netdevice.h>
11#include <linux/etherdevice.h>
12#include <linux/slab.h>
13#include <linux/usb.h>
14#include <linux/jiffies.h>
15#include <net/ieee80211_radiotap.h>
16
17#include "zd_def.h"
18#include "zd_chip.h"
19#include "zd_mac.h"
20#include "zd_rf.h"
21
22struct zd_reg_alpha2_map {
23	u32 reg;
24	char alpha2[2];
25};
26
27static struct zd_reg_alpha2_map reg_alpha2_map[] = {
28	{ ZD_REGDOMAIN_FCC, "US" },
29	{ ZD_REGDOMAIN_IC, "CA" },
30	{ ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
31	{ ZD_REGDOMAIN_JAPAN, "JP" },
32	{ ZD_REGDOMAIN_JAPAN_2, "JP" },
33	{ ZD_REGDOMAIN_JAPAN_3, "JP" },
34	{ ZD_REGDOMAIN_SPAIN, "ES" },
35	{ ZD_REGDOMAIN_FRANCE, "FR" },
36};
37
38/* This table contains the hardware specific values for the modulation rates. */
39static const struct ieee80211_rate zd_rates[] = {
40	{ .bitrate = 10,
41	  .hw_value = ZD_CCK_RATE_1M, },
42	{ .bitrate = 20,
43	  .hw_value = ZD_CCK_RATE_2M,
44	  .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
45	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
46	{ .bitrate = 55,
47	  .hw_value = ZD_CCK_RATE_5_5M,
48	  .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
49	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
50	{ .bitrate = 110,
51	  .hw_value = ZD_CCK_RATE_11M,
52	  .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
53	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
54	{ .bitrate = 60,
55	  .hw_value = ZD_OFDM_RATE_6M,
56	  .flags = 0 },
57	{ .bitrate = 90,
58	  .hw_value = ZD_OFDM_RATE_9M,
59	  .flags = 0 },
60	{ .bitrate = 120,
61	  .hw_value = ZD_OFDM_RATE_12M,
62	  .flags = 0 },
63	{ .bitrate = 180,
64	  .hw_value = ZD_OFDM_RATE_18M,
65	  .flags = 0 },
66	{ .bitrate = 240,
67	  .hw_value = ZD_OFDM_RATE_24M,
68	  .flags = 0 },
69	{ .bitrate = 360,
70	  .hw_value = ZD_OFDM_RATE_36M,
71	  .flags = 0 },
72	{ .bitrate = 480,
73	  .hw_value = ZD_OFDM_RATE_48M,
74	  .flags = 0 },
75	{ .bitrate = 540,
76	  .hw_value = ZD_OFDM_RATE_54M,
77	  .flags = 0 },
78};
79
80/*
81 * Zydas retry rates table. Each line is listed in the same order as
82 * in zd_rates[] and contains all the rate used when a packet is sent
83 * starting with a given rates. Let's consider an example :
84 *
85 * "11 Mbits : 4, 3, 2, 1, 0" means :
86 * - packet is sent using 4 different rates
87 * - 1st rate is index 3 (ie 11 Mbits)
88 * - 2nd rate is index 2 (ie 5.5 Mbits)
89 * - 3rd rate is index 1 (ie 2 Mbits)
90 * - 4th rate is index 0 (ie 1 Mbits)
91 */
92
93static const struct tx_retry_rate zd_retry_rates[] = {
94	{ /*  1 Mbits */	1, { 0 }},
95	{ /*  2 Mbits */	2, { 1,  0 }},
96	{ /*  5.5 Mbits */	3, { 2,  1, 0 }},
97	{ /* 11 Mbits */	4, { 3,  2, 1, 0 }},
98	{ /*  6 Mbits */	5, { 4,  3, 2, 1, 0 }},
99	{ /*  9 Mbits */	6, { 5,  4, 3, 2, 1, 0}},
100	{ /* 12 Mbits */	5, { 6,  3, 2, 1, 0 }},
101	{ /* 18 Mbits */	6, { 7,  6, 3, 2, 1, 0 }},
102	{ /* 24 Mbits */	6, { 8,  6, 3, 2, 1, 0 }},
103	{ /* 36 Mbits */	7, { 9,  8, 6, 3, 2, 1, 0 }},
104	{ /* 48 Mbits */	8, {10,  9, 8, 6, 3, 2, 1, 0 }},
105	{ /* 54 Mbits */	9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
106};
107
108static const struct ieee80211_channel zd_channels[] = {
109	{ .center_freq = 2412, .hw_value = 1 },
110	{ .center_freq = 2417, .hw_value = 2 },
111	{ .center_freq = 2422, .hw_value = 3 },
112	{ .center_freq = 2427, .hw_value = 4 },
113	{ .center_freq = 2432, .hw_value = 5 },
114	{ .center_freq = 2437, .hw_value = 6 },
115	{ .center_freq = 2442, .hw_value = 7 },
116	{ .center_freq = 2447, .hw_value = 8 },
117	{ .center_freq = 2452, .hw_value = 9 },
118	{ .center_freq = 2457, .hw_value = 10 },
119	{ .center_freq = 2462, .hw_value = 11 },
120	{ .center_freq = 2467, .hw_value = 12 },
121	{ .center_freq = 2472, .hw_value = 13 },
122	{ .center_freq = 2484, .hw_value = 14 },
123};
124
125static void housekeeping_init(struct zd_mac *mac);
126static void housekeeping_enable(struct zd_mac *mac);
127static void housekeeping_disable(struct zd_mac *mac);
128static void beacon_init(struct zd_mac *mac);
129static void beacon_enable(struct zd_mac *mac);
130static void beacon_disable(struct zd_mac *mac);
131static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
132static int zd_mac_config_beacon(struct ieee80211_hw *hw,
133				struct sk_buff *beacon, bool in_intr);
134
135static int zd_reg2alpha2(u8 regdomain, char *alpha2)
136{
137	unsigned int i;
138	struct zd_reg_alpha2_map *reg_map;
139	for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
140		reg_map = &reg_alpha2_map[i];
141		if (regdomain == reg_map->reg) {
142			alpha2[0] = reg_map->alpha2[0];
143			alpha2[1] = reg_map->alpha2[1];
144			return 0;
145		}
146	}
147	return 1;
148}
149
150static int zd_check_signal(struct ieee80211_hw *hw, int signal)
151{
152	struct zd_mac *mac = zd_hw_mac(hw);
153
154	dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100,
155			"%s: signal value from device not in range 0..100, "
156			"but %d.\n", __func__, signal);
157
158	if (signal < 0)
159		signal = 0;
160	else if (signal > 100)
161		signal = 100;
162
163	return signal;
164}
165
166int zd_mac_preinit_hw(struct ieee80211_hw *hw)
167{
168	int r;
169	u8 addr[ETH_ALEN];
170	struct zd_mac *mac = zd_hw_mac(hw);
171
172	r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
173	if (r)
174		return r;
175
176	SET_IEEE80211_PERM_ADDR(hw, addr);
177
178	return 0;
179}
180
181int zd_mac_init_hw(struct ieee80211_hw *hw)
182{
183	int r;
184	struct zd_mac *mac = zd_hw_mac(hw);
185	struct zd_chip *chip = &mac->chip;
186	char alpha2[2];
187	u8 default_regdomain;
188
189	r = zd_chip_enable_int(chip);
190	if (r)
191		goto out;
192	r = zd_chip_init_hw(chip);
193	if (r)
194		goto disable_int;
195
196	ZD_ASSERT(!irqs_disabled());
197
198	r = zd_read_regdomain(chip, &default_regdomain);
199	if (r)
200		goto disable_int;
201	spin_lock_irq(&mac->lock);
202	mac->regdomain = mac->default_regdomain = default_regdomain;
203	spin_unlock_irq(&mac->lock);
204
205	/* We must inform the device that we are doing encryption/decryption in
206	 * software at the moment. */
207	r = zd_set_encryption_type(chip, ENC_SNIFFER);
208	if (r)
209		goto disable_int;
210
211	r = zd_reg2alpha2(mac->regdomain, alpha2);
212	if (r)
213		goto disable_int;
214
215	r = regulatory_hint(hw->wiphy, alpha2);
216disable_int:
217	zd_chip_disable_int(chip);
218out:
219	return r;
220}
221
222void zd_mac_clear(struct zd_mac *mac)
223{
224	flush_workqueue(zd_workqueue);
225	zd_chip_clear(&mac->chip);
226	ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
227}
228
229static int set_rx_filter(struct zd_mac *mac)
230{
231	unsigned long flags;
232	u32 filter = STA_RX_FILTER;
233
234	spin_lock_irqsave(&mac->lock, flags);
235	if (mac->pass_ctrl)
236		filter |= RX_FILTER_CTRL;
237	spin_unlock_irqrestore(&mac->lock, flags);
238
239	return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
240}
241
242static int set_mac_and_bssid(struct zd_mac *mac)
243{
244	int r;
245
246	if (!mac->vif)
247		return -1;
248
249	r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
250	if (r)
251		return r;
252
253	/* Vendor driver after setting MAC either sets BSSID for AP or
254	 * filter for other modes.
255	 */
256	if (mac->type != NL80211_IFTYPE_AP)
257		return set_rx_filter(mac);
258	else
259		return zd_write_bssid(&mac->chip, mac->vif->addr);
260}
261
262static int set_mc_hash(struct zd_mac *mac)
263{
264	struct zd_mc_hash hash;
265	zd_mc_clear(&hash);
266	return zd_chip_set_multicast_hash(&mac->chip, &hash);
267}
268
269int zd_op_start(struct ieee80211_hw *hw)
270{
271	struct zd_mac *mac = zd_hw_mac(hw);
272	struct zd_chip *chip = &mac->chip;
273	struct zd_usb *usb = &chip->usb;
274	int r;
275
276	if (!usb->initialized) {
277		r = zd_usb_init_hw(usb);
278		if (r)
279			goto out;
280	}
281
282	r = zd_chip_enable_int(chip);
283	if (r < 0)
284		goto out;
285
286	r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
287	if (r < 0)
288		goto disable_int;
289	r = set_rx_filter(mac);
290	if (r)
291		goto disable_int;
292	r = set_mc_hash(mac);
293	if (r)
294		goto disable_int;
295
296	/* Wait after setting the multicast hash table and powering on
297	 * the radio otherwise interface bring up will fail. This matches
298	 * what the vendor driver did.
299	 */
300	msleep(10);
301
302	r = zd_chip_switch_radio_on(chip);
303	if (r < 0) {
304		dev_err(zd_chip_dev(chip),
305			"%s: failed to set radio on\n", __func__);
306		goto disable_int;
307	}
308	r = zd_chip_enable_rxtx(chip);
309	if (r < 0)
310		goto disable_radio;
311	r = zd_chip_enable_hwint(chip);
312	if (r < 0)
313		goto disable_rxtx;
314
315	housekeeping_enable(mac);
316	beacon_enable(mac);
317	set_bit(ZD_DEVICE_RUNNING, &mac->flags);
318	return 0;
319disable_rxtx:
320	zd_chip_disable_rxtx(chip);
321disable_radio:
322	zd_chip_switch_radio_off(chip);
323disable_int:
324	zd_chip_disable_int(chip);
325out:
326	return r;
327}
328
329void zd_op_stop(struct ieee80211_hw *hw)
330{
331	struct zd_mac *mac = zd_hw_mac(hw);
332	struct zd_chip *chip = &mac->chip;
333	struct sk_buff *skb;
334	struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
335
336	clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
337
338	/* The order here deliberately is a little different from the open()
339	 * method, since we need to make sure there is no opportunity for RX
340	 * frames to be processed by mac80211 after we have stopped it.
341	 */
342
343	zd_chip_disable_rxtx(chip);
344	beacon_disable(mac);
345	housekeeping_disable(mac);
346	flush_workqueue(zd_workqueue);
347
348	zd_chip_disable_hwint(chip);
349	zd_chip_switch_radio_off(chip);
350	zd_chip_disable_int(chip);
351
352
353	while ((skb = skb_dequeue(ack_wait_queue)))
354		dev_kfree_skb_any(skb);
355}
356
357int zd_restore_settings(struct zd_mac *mac)
358{
359	struct sk_buff *beacon;
360	struct zd_mc_hash multicast_hash;
361	unsigned int short_preamble;
362	int r, beacon_interval, beacon_period;
363	u8 channel;
364
365	dev_dbg_f(zd_mac_dev(mac), "\n");
366
367	spin_lock_irq(&mac->lock);
368	multicast_hash = mac->multicast_hash;
369	short_preamble = mac->short_preamble;
370	beacon_interval = mac->beacon.interval;
371	beacon_period = mac->beacon.period;
372	channel = mac->channel;
373	spin_unlock_irq(&mac->lock);
374
375	r = set_mac_and_bssid(mac);
376	if (r < 0) {
377		dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
378		return r;
379	}
380
381	r = zd_chip_set_channel(&mac->chip, channel);
382	if (r < 0) {
383		dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
384			  r);
385		return r;
386	}
387
388	set_rts_cts(mac, short_preamble);
389
390	r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
391	if (r < 0) {
392		dev_dbg_f(zd_mac_dev(mac),
393			  "zd_chip_set_multicast_hash failed, %d\n", r);
394		return r;
395	}
396
397	if (mac->type == NL80211_IFTYPE_MESH_POINT ||
398	    mac->type == NL80211_IFTYPE_ADHOC ||
399	    mac->type == NL80211_IFTYPE_AP) {
400		if (mac->vif != NULL) {
401			beacon = ieee80211_beacon_get(mac->hw, mac->vif, 0);
402			if (beacon)
403				zd_mac_config_beacon(mac->hw, beacon, false);
404		}
405
406		zd_set_beacon_interval(&mac->chip, beacon_interval,
407					beacon_period, mac->type);
408
409		spin_lock_irq(&mac->lock);
410		mac->beacon.last_update = jiffies;
411		spin_unlock_irq(&mac->lock);
412	}
413
414	return 0;
415}
416
417/**
418 * zd_mac_tx_status - reports tx status of a packet if required
419 * @hw: a &struct ieee80211_hw pointer
420 * @skb: a sk-buffer
421 * @ackssi: ACK signal strength
422 * @tx_status: success and/or retry
423 *
424 * This information calls ieee80211_tx_status_irqsafe() if required by the
425 * control information. It copies the control information into the status
426 * information.
427 *
428 * If no status information has been requested, the skb is freed.
429 */
430static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
431		      int ackssi, struct tx_status *tx_status)
432{
433	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
434	int i;
435	int success = 1, retry = 1;
436	int first_idx;
437	const struct tx_retry_rate *retries;
438
439	ieee80211_tx_info_clear_status(info);
440
441	if (tx_status) {
442		success = !tx_status->failure;
443		retry = tx_status->retry + success;
444	}
445
446	if (success) {
447		/* success */
448		info->flags |= IEEE80211_TX_STAT_ACK;
449	} else {
450		/* failure */
451		info->flags &= ~IEEE80211_TX_STAT_ACK;
452	}
453
454	first_idx = info->status.rates[0].idx;
455	ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
456	retries = &zd_retry_rates[first_idx];
457	ZD_ASSERT(1 <= retry && retry <= retries->count);
458
459	info->status.rates[0].idx = retries->rate[0];
460	info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
461
462	for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
463		info->status.rates[i].idx = retries->rate[i];
464		info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
465	}
466	for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
467		info->status.rates[i].idx = retries->rate[retry - 1];
468		info->status.rates[i].count = 1; // (success ? 1:2);
469	}
470	if (i<IEEE80211_TX_MAX_RATES)
471		info->status.rates[i].idx = -1; /* terminate */
472
473	info->status.ack_signal = zd_check_signal(hw, ackssi);
474	ieee80211_tx_status_irqsafe(hw, skb);
475}
476
477/**
478 * zd_mac_tx_failed - callback for failed frames
479 * @urb: pointer to the urb structure
480 *
481 * This function is called if a frame couldn't be successfully
482 * transferred. The first frame from the tx queue, will be selected and
483 * reported as error to the upper layers.
484 */
485void zd_mac_tx_failed(struct urb *urb)
486{
487	struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
488	struct zd_mac *mac = zd_hw_mac(hw);
489	struct sk_buff_head *q = &mac->ack_wait_queue;
490	struct sk_buff *skb;
491	struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
492	unsigned long flags;
493	int success = !tx_status->failure;
494	int retry = tx_status->retry + success;
495	int found = 0;
496	int i, position = 0;
497
498	spin_lock_irqsave(&q->lock, flags);
499
500	skb_queue_walk(q, skb) {
501		struct ieee80211_hdr *tx_hdr;
502		struct ieee80211_tx_info *info;
503		int first_idx, final_idx;
504		const struct tx_retry_rate *retries;
505		u8 final_rate;
506
507		position ++;
508
509		/* if the hardware reports a failure and we had a 802.11 ACK
510		 * pending, then we skip the first skb when searching for a
511		 * matching frame */
512		if (tx_status->failure && mac->ack_pending &&
513		    skb_queue_is_first(q, skb)) {
514			continue;
515		}
516
517		tx_hdr = (struct ieee80211_hdr *)skb->data;
518
519		/* we skip all frames not matching the reported destination */
520		if (unlikely(!ether_addr_equal(tx_hdr->addr1, tx_status->mac)))
521			continue;
522
523		/* we skip all frames not matching the reported final rate */
524
525		info = IEEE80211_SKB_CB(skb);
526		first_idx = info->status.rates[0].idx;
527		ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
528		retries = &zd_retry_rates[first_idx];
529		if (retry <= 0 || retry > retries->count)
530			continue;
531
532		final_idx = retries->rate[retry - 1];
533		final_rate = zd_rates[final_idx].hw_value;
534
535		if (final_rate != tx_status->rate) {
536			continue;
537		}
538
539		found = 1;
540		break;
541	}
542
543	if (found) {
544		for (i=1; i<=position; i++) {
545			skb = __skb_dequeue(q);
546			zd_mac_tx_status(hw, skb,
547					 mac->ack_pending ? mac->ack_signal : 0,
548					 i == position ? tx_status : NULL);
549			mac->ack_pending = 0;
550		}
551	}
552
553	spin_unlock_irqrestore(&q->lock, flags);
554}
555
556/**
557 * zd_mac_tx_to_dev - callback for USB layer
558 * @skb: a &sk_buff pointer
559 * @error: error value, 0 if transmission successful
560 *
561 * Informs the MAC layer that the frame has successfully transferred to the
562 * device. If an ACK is required and the transfer to the device has been
563 * successful, the packets are put on the @ack_wait_queue with
564 * the control set removed.
565 */
566void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
567{
568	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
569	struct ieee80211_hw *hw = info->rate_driver_data[0];
570	struct zd_mac *mac = zd_hw_mac(hw);
571
572	ieee80211_tx_info_clear_status(info);
573
574	skb_pull(skb, sizeof(struct zd_ctrlset));
575	if (unlikely(error ||
576	    (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
577		/*
578		 * FIXME : do we need to fill in anything ?
579		 */
580		ieee80211_tx_status_irqsafe(hw, skb);
581	} else {
582		struct sk_buff_head *q = &mac->ack_wait_queue;
583
584		skb_queue_tail(q, skb);
585		while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
586			zd_mac_tx_status(hw, skb_dequeue(q),
587					 mac->ack_pending ? mac->ack_signal : 0,
588					 NULL);
589			mac->ack_pending = 0;
590		}
591	}
592}
593
594static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
595{
596	/* ZD_PURE_RATE() must be used to remove the modulation type flag of
597	 * the zd-rate values.
598	 */
599	static const u8 rate_divisor[] = {
600		[ZD_PURE_RATE(ZD_CCK_RATE_1M)]   =  1,
601		[ZD_PURE_RATE(ZD_CCK_RATE_2M)]	 =  2,
602		/* Bits must be doubled. */
603		[ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
604		[ZD_PURE_RATE(ZD_CCK_RATE_11M)]	 = 11,
605		[ZD_PURE_RATE(ZD_OFDM_RATE_6M)]  =  6,
606		[ZD_PURE_RATE(ZD_OFDM_RATE_9M)]  =  9,
607		[ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
608		[ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
609		[ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
610		[ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
611		[ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
612		[ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
613	};
614
615	u32 bits = (u32)tx_length * 8;
616	u32 divisor;
617
618	divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
619	if (divisor == 0)
620		return -EINVAL;
621
622	switch (zd_rate) {
623	case ZD_CCK_RATE_5_5M:
624		bits = (2*bits) + 10; /* round up to the next integer */
625		break;
626	case ZD_CCK_RATE_11M:
627		if (service) {
628			u32 t = bits % 11;
629			*service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
630			if (0 < t && t <= 3) {
631				*service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
632			}
633		}
634		bits += 10; /* round up to the next integer */
635		break;
636	}
637
638	return bits/divisor;
639}
640
641static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
642	                   struct ieee80211_hdr *header,
643	                   struct ieee80211_tx_info *info)
644{
645	/*
646	 * CONTROL TODO:
647	 * - if backoff needed, enable bit 0
648	 * - if burst (backoff not needed) disable bit 0
649	 */
650
651	cs->control = 0;
652
653	/* First fragment */
654	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
655		cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
656
657	/* No ACK expected (multicast, etc.) */
658	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
659		cs->control |= ZD_CS_NO_ACK;
660
661	/* PS-POLL */
662	if (ieee80211_is_pspoll(header->frame_control))
663		cs->control |= ZD_CS_PS_POLL_FRAME;
664
665	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
666		cs->control |= ZD_CS_RTS;
667
668	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
669		cs->control |= ZD_CS_SELF_CTS;
670
671	/* FIXME: Management frame? */
672}
673
674static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon)
675{
676	if (!mac->beacon.cur_beacon)
677		return false;
678
679	if (mac->beacon.cur_beacon->len != beacon->len)
680		return false;
681
682	return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len);
683}
684
685static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac)
686{
687	ZD_ASSERT(mutex_is_locked(&mac->chip.mutex));
688
689	kfree_skb(mac->beacon.cur_beacon);
690	mac->beacon.cur_beacon = NULL;
691}
692
693static void zd_mac_free_cur_beacon(struct zd_mac *mac)
694{
695	mutex_lock(&mac->chip.mutex);
696	zd_mac_free_cur_beacon_locked(mac);
697	mutex_unlock(&mac->chip.mutex);
698}
699
700static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon,
701				bool in_intr)
702{
703	struct zd_mac *mac = zd_hw_mac(hw);
704	int r, ret, num_cmds, req_pos = 0;
705	u32 tmp, j = 0;
706	/* 4 more bytes for tail CRC */
707	u32 full_len = beacon->len + 4;
708	unsigned long end_jiffies, message_jiffies;
709	struct zd_ioreq32 *ioreqs;
710
711	mutex_lock(&mac->chip.mutex);
712
713	/* Check if hw already has this beacon. */
714	if (zd_mac_match_cur_beacon(mac, beacon)) {
715		r = 0;
716		goto out_nofree;
717	}
718
719	/* Alloc memory for full beacon write at once. */
720	num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
721	ioreqs = kmalloc_array(num_cmds, sizeof(struct zd_ioreq32),
722			       GFP_KERNEL);
723	if (!ioreqs) {
724		r = -ENOMEM;
725		goto out_nofree;
726	}
727
728	r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
729	if (r < 0)
730		goto out;
731	r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
732	if (r < 0)
733		goto release_sema;
734	if (in_intr && tmp & 0x2) {
735		r = -EBUSY;
736		goto release_sema;
737	}
738
739	end_jiffies = jiffies + HZ / 2; /*~500ms*/
740	message_jiffies = jiffies + HZ / 10; /*~100ms*/
741	while (tmp & 0x2) {
742		r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
743		if (r < 0)
744			goto release_sema;
745		if (time_is_before_eq_jiffies(message_jiffies)) {
746			message_jiffies = jiffies + HZ / 10;
747			dev_err(zd_mac_dev(mac),
748					"CR_BCN_FIFO_SEMAPHORE not ready\n");
749			if (time_is_before_eq_jiffies(end_jiffies))  {
750				dev_err(zd_mac_dev(mac),
751						"Giving up beacon config.\n");
752				r = -ETIMEDOUT;
753				goto reset_device;
754			}
755		}
756		msleep(20);
757	}
758
759	ioreqs[req_pos].addr = CR_BCN_FIFO;
760	ioreqs[req_pos].value = full_len - 1;
761	req_pos++;
762	if (zd_chip_is_zd1211b(&mac->chip)) {
763		ioreqs[req_pos].addr = CR_BCN_LENGTH;
764		ioreqs[req_pos].value = full_len - 1;
765		req_pos++;
766	}
767
768	for (j = 0 ; j < beacon->len; j++) {
769		ioreqs[req_pos].addr = CR_BCN_FIFO;
770		ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
771		req_pos++;
772	}
773
774	for (j = 0; j < 4; j++) {
775		ioreqs[req_pos].addr = CR_BCN_FIFO;
776		ioreqs[req_pos].value = 0x0;
777		req_pos++;
778	}
779
780	BUG_ON(req_pos != num_cmds);
781
782	r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
783
784release_sema:
785	/*
786	 * Try very hard to release device beacon semaphore, as otherwise
787	 * device/driver can be left in unusable state.
788	 */
789	end_jiffies = jiffies + HZ / 2; /*~500ms*/
790	ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
791	while (ret < 0) {
792		if (in_intr || time_is_before_eq_jiffies(end_jiffies)) {
793			ret = -ETIMEDOUT;
794			break;
795		}
796
797		msleep(20);
798		ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
799	}
800
801	if (ret < 0)
802		dev_err(zd_mac_dev(mac), "Could not release "
803					 "CR_BCN_FIFO_SEMAPHORE!\n");
804	if (r < 0 || ret < 0) {
805		if (r >= 0)
806			r = ret;
807
808		/* We don't know if beacon was written successfully or not,
809		 * so clear current. */
810		zd_mac_free_cur_beacon_locked(mac);
811
812		goto out;
813	}
814
815	/* Beacon has now been written successfully, update current. */
816	zd_mac_free_cur_beacon_locked(mac);
817	mac->beacon.cur_beacon = beacon;
818	beacon = NULL;
819
820	/* 802.11b/g 2.4G CCK 1Mb
821	 * 802.11a, not yet implemented, uses different values (see GPL vendor
822	 * driver)
823	 */
824	r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
825				CR_BCN_PLCP_CFG);
826out:
827	kfree(ioreqs);
828out_nofree:
829	kfree_skb(beacon);
830	mutex_unlock(&mac->chip.mutex);
831
832	return r;
833
834reset_device:
835	zd_mac_free_cur_beacon_locked(mac);
836	kfree_skb(beacon);
837
838	mutex_unlock(&mac->chip.mutex);
839	kfree(ioreqs);
840
841	/* semaphore stuck, reset device to avoid fw freeze later */
842	dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
843				  "resetting device...");
844	usb_queue_reset_device(mac->chip.usb.intf);
845
846	return r;
847}
848
849static int fill_ctrlset(struct zd_mac *mac,
850			struct sk_buff *skb)
851{
852	int r;
853	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
854	unsigned int frag_len = skb->len + FCS_LEN;
855	unsigned int packet_length;
856	struct ieee80211_rate *txrate;
857	struct zd_ctrlset *cs = skb_push(skb, sizeof(struct zd_ctrlset));
858	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
859
860	ZD_ASSERT(frag_len <= 0xffff);
861
862	/*
863	 * Firmware computes the duration itself (for all frames except PSPoll)
864	 * and needs the field set to 0 at input, otherwise firmware messes up
865	 * duration_id and sets bits 14 and 15 on.
866	 */
867	if (!ieee80211_is_pspoll(hdr->frame_control))
868		hdr->duration_id = 0;
869
870	txrate = ieee80211_get_tx_rate(mac->hw, info);
871
872	cs->modulation = txrate->hw_value;
873	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
874		cs->modulation = txrate->hw_value_short;
875
876	cs->tx_length = cpu_to_le16(frag_len);
877
878	cs_set_control(mac, cs, hdr, info);
879
880	packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
881	ZD_ASSERT(packet_length <= 0xffff);
882	/* ZD1211B: Computing the length difference this way, gives us
883	 * flexibility to compute the packet length.
884	 */
885	cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
886			packet_length - frag_len : packet_length);
887
888	/*
889	 * CURRENT LENGTH:
890	 * - transmit frame length in microseconds
891	 * - seems to be derived from frame length
892	 * - see Cal_Us_Service() in zdinlinef.h
893	 * - if macp->bTxBurstEnable is enabled, then multiply by 4
894	 *  - bTxBurstEnable is never set in the vendor driver
895	 *
896	 * SERVICE:
897	 * - "for PLCP configuration"
898	 * - always 0 except in some situations at 802.11b 11M
899	 * - see line 53 of zdinlinef.h
900	 */
901	cs->service = 0;
902	r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
903		                 le16_to_cpu(cs->tx_length));
904	if (r < 0)
905		return r;
906	cs->current_length = cpu_to_le16(r);
907	cs->next_frame_length = 0;
908
909	return 0;
910}
911
912/**
913 * zd_op_tx - transmits a network frame to the device
914 *
915 * @hw: a &struct ieee80211_hw pointer
916 * @control: the control structure
917 * @skb: socket buffer
918 *
919 * This function transmit an IEEE 802.11 network frame to the device. The
920 * control block of the skbuff will be initialized. If necessary the incoming
921 * mac80211 queues will be stopped.
922 */
923static void zd_op_tx(struct ieee80211_hw *hw,
924		     struct ieee80211_tx_control *control,
925		     struct sk_buff *skb)
926{
927	struct zd_mac *mac = zd_hw_mac(hw);
928	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
929	int r;
930
931	r = fill_ctrlset(mac, skb);
932	if (r)
933		goto fail;
934
935	info->rate_driver_data[0] = hw;
936
937	r = zd_usb_tx(&mac->chip.usb, skb);
938	if (r)
939		goto fail;
940	return;
941
942fail:
943	dev_kfree_skb(skb);
944}
945
946/**
947 * filter_ack - filters incoming packets for acknowledgements
948 * @hw: a &struct ieee80211_hw pointer
949 * @rx_hdr: received header
950 * @stats: the status for the received packet
951 *
952 * This functions looks for ACK packets and tries to match them with the
953 * frames in the tx queue. If a match is found the frame will be dequeued and
954 * the upper layers is informed about the successful transmission. If
955 * mac80211 queues have been stopped and the number of frames still to be
956 * transmitted is low the queues will be opened again.
957 *
958 * Returns 1 if the frame was an ACK, 0 if it was ignored.
959 */
960static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
961		      struct ieee80211_rx_status *stats)
962{
963	struct zd_mac *mac = zd_hw_mac(hw);
964	struct sk_buff *skb;
965	struct sk_buff_head *q;
966	unsigned long flags;
967	int found = 0;
968	int i, position = 0;
969
970	if (!ieee80211_is_ack(rx_hdr->frame_control))
971		return 0;
972
973	q = &mac->ack_wait_queue;
974	spin_lock_irqsave(&q->lock, flags);
975	skb_queue_walk(q, skb) {
976		struct ieee80211_hdr *tx_hdr;
977
978		position ++;
979
980		if (mac->ack_pending && skb_queue_is_first(q, skb))
981		    continue;
982
983		tx_hdr = (struct ieee80211_hdr *)skb->data;
984		if (likely(ether_addr_equal(tx_hdr->addr2, rx_hdr->addr1)))
985		{
986			found = 1;
987			break;
988		}
989	}
990
991	if (found) {
992		for (i=1; i<position; i++) {
993			skb = __skb_dequeue(q);
994			zd_mac_tx_status(hw, skb,
995					 mac->ack_pending ? mac->ack_signal : 0,
996					 NULL);
997			mac->ack_pending = 0;
998		}
999
1000		mac->ack_pending = 1;
1001		mac->ack_signal = stats->signal;
1002
1003		/* Prevent pending tx-packet on AP-mode */
1004		if (mac->type == NL80211_IFTYPE_AP) {
1005			skb = __skb_dequeue(q);
1006			zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
1007			mac->ack_pending = 0;
1008		}
1009	}
1010
1011	spin_unlock_irqrestore(&q->lock, flags);
1012	return 1;
1013}
1014
1015int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
1016{
1017	struct zd_mac *mac = zd_hw_mac(hw);
1018	struct ieee80211_rx_status stats;
1019	const struct rx_status *status;
1020	struct sk_buff *skb;
1021	int bad_frame = 0;
1022	__le16 fc;
1023	int need_padding;
1024	int i;
1025	u8 rate;
1026
1027	if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
1028	             FCS_LEN + sizeof(struct rx_status))
1029		return -EINVAL;
1030
1031	memset(&stats, 0, sizeof(stats));
1032
1033	/* Note about pass_failed_fcs and pass_ctrl access below:
1034	 * mac locking intentionally omitted here, as this is the only unlocked
1035	 * reader and the only writer is configure_filter. Plus, if there were
1036	 * any races accessing these variables, it wouldn't really matter.
1037	 * If mac80211 ever provides a way for us to access filter flags
1038	 * from outside configure_filter, we could improve on this. Also, this
1039	 * situation may change once we implement some kind of DMA-into-skb
1040	 * RX path. */
1041
1042	/* Caller has to ensure that length >= sizeof(struct rx_status). */
1043	status = (struct rx_status *)
1044		(buffer + (length - sizeof(struct rx_status)));
1045	if (status->frame_status & ZD_RX_ERROR) {
1046		if (mac->pass_failed_fcs &&
1047				(status->frame_status & ZD_RX_CRC32_ERROR)) {
1048			stats.flag |= RX_FLAG_FAILED_FCS_CRC;
1049			bad_frame = 1;
1050		} else {
1051			return -EINVAL;
1052		}
1053	}
1054
1055	stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
1056	stats.band = NL80211_BAND_2GHZ;
1057	stats.signal = zd_check_signal(hw, status->signal_strength);
1058
1059	rate = zd_rx_rate(buffer, status);
1060
1061	/* todo: return index in the big switches in zd_rx_rate instead */
1062	for (i = 0; i < mac->band.n_bitrates; i++)
1063		if (rate == mac->band.bitrates[i].hw_value)
1064			stats.rate_idx = i;
1065
1066	length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
1067	buffer += ZD_PLCP_HEADER_SIZE;
1068
1069	/* Except for bad frames, filter each frame to see if it is an ACK, in
1070	 * which case our internal TX tracking is updated. Normally we then
1071	 * bail here as there's no need to pass ACKs on up to the stack, but
1072	 * there is also the case where the stack has requested us to pass
1073	 * control frames on up (pass_ctrl) which we must consider. */
1074	if (!bad_frame &&
1075			filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
1076			&& !mac->pass_ctrl)
1077		return 0;
1078
1079	fc = get_unaligned((__le16*)buffer);
1080	need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
1081
1082	skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
1083	if (skb == NULL)
1084		return -ENOMEM;
1085	if (need_padding) {
1086		/* Make sure the payload data is 4 byte aligned. */
1087		skb_reserve(skb, 2);
1088	}
1089
1090	/* FIXME : could we avoid this big memcpy ? */
1091	skb_put_data(skb, buffer, length);
1092
1093	memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
1094	ieee80211_rx_irqsafe(hw, skb);
1095	return 0;
1096}
1097
1098static int zd_op_add_interface(struct ieee80211_hw *hw,
1099				struct ieee80211_vif *vif)
1100{
1101	struct zd_mac *mac = zd_hw_mac(hw);
1102
1103	/* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
1104	if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
1105		return -EOPNOTSUPP;
1106
1107	switch (vif->type) {
1108	case NL80211_IFTYPE_MONITOR:
1109	case NL80211_IFTYPE_MESH_POINT:
1110	case NL80211_IFTYPE_STATION:
1111	case NL80211_IFTYPE_ADHOC:
1112	case NL80211_IFTYPE_AP:
1113		mac->type = vif->type;
1114		break;
1115	default:
1116		return -EOPNOTSUPP;
1117	}
1118
1119	mac->vif = vif;
1120
1121	return set_mac_and_bssid(mac);
1122}
1123
1124static void zd_op_remove_interface(struct ieee80211_hw *hw,
1125				    struct ieee80211_vif *vif)
1126{
1127	struct zd_mac *mac = zd_hw_mac(hw);
1128	mac->type = NL80211_IFTYPE_UNSPECIFIED;
1129	mac->vif = NULL;
1130	zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
1131	zd_write_mac_addr(&mac->chip, NULL);
1132
1133	zd_mac_free_cur_beacon(mac);
1134}
1135
1136static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
1137{
1138	struct zd_mac *mac = zd_hw_mac(hw);
1139	struct ieee80211_conf *conf = &hw->conf;
1140
1141	spin_lock_irq(&mac->lock);
1142	mac->channel = conf->chandef.chan->hw_value;
1143	spin_unlock_irq(&mac->lock);
1144
1145	return zd_chip_set_channel(&mac->chip, conf->chandef.chan->hw_value);
1146}
1147
1148static void zd_beacon_done(struct zd_mac *mac)
1149{
1150	struct sk_buff *skb, *beacon;
1151
1152	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1153		return;
1154	if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
1155		return;
1156
1157	/*
1158	 * Send out buffered broad- and multicast frames.
1159	 */
1160	while (!ieee80211_queue_stopped(mac->hw, 0)) {
1161		skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
1162		if (!skb)
1163			break;
1164		zd_op_tx(mac->hw, NULL, skb);
1165	}
1166
1167	/*
1168	 * Fetch next beacon so that tim_count is updated.
1169	 */
1170	beacon = ieee80211_beacon_get(mac->hw, mac->vif, 0);
1171	if (beacon)
1172		zd_mac_config_beacon(mac->hw, beacon, true);
1173
1174	spin_lock_irq(&mac->lock);
1175	mac->beacon.last_update = jiffies;
1176	spin_unlock_irq(&mac->lock);
1177}
1178
1179static void zd_process_intr(struct work_struct *work)
1180{
1181	u16 int_status;
1182	unsigned long flags;
1183	struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
1184
1185	spin_lock_irqsave(&mac->lock, flags);
1186	int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
1187	spin_unlock_irqrestore(&mac->lock, flags);
1188
1189	if (int_status & INT_CFG_NEXT_BCN) {
1190		/*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
1191		zd_beacon_done(mac);
1192	} else {
1193		dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
1194	}
1195
1196	zd_chip_enable_hwint(&mac->chip);
1197}
1198
1199
1200static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
1201				   struct netdev_hw_addr_list *mc_list)
1202{
1203	struct zd_mac *mac = zd_hw_mac(hw);
1204	struct zd_mc_hash hash;
1205	struct netdev_hw_addr *ha;
1206
1207	zd_mc_clear(&hash);
1208
1209	netdev_hw_addr_list_for_each(ha, mc_list) {
1210		dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
1211		zd_mc_add_addr(&hash, ha->addr);
1212	}
1213
1214	return hash.low | ((u64)hash.high << 32);
1215}
1216
1217#define SUPPORTED_FIF_FLAGS \
1218	(FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1219	FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
1220static void zd_op_configure_filter(struct ieee80211_hw *hw,
1221			unsigned int changed_flags,
1222			unsigned int *new_flags,
1223			u64 multicast)
1224{
1225	struct zd_mc_hash hash = {
1226		.low = multicast,
1227		.high = multicast >> 32,
1228	};
1229	struct zd_mac *mac = zd_hw_mac(hw);
1230	unsigned long flags;
1231	int r;
1232
1233	/* Only deal with supported flags */
1234	changed_flags &= SUPPORTED_FIF_FLAGS;
1235	*new_flags &= SUPPORTED_FIF_FLAGS;
1236
1237	/*
1238	 * If multicast parameter (as returned by zd_op_prepare_multicast)
1239	 * has changed, no bit in changed_flags is set. To handle this
1240	 * situation, we do not return if changed_flags is 0. If we do so,
1241	 * we will have some issue with IPv6 which uses multicast for link
1242	 * layer address resolution.
1243	 */
1244	if (*new_flags & FIF_ALLMULTI)
1245		zd_mc_add_all(&hash);
1246
1247	spin_lock_irqsave(&mac->lock, flags);
1248	mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
1249	mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
1250	mac->multicast_hash = hash;
1251	spin_unlock_irqrestore(&mac->lock, flags);
1252
1253	zd_chip_set_multicast_hash(&mac->chip, &hash);
1254
1255	if (changed_flags & FIF_CONTROL) {
1256		r = set_rx_filter(mac);
1257		if (r)
1258			dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
1259	}
1260
1261	/* no handling required for FIF_OTHER_BSS as we don't currently
1262	 * do BSSID filtering */
1263	/* FIXME: in future it would be nice to enable the probe response
1264	 * filter (so that the driver doesn't see them) until
1265	 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1266	 * have to schedule work to enable prbresp reception, which might
1267	 * happen too late. For now we'll just listen and forward them all the
1268	 * time. */
1269}
1270
1271static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
1272{
1273	mutex_lock(&mac->chip.mutex);
1274	zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1275	mutex_unlock(&mac->chip.mutex);
1276}
1277
1278static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1279				   struct ieee80211_vif *vif,
1280				   struct ieee80211_bss_conf *bss_conf,
1281				   u64 changes)
1282{
1283	struct zd_mac *mac = zd_hw_mac(hw);
1284	int associated;
1285
1286	dev_dbg_f(zd_mac_dev(mac), "changes: %llx\n", changes);
1287
1288	if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1289	    mac->type == NL80211_IFTYPE_ADHOC ||
1290	    mac->type == NL80211_IFTYPE_AP) {
1291		associated = true;
1292		if (changes & BSS_CHANGED_BEACON) {
1293			struct sk_buff *beacon = ieee80211_beacon_get(hw, vif,
1294								      0);
1295
1296			if (beacon) {
1297				zd_chip_disable_hwint(&mac->chip);
1298				zd_mac_config_beacon(hw, beacon, false);
1299				zd_chip_enable_hwint(&mac->chip);
1300			}
1301		}
1302
1303		if (changes & BSS_CHANGED_BEACON_ENABLED) {
1304			u16 interval = 0;
1305			u8 period = 0;
1306
1307			if (bss_conf->enable_beacon) {
1308				period = bss_conf->dtim_period;
1309				interval = bss_conf->beacon_int;
1310			}
1311
1312			spin_lock_irq(&mac->lock);
1313			mac->beacon.period = period;
1314			mac->beacon.interval = interval;
1315			mac->beacon.last_update = jiffies;
1316			spin_unlock_irq(&mac->lock);
1317
1318			zd_set_beacon_interval(&mac->chip, interval, period,
1319					       mac->type);
1320		}
1321	} else
1322		associated = is_valid_ether_addr(bss_conf->bssid);
1323
1324	spin_lock_irq(&mac->lock);
1325	mac->associated = associated;
1326	spin_unlock_irq(&mac->lock);
1327
1328	/* TODO: do hardware bssid filtering */
1329
1330	if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1331		spin_lock_irq(&mac->lock);
1332		mac->short_preamble = bss_conf->use_short_preamble;
1333		spin_unlock_irq(&mac->lock);
1334
1335		set_rts_cts(mac, bss_conf->use_short_preamble);
1336	}
1337}
1338
1339static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1340{
1341	struct zd_mac *mac = zd_hw_mac(hw);
1342	return zd_chip_get_tsf(&mac->chip);
1343}
1344
1345static const struct ieee80211_ops zd_ops = {
1346	.add_chanctx = ieee80211_emulate_add_chanctx,
1347	.remove_chanctx = ieee80211_emulate_remove_chanctx,
1348	.change_chanctx = ieee80211_emulate_change_chanctx,
1349	.switch_vif_chanctx = ieee80211_emulate_switch_vif_chanctx,
1350	.tx			= zd_op_tx,
1351	.wake_tx_queue		= ieee80211_handle_wake_tx_queue,
1352	.start			= zd_op_start,
1353	.stop			= zd_op_stop,
1354	.add_interface		= zd_op_add_interface,
1355	.remove_interface	= zd_op_remove_interface,
1356	.config			= zd_op_config,
1357	.prepare_multicast	= zd_op_prepare_multicast,
1358	.configure_filter	= zd_op_configure_filter,
1359	.bss_info_changed	= zd_op_bss_info_changed,
1360	.get_tsf		= zd_op_get_tsf,
1361};
1362
1363struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1364{
1365	struct zd_mac *mac;
1366	struct ieee80211_hw *hw;
1367
1368	hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1369	if (!hw) {
1370		dev_dbg_f(&intf->dev, "out of memory\n");
1371		return NULL;
1372	}
1373
1374	mac = zd_hw_mac(hw);
1375
1376	memset(mac, 0, sizeof(*mac));
1377	spin_lock_init(&mac->lock);
1378	mac->hw = hw;
1379
1380	mac->type = NL80211_IFTYPE_UNSPECIFIED;
1381
1382	memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1383	memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1384	mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1385	mac->band.bitrates = mac->rates;
1386	mac->band.n_channels = ARRAY_SIZE(zd_channels);
1387	mac->band.channels = mac->channels;
1388
1389	hw->wiphy->bands[NL80211_BAND_2GHZ] = &mac->band;
1390
1391	ieee80211_hw_set(hw, MFP_CAPABLE);
1392	ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
1393	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1394	ieee80211_hw_set(hw, SIGNAL_UNSPEC);
1395
1396	hw->wiphy->interface_modes =
1397		BIT(NL80211_IFTYPE_MESH_POINT) |
1398		BIT(NL80211_IFTYPE_STATION) |
1399		BIT(NL80211_IFTYPE_ADHOC) |
1400		BIT(NL80211_IFTYPE_AP);
1401
1402	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1403
1404	hw->max_signal = 100;
1405	hw->queues = 1;
1406	hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1407
1408	/*
1409	 * Tell mac80211 that we support multi rate retries
1410	 */
1411	hw->max_rates = IEEE80211_TX_MAX_RATES;
1412	hw->max_rate_tries = 18;	/* 9 rates * 2 retries/rate */
1413
1414	skb_queue_head_init(&mac->ack_wait_queue);
1415	mac->ack_pending = 0;
1416
1417	zd_chip_init(&mac->chip, hw, intf);
1418	housekeeping_init(mac);
1419	beacon_init(mac);
1420	INIT_WORK(&mac->process_intr, zd_process_intr);
1421
1422	SET_IEEE80211_DEV(hw, &intf->dev);
1423	return hw;
1424}
1425
1426#define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
1427
1428static void beacon_watchdog_handler(struct work_struct *work)
1429{
1430	struct zd_mac *mac =
1431		container_of(work, struct zd_mac, beacon.watchdog_work.work);
1432	struct sk_buff *beacon;
1433	unsigned long timeout;
1434	int interval, period;
1435
1436	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1437		goto rearm;
1438	if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
1439		goto rearm;
1440
1441	spin_lock_irq(&mac->lock);
1442	interval = mac->beacon.interval;
1443	period = mac->beacon.period;
1444	timeout = mac->beacon.last_update +
1445			msecs_to_jiffies(interval * 1024 / 1000) * 3;
1446	spin_unlock_irq(&mac->lock);
1447
1448	if (interval > 0 && time_is_before_jiffies(timeout)) {
1449		dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
1450					   "restarting. "
1451					   "(interval: %d, dtim: %d)\n",
1452					   interval, period);
1453
1454		zd_chip_disable_hwint(&mac->chip);
1455
1456		beacon = ieee80211_beacon_get(mac->hw, mac->vif, 0);
1457		if (beacon) {
1458			zd_mac_free_cur_beacon(mac);
1459
1460			zd_mac_config_beacon(mac->hw, beacon, false);
1461		}
1462
1463		zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
1464
1465		zd_chip_enable_hwint(&mac->chip);
1466
1467		spin_lock_irq(&mac->lock);
1468		mac->beacon.last_update = jiffies;
1469		spin_unlock_irq(&mac->lock);
1470	}
1471
1472rearm:
1473	queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1474			   BEACON_WATCHDOG_DELAY);
1475}
1476
1477static void beacon_init(struct zd_mac *mac)
1478{
1479	INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
1480}
1481
1482static void beacon_enable(struct zd_mac *mac)
1483{
1484	dev_dbg_f(zd_mac_dev(mac), "\n");
1485
1486	mac->beacon.last_update = jiffies;
1487	queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1488			   BEACON_WATCHDOG_DELAY);
1489}
1490
1491static void beacon_disable(struct zd_mac *mac)
1492{
1493	dev_dbg_f(zd_mac_dev(mac), "\n");
1494	cancel_delayed_work_sync(&mac->beacon.watchdog_work);
1495
1496	zd_mac_free_cur_beacon(mac);
1497}
1498
1499#define LINK_LED_WORK_DELAY HZ
1500
1501static void link_led_handler(struct work_struct *work)
1502{
1503	struct zd_mac *mac =
1504		container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1505	struct zd_chip *chip = &mac->chip;
1506	int is_associated;
1507	int r;
1508
1509	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1510		goto requeue;
1511
1512	spin_lock_irq(&mac->lock);
1513	is_associated = mac->associated;
1514	spin_unlock_irq(&mac->lock);
1515
1516	r = zd_chip_control_leds(chip,
1517		                 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1518	if (r)
1519		dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1520
1521requeue:
1522	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1523		           LINK_LED_WORK_DELAY);
1524}
1525
1526static void housekeeping_init(struct zd_mac *mac)
1527{
1528	INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1529}
1530
1531static void housekeeping_enable(struct zd_mac *mac)
1532{
1533	dev_dbg_f(zd_mac_dev(mac), "\n");
1534	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1535			   0);
1536}
1537
1538static void housekeeping_disable(struct zd_mac *mac)
1539{
1540	dev_dbg_f(zd_mac_dev(mac), "\n");
1541	cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
1542	zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
1543}
1544