1/*
2 * Copyright (c) 2014 Redpine Signals Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/etherdevice.h>
18#include <linux/timer.h>
19#include "rsi_mgmt.h"
20#include "rsi_common.h"
21#include "rsi_ps.h"
22#include "rsi_hal.h"
23
24static struct bootup_params boot_params_20 = {
25	.magic_number = cpu_to_le16(0x5aa5),
26	.crystal_good_time = 0x0,
27	.valid = cpu_to_le32(VALID_20),
28	.reserved_for_valids = 0x0,
29	.bootup_mode_info = 0x0,
30	.digital_loop_back_params = 0x0,
31	.rtls_timestamp_en = 0x0,
32	.host_spi_intr_cfg = 0x0,
33	.device_clk_info = {{
34		.pll_config_g = {
35			.tapll_info_g = {
36				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
37					      (TA_PLL_M_VAL_20)),
38				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
39			},
40			.pll960_info_g = {
41				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
42							 (PLL960_N_VAL_20)),
43				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
44				.pll_reg_3 = 0x0,
45			},
46			.afepll_info_g = {
47				.pll_reg = cpu_to_le16(0x9f0),
48			}
49		},
50		.switch_clk_g = {
51			.switch_clk_info = cpu_to_le16(0xb),
52			.bbp_lmac_clk_reg_val = cpu_to_le16(0x111),
53			.umac_clock_reg_config = cpu_to_le16(0x48),
54			.qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
55		}
56	},
57	{
58		.pll_config_g = {
59			.tapll_info_g = {
60				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
61							 (TA_PLL_M_VAL_20)),
62				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
63			},
64			.pll960_info_g = {
65				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
66							 (PLL960_N_VAL_20)),
67				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
68				.pll_reg_3 = 0x0,
69			},
70			.afepll_info_g = {
71				.pll_reg = cpu_to_le16(0x9f0),
72			}
73		},
74		.switch_clk_g = {
75			.switch_clk_info = 0x0,
76			.bbp_lmac_clk_reg_val = 0x0,
77			.umac_clock_reg_config = 0x0,
78			.qspi_uart_clock_reg_config = 0x0
79		}
80	},
81	{
82		.pll_config_g = {
83			.tapll_info_g = {
84				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
85							 (TA_PLL_M_VAL_20)),
86				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
87			},
88			.pll960_info_g = {
89				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
90							 (PLL960_N_VAL_20)),
91				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
92				.pll_reg_3 = 0x0,
93			},
94			.afepll_info_g = {
95				.pll_reg = cpu_to_le16(0x9f0),
96			}
97		},
98		.switch_clk_g = {
99			.switch_clk_info = 0x0,
100			.bbp_lmac_clk_reg_val = 0x0,
101			.umac_clock_reg_config = 0x0,
102			.qspi_uart_clock_reg_config = 0x0
103		}
104	} },
105	.buckboost_wakeup_cnt = 0x0,
106	.pmu_wakeup_wait = 0x0,
107	.shutdown_wait_time = 0x0,
108	.pmu_slp_clkout_sel = 0x0,
109	.wdt_prog_value = 0x0,
110	.wdt_soc_rst_delay = 0x0,
111	.dcdc_operation_mode = 0x0,
112	.soc_reset_wait_cnt = 0x0,
113	.waiting_time_at_fresh_sleep = 0x0,
114	.max_threshold_to_avoid_sleep = 0x0,
115	.beacon_resedue_alg_en = 0,
116};
117
118static struct bootup_params boot_params_40 = {
119	.magic_number = cpu_to_le16(0x5aa5),
120	.crystal_good_time = 0x0,
121	.valid = cpu_to_le32(VALID_40),
122	.reserved_for_valids = 0x0,
123	.bootup_mode_info = 0x0,
124	.digital_loop_back_params = 0x0,
125	.rtls_timestamp_en = 0x0,
126	.host_spi_intr_cfg = 0x0,
127	.device_clk_info = {{
128		.pll_config_g = {
129			.tapll_info_g = {
130				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
131							 (TA_PLL_M_VAL_40)),
132				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
133			},
134			.pll960_info_g = {
135				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
136							 (PLL960_N_VAL_40)),
137				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
138				.pll_reg_3 = 0x0,
139			},
140			.afepll_info_g = {
141				.pll_reg = cpu_to_le16(0x9f0),
142			}
143		},
144		.switch_clk_g = {
145			.switch_clk_info = cpu_to_le16(0x09),
146			.bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
147			.umac_clock_reg_config = cpu_to_le16(0x48),
148			.qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
149		}
150	},
151	{
152		.pll_config_g = {
153			.tapll_info_g = {
154				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
155							 (TA_PLL_M_VAL_40)),
156				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
157			},
158			.pll960_info_g = {
159				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
160							 (PLL960_N_VAL_40)),
161				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
162				.pll_reg_3 = 0x0,
163			},
164			.afepll_info_g = {
165				.pll_reg = cpu_to_le16(0x9f0),
166			}
167		},
168		.switch_clk_g = {
169			.switch_clk_info = 0x0,
170			.bbp_lmac_clk_reg_val = 0x0,
171			.umac_clock_reg_config = 0x0,
172			.qspi_uart_clock_reg_config = 0x0
173		}
174	},
175	{
176		.pll_config_g = {
177			.tapll_info_g = {
178				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
179							 (TA_PLL_M_VAL_40)),
180				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
181			},
182			.pll960_info_g = {
183				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
184							 (PLL960_N_VAL_40)),
185				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
186				.pll_reg_3 = 0x0,
187			},
188			.afepll_info_g = {
189				.pll_reg = cpu_to_le16(0x9f0),
190			}
191		},
192		.switch_clk_g = {
193			.switch_clk_info = 0x0,
194			.bbp_lmac_clk_reg_val = 0x0,
195			.umac_clock_reg_config = 0x0,
196			.qspi_uart_clock_reg_config = 0x0
197		}
198	} },
199	.buckboost_wakeup_cnt = 0x0,
200	.pmu_wakeup_wait = 0x0,
201	.shutdown_wait_time = 0x0,
202	.pmu_slp_clkout_sel = 0x0,
203	.wdt_prog_value = 0x0,
204	.wdt_soc_rst_delay = 0x0,
205	.dcdc_operation_mode = 0x0,
206	.soc_reset_wait_cnt = 0x0,
207	.waiting_time_at_fresh_sleep = 0x0,
208	.max_threshold_to_avoid_sleep = 0x0,
209	.beacon_resedue_alg_en = 0,
210};
211
212static struct bootup_params_9116 boot_params_9116_20 = {
213	.magic_number = cpu_to_le16(LOADED_TOKEN),
214	.valid = cpu_to_le32(VALID_20),
215	.device_clk_info_9116 = {{
216		.pll_config_9116_g = {
217			.pll_ctrl_set_reg = cpu_to_le16(0xd518),
218			.pll_ctrl_clr_reg = cpu_to_le16(0x2ae7),
219			.pll_modem_conig_reg = cpu_to_le16(0x2000),
220			.soc_clk_config_reg = cpu_to_le16(0x0c18),
221			.adc_dac_strm1_config_reg = cpu_to_le16(0x1100),
222			.adc_dac_strm2_config_reg = cpu_to_le16(0x6600),
223		},
224		.switch_clk_9116_g = {
225			.switch_clk_info =
226				cpu_to_le32((RSI_SWITCH_TASS_CLK |
227					    RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG |
228					    RSI_SWITCH_BBP_LMAC_CLK_REG)),
229			.tass_clock_reg = cpu_to_le32(0x083C0503),
230			.wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042001),
231			.zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x02010001),
232			.bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b),
233		}
234	},
235	},
236};
237
238static struct bootup_params_9116 boot_params_9116_40 = {
239	.magic_number = cpu_to_le16(LOADED_TOKEN),
240	.valid = cpu_to_le32(VALID_40),
241	.device_clk_info_9116 = {{
242		.pll_config_9116_g = {
243			.pll_ctrl_set_reg = cpu_to_le16(0xd518),
244			.pll_ctrl_clr_reg = cpu_to_le16(0x2ae7),
245			.pll_modem_conig_reg = cpu_to_le16(0x3000),
246			.soc_clk_config_reg = cpu_to_le16(0x0c18),
247			.adc_dac_strm1_config_reg = cpu_to_le16(0x0000),
248			.adc_dac_strm2_config_reg = cpu_to_le16(0x6600),
249		},
250		.switch_clk_9116_g = {
251			.switch_clk_info =
252				cpu_to_le32((RSI_SWITCH_TASS_CLK |
253					    RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG |
254					    RSI_SWITCH_BBP_LMAC_CLK_REG |
255					    RSI_MODEM_CLK_160MHZ)),
256			.tass_clock_reg = cpu_to_le32(0x083C0503),
257			.wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042002),
258			.zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x04010002),
259			.bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b),
260		}
261	},
262	},
263};
264
265static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
266
267/**
268 * rsi_set_default_parameters() - This function sets default parameters.
269 * @common: Pointer to the driver private structure.
270 *
271 * Return: none
272 */
273static void rsi_set_default_parameters(struct rsi_common *common)
274{
275	common->band = NL80211_BAND_2GHZ;
276	common->channel_width = BW_20MHZ;
277	common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
278	common->channel = 1;
279	memset(&common->rate_config, 0, sizeof(common->rate_config));
280	common->fsm_state = FSM_CARD_NOT_READY;
281	common->iface_down = true;
282	common->endpoint = EP_2GHZ_20MHZ;
283	common->driver_mode = 1; /* End to end mode */
284	common->lp_ps_handshake_mode = 0; /* Default no handShake mode*/
285	common->ulp_ps_handshake_mode = 2; /* Default PKT handShake mode*/
286	common->rf_power_val = 0; /* Default 1.9V */
287	common->wlan_rf_power_mode = 0;
288	common->obm_ant_sel_val = 2;
289	common->beacon_interval = RSI_BEACON_INTERVAL;
290	common->dtim_cnt = RSI_DTIM_COUNT;
291	common->w9116_features.pll_mode = 0x0;
292	common->w9116_features.rf_type = 1;
293	common->w9116_features.wireless_mode = 0;
294	common->w9116_features.enable_ppe = 0;
295	common->w9116_features.afe_type = 1;
296	common->w9116_features.dpd = 0;
297	common->w9116_features.sifs_tx_enable = 0;
298	common->w9116_features.ps_options = 0;
299}
300
301void init_bgscan_params(struct rsi_common *common)
302{
303	memset((u8 *)&common->bgscan, 0, sizeof(struct rsi_bgscan_params));
304	common->bgscan.bgscan_threshold = RSI_DEF_BGSCAN_THRLD;
305	common->bgscan.roam_threshold = RSI_DEF_ROAM_THRLD;
306	common->bgscan.bgscan_periodicity = RSI_BGSCAN_PERIODICITY;
307	common->bgscan.num_bgscan_channels = 0;
308	common->bgscan.two_probe = 1;
309	common->bgscan.active_scan_duration = RSI_ACTIVE_SCAN_TIME;
310	common->bgscan.passive_scan_duration = RSI_PASSIVE_SCAN_TIME;
311}
312
313/**
314 * rsi_set_contention_vals() - This function sets the contention values for the
315 *			       backoff procedure.
316 * @common: Pointer to the driver private structure.
317 *
318 * Return: None.
319 */
320static void rsi_set_contention_vals(struct rsi_common *common)
321{
322	u8 ii = 0;
323
324	for (; ii < NUM_EDCA_QUEUES; ii++) {
325		common->tx_qinfo[ii].wme_params =
326			(((common->edca_params[ii].cw_min / 2) +
327			  (common->edca_params[ii].aifs)) *
328			  WMM_SHORT_SLOT_TIME + SIFS_DURATION);
329		common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
330		common->tx_qinfo[ii].pkt_contended = 0;
331	}
332}
333
334/**
335 * rsi_send_internal_mgmt_frame() - This function sends management frames to
336 *				    firmware.Also schedules packet to queue
337 *				    for transmission.
338 * @common: Pointer to the driver private structure.
339 * @skb: Pointer to the socket buffer structure.
340 *
341 * Return: 0 on success, -1 on failure.
342 */
343static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
344					struct sk_buff *skb)
345{
346	struct skb_info *tx_params;
347	struct rsi_cmd_desc *desc;
348
349	if (skb == NULL) {
350		rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
351		return -ENOMEM;
352	}
353	desc = (struct rsi_cmd_desc *)skb->data;
354	desc->desc_dword0.len_qno |= cpu_to_le16(DESC_IMMEDIATE_WAKEUP);
355	skb->priority = MGMT_SOFT_Q;
356	tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
357	tx_params->flags |= INTERNAL_MGMT_PKT;
358	skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
359	rsi_set_event(&common->tx_thread.event);
360	return 0;
361}
362
363/**
364 * rsi_load_radio_caps() - This function is used to send radio capabilities
365 *			   values to firmware.
366 * @common: Pointer to the driver private structure.
367 *
368 * Return: 0 on success, corresponding negative error code on failure.
369 */
370static int rsi_load_radio_caps(struct rsi_common *common)
371{
372	struct rsi_radio_caps *radio_caps;
373	struct rsi_hw *adapter = common->priv;
374	u16 inx = 0;
375	u8 ii;
376	u8 radio_id = 0;
377	u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
378		      0xf0, 0xf0, 0xf0, 0xf0,
379		      0xf0, 0xf0, 0xf0, 0xf0,
380		      0xf0, 0xf0, 0xf0, 0xf0,
381		      0xf0, 0xf0, 0xf0, 0xf0};
382	struct sk_buff *skb;
383	u16 frame_len = sizeof(struct rsi_radio_caps);
384
385	rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
386
387	skb = dev_alloc_skb(frame_len);
388
389	if (!skb) {
390		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
391			__func__);
392		return -ENOMEM;
393	}
394
395	memset(skb->data, 0, frame_len);
396	radio_caps = (struct rsi_radio_caps *)skb->data;
397
398	radio_caps->desc_dword0.frame_type = RADIO_CAPABILITIES;
399	radio_caps->channel_num = common->channel;
400	radio_caps->rf_model = RSI_RF_TYPE;
401
402	radio_caps->radio_cfg_info = RSI_LMAC_CLOCK_80MHZ;
403	if (common->channel_width == BW_40MHZ) {
404		radio_caps->radio_cfg_info |= RSI_ENABLE_40MHZ;
405
406		if (common->fsm_state == FSM_MAC_INIT_DONE) {
407			struct ieee80211_hw *hw = adapter->hw;
408			struct ieee80211_conf *conf = &hw->conf;
409
410			if (conf_is_ht40_plus(conf)) {
411				radio_caps->ppe_ack_rate =
412					cpu_to_le16(LOWER_20_ENABLE |
413						    (LOWER_20_ENABLE >> 12));
414			} else if (conf_is_ht40_minus(conf)) {
415				radio_caps->ppe_ack_rate =
416					cpu_to_le16(UPPER_20_ENABLE |
417						    (UPPER_20_ENABLE >> 12));
418			} else {
419				radio_caps->ppe_ack_rate =
420					cpu_to_le16((BW_40MHZ << 12) |
421						    FULL40M_ENABLE);
422			}
423		}
424	}
425	radio_caps->radio_info |= radio_id;
426
427	if (adapter->device_model == RSI_DEV_9116 &&
428	    common->channel_width == BW_20MHZ)
429		radio_caps->radio_cfg_info &= ~0x3;
430
431	radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
432	radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
433	radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
434	radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
435	radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
436	radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
437
438	for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
439		radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
440		radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
441		radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
442		radio_caps->qos_params[ii].txop_q = 0;
443	}
444
445	for (ii = 0; ii < NUM_EDCA_QUEUES; ii++) {
446		if (common->edca_params[ii].cw_max > 0) {
447			radio_caps->qos_params[ii].cont_win_min_q =
448				cpu_to_le16(common->edca_params[ii].cw_min);
449			radio_caps->qos_params[ii].cont_win_max_q =
450				cpu_to_le16(common->edca_params[ii].cw_max);
451			radio_caps->qos_params[ii].aifsn_val_q =
452				cpu_to_le16(common->edca_params[ii].aifs << 8);
453			radio_caps->qos_params[ii].txop_q =
454				cpu_to_le16(common->edca_params[ii].txop);
455		}
456	}
457
458	radio_caps->qos_params[BROADCAST_HW_Q].txop_q = cpu_to_le16(0xffff);
459	radio_caps->qos_params[MGMT_HW_Q].txop_q = 0;
460	radio_caps->qos_params[BEACON_HW_Q].txop_q = cpu_to_le16(0xffff);
461
462	memcpy(&common->rate_pwr[0], &gc[0], 40);
463	for (ii = 0; ii < 20; ii++)
464		radio_caps->gcpd_per_rate[inx++] =
465			cpu_to_le16(common->rate_pwr[ii]  & 0x00FF);
466
467	rsi_set_len_qno(&radio_caps->desc_dword0.len_qno,
468			(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
469
470	skb_put(skb, frame_len);
471
472	return rsi_send_internal_mgmt_frame(common, skb);
473}
474
475/**
476 * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
477 * @common: Pointer to the driver private structure.
478 * @msg: Pointer to received packet.
479 * @msg_len: Length of the received packet.
480 *
481 * Return: 0 on success, -1 on failure.
482 */
483static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
484				u8 *msg,
485				s32 msg_len)
486{
487	struct rsi_hw *adapter = common->priv;
488	struct ieee80211_tx_info *info;
489	struct skb_info *rx_params;
490	u8 pad_bytes = msg[4];
491	struct sk_buff *skb;
492
493	if (!adapter->sc_nvifs)
494		return -ENOLINK;
495
496	msg_len -= pad_bytes;
497	if (msg_len <= 0) {
498		rsi_dbg(MGMT_RX_ZONE,
499			"%s: Invalid rx msg of len = %d\n",
500			__func__, msg_len);
501		return -EINVAL;
502	}
503
504	skb = dev_alloc_skb(msg_len);
505	if (!skb)
506		return -ENOMEM;
507
508	skb_put_data(skb,
509		     (u8 *)(msg + FRAME_DESC_SZ + pad_bytes),
510		     msg_len);
511
512	info = IEEE80211_SKB_CB(skb);
513	rx_params = (struct skb_info *)info->driver_data;
514	rx_params->rssi = rsi_get_rssi(msg);
515	rx_params->channel = rsi_get_channel(msg);
516	rsi_indicate_pkt_to_os(common, skb);
517
518	return 0;
519}
520
521/**
522 * rsi_hal_send_sta_notify_frame() - This function sends the station notify
523 *				     frame to firmware.
524 * @common: Pointer to the driver private structure.
525 * @opmode: Operating mode of device.
526 * @notify_event: Notification about station connection.
527 * @bssid: bssid.
528 * @qos_enable: Qos is enabled.
529 * @aid: Aid (unique for all STA).
530 * @sta_id: station id.
531 * @vif: Pointer to the ieee80211_vif structure.
532 *
533 * Return: status: 0 on success, corresponding negative error code on failure.
534 */
535int rsi_hal_send_sta_notify_frame(struct rsi_common *common, enum opmode opmode,
536				  u8 notify_event, const unsigned char *bssid,
537				  u8 qos_enable, u16 aid, u16 sta_id,
538				  struct ieee80211_vif *vif)
539{
540	struct sk_buff *skb = NULL;
541	struct rsi_peer_notify *peer_notify;
542	u16 vap_id = ((struct vif_priv *)vif->drv_priv)->vap_id;
543	int status;
544	u16 frame_len = sizeof(struct rsi_peer_notify);
545
546	rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
547
548	skb = dev_alloc_skb(frame_len);
549
550	if (!skb) {
551		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
552			__func__);
553		return -ENOMEM;
554	}
555
556	memset(skb->data, 0, frame_len);
557	peer_notify = (struct rsi_peer_notify *)skb->data;
558
559	if (opmode == RSI_OPMODE_STA)
560		peer_notify->command = cpu_to_le16(PEER_TYPE_AP << 1);
561	else if (opmode == RSI_OPMODE_AP)
562		peer_notify->command = cpu_to_le16(PEER_TYPE_STA << 1);
563
564	switch (notify_event) {
565	case STA_CONNECTED:
566		peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
567		break;
568	case STA_DISCONNECTED:
569		peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
570		break;
571	default:
572		break;
573	}
574
575	peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
576	ether_addr_copy(peer_notify->mac_addr, bssid);
577	peer_notify->mpdu_density = cpu_to_le16(RSI_MPDU_DENSITY);
578	peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
579
580	rsi_set_len_qno(&peer_notify->desc.desc_dword0.len_qno,
581			(frame_len - FRAME_DESC_SZ),
582			RSI_WIFI_MGMT_Q);
583	peer_notify->desc.desc_dword0.frame_type = PEER_NOTIFY;
584	peer_notify->desc.desc_dword3.qid_tid = sta_id;
585	peer_notify->desc.desc_dword3.sta_id = vap_id;
586
587	skb_put(skb, frame_len);
588
589	status = rsi_send_internal_mgmt_frame(common, skb);
590
591	if ((vif->type == NL80211_IFTYPE_STATION) &&
592	    (!status && qos_enable)) {
593		rsi_set_contention_vals(common);
594		status = rsi_load_radio_caps(common);
595	}
596	return status;
597}
598
599/**
600 * rsi_send_aggregation_params_frame() - This function sends the ampdu
601 *					 indication frame to firmware.
602 * @common: Pointer to the driver private structure.
603 * @tid: traffic identifier.
604 * @ssn: ssn.
605 * @buf_size: buffer size.
606 * @event: notification about station connection.
607 * @sta_id: station id.
608 *
609 * Return: 0 on success, corresponding negative error code on failure.
610 */
611int rsi_send_aggregation_params_frame(struct rsi_common *common,
612				      u16 tid,
613				      u16 ssn,
614				      u8 buf_size,
615				      u8 event,
616				      u8 sta_id)
617{
618	struct sk_buff *skb = NULL;
619	struct rsi_aggr_params *aggr_params;
620	u16 frame_len = sizeof(struct rsi_aggr_params);
621
622	skb = dev_alloc_skb(frame_len);
623
624	if (!skb) {
625		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
626			__func__);
627		return -ENOMEM;
628	}
629
630	memset(skb->data, 0, frame_len);
631	aggr_params = (struct rsi_aggr_params *)skb->data;
632
633	rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
634
635	rsi_set_len_qno(&aggr_params->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
636	aggr_params->desc_dword0.frame_type = AMPDU_IND;
637
638	aggr_params->aggr_params = tid & RSI_AGGR_PARAMS_TID_MASK;
639	aggr_params->peer_id = sta_id;
640	if (event == STA_TX_ADDBA_DONE) {
641		aggr_params->seq_start = cpu_to_le16(ssn);
642		aggr_params->baw_size = cpu_to_le16(buf_size);
643		aggr_params->aggr_params |= RSI_AGGR_PARAMS_START;
644	} else if (event == STA_RX_ADDBA_DONE) {
645		aggr_params->seq_start = cpu_to_le16(ssn);
646		aggr_params->aggr_params |= (RSI_AGGR_PARAMS_START |
647					     RSI_AGGR_PARAMS_RX_AGGR);
648	} else if (event == STA_RX_DELBA) {
649		aggr_params->aggr_params |= RSI_AGGR_PARAMS_RX_AGGR;
650	}
651
652	skb_put(skb, frame_len);
653
654	return rsi_send_internal_mgmt_frame(common, skb);
655}
656
657/**
658 * rsi_program_bb_rf() - This function starts base band and RF programming.
659 *			 This is called after initial configurations are done.
660 * @common: Pointer to the driver private structure.
661 *
662 * Return: 0 on success, corresponding negative error code on failure.
663 */
664static int rsi_program_bb_rf(struct rsi_common *common)
665{
666	struct sk_buff *skb;
667	struct rsi_bb_rf_prog *bb_rf_prog;
668	u16 frame_len = sizeof(struct rsi_bb_rf_prog);
669
670	rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
671
672	skb = dev_alloc_skb(frame_len);
673	if (!skb) {
674		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
675			__func__);
676		return -ENOMEM;
677	}
678
679	memset(skb->data, 0, frame_len);
680	bb_rf_prog = (struct rsi_bb_rf_prog *)skb->data;
681
682	rsi_set_len_qno(&bb_rf_prog->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
683	bb_rf_prog->desc_dword0.frame_type = BBP_PROG_IN_TA;
684	bb_rf_prog->endpoint = common->endpoint;
685	bb_rf_prog->rf_power_mode = common->wlan_rf_power_mode;
686
687	if (common->rf_reset) {
688		bb_rf_prog->flags =  cpu_to_le16(RF_RESET_ENABLE);
689		rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
690			__func__);
691		common->rf_reset = 0;
692	}
693	common->bb_rf_prog_count = 1;
694	bb_rf_prog->flags |= cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE |
695					 (RSI_RF_TYPE << 4));
696	skb_put(skb, frame_len);
697
698	return rsi_send_internal_mgmt_frame(common, skb);
699}
700
701/**
702 * rsi_set_vap_capabilities() - This function send vap capability to firmware.
703 * @common: Pointer to the driver private structure.
704 * @mode: Operating mode of device.
705 * @mac_addr: MAC address
706 * @vap_id: Rate information - offset and mask
707 * @vap_status: VAP status - ADD, DELETE or UPDATE
708 *
709 * Return: 0 on success, corresponding negative error code on failure.
710 */
711int rsi_set_vap_capabilities(struct rsi_common *common,
712			     enum opmode mode,
713			     u8 *mac_addr,
714			     u8 vap_id,
715			     u8 vap_status)
716{
717	struct sk_buff *skb = NULL;
718	struct rsi_vap_caps *vap_caps;
719	struct rsi_hw *adapter = common->priv;
720	struct ieee80211_hw *hw = adapter->hw;
721	struct ieee80211_conf *conf = &hw->conf;
722	u16 frame_len = sizeof(struct rsi_vap_caps);
723
724	rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
725
726	skb = dev_alloc_skb(frame_len);
727	if (!skb) {
728		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
729			__func__);
730		return -ENOMEM;
731	}
732
733	memset(skb->data, 0, frame_len);
734	vap_caps = (struct rsi_vap_caps *)skb->data;
735
736	rsi_set_len_qno(&vap_caps->desc_dword0.len_qno,
737			(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
738	vap_caps->desc_dword0.frame_type = VAP_CAPABILITIES;
739	vap_caps->status = vap_status;
740	vap_caps->vif_type = mode;
741	vap_caps->channel_bw = common->channel_width;
742	vap_caps->vap_id = vap_id;
743	vap_caps->radioid_macid = ((common->mac_id & 0xf) << 4) |
744				   (common->radio_id & 0xf);
745
746	memcpy(vap_caps->mac_addr, mac_addr, IEEE80211_ADDR_LEN);
747	vap_caps->keep_alive_period = cpu_to_le16(90);
748	vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
749
750	vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
751
752	if (common->band == NL80211_BAND_5GHZ) {
753		vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_6);
754		vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6);
755	} else {
756		vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_1);
757		vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_1);
758	}
759	if (conf_is_ht40(conf)) {
760		if (conf_is_ht40_minus(conf))
761			vap_caps->ctrl_rate_flags =
762				cpu_to_le16(UPPER_20_ENABLE);
763		else if (conf_is_ht40_plus(conf))
764			vap_caps->ctrl_rate_flags =
765				cpu_to_le16(LOWER_20_ENABLE);
766		else
767			vap_caps->ctrl_rate_flags =
768				cpu_to_le16(FULL40M_ENABLE);
769	}
770
771	vap_caps->default_data_rate = 0;
772	vap_caps->beacon_interval = cpu_to_le16(common->beacon_interval);
773	vap_caps->dtim_period = cpu_to_le16(common->dtim_cnt);
774
775	skb_put(skb, frame_len);
776
777	return rsi_send_internal_mgmt_frame(common, skb);
778}
779
780/**
781 * rsi_hal_load_key() - This function is used to load keys within the firmware.
782 * @common: Pointer to the driver private structure.
783 * @data: Pointer to the key data.
784 * @key_len: Key length to be loaded.
785 * @key_type: Type of key: GROUP/PAIRWISE.
786 * @key_id: Key index.
787 * @cipher: Type of cipher used.
788 * @sta_id: Station id.
789 * @vif: Pointer to the ieee80211_vif structure.
790 *
791 * Return: 0 on success, -1 on failure.
792 */
793int rsi_hal_load_key(struct rsi_common *common,
794		     u8 *data,
795		     u16 key_len,
796		     u8 key_type,
797		     u8 key_id,
798		     u32 cipher,
799		     s16 sta_id,
800		     struct ieee80211_vif *vif)
801{
802	struct sk_buff *skb = NULL;
803	struct rsi_set_key *set_key;
804	u16 key_descriptor = 0;
805	u16 frame_len = sizeof(struct rsi_set_key);
806
807	rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
808
809	skb = dev_alloc_skb(frame_len);
810	if (!skb) {
811		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
812			__func__);
813		return -ENOMEM;
814	}
815
816	memset(skb->data, 0, frame_len);
817	set_key = (struct rsi_set_key *)skb->data;
818
819	if (key_type == RSI_GROUP_KEY) {
820		key_descriptor = RSI_KEY_TYPE_BROADCAST;
821		if (vif->type == NL80211_IFTYPE_AP)
822			key_descriptor |= RSI_KEY_MODE_AP;
823	}
824	if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
825	    (cipher == WLAN_CIPHER_SUITE_WEP104)) {
826		key_id = 0;
827		key_descriptor |= RSI_WEP_KEY;
828		if (key_len >= 13)
829			key_descriptor |= RSI_WEP_KEY_104;
830	} else if (cipher != KEY_TYPE_CLEAR) {
831		key_descriptor |= RSI_CIPHER_WPA;
832		if (cipher == WLAN_CIPHER_SUITE_TKIP)
833			key_descriptor |= RSI_CIPHER_TKIP;
834	}
835	key_descriptor |= RSI_PROTECT_DATA_FRAMES;
836	key_descriptor |= (key_id << RSI_KEY_ID_OFFSET);
837
838	rsi_set_len_qno(&set_key->desc_dword0.len_qno,
839			(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
840	set_key->desc_dword0.frame_type = SET_KEY_REQ;
841	set_key->key_desc = cpu_to_le16(key_descriptor);
842	set_key->sta_id = sta_id;
843
844	if (data) {
845		if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
846		    (cipher == WLAN_CIPHER_SUITE_WEP104)) {
847			memcpy(&set_key->key[key_id][1], data, key_len * 2);
848		} else {
849			memcpy(&set_key->key[0][0], data, key_len);
850		}
851		memcpy(set_key->tx_mic_key, &data[16], 8);
852		memcpy(set_key->rx_mic_key, &data[24], 8);
853	} else {
854		memset(&set_key[FRAME_DESC_SZ], 0, frame_len - FRAME_DESC_SZ);
855	}
856
857	skb_put(skb, frame_len);
858
859	return rsi_send_internal_mgmt_frame(common, skb);
860}
861
862/*
863 * This function sends the common device configuration parameters to device.
864 * This frame includes the useful information to make device works on
865 * specific operating mode.
866 */
867static int rsi_send_common_dev_params(struct rsi_common *common)
868{
869	struct sk_buff *skb;
870	u16 frame_len;
871	struct rsi_config_vals *dev_cfgs;
872
873	frame_len = sizeof(struct rsi_config_vals);
874
875	rsi_dbg(MGMT_TX_ZONE, "Sending common device config params\n");
876	skb = dev_alloc_skb(frame_len);
877	if (!skb) {
878		rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
879		return -ENOMEM;
880	}
881
882	memset(skb->data, 0, frame_len);
883
884	dev_cfgs = (struct rsi_config_vals *)skb->data;
885	memset(dev_cfgs, 0, (sizeof(struct rsi_config_vals)));
886
887	rsi_set_len_qno(&dev_cfgs->len_qno, (frame_len - FRAME_DESC_SZ),
888			RSI_COEX_Q);
889	dev_cfgs->pkt_type = COMMON_DEV_CONFIG;
890
891	dev_cfgs->lp_ps_handshake = common->lp_ps_handshake_mode;
892	dev_cfgs->ulp_ps_handshake = common->ulp_ps_handshake_mode;
893
894	dev_cfgs->unused_ulp_gpio = RSI_UNUSED_ULP_GPIO_BITMAP;
895	dev_cfgs->unused_soc_gpio_bitmap =
896				cpu_to_le32(RSI_UNUSED_SOC_GPIO_BITMAP);
897
898	dev_cfgs->opermode = common->oper_mode;
899	dev_cfgs->wlan_rf_pwr_mode = common->wlan_rf_power_mode;
900	dev_cfgs->driver_mode = common->driver_mode;
901	dev_cfgs->region_code = NL80211_DFS_FCC;
902	dev_cfgs->antenna_sel_val = common->obm_ant_sel_val;
903
904	skb_put(skb, frame_len);
905
906	return rsi_send_internal_mgmt_frame(common, skb);
907}
908
909/*
910 * rsi_load_bootup_params() - This function send bootup params to the firmware.
911 * @common: Pointer to the driver private structure.
912 *
913 * Return: 0 on success, corresponding error code on failure.
914 */
915static int rsi_load_bootup_params(struct rsi_common *common)
916{
917	struct sk_buff *skb;
918	struct rsi_boot_params *boot_params;
919
920	rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
921	skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
922	if (!skb) {
923		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
924			__func__);
925		return -ENOMEM;
926	}
927
928	memset(skb->data, 0, sizeof(struct rsi_boot_params));
929	boot_params = (struct rsi_boot_params *)skb->data;
930
931	rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
932
933	if (common->channel_width == BW_40MHZ) {
934		memcpy(&boot_params->bootup_params,
935		       &boot_params_40,
936		       sizeof(struct bootup_params));
937		rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
938			UMAC_CLK_40BW);
939		boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
940	} else {
941		memcpy(&boot_params->bootup_params,
942		       &boot_params_20,
943		       sizeof(struct bootup_params));
944		if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
945			boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
946			rsi_dbg(MGMT_TX_ZONE,
947				"%s: Packet 20MHZ <=== %d\n", __func__,
948				UMAC_CLK_20BW);
949		} else {
950			boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
951			rsi_dbg(MGMT_TX_ZONE,
952				"%s: Packet 20MHZ <=== %d\n", __func__,
953				UMAC_CLK_40MHZ);
954		}
955	}
956
957	/**
958	 * Bit{0:11} indicates length of the Packet
959	 * Bit{12:15} indicates host queue number
960	 */
961	boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
962				    (RSI_WIFI_MGMT_Q << 12));
963	boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
964
965	skb_put(skb, sizeof(struct rsi_boot_params));
966
967	return rsi_send_internal_mgmt_frame(common, skb);
968}
969
970static int rsi_load_9116_bootup_params(struct rsi_common *common)
971{
972	struct sk_buff *skb;
973	struct rsi_boot_params_9116 *boot_params;
974
975	rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
976
977	skb = dev_alloc_skb(sizeof(struct rsi_boot_params_9116));
978	if (!skb)
979		return -ENOMEM;
980	memset(skb->data, 0, sizeof(struct rsi_boot_params));
981	boot_params = (struct rsi_boot_params_9116 *)skb->data;
982
983	if (common->channel_width == BW_40MHZ) {
984		memcpy(&boot_params->bootup_params,
985		       &boot_params_9116_40,
986		       sizeof(struct bootup_params_9116));
987		rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
988			UMAC_CLK_40BW);
989		boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40BW);
990	} else {
991		memcpy(&boot_params->bootup_params,
992		       &boot_params_9116_20,
993		       sizeof(struct bootup_params_9116));
994		if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
995			boot_params->umac_clk = cpu_to_le16(UMAC_CLK_20BW);
996			rsi_dbg(MGMT_TX_ZONE,
997				"%s: Packet 20MHZ <=== %d\n", __func__,
998				UMAC_CLK_20BW);
999		} else {
1000			boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40MHZ);
1001			rsi_dbg(MGMT_TX_ZONE,
1002				"%s: Packet 20MHZ <=== %d\n", __func__,
1003				UMAC_CLK_40MHZ);
1004		}
1005	}
1006	rsi_set_len_qno(&boot_params->desc_dword0.len_qno,
1007			sizeof(struct bootup_params_9116), RSI_WIFI_MGMT_Q);
1008	boot_params->desc_dword0.frame_type = BOOTUP_PARAMS_REQUEST;
1009	skb_put(skb, sizeof(struct rsi_boot_params_9116));
1010
1011	return rsi_send_internal_mgmt_frame(common, skb);
1012}
1013
1014/**
1015 * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
1016 *			  internal management frame to indicate it to firmware.
1017 * @common: Pointer to the driver private structure.
1018 *
1019 * Return: 0 on success, corresponding error code on failure.
1020 */
1021static int rsi_send_reset_mac(struct rsi_common *common)
1022{
1023	struct sk_buff *skb;
1024	struct rsi_mac_frame *mgmt_frame;
1025
1026	rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
1027
1028	skb = dev_alloc_skb(FRAME_DESC_SZ);
1029	if (!skb) {
1030		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1031			__func__);
1032		return -ENOMEM;
1033	}
1034
1035	memset(skb->data, 0, FRAME_DESC_SZ);
1036	mgmt_frame = (struct rsi_mac_frame *)skb->data;
1037
1038	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1039	mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
1040	mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
1041
1042#define RSI_9116_DEF_TA_AGGR	3
1043	if (common->priv->device_model == RSI_DEV_9116)
1044		mgmt_frame->desc_word[3] |=
1045			cpu_to_le16(RSI_9116_DEF_TA_AGGR << 8);
1046
1047	skb_put(skb, FRAME_DESC_SZ);
1048
1049	return rsi_send_internal_mgmt_frame(common, skb);
1050}
1051
1052/**
1053 * rsi_band_check() - This function programs the band
1054 * @common: Pointer to the driver private structure.
1055 * @curchan: Pointer to the current channel structure.
1056 *
1057 * Return: 0 on success, corresponding error code on failure.
1058 */
1059int rsi_band_check(struct rsi_common *common,
1060		   struct ieee80211_channel *curchan)
1061{
1062	struct rsi_hw *adapter = common->priv;
1063	struct ieee80211_hw *hw = adapter->hw;
1064	u8 prev_bw = common->channel_width;
1065	u8 prev_ep = common->endpoint;
1066	int status = 0;
1067
1068	if (common->band != curchan->band) {
1069		common->rf_reset = 1;
1070		common->band = curchan->band;
1071	}
1072
1073	if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) ||
1074	    (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20))
1075		common->channel_width = BW_20MHZ;
1076	else
1077		common->channel_width = BW_40MHZ;
1078
1079	if (common->band == NL80211_BAND_2GHZ) {
1080		if (common->channel_width)
1081			common->endpoint = EP_2GHZ_40MHZ;
1082		else
1083			common->endpoint = EP_2GHZ_20MHZ;
1084	} else {
1085		if (common->channel_width)
1086			common->endpoint = EP_5GHZ_40MHZ;
1087		else
1088			common->endpoint = EP_5GHZ_20MHZ;
1089	}
1090
1091	if (common->endpoint != prev_ep) {
1092		status = rsi_program_bb_rf(common);
1093		if (status)
1094			return status;
1095	}
1096
1097	if (common->channel_width != prev_bw) {
1098		if (adapter->device_model == RSI_DEV_9116)
1099			status = rsi_load_9116_bootup_params(common);
1100		else
1101			status = rsi_load_bootup_params(common);
1102		if (status)
1103			return status;
1104
1105		status = rsi_load_radio_caps(common);
1106		if (status)
1107			return status;
1108	}
1109
1110	return status;
1111}
1112
1113/**
1114 * rsi_set_channel() - This function programs the channel.
1115 * @common: Pointer to the driver private structure.
1116 * @channel: Channel value to be set.
1117 *
1118 * Return: 0 on success, corresponding error code on failure.
1119 */
1120int rsi_set_channel(struct rsi_common *common,
1121		    struct ieee80211_channel *channel)
1122{
1123	struct sk_buff *skb = NULL;
1124	struct rsi_chan_config *chan_cfg;
1125	u16 frame_len = sizeof(struct rsi_chan_config);
1126
1127	rsi_dbg(MGMT_TX_ZONE,
1128		"%s: Sending scan req frame\n", __func__);
1129
1130	if (!channel)
1131		return 0;
1132
1133	skb = dev_alloc_skb(frame_len);
1134	if (!skb) {
1135		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1136			__func__);
1137		return -ENOMEM;
1138	}
1139
1140	memset(skb->data, 0, frame_len);
1141	chan_cfg = (struct rsi_chan_config *)skb->data;
1142
1143	rsi_set_len_qno(&chan_cfg->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1144	chan_cfg->desc_dword0.frame_type = SCAN_REQUEST;
1145	chan_cfg->channel_number = channel->hw_value;
1146	chan_cfg->antenna_gain_offset_2g = channel->max_antenna_gain;
1147	chan_cfg->antenna_gain_offset_5g = channel->max_antenna_gain;
1148	chan_cfg->region_rftype = (RSI_RF_TYPE & 0xf) << 4;
1149
1150	if ((channel->flags & IEEE80211_CHAN_NO_IR) ||
1151	    (channel->flags & IEEE80211_CHAN_RADAR)) {
1152		chan_cfg->antenna_gain_offset_2g |= RSI_CHAN_RADAR;
1153	} else {
1154		if (common->tx_power < channel->max_power)
1155			chan_cfg->tx_power = cpu_to_le16(common->tx_power);
1156		else
1157			chan_cfg->tx_power = cpu_to_le16(channel->max_power);
1158	}
1159	chan_cfg->region_rftype |= (common->priv->dfs_region & 0xf);
1160
1161	if (common->channel_width == BW_40MHZ)
1162		chan_cfg->channel_width = 0x1;
1163
1164	common->channel = channel->hw_value;
1165
1166	skb_put(skb, frame_len);
1167
1168	return rsi_send_internal_mgmt_frame(common, skb);
1169}
1170
1171/**
1172 * rsi_send_radio_params_update() - This function sends the radio
1173 *				parameters update to device
1174 * @common: Pointer to the driver private structure.
1175 *
1176 * Return: 0 on success, corresponding error code on failure.
1177 */
1178int rsi_send_radio_params_update(struct rsi_common *common)
1179{
1180	struct rsi_mac_frame *cmd_frame;
1181	struct sk_buff *skb = NULL;
1182
1183	rsi_dbg(MGMT_TX_ZONE,
1184		"%s: Sending Radio Params update frame\n", __func__);
1185
1186	skb = dev_alloc_skb(FRAME_DESC_SZ);
1187	if (!skb) {
1188		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1189			__func__);
1190		return -ENOMEM;
1191	}
1192
1193	memset(skb->data, 0, FRAME_DESC_SZ);
1194	cmd_frame = (struct rsi_mac_frame *)skb->data;
1195
1196	cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1197	cmd_frame->desc_word[1] = cpu_to_le16(RADIO_PARAMS_UPDATE);
1198	cmd_frame->desc_word[3] = cpu_to_le16(BIT(0));
1199
1200	cmd_frame->desc_word[3] |= cpu_to_le16(common->tx_power << 8);
1201
1202	skb_put(skb, FRAME_DESC_SZ);
1203
1204	return rsi_send_internal_mgmt_frame(common, skb);
1205}
1206
1207/* This function programs the threshold. */
1208int rsi_send_vap_dynamic_update(struct rsi_common *common)
1209{
1210	struct sk_buff *skb;
1211	struct rsi_dynamic_s *dynamic_frame;
1212
1213	rsi_dbg(MGMT_TX_ZONE,
1214		"%s: Sending vap update indication frame\n", __func__);
1215
1216	skb = dev_alloc_skb(sizeof(struct rsi_dynamic_s));
1217	if (!skb)
1218		return -ENOMEM;
1219
1220	memset(skb->data, 0, sizeof(struct rsi_dynamic_s));
1221	dynamic_frame = (struct rsi_dynamic_s *)skb->data;
1222	rsi_set_len_qno(&dynamic_frame->desc_dword0.len_qno,
1223			sizeof(dynamic_frame->frame_body), RSI_WIFI_MGMT_Q);
1224
1225	dynamic_frame->desc_dword0.frame_type = VAP_DYNAMIC_UPDATE;
1226	dynamic_frame->desc_dword2.pkt_info =
1227					cpu_to_le32(common->rts_threshold);
1228
1229	if (common->wow_flags & RSI_WOW_ENABLED) {
1230		/* Beacon miss threshold */
1231		dynamic_frame->desc_dword3.token =
1232					cpu_to_le16(RSI_BCN_MISS_THRESHOLD);
1233		dynamic_frame->frame_body.keep_alive_period =
1234					cpu_to_le16(RSI_WOW_KEEPALIVE);
1235	} else {
1236		dynamic_frame->frame_body.keep_alive_period =
1237					cpu_to_le16(RSI_DEF_KEEPALIVE);
1238	}
1239
1240	dynamic_frame->desc_dword3.sta_id = 0; /* vap id */
1241
1242	skb_put(skb, sizeof(struct rsi_dynamic_s));
1243
1244	return rsi_send_internal_mgmt_frame(common, skb);
1245}
1246
1247/**
1248 * rsi_compare() - This function is used to compare two integers
1249 * @a: pointer to the first integer
1250 * @b: pointer to the second integer
1251 *
1252 * Return: 0 if both are equal, -1 if the first is smaller, else 1
1253 */
1254static int rsi_compare(const void *a, const void *b)
1255{
1256	u16 _a = *(const u16 *)(a);
1257	u16 _b = *(const u16 *)(b);
1258
1259	if (_a > _b)
1260		return -1;
1261
1262	if (_a < _b)
1263		return 1;
1264
1265	return 0;
1266}
1267
1268/**
1269 * rsi_map_rates() - This function is used to map selected rates to hw rates.
1270 * @rate: The standard rate to be mapped.
1271 * @offset: Offset that will be returned.
1272 *
1273 * Return: 0 if it is a mcs rate, else 1
1274 */
1275static bool rsi_map_rates(u16 rate, int *offset)
1276{
1277	int kk;
1278	for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
1279		if (rate == mcs[kk]) {
1280			*offset = kk;
1281			return false;
1282		}
1283	}
1284
1285	for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
1286		if (rate == rsi_rates[kk].bitrate / 5) {
1287			*offset = kk;
1288			break;
1289		}
1290	}
1291	return true;
1292}
1293
1294/**
1295 * rsi_send_auto_rate_request() - This function is to set rates for connection
1296 *				  and send autorate request to firmware.
1297 * @common: Pointer to the driver private structure.
1298 * @sta: mac80211 station.
1299 * @sta_id: station id.
1300 * @vif: Pointer to the ieee80211_vif structure.
1301 *
1302 * Return: 0 on success, corresponding error code on failure.
1303 */
1304static int rsi_send_auto_rate_request(struct rsi_common *common,
1305				      struct ieee80211_sta *sta,
1306				      u16 sta_id,
1307				      struct ieee80211_vif *vif)
1308{
1309	struct sk_buff *skb;
1310	struct rsi_auto_rate *auto_rate;
1311	int ii = 0, jj = 0, kk = 0;
1312	struct ieee80211_hw *hw = common->priv->hw;
1313	u8 band = hw->conf.chandef.chan->band;
1314	u8 num_supported_rates = 0;
1315	u8 rate_table_offset, rate_offset = 0;
1316	u32 rate_bitmap, configured_rates;
1317	u16 *selected_rates, min_rate;
1318	bool is_ht = false, is_sgi = false;
1319	u16 frame_len = sizeof(struct rsi_auto_rate);
1320
1321	rsi_dbg(MGMT_TX_ZONE,
1322		"%s: Sending auto rate request frame\n", __func__);
1323
1324	skb = dev_alloc_skb(frame_len);
1325	if (!skb) {
1326		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1327			__func__);
1328		return -ENOMEM;
1329	}
1330
1331	memset(skb->data, 0, frame_len);
1332	selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
1333	if (!selected_rates) {
1334		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
1335			__func__);
1336		dev_kfree_skb(skb);
1337		return -ENOMEM;
1338	}
1339
1340	auto_rate = (struct rsi_auto_rate *)skb->data;
1341
1342	auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
1343	auto_rate->collision_tolerance = cpu_to_le16(3);
1344	auto_rate->failure_limit = cpu_to_le16(3);
1345	auto_rate->initial_boundary = cpu_to_le16(3);
1346	auto_rate->max_threshold_limt = cpu_to_le16(27);
1347
1348	auto_rate->desc.desc_dword0.frame_type = AUTO_RATE_IND;
1349
1350	if (common->channel_width == BW_40MHZ)
1351		auto_rate->desc.desc_dword3.qid_tid = BW_40MHZ;
1352	auto_rate->desc.desc_dword3.sta_id = sta_id;
1353
1354	if (vif->type == NL80211_IFTYPE_STATION) {
1355		rate_bitmap = common->bitrate_mask[band];
1356		is_ht = common->vif_info[0].is_ht;
1357		is_sgi = common->vif_info[0].sgi;
1358	} else {
1359		rate_bitmap = sta->deflink.supp_rates[band];
1360		is_ht = sta->deflink.ht_cap.ht_supported;
1361		if ((sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ||
1362		    (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40))
1363			is_sgi = true;
1364	}
1365
1366	/* Limit to any rates administratively configured by cfg80211 */
1367	configured_rates = common->rate_config[band].configured_mask ?: 0xffffffff;
1368	rate_bitmap &= configured_rates;
1369
1370	if (band == NL80211_BAND_2GHZ) {
1371		if ((rate_bitmap == 0) && (is_ht))
1372			min_rate = RSI_RATE_MCS0;
1373		else
1374			min_rate = RSI_RATE_1;
1375		rate_table_offset = 0;
1376	} else {
1377		if ((rate_bitmap == 0) && (is_ht))
1378			min_rate = RSI_RATE_MCS0;
1379		else
1380			min_rate = RSI_RATE_6;
1381		rate_table_offset = 4;
1382	}
1383
1384	for (ii = 0, jj = 0;
1385	     ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) {
1386		if (rate_bitmap & BIT(ii)) {
1387			selected_rates[jj++] =
1388			(rsi_rates[ii + rate_table_offset].bitrate / 5);
1389			rate_offset++;
1390		}
1391	}
1392	num_supported_rates = jj;
1393
1394	if (is_ht) {
1395		for (ii = 0; ii < ARRAY_SIZE(mcs); ii++) {
1396			if (configured_rates & BIT(ii + ARRAY_SIZE(rsi_rates))) {
1397				selected_rates[jj++] = mcs[ii];
1398				num_supported_rates++;
1399				rate_offset++;
1400			}
1401		}
1402	}
1403
1404	sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1405
1406	/* mapping the rates to RSI rates */
1407	for (ii = 0; ii < jj; ii++) {
1408		if (rsi_map_rates(selected_rates[ii], &kk)) {
1409			auto_rate->supported_rates[ii] =
1410				cpu_to_le16(rsi_rates[kk].hw_value);
1411		} else {
1412			auto_rate->supported_rates[ii] =
1413				cpu_to_le16(rsi_mcsrates[kk]);
1414		}
1415	}
1416
1417	/* loading HT rates in the bottom half of the auto rate table */
1418	if (is_ht) {
1419		for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1420		     ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1421			if (is_sgi || conf_is_ht40(&common->priv->hw->conf))
1422				auto_rate->supported_rates[ii++] =
1423					cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1424			else
1425				auto_rate->supported_rates[ii++] =
1426					cpu_to_le16(rsi_mcsrates[kk]);
1427			auto_rate->supported_rates[ii] =
1428				cpu_to_le16(rsi_mcsrates[kk--]);
1429		}
1430
1431		for (; ii < (RSI_TBL_SZ - 1); ii++) {
1432			auto_rate->supported_rates[ii] =
1433				cpu_to_le16(rsi_mcsrates[0]);
1434		}
1435	}
1436
1437	for (; ii < RSI_TBL_SZ; ii++)
1438		auto_rate->supported_rates[ii] = cpu_to_le16(min_rate);
1439
1440	auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1441	auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1442	num_supported_rates *= 2;
1443
1444	rsi_set_len_qno(&auto_rate->desc.desc_dword0.len_qno,
1445			(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1446
1447	skb_put(skb, frame_len);
1448	kfree(selected_rates);
1449
1450	return rsi_send_internal_mgmt_frame(common, skb);
1451}
1452
1453/**
1454 * rsi_inform_bss_status() - This function informs about bss status with the
1455 *			     help of sta notify params by sending an internal
1456 *			     management frame to firmware.
1457 * @common: Pointer to the driver private structure.
1458 * @opmode: Operating mode of device.
1459 * @status: Bss status type.
1460 * @addr: Address of the register.
1461 * @qos_enable: Qos is enabled.
1462 * @aid: Aid (unique for all STAs).
1463 * @sta: mac80211 station.
1464 * @sta_id: station id.
1465 * @assoc_cap: capabilities.
1466 * @vif: Pointer to the ieee80211_vif structure.
1467 *
1468 * Return: None.
1469 */
1470void rsi_inform_bss_status(struct rsi_common *common,
1471			   enum opmode opmode,
1472			   u8 status,
1473			   const u8 *addr,
1474			   u8 qos_enable,
1475			   u16 aid,
1476			   struct ieee80211_sta *sta,
1477			   u16 sta_id,
1478			   u16 assoc_cap,
1479			   struct ieee80211_vif *vif)
1480{
1481	if (status) {
1482		if (opmode == RSI_OPMODE_STA)
1483			common->hw_data_qs_blocked = true;
1484		rsi_hal_send_sta_notify_frame(common,
1485					      opmode,
1486					      STA_CONNECTED,
1487					      addr,
1488					      qos_enable,
1489					      aid, sta_id,
1490					      vif);
1491		if (!common->rate_config[common->band].fixed_enabled)
1492			rsi_send_auto_rate_request(common, sta, sta_id, vif);
1493		if (opmode == RSI_OPMODE_STA &&
1494		    !(assoc_cap & WLAN_CAPABILITY_PRIVACY) &&
1495		    !rsi_send_block_unblock_frame(common, false))
1496			common->hw_data_qs_blocked = false;
1497	} else {
1498		if (opmode == RSI_OPMODE_STA)
1499			common->hw_data_qs_blocked = true;
1500
1501		if (!(common->wow_flags & RSI_WOW_ENABLED))
1502			rsi_hal_send_sta_notify_frame(common, opmode,
1503						      STA_DISCONNECTED, addr,
1504						      qos_enable, aid, sta_id,
1505						      vif);
1506		if (opmode == RSI_OPMODE_STA)
1507			rsi_send_block_unblock_frame(common, true);
1508	}
1509}
1510
1511/**
1512 * rsi_eeprom_read() - This function sends a frame to read the mac address
1513 *		       from the eeprom.
1514 * @common: Pointer to the driver private structure.
1515 *
1516 * Return: 0 on success, -1 on failure.
1517 */
1518static int rsi_eeprom_read(struct rsi_common *common)
1519{
1520	struct rsi_eeprom_read_frame *mgmt_frame;
1521	struct rsi_hw *adapter = common->priv;
1522	struct sk_buff *skb;
1523
1524	rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1525
1526	skb = dev_alloc_skb(FRAME_DESC_SZ);
1527	if (!skb) {
1528		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1529			__func__);
1530		return -ENOMEM;
1531	}
1532
1533	memset(skb->data, 0, FRAME_DESC_SZ);
1534	mgmt_frame = (struct rsi_eeprom_read_frame *)skb->data;
1535
1536	/* FrameType */
1537	rsi_set_len_qno(&mgmt_frame->len_qno, 0, RSI_WIFI_MGMT_Q);
1538	mgmt_frame->pkt_type = EEPROM_READ;
1539
1540	/* Number of bytes to read */
1541	mgmt_frame->pkt_info =
1542		cpu_to_le32((adapter->eeprom.length << RSI_EEPROM_LEN_OFFSET) &
1543			    RSI_EEPROM_LEN_MASK);
1544	mgmt_frame->pkt_info |= cpu_to_le32((3 << RSI_EEPROM_HDR_SIZE_OFFSET) &
1545					    RSI_EEPROM_HDR_SIZE_MASK);
1546
1547	/* Address to read */
1548	mgmt_frame->eeprom_offset = cpu_to_le32(adapter->eeprom.offset);
1549
1550	skb_put(skb, FRAME_DESC_SZ);
1551
1552	return rsi_send_internal_mgmt_frame(common, skb);
1553}
1554
1555/**
1556 * rsi_send_block_unblock_frame() - This function sends a frame to block/unblock
1557 *                                  data queues in the firmware
1558 *
1559 * @common: Pointer to the driver private structure.
1560 * @block_event: Event block if true, unblock if false
1561 * returns 0 on success, -1 on failure.
1562 */
1563int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event)
1564{
1565	struct rsi_block_unblock_data *mgmt_frame;
1566	struct sk_buff *skb;
1567
1568	rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__);
1569
1570	skb = dev_alloc_skb(FRAME_DESC_SZ);
1571	if (!skb) {
1572		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1573			__func__);
1574		return -ENOMEM;
1575	}
1576
1577	memset(skb->data, 0, FRAME_DESC_SZ);
1578	mgmt_frame = (struct rsi_block_unblock_data *)skb->data;
1579
1580	rsi_set_len_qno(&mgmt_frame->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1581	mgmt_frame->desc_dword0.frame_type = BLOCK_HW_QUEUE;
1582	mgmt_frame->host_quiet_info = QUIET_INFO_VALID;
1583
1584	if (block_event) {
1585		rsi_dbg(INFO_ZONE, "blocking the data qs\n");
1586		mgmt_frame->block_q_bitmap = cpu_to_le16(0xf);
1587		mgmt_frame->block_q_bitmap |= cpu_to_le16(0xf << 4);
1588	} else {
1589		rsi_dbg(INFO_ZONE, "unblocking the data qs\n");
1590		mgmt_frame->unblock_q_bitmap = cpu_to_le16(0xf);
1591		mgmt_frame->unblock_q_bitmap |= cpu_to_le16(0xf << 4);
1592	}
1593
1594	skb_put(skb, FRAME_DESC_SZ);
1595
1596	return rsi_send_internal_mgmt_frame(common, skb);
1597}
1598
1599/**
1600 * rsi_send_rx_filter_frame() - Sends a frame to filter the RX packets
1601 *
1602 * @common: Pointer to the driver private structure.
1603 * @rx_filter_word: Flags of filter packets
1604 *
1605 * Returns 0 on success, -1 on failure.
1606 */
1607int rsi_send_rx_filter_frame(struct rsi_common *common, u16 rx_filter_word)
1608{
1609	struct rsi_mac_frame *cmd_frame;
1610	struct sk_buff *skb;
1611
1612	rsi_dbg(MGMT_TX_ZONE, "Sending RX filter frame\n");
1613
1614	skb = dev_alloc_skb(FRAME_DESC_SZ);
1615	if (!skb) {
1616		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1617			__func__);
1618		return -ENOMEM;
1619	}
1620
1621	memset(skb->data, 0, FRAME_DESC_SZ);
1622	cmd_frame = (struct rsi_mac_frame *)skb->data;
1623
1624	cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1625	cmd_frame->desc_word[1] = cpu_to_le16(SET_RX_FILTER);
1626	cmd_frame->desc_word[4] = cpu_to_le16(rx_filter_word);
1627
1628	skb_put(skb, FRAME_DESC_SZ);
1629
1630	return rsi_send_internal_mgmt_frame(common, skb);
1631}
1632
1633int rsi_send_ps_request(struct rsi_hw *adapter, bool enable,
1634			struct ieee80211_vif *vif)
1635{
1636	struct rsi_common *common = adapter->priv;
1637	struct rsi_request_ps *ps;
1638	struct rsi_ps_info *ps_info;
1639	struct sk_buff *skb;
1640	int frame_len = sizeof(*ps);
1641
1642	skb = dev_alloc_skb(frame_len);
1643	if (!skb)
1644		return -ENOMEM;
1645	memset(skb->data, 0, frame_len);
1646
1647	ps = (struct rsi_request_ps *)skb->data;
1648	ps_info = &adapter->ps_info;
1649
1650	rsi_set_len_qno(&ps->desc.desc_dword0.len_qno,
1651			(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1652	ps->desc.desc_dword0.frame_type = WAKEUP_SLEEP_REQUEST;
1653	if (enable) {
1654		ps->ps_sleep.enable = RSI_PS_ENABLE;
1655		ps->desc.desc_dword3.token = cpu_to_le16(RSI_SLEEP_REQUEST);
1656	} else {
1657		ps->ps_sleep.enable = RSI_PS_DISABLE;
1658		ps->desc.desc_dword0.len_qno |= cpu_to_le16(RSI_PS_DISABLE_IND);
1659		ps->desc.desc_dword3.token = cpu_to_le16(RSI_WAKEUP_REQUEST);
1660	}
1661
1662	ps->ps_uapsd_acs = common->uapsd_bitmap;
1663
1664	ps->ps_sleep.sleep_type = ps_info->sleep_type;
1665	ps->ps_sleep.num_bcns_per_lis_int =
1666		cpu_to_le16(ps_info->num_bcns_per_lis_int);
1667	ps->ps_sleep.sleep_duration =
1668		cpu_to_le32(ps_info->deep_sleep_wakeup_period);
1669
1670	if (vif->cfg.assoc)
1671		ps->ps_sleep.connected_sleep = RSI_CONNECTED_SLEEP;
1672	else
1673		ps->ps_sleep.connected_sleep = RSI_DEEP_SLEEP;
1674
1675	ps->ps_listen_interval = cpu_to_le32(ps_info->listen_interval);
1676	ps->ps_dtim_interval_duration =
1677		cpu_to_le32(ps_info->dtim_interval_duration);
1678
1679	if (ps_info->listen_interval > ps_info->dtim_interval_duration)
1680		ps->ps_listen_interval = cpu_to_le32(RSI_PS_DISABLE);
1681
1682	ps->ps_num_dtim_intervals = cpu_to_le16(ps_info->num_dtims_per_sleep);
1683	skb_put(skb, frame_len);
1684
1685	return rsi_send_internal_mgmt_frame(common, skb);
1686}
1687
1688static int rsi_send_w9116_features(struct rsi_common *common)
1689{
1690	struct rsi_wlan_9116_features *w9116_features;
1691	u16 frame_len = sizeof(struct rsi_wlan_9116_features);
1692	struct sk_buff *skb;
1693
1694	rsi_dbg(MGMT_TX_ZONE,
1695		"%s: Sending wlan 9116 features\n", __func__);
1696
1697	skb = dev_alloc_skb(frame_len);
1698	if (!skb)
1699		return -ENOMEM;
1700	memset(skb->data, 0, frame_len);
1701
1702	w9116_features = (struct rsi_wlan_9116_features *)skb->data;
1703
1704	w9116_features->pll_mode = common->w9116_features.pll_mode;
1705	w9116_features->rf_type = common->w9116_features.rf_type;
1706	w9116_features->wireless_mode = common->w9116_features.wireless_mode;
1707	w9116_features->enable_ppe = common->w9116_features.enable_ppe;
1708	w9116_features->afe_type = common->w9116_features.afe_type;
1709	if (common->w9116_features.dpd)
1710		w9116_features->feature_enable |= cpu_to_le32(RSI_DPD);
1711	if (common->w9116_features.sifs_tx_enable)
1712		w9116_features->feature_enable |=
1713			cpu_to_le32(RSI_SIFS_TX_ENABLE);
1714	if (common->w9116_features.ps_options & RSI_DUTY_CYCLING)
1715		w9116_features->feature_enable |= cpu_to_le32(RSI_DUTY_CYCLING);
1716	if (common->w9116_features.ps_options & RSI_END_OF_FRAME)
1717		w9116_features->feature_enable |= cpu_to_le32(RSI_END_OF_FRAME);
1718	w9116_features->feature_enable |=
1719		cpu_to_le32((common->w9116_features.ps_options & ~0x3) << 2);
1720
1721	rsi_set_len_qno(&w9116_features->desc.desc_dword0.len_qno,
1722			frame_len - FRAME_DESC_SZ, RSI_WIFI_MGMT_Q);
1723	w9116_features->desc.desc_dword0.frame_type = FEATURES_ENABLE;
1724	skb_put(skb, frame_len);
1725
1726	return rsi_send_internal_mgmt_frame(common, skb);
1727}
1728
1729/**
1730 * rsi_set_antenna() - This function send antenna configuration request
1731 *		       to device
1732 *
1733 * @common: Pointer to the driver private structure.
1734 * @antenna: bitmap for tx antenna selection
1735 *
1736 * Return: 0 on Success, negative error code on failure
1737 */
1738int rsi_set_antenna(struct rsi_common *common, u8 antenna)
1739{
1740	struct rsi_ant_sel_frame *ant_sel_frame;
1741	struct sk_buff *skb;
1742
1743	skb = dev_alloc_skb(FRAME_DESC_SZ);
1744	if (!skb) {
1745		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1746			__func__);
1747		return -ENOMEM;
1748	}
1749
1750	memset(skb->data, 0, FRAME_DESC_SZ);
1751
1752	ant_sel_frame = (struct rsi_ant_sel_frame *)skb->data;
1753	ant_sel_frame->desc_dword0.frame_type = ANT_SEL_FRAME;
1754	ant_sel_frame->sub_frame_type = ANTENNA_SEL_TYPE;
1755	ant_sel_frame->ant_value = cpu_to_le16(antenna & ANTENNA_MASK_VALUE);
1756	rsi_set_len_qno(&ant_sel_frame->desc_dword0.len_qno,
1757			0, RSI_WIFI_MGMT_Q);
1758	skb_put(skb, FRAME_DESC_SZ);
1759
1760	return rsi_send_internal_mgmt_frame(common, skb);
1761}
1762
1763static int rsi_send_beacon(struct rsi_common *common)
1764{
1765	struct sk_buff *skb = NULL;
1766	u8 dword_align_bytes = 0;
1767
1768	skb = dev_alloc_skb(MAX_MGMT_PKT_SIZE);
1769	if (!skb)
1770		return -ENOMEM;
1771
1772	memset(skb->data, 0, MAX_MGMT_PKT_SIZE);
1773
1774	dword_align_bytes = ((unsigned long)skb->data & 0x3f);
1775	if (dword_align_bytes)
1776		skb_pull(skb, (64 - dword_align_bytes));
1777	if (rsi_prepare_beacon(common, skb)) {
1778		rsi_dbg(ERR_ZONE, "Failed to prepare beacon\n");
1779		dev_kfree_skb(skb);
1780		return -EINVAL;
1781	}
1782	skb_queue_tail(&common->tx_queue[MGMT_BEACON_Q], skb);
1783	rsi_set_event(&common->tx_thread.event);
1784	rsi_dbg(DATA_TX_ZONE, "%s: Added to beacon queue\n", __func__);
1785
1786	return 0;
1787}
1788
1789#ifdef CONFIG_PM
1790int rsi_send_wowlan_request(struct rsi_common *common, u16 flags,
1791			    u16 sleep_status)
1792{
1793	struct rsi_wowlan_req *cmd_frame;
1794	struct sk_buff *skb;
1795	u8 length;
1796
1797	rsi_dbg(ERR_ZONE, "%s: Sending wowlan request frame\n", __func__);
1798
1799	length = sizeof(*cmd_frame);
1800	skb = dev_alloc_skb(length);
1801	if (!skb)
1802		return -ENOMEM;
1803	memset(skb->data, 0, length);
1804	cmd_frame = (struct rsi_wowlan_req *)skb->data;
1805
1806	rsi_set_len_qno(&cmd_frame->desc.desc_dword0.len_qno,
1807			(length - FRAME_DESC_SZ),
1808			RSI_WIFI_MGMT_Q);
1809	cmd_frame->desc.desc_dword0.frame_type = WOWLAN_CONFIG_PARAMS;
1810	cmd_frame->host_sleep_status = sleep_status;
1811	if (common->secinfo.gtk_cipher)
1812		flags |= RSI_WOW_GTK_REKEY;
1813	if (sleep_status)
1814		cmd_frame->wow_flags = flags;
1815	rsi_dbg(INFO_ZONE, "Host_Sleep_Status : %d Flags : %d\n",
1816		cmd_frame->host_sleep_status, cmd_frame->wow_flags);
1817
1818	skb_put(skb, length);
1819
1820	return rsi_send_internal_mgmt_frame(common, skb);
1821}
1822#endif
1823
1824int rsi_send_bgscan_params(struct rsi_common *common, int enable)
1825{
1826	struct rsi_bgscan_params *params = &common->bgscan;
1827	struct cfg80211_scan_request *scan_req = common->hwscan;
1828	struct rsi_bgscan_config *bgscan;
1829	struct sk_buff *skb;
1830	u16 frame_len = sizeof(*bgscan);
1831	u8 i;
1832
1833	rsi_dbg(MGMT_TX_ZONE, "%s: Sending bgscan params frame\n", __func__);
1834
1835	skb = dev_alloc_skb(frame_len);
1836	if (!skb)
1837		return -ENOMEM;
1838	memset(skb->data, 0, frame_len);
1839
1840	bgscan = (struct rsi_bgscan_config *)skb->data;
1841	rsi_set_len_qno(&bgscan->desc_dword0.len_qno,
1842			(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1843	bgscan->desc_dword0.frame_type = BG_SCAN_PARAMS;
1844	bgscan->bgscan_threshold = cpu_to_le16(params->bgscan_threshold);
1845	bgscan->roam_threshold = cpu_to_le16(params->roam_threshold);
1846	if (enable)
1847		bgscan->bgscan_periodicity =
1848			cpu_to_le16(params->bgscan_periodicity);
1849	bgscan->active_scan_duration =
1850			cpu_to_le16(params->active_scan_duration);
1851	bgscan->passive_scan_duration =
1852			cpu_to_le16(params->passive_scan_duration);
1853	bgscan->two_probe = params->two_probe;
1854
1855	bgscan->num_bgscan_channels = scan_req->n_channels;
1856	for (i = 0; i < bgscan->num_bgscan_channels; i++)
1857		bgscan->channels2scan[i] =
1858			cpu_to_le16(scan_req->channels[i]->hw_value);
1859
1860	skb_put(skb, frame_len);
1861
1862	return rsi_send_internal_mgmt_frame(common, skb);
1863}
1864
1865/* This function sends the probe request to be used by firmware in
1866 * background scan
1867 */
1868int rsi_send_bgscan_probe_req(struct rsi_common *common,
1869			      struct ieee80211_vif *vif)
1870{
1871	struct cfg80211_scan_request *scan_req = common->hwscan;
1872	struct rsi_bgscan_probe *bgscan;
1873	struct sk_buff *skb;
1874	struct sk_buff *probereq_skb;
1875	u16 frame_len = sizeof(*bgscan);
1876	size_t ssid_len = 0;
1877	u8 *ssid = NULL;
1878
1879	rsi_dbg(MGMT_TX_ZONE,
1880		"%s: Sending bgscan probe req frame\n", __func__);
1881
1882	if (common->priv->sc_nvifs <= 0)
1883		return -ENODEV;
1884
1885	if (scan_req->n_ssids) {
1886		ssid = scan_req->ssids[0].ssid;
1887		ssid_len = scan_req->ssids[0].ssid_len;
1888	}
1889
1890	skb = dev_alloc_skb(frame_len + MAX_BGSCAN_PROBE_REQ_LEN);
1891	if (!skb)
1892		return -ENOMEM;
1893	memset(skb->data, 0, frame_len + MAX_BGSCAN_PROBE_REQ_LEN);
1894
1895	bgscan = (struct rsi_bgscan_probe *)skb->data;
1896	bgscan->desc_dword0.frame_type = BG_SCAN_PROBE_REQ;
1897	bgscan->flags = cpu_to_le16(HOST_BG_SCAN_TRIG);
1898	if (common->band == NL80211_BAND_5GHZ) {
1899		bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_6);
1900		bgscan->def_chan = cpu_to_le16(40);
1901	} else {
1902		bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_1);
1903		bgscan->def_chan = cpu_to_le16(11);
1904	}
1905	bgscan->channel_scan_time = cpu_to_le16(RSI_CHANNEL_SCAN_TIME);
1906
1907	probereq_skb = ieee80211_probereq_get(common->priv->hw, vif->addr, ssid,
1908					      ssid_len, scan_req->ie_len);
1909	if (!probereq_skb) {
1910		dev_kfree_skb(skb);
1911		return -ENOMEM;
1912	}
1913
1914	memcpy(&skb->data[frame_len], probereq_skb->data, probereq_skb->len);
1915
1916	bgscan->probe_req_length = cpu_to_le16(probereq_skb->len);
1917
1918	rsi_set_len_qno(&bgscan->desc_dword0.len_qno,
1919			(frame_len - FRAME_DESC_SZ + probereq_skb->len),
1920			RSI_WIFI_MGMT_Q);
1921
1922	skb_put(skb, frame_len + probereq_skb->len);
1923
1924	dev_kfree_skb(probereq_skb);
1925
1926	return rsi_send_internal_mgmt_frame(common, skb);
1927}
1928
1929/**
1930 * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1931 * @common: Pointer to the driver private structure.
1932 * @msg: Pointer to received packet.
1933 *
1934 * Return: 0 on success, -1 on failure.
1935 */
1936static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1937				      u8 *msg)
1938{
1939	struct rsi_hw *adapter = common->priv;
1940	u8 sub_type = (msg[15] & 0xff);
1941	u16 msg_len = ((u16 *)msg)[0] & 0xfff;
1942	u8 offset;
1943
1944	switch (sub_type) {
1945	case BOOTUP_PARAMS_REQUEST:
1946		rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1947			__func__);
1948		if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1949			if (adapter->device_model == RSI_DEV_9116) {
1950				common->band = NL80211_BAND_5GHZ;
1951				common->num_supp_bands = 2;
1952
1953				if (rsi_send_reset_mac(common))
1954					goto out;
1955				else
1956					common->fsm_state = FSM_RESET_MAC_SENT;
1957			} else {
1958				adapter->eeprom.length =
1959					(IEEE80211_ADDR_LEN +
1960					 WLAN_MAC_MAGIC_WORD_LEN +
1961					 WLAN_HOST_MODE_LEN);
1962				adapter->eeprom.offset = WLAN_MAC_EEPROM_ADDR;
1963				if (rsi_eeprom_read(common)) {
1964					common->fsm_state = FSM_CARD_NOT_READY;
1965					goto out;
1966				}
1967				common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1968			}
1969		} else {
1970			rsi_dbg(INFO_ZONE,
1971				"%s: Received bootup params cfm in %d state\n",
1972				 __func__, common->fsm_state);
1973			return 0;
1974		}
1975		break;
1976
1977	case EEPROM_READ:
1978		rsi_dbg(FSM_ZONE, "EEPROM READ confirm received\n");
1979		if (msg_len <= 0) {
1980			rsi_dbg(FSM_ZONE,
1981				"%s: [EEPROM_READ] Invalid len %d\n",
1982				__func__, msg_len);
1983			goto out;
1984		}
1985		if (msg[16] != MAGIC_WORD) {
1986			rsi_dbg(FSM_ZONE,
1987				"%s: [EEPROM_READ] Invalid token\n", __func__);
1988			common->fsm_state = FSM_CARD_NOT_READY;
1989			goto out;
1990		}
1991		if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1992			offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN +
1993				  WLAN_MAC_MAGIC_WORD_LEN);
1994			memcpy(common->mac_addr, &msg[offset], ETH_ALEN);
1995			adapter->eeprom.length =
1996				((WLAN_MAC_MAGIC_WORD_LEN + 3) & (~3));
1997			adapter->eeprom.offset = WLAN_EEPROM_RFTYPE_ADDR;
1998			if (rsi_eeprom_read(common)) {
1999				rsi_dbg(ERR_ZONE,
2000					"%s: Failed reading RF band\n",
2001					__func__);
2002				common->fsm_state = FSM_CARD_NOT_READY;
2003				goto out;
2004			}
2005			common->fsm_state = FSM_EEPROM_READ_RF_TYPE;
2006		} else if (common->fsm_state == FSM_EEPROM_READ_RF_TYPE) {
2007			if ((msg[17] & 0x3) == 0x3) {
2008				rsi_dbg(INIT_ZONE, "Dual band supported\n");
2009				common->band = NL80211_BAND_5GHZ;
2010				common->num_supp_bands = 2;
2011			} else if ((msg[17] & 0x3) == 0x1) {
2012				rsi_dbg(INIT_ZONE,
2013					"Only 2.4Ghz band supported\n");
2014				common->band = NL80211_BAND_2GHZ;
2015				common->num_supp_bands = 1;
2016			}
2017			if (rsi_send_reset_mac(common))
2018				goto out;
2019			common->fsm_state = FSM_RESET_MAC_SENT;
2020		} else {
2021			rsi_dbg(ERR_ZONE, "%s: Invalid EEPROM read type\n",
2022				__func__);
2023			return 0;
2024		}
2025		break;
2026
2027	case RESET_MAC_REQ:
2028		if (common->fsm_state == FSM_RESET_MAC_SENT) {
2029			rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
2030				__func__);
2031
2032			if (rsi_load_radio_caps(common))
2033				goto out;
2034			else
2035				common->fsm_state = FSM_RADIO_CAPS_SENT;
2036		} else {
2037			rsi_dbg(ERR_ZONE,
2038				"%s: Received reset mac cfm in %d state\n",
2039				 __func__, common->fsm_state);
2040			return 0;
2041		}
2042		break;
2043
2044	case RADIO_CAPABILITIES:
2045		if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
2046			common->rf_reset = 1;
2047			if (adapter->device_model == RSI_DEV_9116 &&
2048			    rsi_send_w9116_features(common)) {
2049				rsi_dbg(ERR_ZONE,
2050					"Failed to send 9116 features\n");
2051				goto out;
2052			}
2053			if (rsi_program_bb_rf(common)) {
2054				goto out;
2055			} else {
2056				common->fsm_state = FSM_BB_RF_PROG_SENT;
2057				rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
2058					__func__);
2059			}
2060		} else {
2061			rsi_dbg(INFO_ZONE,
2062				"%s: Received radio caps cfm in %d state\n",
2063				 __func__, common->fsm_state);
2064			return 0;
2065		}
2066		break;
2067
2068	case BB_PROG_VALUES_REQUEST:
2069	case RF_PROG_VALUES_REQUEST:
2070	case BBP_PROG_IN_TA:
2071		rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
2072		if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
2073			common->bb_rf_prog_count--;
2074			if (!common->bb_rf_prog_count) {
2075				common->fsm_state = FSM_MAC_INIT_DONE;
2076				if (common->reinit_hw) {
2077					complete(&common->wlan_init_completion);
2078				} else {
2079					if (common->bt_defer_attach)
2080						rsi_attach_bt(common);
2081
2082					return rsi_mac80211_attach(common);
2083				}
2084			}
2085		} else {
2086			rsi_dbg(INFO_ZONE,
2087				"%s: Received bbb_rf cfm in %d state\n",
2088				 __func__, common->fsm_state);
2089			return 0;
2090		}
2091		break;
2092
2093	case SCAN_REQUEST:
2094		rsi_dbg(INFO_ZONE, "Set channel confirm\n");
2095		break;
2096
2097	case WAKEUP_SLEEP_REQUEST:
2098		rsi_dbg(INFO_ZONE, "Wakeup/Sleep confirmation.\n");
2099		return rsi_handle_ps_confirm(adapter, msg);
2100
2101	case BG_SCAN_PROBE_REQ:
2102		rsi_dbg(INFO_ZONE, "BG scan complete event\n");
2103		if (common->bgscan_en) {
2104			struct cfg80211_scan_info info;
2105
2106			if (!rsi_send_bgscan_params(common, RSI_STOP_BGSCAN))
2107				common->bgscan_en = 0;
2108			info.aborted = false;
2109			ieee80211_scan_completed(adapter->hw, &info);
2110		}
2111		rsi_dbg(INFO_ZONE, "Background scan completed\n");
2112		break;
2113
2114	default:
2115		rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
2116			__func__);
2117		break;
2118	}
2119	return 0;
2120out:
2121	rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
2122		__func__);
2123	return -EINVAL;
2124}
2125
2126int rsi_handle_card_ready(struct rsi_common *common, u8 *msg)
2127{
2128	int status;
2129
2130	switch (common->fsm_state) {
2131	case FSM_CARD_NOT_READY:
2132		rsi_dbg(INIT_ZONE, "Card ready indication from Common HAL\n");
2133		rsi_set_default_parameters(common);
2134		if (rsi_send_common_dev_params(common) < 0)
2135			return -EINVAL;
2136		common->fsm_state = FSM_COMMON_DEV_PARAMS_SENT;
2137		break;
2138	case FSM_COMMON_DEV_PARAMS_SENT:
2139		rsi_dbg(INIT_ZONE, "Card ready indication from WLAN HAL\n");
2140
2141		if (common->priv->device_model == RSI_DEV_9116) {
2142			if (msg[16] != MAGIC_WORD) {
2143				rsi_dbg(FSM_ZONE,
2144					"%s: [EEPROM_READ] Invalid token\n",
2145					__func__);
2146				common->fsm_state = FSM_CARD_NOT_READY;
2147				return -EINVAL;
2148			}
2149			memcpy(common->mac_addr, &msg[20], ETH_ALEN);
2150			rsi_dbg(INIT_ZONE, "MAC Addr %pM", common->mac_addr);
2151		}
2152		/* Get usb buffer status register address */
2153		common->priv->usb_buffer_status_reg = *(u32 *)&msg[8];
2154		rsi_dbg(INFO_ZONE, "USB buffer status register = %x\n",
2155			common->priv->usb_buffer_status_reg);
2156
2157		if (common->priv->device_model == RSI_DEV_9116)
2158			status = rsi_load_9116_bootup_params(common);
2159		else
2160			status = rsi_load_bootup_params(common);
2161		if (status < 0) {
2162			common->fsm_state = FSM_CARD_NOT_READY;
2163			return status;
2164		}
2165		common->fsm_state = FSM_BOOT_PARAMS_SENT;
2166		break;
2167	default:
2168		rsi_dbg(ERR_ZONE,
2169			"%s: card ready indication in invalid state %d.\n",
2170			__func__, common->fsm_state);
2171		return -EINVAL;
2172	}
2173
2174	return 0;
2175}
2176
2177/**
2178 * rsi_mgmt_pkt_recv() - This function processes the management packets
2179 *			 received from the hardware.
2180 * @common: Pointer to the driver private structure.
2181 * @msg: Pointer to the received packet.
2182 *
2183 * Return: 0 on success, -1 on failure.
2184 */
2185int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
2186{
2187	s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
2188	u16 msg_type = (msg[2]);
2189
2190	rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
2191		__func__, msg_len, msg_type);
2192
2193	switch (msg_type) {
2194	case TA_CONFIRM_TYPE:
2195		return rsi_handle_ta_confirm_type(common, msg);
2196	case CARD_READY_IND:
2197		common->hibernate_resume = false;
2198		rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
2199			__func__);
2200		return rsi_handle_card_ready(common, msg);
2201	case TX_STATUS_IND:
2202		switch (msg[RSI_TX_STATUS_TYPE]) {
2203		case PROBEREQ_CONFIRM:
2204			common->mgmt_q_block = false;
2205			rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
2206				__func__);
2207			break;
2208		case EAPOL4_CONFIRM:
2209			if (msg[RSI_TX_STATUS]) {
2210				common->eapol4_confirm = true;
2211				if (!rsi_send_block_unblock_frame(common,
2212								  false))
2213					common->hw_data_qs_blocked = false;
2214			}
2215		}
2216		break;
2217	case BEACON_EVENT_IND:
2218		rsi_dbg(INFO_ZONE, "Beacon event\n");
2219		if (common->fsm_state != FSM_MAC_INIT_DONE)
2220			return -1;
2221		if (common->iface_down)
2222			return -1;
2223		if (!common->beacon_enabled)
2224			return -1;
2225		rsi_send_beacon(common);
2226		break;
2227	case WOWLAN_WAKEUP_REASON:
2228		rsi_dbg(ERR_ZONE, "\n\nWakeup Type: %x\n", msg[15]);
2229		switch (msg[15]) {
2230		case RSI_UNICAST_MAGIC_PKT:
2231			rsi_dbg(ERR_ZONE,
2232				"*** Wakeup for Unicast magic packet ***\n");
2233			break;
2234		case RSI_BROADCAST_MAGICPKT:
2235			rsi_dbg(ERR_ZONE,
2236				"*** Wakeup for Broadcast magic packet ***\n");
2237			break;
2238		case RSI_EAPOL_PKT:
2239			rsi_dbg(ERR_ZONE,
2240				"*** Wakeup for GTK renewal ***\n");
2241			break;
2242		case RSI_DISCONNECT_PKT:
2243			rsi_dbg(ERR_ZONE,
2244				"*** Wakeup for Disconnect ***\n");
2245			break;
2246		case RSI_HW_BMISS_PKT:
2247			rsi_dbg(ERR_ZONE,
2248				"*** Wakeup for HW Beacon miss ***\n");
2249			break;
2250		default:
2251			rsi_dbg(ERR_ZONE,
2252				"##### Un-intentional Wakeup #####\n");
2253			break;
2254	}
2255	break;
2256	case RX_DOT11_MGMT:
2257		return rsi_mgmt_pkt_to_core(common, msg, msg_len);
2258	default:
2259		rsi_dbg(INFO_ZONE, "Received packet type: 0x%x\n", msg_type);
2260	}
2261	return 0;
2262}
2263