1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/* Copyright(c) 2018-2019  Realtek Corporation
3 */
4
5#include <linux/module.h>
6#include <linux/pci.h>
7#include "main.h"
8#include "pci.h"
9#include "reg.h"
10#include "tx.h"
11#include "rx.h"
12#include "fw.h"
13#include "ps.h"
14#include "debug.h"
15
16static bool rtw_disable_msi;
17static bool rtw_pci_disable_aspm;
18module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
19module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
20MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
21MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
22
23static u32 rtw_pci_tx_queue_idx_addr[] = {
24	[RTW_TX_QUEUE_BK]	= RTK_PCI_TXBD_IDX_BKQ,
25	[RTW_TX_QUEUE_BE]	= RTK_PCI_TXBD_IDX_BEQ,
26	[RTW_TX_QUEUE_VI]	= RTK_PCI_TXBD_IDX_VIQ,
27	[RTW_TX_QUEUE_VO]	= RTK_PCI_TXBD_IDX_VOQ,
28	[RTW_TX_QUEUE_MGMT]	= RTK_PCI_TXBD_IDX_MGMTQ,
29	[RTW_TX_QUEUE_HI0]	= RTK_PCI_TXBD_IDX_HI0Q,
30	[RTW_TX_QUEUE_H2C]	= RTK_PCI_TXBD_IDX_H2CQ,
31};
32
33static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb,
34			      enum rtw_tx_queue_type queue)
35{
36	switch (queue) {
37	case RTW_TX_QUEUE_BCN:
38		return TX_DESC_QSEL_BEACON;
39	case RTW_TX_QUEUE_H2C:
40		return TX_DESC_QSEL_H2C;
41	case RTW_TX_QUEUE_MGMT:
42		return TX_DESC_QSEL_MGMT;
43	case RTW_TX_QUEUE_HI0:
44		return TX_DESC_QSEL_HIGH;
45	default:
46		return skb->priority;
47	}
48};
49
50static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
51{
52	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
53
54	return readb(rtwpci->mmap + addr);
55}
56
57static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
58{
59	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
60
61	return readw(rtwpci->mmap + addr);
62}
63
64static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
65{
66	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
67
68	return readl(rtwpci->mmap + addr);
69}
70
71static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
72{
73	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
74
75	writeb(val, rtwpci->mmap + addr);
76}
77
78static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
79{
80	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
81
82	writew(val, rtwpci->mmap + addr);
83}
84
85static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
86{
87	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
88
89	writel(val, rtwpci->mmap + addr);
90}
91
92static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
93				      struct rtw_pci_tx_ring *tx_ring)
94{
95	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
96	struct rtw_pci_tx_data *tx_data;
97	struct sk_buff *skb, *tmp;
98	dma_addr_t dma;
99
100	/* free every skb remained in tx list */
101	skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
102		__skb_unlink(skb, &tx_ring->queue);
103		tx_data = rtw_pci_get_tx_data(skb);
104		dma = tx_data->dma;
105
106		dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
107		dev_kfree_skb_any(skb);
108	}
109}
110
111static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
112				 struct rtw_pci_tx_ring *tx_ring)
113{
114	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
115	u8 *head = tx_ring->r.head;
116	u32 len = tx_ring->r.len;
117	int ring_sz = len * tx_ring->r.desc_size;
118
119	rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
120
121	/* free the ring itself */
122	dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
123	tx_ring->r.head = NULL;
124}
125
126static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
127				      struct rtw_pci_rx_ring *rx_ring)
128{
129	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
130	struct sk_buff *skb;
131	int buf_sz = RTK_PCI_RX_BUF_SIZE;
132	dma_addr_t dma;
133	int i;
134
135	for (i = 0; i < rx_ring->r.len; i++) {
136		skb = rx_ring->buf[i];
137		if (!skb)
138			continue;
139
140		dma = *((dma_addr_t *)skb->cb);
141		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
142		dev_kfree_skb(skb);
143		rx_ring->buf[i] = NULL;
144	}
145}
146
147static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
148				 struct rtw_pci_rx_ring *rx_ring)
149{
150	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
151	u8 *head = rx_ring->r.head;
152	int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
153
154	rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
155
156	dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
157}
158
159static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
160{
161	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
162	struct rtw_pci_tx_ring *tx_ring;
163	struct rtw_pci_rx_ring *rx_ring;
164	int i;
165
166	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
167		tx_ring = &rtwpci->tx_rings[i];
168		rtw_pci_free_tx_ring(rtwdev, tx_ring);
169	}
170
171	for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
172		rx_ring = &rtwpci->rx_rings[i];
173		rtw_pci_free_rx_ring(rtwdev, rx_ring);
174	}
175}
176
177static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
178				struct rtw_pci_tx_ring *tx_ring,
179				u8 desc_size, u32 len)
180{
181	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
182	int ring_sz = desc_size * len;
183	dma_addr_t dma;
184	u8 *head;
185
186	if (len > TRX_BD_IDX_MASK) {
187		rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
188		return -EINVAL;
189	}
190
191	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
192	if (!head) {
193		rtw_err(rtwdev, "failed to allocate tx ring\n");
194		return -ENOMEM;
195	}
196
197	skb_queue_head_init(&tx_ring->queue);
198	tx_ring->r.head = head;
199	tx_ring->r.dma = dma;
200	tx_ring->r.len = len;
201	tx_ring->r.desc_size = desc_size;
202	tx_ring->r.wp = 0;
203	tx_ring->r.rp = 0;
204
205	return 0;
206}
207
208static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
209				 struct rtw_pci_rx_ring *rx_ring,
210				 u32 idx, u32 desc_sz)
211{
212	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
213	struct rtw_pci_rx_buffer_desc *buf_desc;
214	int buf_sz = RTK_PCI_RX_BUF_SIZE;
215	dma_addr_t dma;
216
217	if (!skb)
218		return -EINVAL;
219
220	dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
221	if (dma_mapping_error(&pdev->dev, dma))
222		return -EBUSY;
223
224	*((dma_addr_t *)skb->cb) = dma;
225	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
226						     idx * desc_sz);
227	memset(buf_desc, 0, sizeof(*buf_desc));
228	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
229	buf_desc->dma = cpu_to_le32(dma);
230
231	return 0;
232}
233
234static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
235					struct rtw_pci_rx_ring *rx_ring,
236					u32 idx, u32 desc_sz)
237{
238	struct device *dev = rtwdev->dev;
239	struct rtw_pci_rx_buffer_desc *buf_desc;
240	int buf_sz = RTK_PCI_RX_BUF_SIZE;
241
242	dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
243
244	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
245						     idx * desc_sz);
246	memset(buf_desc, 0, sizeof(*buf_desc));
247	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
248	buf_desc->dma = cpu_to_le32(dma);
249}
250
251static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
252				struct rtw_pci_rx_ring *rx_ring,
253				u8 desc_size, u32 len)
254{
255	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
256	struct sk_buff *skb = NULL;
257	dma_addr_t dma;
258	u8 *head;
259	int ring_sz = desc_size * len;
260	int buf_sz = RTK_PCI_RX_BUF_SIZE;
261	int i, allocated;
262	int ret = 0;
263
264	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
265	if (!head) {
266		rtw_err(rtwdev, "failed to allocate rx ring\n");
267		return -ENOMEM;
268	}
269	rx_ring->r.head = head;
270
271	for (i = 0; i < len; i++) {
272		skb = dev_alloc_skb(buf_sz);
273		if (!skb) {
274			allocated = i;
275			ret = -ENOMEM;
276			goto err_out;
277		}
278
279		memset(skb->data, 0, buf_sz);
280		rx_ring->buf[i] = skb;
281		ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
282		if (ret) {
283			allocated = i;
284			dev_kfree_skb_any(skb);
285			goto err_out;
286		}
287	}
288
289	rx_ring->r.dma = dma;
290	rx_ring->r.len = len;
291	rx_ring->r.desc_size = desc_size;
292	rx_ring->r.wp = 0;
293	rx_ring->r.rp = 0;
294
295	return 0;
296
297err_out:
298	for (i = 0; i < allocated; i++) {
299		skb = rx_ring->buf[i];
300		if (!skb)
301			continue;
302		dma = *((dma_addr_t *)skb->cb);
303		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
304		dev_kfree_skb_any(skb);
305		rx_ring->buf[i] = NULL;
306	}
307	dma_free_coherent(&pdev->dev, ring_sz, head, dma);
308
309	rtw_err(rtwdev, "failed to init rx buffer\n");
310
311	return ret;
312}
313
314static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
315{
316	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
317	struct rtw_pci_tx_ring *tx_ring;
318	struct rtw_pci_rx_ring *rx_ring;
319	const struct rtw_chip_info *chip = rtwdev->chip;
320	int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
321	int tx_desc_size, rx_desc_size;
322	u32 len;
323	int ret;
324
325	tx_desc_size = chip->tx_buf_desc_sz;
326
327	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
328		tx_ring = &rtwpci->tx_rings[i];
329		len = max_num_of_tx_queue(i);
330		ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
331		if (ret)
332			goto out;
333	}
334
335	rx_desc_size = chip->rx_buf_desc_sz;
336
337	for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
338		rx_ring = &rtwpci->rx_rings[j];
339		ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
340					   RTK_MAX_RX_DESC_NUM);
341		if (ret)
342			goto out;
343	}
344
345	return 0;
346
347out:
348	tx_alloced = i;
349	for (i = 0; i < tx_alloced; i++) {
350		tx_ring = &rtwpci->tx_rings[i];
351		rtw_pci_free_tx_ring(rtwdev, tx_ring);
352	}
353
354	rx_alloced = j;
355	for (j = 0; j < rx_alloced; j++) {
356		rx_ring = &rtwpci->rx_rings[j];
357		rtw_pci_free_rx_ring(rtwdev, rx_ring);
358	}
359
360	return ret;
361}
362
363static void rtw_pci_deinit(struct rtw_dev *rtwdev)
364{
365	rtw_pci_free_trx_ring(rtwdev);
366}
367
368static int rtw_pci_init(struct rtw_dev *rtwdev)
369{
370	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
371	int ret = 0;
372
373	rtwpci->irq_mask[0] = IMR_HIGHDOK |
374			      IMR_MGNTDOK |
375			      IMR_BKDOK |
376			      IMR_BEDOK |
377			      IMR_VIDOK |
378			      IMR_VODOK |
379			      IMR_ROK |
380			      IMR_BCNDMAINT_E |
381			      IMR_C2HCMD |
382			      0;
383	rtwpci->irq_mask[1] = IMR_TXFOVW |
384			      0;
385	rtwpci->irq_mask[3] = IMR_H2CDOK |
386			      0;
387	spin_lock_init(&rtwpci->irq_lock);
388	spin_lock_init(&rtwpci->hwirq_lock);
389	ret = rtw_pci_init_trx_ring(rtwdev);
390
391	return ret;
392}
393
394static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
395{
396	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
397	u32 len;
398	u8 tmp;
399	dma_addr_t dma;
400
401	tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
402	rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
403
404	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
405	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
406
407	if (!rtw_chip_wcpu_11n(rtwdev)) {
408		len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
409		dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
410		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
411		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
412		rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
413		rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
414	}
415
416	len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
417	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
418	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
419	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
420	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
421	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
422
423	len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
424	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
425	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
426	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
427	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
428	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
429
430	len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
431	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
432	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
433	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
434	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
435	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
436
437	len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
438	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
439	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
440	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
441	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
442	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
443
444	len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
445	dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
446	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
447	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
448	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
449	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
450
451	len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
452	dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
453	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
454	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
455	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
456	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
457
458	len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
459	dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
460	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
461	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
462	rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
463	rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
464
465	/* reset read/write point */
466	rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
467
468	/* reset H2C Queue index in a single write */
469	if (rtw_chip_wcpu_11ac(rtwdev))
470		rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
471				BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
472}
473
474static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
475{
476	rtw_pci_reset_buf_desc(rtwdev);
477}
478
479static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
480				     struct rtw_pci *rtwpci, bool exclude_rx)
481{
482	unsigned long flags;
483	u32 imr0_unmask = exclude_rx ? IMR_ROK : 0;
484
485	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
486
487	rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask);
488	rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
489	if (rtw_chip_wcpu_11ac(rtwdev))
490		rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
491
492	rtwpci->irq_enabled = true;
493
494	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
495}
496
497static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
498				      struct rtw_pci *rtwpci)
499{
500	unsigned long flags;
501
502	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
503
504	if (!rtwpci->irq_enabled)
505		goto out;
506
507	rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
508	rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
509	if (rtw_chip_wcpu_11ac(rtwdev))
510		rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
511
512	rtwpci->irq_enabled = false;
513
514out:
515	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
516}
517
518static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
519{
520	/* reset dma and rx tag */
521	rtw_write32_set(rtwdev, RTK_PCI_CTRL,
522			BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
523	rtwpci->rx_tag = 0;
524}
525
526static int rtw_pci_setup(struct rtw_dev *rtwdev)
527{
528	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
529
530	rtw_pci_reset_trx_ring(rtwdev);
531	rtw_pci_dma_reset(rtwdev, rtwpci);
532
533	return 0;
534}
535
536static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
537{
538	struct rtw_pci_tx_ring *tx_ring;
539	enum rtw_tx_queue_type queue;
540
541	rtw_pci_reset_trx_ring(rtwdev);
542	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
543		tx_ring = &rtwpci->tx_rings[queue];
544		rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
545	}
546}
547
548static void rtw_pci_napi_start(struct rtw_dev *rtwdev)
549{
550	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
551
552	if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
553		return;
554
555	napi_enable(&rtwpci->napi);
556}
557
558static void rtw_pci_napi_stop(struct rtw_dev *rtwdev)
559{
560	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
561
562	if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
563		return;
564
565	napi_synchronize(&rtwpci->napi);
566	napi_disable(&rtwpci->napi);
567}
568
569static int rtw_pci_start(struct rtw_dev *rtwdev)
570{
571	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
572
573	rtw_pci_napi_start(rtwdev);
574
575	spin_lock_bh(&rtwpci->irq_lock);
576	rtwpci->running = true;
577	rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
578	spin_unlock_bh(&rtwpci->irq_lock);
579
580	return 0;
581}
582
583static void rtw_pci_stop(struct rtw_dev *rtwdev)
584{
585	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
586	struct pci_dev *pdev = rtwpci->pdev;
587
588	spin_lock_bh(&rtwpci->irq_lock);
589	rtwpci->running = false;
590	rtw_pci_disable_interrupt(rtwdev, rtwpci);
591	spin_unlock_bh(&rtwpci->irq_lock);
592
593	synchronize_irq(pdev->irq);
594	rtw_pci_napi_stop(rtwdev);
595
596	spin_lock_bh(&rtwpci->irq_lock);
597	rtw_pci_dma_release(rtwdev, rtwpci);
598	spin_unlock_bh(&rtwpci->irq_lock);
599}
600
601static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
602{
603	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
604	struct rtw_pci_tx_ring *tx_ring;
605	enum rtw_tx_queue_type queue;
606	bool tx_empty = true;
607
608	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
609		goto enter_deep_ps;
610
611	lockdep_assert_held(&rtwpci->irq_lock);
612
613	/* Deep PS state is not allowed to TX-DMA */
614	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
615		/* BCN queue is rsvd page, does not have DMA interrupt
616		 * H2C queue is managed by firmware
617		 */
618		if (queue == RTW_TX_QUEUE_BCN ||
619		    queue == RTW_TX_QUEUE_H2C)
620			continue;
621
622		tx_ring = &rtwpci->tx_rings[queue];
623
624		/* check if there is any skb DMAing */
625		if (skb_queue_len(&tx_ring->queue)) {
626			tx_empty = false;
627			break;
628		}
629	}
630
631	if (!tx_empty) {
632		rtw_dbg(rtwdev, RTW_DBG_PS,
633			"TX path not empty, cannot enter deep power save state\n");
634		return;
635	}
636enter_deep_ps:
637	set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
638	rtw_power_mode_change(rtwdev, true);
639}
640
641static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
642{
643	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
644
645	lockdep_assert_held(&rtwpci->irq_lock);
646
647	if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
648		rtw_power_mode_change(rtwdev, false);
649}
650
651static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
652{
653	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
654
655	spin_lock_bh(&rtwpci->irq_lock);
656
657	if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
658		rtw_pci_deep_ps_enter(rtwdev);
659
660	if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
661		rtw_pci_deep_ps_leave(rtwdev);
662
663	spin_unlock_bh(&rtwpci->irq_lock);
664}
665
666static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
667				      struct rtw_pci_tx_ring *ring)
668{
669	struct sk_buff *prev = skb_dequeue(&ring->queue);
670	struct rtw_pci_tx_data *tx_data;
671	dma_addr_t dma;
672
673	if (!prev)
674		return;
675
676	tx_data = rtw_pci_get_tx_data(prev);
677	dma = tx_data->dma;
678	dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
679	dev_kfree_skb_any(prev);
680}
681
682static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
683			      struct rtw_pci_rx_ring *rx_ring,
684			      u32 idx)
685{
686	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
687	const struct rtw_chip_info *chip = rtwdev->chip;
688	struct rtw_pci_rx_buffer_desc *buf_desc;
689	u32 desc_sz = chip->rx_buf_desc_sz;
690	u16 total_pkt_size;
691
692	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
693						     idx * desc_sz);
694	total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
695
696	/* rx tag mismatch, throw a warning */
697	if (total_pkt_size != rtwpci->rx_tag)
698		rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
699
700	rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
701}
702
703static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q)
704{
705	u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q];
706	u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2);
707
708	return FIELD_GET(TRX_BD_IDX_MASK, bd_idx);
709}
710
711static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop)
712{
713	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
714	struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q];
715	u32 cur_rp;
716	u8 i;
717
718	/* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a
719	 * bit dynamic, it's hard to define a reasonable fixed total timeout to
720	 * use read_poll_timeout* helper. Instead, we can ensure a reasonable
721	 * polling times, so we just use for loop with udelay here.
722	 */
723	for (i = 0; i < 30; i++) {
724		cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q);
725		if (cur_rp == ring->r.wp)
726			return;
727
728		udelay(1);
729	}
730
731	if (!drop)
732		rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q);
733}
734
735static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues,
736				   bool drop)
737{
738	u8 q;
739
740	for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) {
741		/* Unnecessary to flush BCN, H2C and HI tx queues. */
742		if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C ||
743		    q == RTW_TX_QUEUE_HI0)
744			continue;
745
746		if (pci_queues & BIT(q))
747			__pci_flush_queue(rtwdev, q, drop);
748	}
749}
750
751static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop)
752{
753	u32 pci_queues = 0;
754	u8 i;
755
756	/* If all of the hardware queues are requested to flush,
757	 * flush all of the pci queues.
758	 */
759	if (queues == BIT(rtwdev->hw->queues) - 1) {
760		pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1;
761	} else {
762		for (i = 0; i < rtwdev->hw->queues; i++)
763			if (queues & BIT(i))
764				pci_queues |= BIT(rtw_tx_ac_to_hwq(i));
765	}
766
767	__rtw_pci_flush_queues(rtwdev, pci_queues, drop);
768}
769
770static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev,
771				      enum rtw_tx_queue_type queue)
772{
773	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
774	struct rtw_pci_tx_ring *ring;
775	u32 bd_idx;
776
777	ring = &rtwpci->tx_rings[queue];
778	bd_idx = rtw_pci_tx_queue_idx_addr[queue];
779
780	spin_lock_bh(&rtwpci->irq_lock);
781	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
782		rtw_pci_deep_ps_leave(rtwdev);
783	rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
784	spin_unlock_bh(&rtwpci->irq_lock);
785}
786
787static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
788{
789	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
790	enum rtw_tx_queue_type queue;
791
792	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
793		if (test_and_clear_bit(queue, rtwpci->tx_queued))
794			rtw_pci_tx_kick_off_queue(rtwdev, queue);
795}
796
797static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
798				 struct rtw_tx_pkt_info *pkt_info,
799				 struct sk_buff *skb,
800				 enum rtw_tx_queue_type queue)
801{
802	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
803	const struct rtw_chip_info *chip = rtwdev->chip;
804	struct rtw_pci_tx_ring *ring;
805	struct rtw_pci_tx_data *tx_data;
806	dma_addr_t dma;
807	u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
808	u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
809	u32 size;
810	u32 psb_len;
811	u8 *pkt_desc;
812	struct rtw_pci_tx_buffer_desc *buf_desc;
813
814	ring = &rtwpci->tx_rings[queue];
815
816	size = skb->len;
817
818	if (queue == RTW_TX_QUEUE_BCN)
819		rtw_pci_release_rsvd_page(rtwpci, ring);
820	else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
821		return -ENOSPC;
822
823	pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
824	memset(pkt_desc, 0, tx_pkt_desc_sz);
825	pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
826	rtw_tx_fill_tx_desc(pkt_info, skb);
827	dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
828			     DMA_TO_DEVICE);
829	if (dma_mapping_error(&rtwpci->pdev->dev, dma))
830		return -EBUSY;
831
832	/* after this we got dma mapped, there is no way back */
833	buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
834	memset(buf_desc, 0, tx_buf_desc_sz);
835	psb_len = (skb->len - 1) / 128 + 1;
836	if (queue == RTW_TX_QUEUE_BCN)
837		psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
838
839	buf_desc[0].psb_len = cpu_to_le16(psb_len);
840	buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
841	buf_desc[0].dma = cpu_to_le32(dma);
842	buf_desc[1].buf_size = cpu_to_le16(size);
843	buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
844
845	tx_data = rtw_pci_get_tx_data(skb);
846	tx_data->dma = dma;
847	tx_data->sn = pkt_info->sn;
848
849	spin_lock_bh(&rtwpci->irq_lock);
850
851	skb_queue_tail(&ring->queue, skb);
852
853	if (queue == RTW_TX_QUEUE_BCN)
854		goto out_unlock;
855
856	/* update write-index, and kick it off later */
857	set_bit(queue, rtwpci->tx_queued);
858	if (++ring->r.wp >= ring->r.len)
859		ring->r.wp = 0;
860
861out_unlock:
862	spin_unlock_bh(&rtwpci->irq_lock);
863
864	return 0;
865}
866
867static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
868					u32 size)
869{
870	struct sk_buff *skb;
871	struct rtw_tx_pkt_info pkt_info = {0};
872	u8 reg_bcn_work;
873	int ret;
874
875	skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
876	if (!skb)
877		return -ENOMEM;
878
879	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
880	if (ret) {
881		rtw_err(rtwdev, "failed to write rsvd page data\n");
882		return ret;
883	}
884
885	/* reserved pages go through beacon queue */
886	reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
887	reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
888	rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
889
890	return 0;
891}
892
893static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
894{
895	struct sk_buff *skb;
896	struct rtw_tx_pkt_info pkt_info = {0};
897	int ret;
898
899	skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
900	if (!skb)
901		return -ENOMEM;
902
903	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
904	if (ret) {
905		rtw_err(rtwdev, "failed to write h2c data\n");
906		return ret;
907	}
908
909	rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
910
911	return 0;
912}
913
914static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
915			    struct rtw_tx_pkt_info *pkt_info,
916			    struct sk_buff *skb)
917{
918	enum rtw_tx_queue_type queue = rtw_tx_queue_mapping(skb);
919	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
920	struct rtw_pci_tx_ring *ring;
921	int ret;
922
923	ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
924	if (ret)
925		return ret;
926
927	ring = &rtwpci->tx_rings[queue];
928	spin_lock_bh(&rtwpci->irq_lock);
929	if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
930		ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
931		ring->queue_stopped = true;
932	}
933	spin_unlock_bh(&rtwpci->irq_lock);
934
935	return 0;
936}
937
938static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
939			   u8 hw_queue)
940{
941	struct ieee80211_hw *hw = rtwdev->hw;
942	struct ieee80211_tx_info *info;
943	struct rtw_pci_tx_ring *ring;
944	struct rtw_pci_tx_data *tx_data;
945	struct sk_buff *skb;
946	u32 count;
947	u32 bd_idx_addr;
948	u32 bd_idx, cur_rp, rp_idx;
949	u16 q_map;
950
951	ring = &rtwpci->tx_rings[hw_queue];
952
953	bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
954	bd_idx = rtw_read32(rtwdev, bd_idx_addr);
955	cur_rp = bd_idx >> 16;
956	cur_rp &= TRX_BD_IDX_MASK;
957	rp_idx = ring->r.rp;
958	if (cur_rp >= ring->r.rp)
959		count = cur_rp - ring->r.rp;
960	else
961		count = ring->r.len - (ring->r.rp - cur_rp);
962
963	while (count--) {
964		skb = skb_dequeue(&ring->queue);
965		if (!skb) {
966			rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
967				count, hw_queue, bd_idx, ring->r.rp, cur_rp);
968			break;
969		}
970		tx_data = rtw_pci_get_tx_data(skb);
971		dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
972				 DMA_TO_DEVICE);
973
974		/* just free command packets from host to card */
975		if (hw_queue == RTW_TX_QUEUE_H2C) {
976			dev_kfree_skb_irq(skb);
977			continue;
978		}
979
980		if (ring->queue_stopped &&
981		    avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) {
982			q_map = skb_get_queue_mapping(skb);
983			ieee80211_wake_queue(hw, q_map);
984			ring->queue_stopped = false;
985		}
986
987		if (++rp_idx >= ring->r.len)
988			rp_idx = 0;
989
990		skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
991
992		info = IEEE80211_SKB_CB(skb);
993
994		/* enqueue to wait for tx report */
995		if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
996			rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
997			continue;
998		}
999
1000		/* always ACK for others, then they won't be marked as drop */
1001		if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1002			info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
1003		else
1004			info->flags |= IEEE80211_TX_STAT_ACK;
1005
1006		ieee80211_tx_info_clear_status(info);
1007		ieee80211_tx_status_irqsafe(hw, skb);
1008	}
1009
1010	ring->r.rp = cur_rp;
1011}
1012
1013static void rtw_pci_rx_isr(struct rtw_dev *rtwdev)
1014{
1015	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1016	struct napi_struct *napi = &rtwpci->napi;
1017
1018	napi_schedule(napi);
1019}
1020
1021static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev,
1022				     struct rtw_pci *rtwpci)
1023{
1024	struct rtw_pci_rx_ring *ring;
1025	int count = 0;
1026	u32 tmp, cur_wp;
1027
1028	ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1029	tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
1030	cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK);
1031	if (cur_wp >= ring->r.wp)
1032		count = cur_wp - ring->r.wp;
1033	else
1034		count = ring->r.len - (ring->r.wp - cur_wp);
1035
1036	return count;
1037}
1038
1039static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
1040			   u8 hw_queue, u32 limit)
1041{
1042	const struct rtw_chip_info *chip = rtwdev->chip;
1043	struct napi_struct *napi = &rtwpci->napi;
1044	struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1045	struct rtw_rx_pkt_stat pkt_stat;
1046	struct ieee80211_rx_status rx_status;
1047	struct sk_buff *skb, *new;
1048	u32 cur_rp = ring->r.rp;
1049	u32 count, rx_done = 0;
1050	u32 pkt_offset;
1051	u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
1052	u32 buf_desc_sz = chip->rx_buf_desc_sz;
1053	u32 new_len;
1054	u8 *rx_desc;
1055	dma_addr_t dma;
1056
1057	count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci);
1058	count = min(count, limit);
1059
1060	while (count--) {
1061		rtw_pci_dma_check(rtwdev, ring, cur_rp);
1062		skb = ring->buf[cur_rp];
1063		dma = *((dma_addr_t *)skb->cb);
1064		dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
1065					DMA_FROM_DEVICE);
1066		rx_desc = skb->data;
1067		chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
1068
1069		/* offset from rx_desc to payload */
1070		pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
1071			     pkt_stat.shift;
1072
1073		/* allocate a new skb for this frame,
1074		 * discard the frame if none available
1075		 */
1076		new_len = pkt_stat.pkt_len + pkt_offset;
1077		new = dev_alloc_skb(new_len);
1078		if (WARN_ONCE(!new, "rx routine starvation\n"))
1079			goto next_rp;
1080
1081		/* put the DMA data including rx_desc from phy to new skb */
1082		skb_put_data(new, skb->data, new_len);
1083
1084		if (pkt_stat.is_c2h) {
1085			rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
1086		} else {
1087			/* remove rx_desc */
1088			skb_pull(new, pkt_offset);
1089
1090			rtw_rx_stats(rtwdev, pkt_stat.vif, new);
1091			memcpy(new->cb, &rx_status, sizeof(rx_status));
1092			ieee80211_rx_napi(rtwdev->hw, NULL, new, napi);
1093			rx_done++;
1094		}
1095
1096next_rp:
1097		/* new skb delivered to mac80211, re-enable original skb DMA */
1098		rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
1099					    buf_desc_sz);
1100
1101		/* host read next element in ring */
1102		if (++cur_rp >= ring->r.len)
1103			cur_rp = 0;
1104	}
1105
1106	ring->r.rp = cur_rp;
1107	/* 'rp', the last position we have read, is seen as previous posistion
1108	 * of 'wp' that is used to calculate 'count' next time.
1109	 */
1110	ring->r.wp = cur_rp;
1111	rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
1112
1113	return rx_done;
1114}
1115
1116static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
1117				   struct rtw_pci *rtwpci, u32 *irq_status)
1118{
1119	unsigned long flags;
1120
1121	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
1122
1123	irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
1124	irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
1125	if (rtw_chip_wcpu_11ac(rtwdev))
1126		irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
1127	else
1128		irq_status[3] = 0;
1129	irq_status[0] &= rtwpci->irq_mask[0];
1130	irq_status[1] &= rtwpci->irq_mask[1];
1131	irq_status[3] &= rtwpci->irq_mask[3];
1132	rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
1133	rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
1134	if (rtw_chip_wcpu_11ac(rtwdev))
1135		rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
1136
1137	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
1138}
1139
1140static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
1141{
1142	struct rtw_dev *rtwdev = dev;
1143	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1144
1145	/* disable RTW PCI interrupt to avoid more interrupts before the end of
1146	 * thread function
1147	 *
1148	 * disable HIMR here to also avoid new HISR flag being raised before
1149	 * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
1150	 * are cleared, the edge-triggered interrupt will not be generated when
1151	 * a new HISR flag is set.
1152	 */
1153	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1154
1155	return IRQ_WAKE_THREAD;
1156}
1157
1158static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
1159{
1160	struct rtw_dev *rtwdev = dev;
1161	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1162	u32 irq_status[4];
1163	bool rx = false;
1164
1165	spin_lock_bh(&rtwpci->irq_lock);
1166	rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
1167
1168	if (irq_status[0] & IMR_MGNTDOK)
1169		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
1170	if (irq_status[0] & IMR_HIGHDOK)
1171		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
1172	if (irq_status[0] & IMR_BEDOK)
1173		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
1174	if (irq_status[0] & IMR_BKDOK)
1175		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
1176	if (irq_status[0] & IMR_VODOK)
1177		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
1178	if (irq_status[0] & IMR_VIDOK)
1179		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
1180	if (irq_status[3] & IMR_H2CDOK)
1181		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
1182	if (irq_status[0] & IMR_ROK) {
1183		rtw_pci_rx_isr(rtwdev);
1184		rx = true;
1185	}
1186	if (unlikely(irq_status[0] & IMR_C2HCMD))
1187		rtw_fw_c2h_cmd_isr(rtwdev);
1188
1189	/* all of the jobs for this interrupt have been done */
1190	if (rtwpci->running)
1191		rtw_pci_enable_interrupt(rtwdev, rtwpci, rx);
1192	spin_unlock_bh(&rtwpci->irq_lock);
1193
1194	return IRQ_HANDLED;
1195}
1196
1197static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
1198			      struct pci_dev *pdev)
1199{
1200	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1201	unsigned long len;
1202	u8 bar_id = 2;
1203	int ret;
1204
1205	ret = pci_request_regions(pdev, KBUILD_MODNAME);
1206	if (ret) {
1207		rtw_err(rtwdev, "failed to request pci regions\n");
1208		return ret;
1209	}
1210
1211	len = pci_resource_len(pdev, bar_id);
1212	rtwpci->mmap = pci_iomap(pdev, bar_id, len);
1213	if (!rtwpci->mmap) {
1214		pci_release_regions(pdev);
1215		rtw_err(rtwdev, "failed to map pci memory\n");
1216		return -ENOMEM;
1217	}
1218
1219	return 0;
1220}
1221
1222static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
1223				 struct pci_dev *pdev)
1224{
1225	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1226
1227	if (rtwpci->mmap) {
1228		pci_iounmap(pdev, rtwpci->mmap);
1229		pci_release_regions(pdev);
1230	}
1231}
1232
1233static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
1234{
1235	u16 write_addr;
1236	u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
1237	u8 flag;
1238	u8 cnt;
1239
1240	write_addr = addr & BITS_DBI_ADDR_MASK;
1241	write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
1242	rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
1243	rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
1244	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
1245
1246	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1247		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1248		if (flag == 0)
1249			return;
1250
1251		udelay(10);
1252	}
1253
1254	WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
1255}
1256
1257static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
1258{
1259	u16 read_addr = addr & BITS_DBI_ADDR_MASK;
1260	u8 flag;
1261	u8 cnt;
1262
1263	rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
1264	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
1265
1266	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1267		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1268		if (flag == 0) {
1269			read_addr = REG_DBI_RDATA_V1 + (addr & 3);
1270			*value = rtw_read8(rtwdev, read_addr);
1271			return 0;
1272		}
1273
1274		udelay(10);
1275	}
1276
1277	WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
1278	return -EIO;
1279}
1280
1281static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
1282{
1283	u8 page;
1284	u8 wflag;
1285	u8 cnt;
1286
1287	rtw_write16(rtwdev, REG_MDIO_V1, data);
1288
1289	page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
1290	page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
1291	rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
1292	rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
1293	rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
1294
1295	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1296		wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
1297					BIT_MDIO_WFLAG_V1);
1298		if (wflag == 0)
1299			return;
1300
1301		udelay(10);
1302	}
1303
1304	WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
1305}
1306
1307static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
1308{
1309	u8 value;
1310	int ret;
1311
1312	if (rtw_pci_disable_aspm)
1313		return;
1314
1315	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1316	if (ret) {
1317		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1318		return;
1319	}
1320
1321	if (enable)
1322		value |= BIT_CLKREQ_SW_EN;
1323	else
1324		value &= ~BIT_CLKREQ_SW_EN;
1325
1326	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1327}
1328
1329static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable)
1330{
1331	u8 value;
1332	int ret;
1333
1334	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1335	if (ret) {
1336		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1337		return;
1338	}
1339
1340	if (enable)
1341		value &= ~BIT_CLKREQ_N_PAD;
1342	else
1343		value |= BIT_CLKREQ_N_PAD;
1344
1345	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1346}
1347
1348static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
1349{
1350	u8 value;
1351	int ret;
1352
1353	if (rtw_pci_disable_aspm)
1354		return;
1355
1356	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1357	if (ret) {
1358		rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
1359		return;
1360	}
1361
1362	if (enable)
1363		value |= BIT_L1_SW_EN;
1364	else
1365		value &= ~BIT_L1_SW_EN;
1366
1367	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1368}
1369
1370static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
1371{
1372	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1373
1374	/* Like CLKREQ, ASPM is also implemented by two HW modules, and can
1375	 * only be enabled when host supports it.
1376	 *
1377	 * And ASPM mechanism should be enabled when driver/firmware enters
1378	 * power save mode, without having heavy traffic. Because we've
1379	 * experienced some inter-operability issues that the link tends
1380	 * to enter L1 state on the fly even when driver is having high
1381	 * throughput. This is probably because the ASPM behavior slightly
1382	 * varies from different SOC.
1383	 */
1384	if (!(rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1))
1385		return;
1386
1387	if ((enter && atomic_dec_if_positive(&rtwpci->link_usage) == 0) ||
1388	    (!enter && atomic_inc_return(&rtwpci->link_usage) == 1))
1389		rtw_pci_aspm_set(rtwdev, enter);
1390}
1391
1392static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
1393{
1394	const struct rtw_chip_info *chip = rtwdev->chip;
1395	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1396	struct pci_dev *pdev = rtwpci->pdev;
1397	u16 link_ctrl;
1398	int ret;
1399
1400	/* RTL8822CE has enabled REFCLK auto calibration, it does not need
1401	 * to add clock delay to cover the REFCLK timing gap.
1402	 */
1403	if (chip->id == RTW_CHIP_TYPE_8822C)
1404		rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
1405
1406	/* Though there is standard PCIE configuration space to set the
1407	 * link control register, but by Realtek's design, driver should
1408	 * check if host supports CLKREQ/ASPM to enable the HW module.
1409	 *
1410	 * These functions are implemented by two HW modules associated,
1411	 * one is responsible to access PCIE configuration space to
1412	 * follow the host settings, and another is in charge of doing
1413	 * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
1414	 * the host does not support it, and due to some reasons or wrong
1415	 * settings (ex. CLKREQ# not Bi-Direction), it could lead to device
1416	 * loss if HW misbehaves on the link.
1417	 *
1418	 * Hence it's designed that driver should first check the PCIE
1419	 * configuration space is sync'ed and enabled, then driver can turn
1420	 * on the other module that is actually working on the mechanism.
1421	 */
1422	ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
1423	if (ret) {
1424		rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
1425		return;
1426	}
1427
1428	if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
1429		rtw_pci_clkreq_set(rtwdev, true);
1430
1431	rtwpci->link_ctrl = link_ctrl;
1432}
1433
1434static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
1435{
1436	const struct rtw_chip_info *chip = rtwdev->chip;
1437
1438	switch (chip->id) {
1439	case RTW_CHIP_TYPE_8822C:
1440		if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
1441			rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
1442					 BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
1443		break;
1444	default:
1445		break;
1446	}
1447}
1448
1449static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
1450{
1451	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1452	const struct rtw_chip_info *chip = rtwdev->chip;
1453	struct rtw_efuse *efuse = &rtwdev->efuse;
1454	struct pci_dev *pdev = rtwpci->pdev;
1455	const struct rtw_intf_phy_para *para;
1456	u16 cut;
1457	u16 value;
1458	u16 offset;
1459	int i;
1460	int ret;
1461
1462	cut = BIT(0) << rtwdev->hal.cut_version;
1463
1464	for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
1465		para = &chip->intf_table->gen1_para[i];
1466		if (!(para->cut_mask & cut))
1467			continue;
1468		if (para->offset == 0xffff)
1469			break;
1470		offset = para->offset;
1471		value = para->value;
1472		if (para->ip_sel == RTW_IP_SEL_PHY)
1473			rtw_mdio_write(rtwdev, offset, value, true);
1474		else
1475			rtw_dbi_write8(rtwdev, offset, value);
1476	}
1477
1478	for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
1479		para = &chip->intf_table->gen2_para[i];
1480		if (!(para->cut_mask & cut))
1481			continue;
1482		if (para->offset == 0xffff)
1483			break;
1484		offset = para->offset;
1485		value = para->value;
1486		if (para->ip_sel == RTW_IP_SEL_PHY)
1487			rtw_mdio_write(rtwdev, offset, value, false);
1488		else
1489			rtw_dbi_write8(rtwdev, offset, value);
1490	}
1491
1492	rtw_pci_link_cfg(rtwdev);
1493
1494	/* Disable 8821ce completion timeout by default */
1495	if (chip->id == RTW_CHIP_TYPE_8821C) {
1496		ret = pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2,
1497					       PCI_EXP_DEVCTL2_COMP_TMOUT_DIS);
1498		if (ret)
1499			rtw_err(rtwdev, "failed to set PCI cap, ret = %d\n",
1500				ret);
1501	}
1502
1503	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 5)
1504		rtw_write32_mask(rtwdev, REG_ANAPARSW_MAC_0, BIT_CF_L_V2, 0x1);
1505}
1506
1507static int __maybe_unused rtw_pci_suspend(struct device *dev)
1508{
1509	struct ieee80211_hw *hw = dev_get_drvdata(dev);
1510	struct rtw_dev *rtwdev = hw->priv;
1511	const struct rtw_chip_info *chip = rtwdev->chip;
1512	struct rtw_efuse *efuse = &rtwdev->efuse;
1513
1514	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1515		rtw_pci_clkreq_pad_low(rtwdev, true);
1516	return 0;
1517}
1518
1519static int __maybe_unused rtw_pci_resume(struct device *dev)
1520{
1521	struct ieee80211_hw *hw = dev_get_drvdata(dev);
1522	struct rtw_dev *rtwdev = hw->priv;
1523	const struct rtw_chip_info *chip = rtwdev->chip;
1524	struct rtw_efuse *efuse = &rtwdev->efuse;
1525
1526	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1527		rtw_pci_clkreq_pad_low(rtwdev, false);
1528	return 0;
1529}
1530
1531SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
1532EXPORT_SYMBOL(rtw_pm_ops);
1533
1534static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1535{
1536	int ret;
1537
1538	ret = pci_enable_device(pdev);
1539	if (ret) {
1540		rtw_err(rtwdev, "failed to enable pci device\n");
1541		return ret;
1542	}
1543
1544	pci_set_master(pdev);
1545	pci_set_drvdata(pdev, rtwdev->hw);
1546	SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
1547
1548	return 0;
1549}
1550
1551static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1552{
1553	pci_disable_device(pdev);
1554}
1555
1556static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1557{
1558	struct rtw_pci *rtwpci;
1559	int ret;
1560
1561	rtwpci = (struct rtw_pci *)rtwdev->priv;
1562	rtwpci->pdev = pdev;
1563
1564	/* after this driver can access to hw registers */
1565	ret = rtw_pci_io_mapping(rtwdev, pdev);
1566	if (ret) {
1567		rtw_err(rtwdev, "failed to request pci io region\n");
1568		goto err_out;
1569	}
1570
1571	ret = rtw_pci_init(rtwdev);
1572	if (ret) {
1573		rtw_err(rtwdev, "failed to allocate pci resources\n");
1574		goto err_io_unmap;
1575	}
1576
1577	return 0;
1578
1579err_io_unmap:
1580	rtw_pci_io_unmapping(rtwdev, pdev);
1581
1582err_out:
1583	return ret;
1584}
1585
1586static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1587{
1588	rtw_pci_deinit(rtwdev);
1589	rtw_pci_io_unmapping(rtwdev, pdev);
1590}
1591
1592static struct rtw_hci_ops rtw_pci_ops = {
1593	.tx_write = rtw_pci_tx_write,
1594	.tx_kick_off = rtw_pci_tx_kick_off,
1595	.flush_queues = rtw_pci_flush_queues,
1596	.setup = rtw_pci_setup,
1597	.start = rtw_pci_start,
1598	.stop = rtw_pci_stop,
1599	.deep_ps = rtw_pci_deep_ps,
1600	.link_ps = rtw_pci_link_ps,
1601	.interface_cfg = rtw_pci_interface_cfg,
1602
1603	.read8 = rtw_pci_read8,
1604	.read16 = rtw_pci_read16,
1605	.read32 = rtw_pci_read32,
1606	.write8 = rtw_pci_write8,
1607	.write16 = rtw_pci_write16,
1608	.write32 = rtw_pci_write32,
1609	.write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
1610	.write_data_h2c = rtw_pci_write_data_h2c,
1611};
1612
1613static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1614{
1615	unsigned int flags = PCI_IRQ_LEGACY;
1616	int ret;
1617
1618	if (!rtw_disable_msi)
1619		flags |= PCI_IRQ_MSI;
1620
1621	ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
1622	if (ret < 0) {
1623		rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
1624		return ret;
1625	}
1626
1627	ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
1628					rtw_pci_interrupt_handler,
1629					rtw_pci_interrupt_threadfn,
1630					IRQF_SHARED, KBUILD_MODNAME, rtwdev);
1631	if (ret) {
1632		rtw_err(rtwdev, "failed to request irq %d\n", ret);
1633		pci_free_irq_vectors(pdev);
1634	}
1635
1636	return ret;
1637}
1638
1639static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1640{
1641	devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
1642	pci_free_irq_vectors(pdev);
1643}
1644
1645static int rtw_pci_napi_poll(struct napi_struct *napi, int budget)
1646{
1647	struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi);
1648	struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev,
1649					      priv);
1650	int work_done = 0;
1651
1652	if (rtwpci->rx_no_aspm)
1653		rtw_pci_link_ps(rtwdev, false);
1654
1655	while (work_done < budget) {
1656		u32 work_done_once;
1657
1658		work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU,
1659						 budget - work_done);
1660		if (work_done_once == 0)
1661			break;
1662		work_done += work_done_once;
1663	}
1664	if (work_done < budget) {
1665		napi_complete_done(napi, work_done);
1666		spin_lock_bh(&rtwpci->irq_lock);
1667		if (rtwpci->running)
1668			rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
1669		spin_unlock_bh(&rtwpci->irq_lock);
1670		/* When ISR happens during polling and before napi_complete
1671		 * while no further data is received. Data on the dma_ring will
1672		 * not be processed immediately. Check whether dma ring is
1673		 * empty and perform napi_schedule accordingly.
1674		 */
1675		if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci))
1676			napi_schedule(napi);
1677	}
1678	if (rtwpci->rx_no_aspm)
1679		rtw_pci_link_ps(rtwdev, true);
1680
1681	return work_done;
1682}
1683
1684static void rtw_pci_napi_init(struct rtw_dev *rtwdev)
1685{
1686	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1687
1688	init_dummy_netdev(&rtwpci->netdev);
1689	netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll);
1690}
1691
1692static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev)
1693{
1694	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1695
1696	rtw_pci_napi_stop(rtwdev);
1697	netif_napi_del(&rtwpci->napi);
1698}
1699
1700int rtw_pci_probe(struct pci_dev *pdev,
1701		  const struct pci_device_id *id)
1702{
1703	struct pci_dev *bridge = pci_upstream_bridge(pdev);
1704	struct ieee80211_hw *hw;
1705	struct rtw_dev *rtwdev;
1706	struct rtw_pci *rtwpci;
1707	int drv_data_size;
1708	int ret;
1709
1710	drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
1711	hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
1712	if (!hw) {
1713		dev_err(&pdev->dev, "failed to allocate hw\n");
1714		return -ENOMEM;
1715	}
1716
1717	rtwdev = hw->priv;
1718	rtwdev->hw = hw;
1719	rtwdev->dev = &pdev->dev;
1720	rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
1721	rtwdev->hci.ops = &rtw_pci_ops;
1722	rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
1723
1724	rtwpci = (struct rtw_pci *)rtwdev->priv;
1725	atomic_set(&rtwpci->link_usage, 1);
1726
1727	ret = rtw_core_init(rtwdev);
1728	if (ret)
1729		goto err_release_hw;
1730
1731	rtw_dbg(rtwdev, RTW_DBG_PCI,
1732		"rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
1733		pdev->vendor, pdev->device, pdev->revision);
1734
1735	ret = rtw_pci_claim(rtwdev, pdev);
1736	if (ret) {
1737		rtw_err(rtwdev, "failed to claim pci device\n");
1738		goto err_deinit_core;
1739	}
1740
1741	ret = rtw_pci_setup_resource(rtwdev, pdev);
1742	if (ret) {
1743		rtw_err(rtwdev, "failed to setup pci resources\n");
1744		goto err_pci_declaim;
1745	}
1746
1747	rtw_pci_napi_init(rtwdev);
1748
1749	ret = rtw_chip_info_setup(rtwdev);
1750	if (ret) {
1751		rtw_err(rtwdev, "failed to setup chip information\n");
1752		goto err_destroy_pci;
1753	}
1754
1755	/* Disable PCIe ASPM L1 while doing NAPI poll for 8821CE */
1756	if (rtwdev->chip->id == RTW_CHIP_TYPE_8821C && bridge->vendor == PCI_VENDOR_ID_INTEL)
1757		rtwpci->rx_no_aspm = true;
1758
1759	rtw_pci_phy_cfg(rtwdev);
1760
1761	ret = rtw_register_hw(rtwdev, hw);
1762	if (ret) {
1763		rtw_err(rtwdev, "failed to register hw\n");
1764		goto err_destroy_pci;
1765	}
1766
1767	ret = rtw_pci_request_irq(rtwdev, pdev);
1768	if (ret) {
1769		ieee80211_unregister_hw(hw);
1770		goto err_destroy_pci;
1771	}
1772
1773	return 0;
1774
1775err_destroy_pci:
1776	rtw_pci_napi_deinit(rtwdev);
1777	rtw_pci_destroy(rtwdev, pdev);
1778
1779err_pci_declaim:
1780	rtw_pci_declaim(rtwdev, pdev);
1781
1782err_deinit_core:
1783	rtw_core_deinit(rtwdev);
1784
1785err_release_hw:
1786	ieee80211_free_hw(hw);
1787
1788	return ret;
1789}
1790EXPORT_SYMBOL(rtw_pci_probe);
1791
1792void rtw_pci_remove(struct pci_dev *pdev)
1793{
1794	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1795	struct rtw_dev *rtwdev;
1796	struct rtw_pci *rtwpci;
1797
1798	if (!hw)
1799		return;
1800
1801	rtwdev = hw->priv;
1802	rtwpci = (struct rtw_pci *)rtwdev->priv;
1803
1804	rtw_unregister_hw(rtwdev, hw);
1805	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1806	rtw_pci_napi_deinit(rtwdev);
1807	rtw_pci_destroy(rtwdev, pdev);
1808	rtw_pci_declaim(rtwdev, pdev);
1809	rtw_pci_free_irq(rtwdev, pdev);
1810	rtw_core_deinit(rtwdev);
1811	ieee80211_free_hw(hw);
1812}
1813EXPORT_SYMBOL(rtw_pci_remove);
1814
1815void rtw_pci_shutdown(struct pci_dev *pdev)
1816{
1817	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1818	struct rtw_dev *rtwdev;
1819	const struct rtw_chip_info *chip;
1820
1821	if (!hw)
1822		return;
1823
1824	rtwdev = hw->priv;
1825	chip = rtwdev->chip;
1826
1827	if (chip->ops->shutdown)
1828		chip->ops->shutdown(rtwdev);
1829
1830	pci_set_power_state(pdev, PCI_D3hot);
1831}
1832EXPORT_SYMBOL(rtw_pci_shutdown);
1833
1834MODULE_AUTHOR("Realtek Corporation");
1835MODULE_DESCRIPTION("Realtek PCI 802.11ac wireless driver");
1836MODULE_LICENSE("Dual BSD/GPL");
1837