1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2009-2012  Realtek Corporation.*/
3
4#include "../wifi.h"
5#include "../efuse.h"
6#include "../base.h"
7#include "../regd.h"
8#include "../cam.h"
9#include "../ps.h"
10#include "../pci.h"
11#include "reg.h"
12#include "def.h"
13#include "phy.h"
14#include "dm.h"
15#include "fw.h"
16#include "led.h"
17#include "hw.h"
18
19void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
20{
21	struct rtl_priv *rtlpriv = rtl_priv(hw);
22	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
23	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
24
25	switch (variable) {
26	case HW_VAR_RCR: {
27			*((u32 *) (val)) = rtlpci->receive_config;
28			break;
29		}
30	case HW_VAR_RF_STATE: {
31			*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
32			break;
33		}
34	case HW_VAR_FW_PSMODE_STATUS: {
35			*((bool *) (val)) = ppsc->fw_current_inpsmode;
36			break;
37		}
38	case HW_VAR_CORRECT_TSF: {
39			u64 tsf;
40			u32 *ptsf_low = (u32 *)&tsf;
41			u32 *ptsf_high = ((u32 *)&tsf) + 1;
42
43			*ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
44			*ptsf_low = rtl_read_dword(rtlpriv, TSFR);
45
46			*((u64 *) (val)) = tsf;
47
48			break;
49		}
50	case HW_VAR_MRC: {
51			*((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
52			break;
53		}
54	case HAL_DEF_WOWLAN:
55		break;
56	default:
57		pr_err("switch case %#x not processed\n", variable);
58		break;
59	}
60}
61
62void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
63{
64	struct rtl_priv *rtlpriv = rtl_priv(hw);
65	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
66	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
67	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
68	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
69	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
70
71	switch (variable) {
72	case HW_VAR_ETHER_ADDR:{
73			rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
74			rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
75			break;
76		}
77	case HW_VAR_BASIC_RATE:{
78			u16 rate_cfg = ((u16 *) val)[0];
79			u8 rate_index = 0;
80
81			if (rtlhal->version == VERSION_8192S_ACUT)
82				rate_cfg = rate_cfg & 0x150;
83			else
84				rate_cfg = rate_cfg & 0x15f;
85
86			rate_cfg |= 0x01;
87
88			rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
89			rtl_write_byte(rtlpriv, RRSR + 1,
90				       (rate_cfg >> 8) & 0xff);
91
92			while (rate_cfg > 0x1) {
93				rate_cfg = (rate_cfg >> 1);
94				rate_index++;
95			}
96			rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
97
98			break;
99		}
100	case HW_VAR_BSSID:{
101			rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
102			rtl_write_word(rtlpriv, BSSIDR + 4,
103				       ((u16 *)(val + 4))[0]);
104			break;
105		}
106	case HW_VAR_SIFS:{
107			rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
108			rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
109			break;
110		}
111	case HW_VAR_SLOT_TIME:{
112			u8 e_aci;
113
114			rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
115				"HW_VAR_SLOT_TIME %x\n", val[0]);
116
117			rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
118
119			for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
120				rtlpriv->cfg->ops->set_hw_reg(hw,
121						HW_VAR_AC_PARAM,
122						(&e_aci));
123			}
124			break;
125		}
126	case HW_VAR_ACK_PREAMBLE:{
127			u8 reg_tmp;
128			u8 short_preamble = (bool) (*val);
129			reg_tmp = (mac->cur_40_prime_sc) << 5;
130			if (short_preamble)
131				reg_tmp |= 0x80;
132
133			rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
134			break;
135		}
136	case HW_VAR_AMPDU_MIN_SPACE:{
137			u8 min_spacing_to_set;
138			u8 sec_min_space;
139
140			min_spacing_to_set = *val;
141			if (min_spacing_to_set <= 7) {
142				if (rtlpriv->sec.pairwise_enc_algorithm ==
143				    NO_ENCRYPTION)
144					sec_min_space = 0;
145				else
146					sec_min_space = 1;
147
148				if (min_spacing_to_set < sec_min_space)
149					min_spacing_to_set = sec_min_space;
150				if (min_spacing_to_set > 5)
151					min_spacing_to_set = 5;
152
153				mac->min_space_cfg =
154						((mac->min_space_cfg & 0xf8) |
155						min_spacing_to_set);
156
157				*val = min_spacing_to_set;
158
159				rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
160					"Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
161					mac->min_space_cfg);
162
163				rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
164					       mac->min_space_cfg);
165			}
166			break;
167		}
168	case HW_VAR_SHORTGI_DENSITY:{
169			u8 density_to_set;
170
171			density_to_set = *val;
172			mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
173			mac->min_space_cfg |= (density_to_set << 3);
174
175			rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
176				"Set HW_VAR_SHORTGI_DENSITY: %#x\n",
177				mac->min_space_cfg);
178
179			rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
180				       mac->min_space_cfg);
181
182			break;
183		}
184	case HW_VAR_AMPDU_FACTOR:{
185			u8 factor_toset;
186			u8 regtoset;
187			u8 factorlevel[18] = {
188				2, 4, 4, 7, 7, 13, 13,
189				13, 2, 7, 7, 13, 13,
190				15, 15, 15, 15, 0};
191			u8 index = 0;
192
193			factor_toset = *val;
194			if (factor_toset <= 3) {
195				factor_toset = (1 << (factor_toset + 2));
196				if (factor_toset > 0xf)
197					factor_toset = 0xf;
198
199				for (index = 0; index < 17; index++) {
200					if (factorlevel[index] > factor_toset)
201						factorlevel[index] =
202								 factor_toset;
203				}
204
205				for (index = 0; index < 8; index++) {
206					regtoset = ((factorlevel[index * 2]) |
207						    (factorlevel[index *
208						    2 + 1] << 4));
209					rtl_write_byte(rtlpriv,
210						       AGGLEN_LMT_L + index,
211						       regtoset);
212				}
213
214				regtoset = ((factorlevel[16]) |
215					    (factorlevel[17] << 4));
216				rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
217
218				rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
219					"Set HW_VAR_AMPDU_FACTOR: %#x\n",
220					factor_toset);
221			}
222			break;
223		}
224	case HW_VAR_AC_PARAM:{
225			u8 e_aci = *val;
226			rtl92s_dm_init_edca_turbo(hw);
227
228			if (rtlpci->acm_method != EACMWAY2_SW)
229				rtlpriv->cfg->ops->set_hw_reg(hw,
230						 HW_VAR_ACM_CTRL,
231						 &e_aci);
232			break;
233		}
234	case HW_VAR_ACM_CTRL:{
235			u8 e_aci = *val;
236			union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
237							mac->ac[0].aifs));
238			u8 acm = p_aci_aifsn->f.acm;
239			u8 acm_ctrl = rtl_read_byte(rtlpriv, ACMHWCTRL);
240
241			acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
242				   0x0 : 0x1);
243
244			if (acm) {
245				switch (e_aci) {
246				case AC0_BE:
247					acm_ctrl |= ACMHW_BEQEN;
248					break;
249				case AC2_VI:
250					acm_ctrl |= ACMHW_VIQEN;
251					break;
252				case AC3_VO:
253					acm_ctrl |= ACMHW_VOQEN;
254					break;
255				default:
256					rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
257						"HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
258						acm);
259					break;
260				}
261			} else {
262				switch (e_aci) {
263				case AC0_BE:
264					acm_ctrl &= (~ACMHW_BEQEN);
265					break;
266				case AC2_VI:
267					acm_ctrl &= (~ACMHW_VIQEN);
268					break;
269				case AC3_VO:
270					acm_ctrl &= (~ACMHW_VOQEN);
271					break;
272				default:
273					pr_err("switch case %#x not processed\n",
274					       e_aci);
275					break;
276				}
277			}
278
279			rtl_dbg(rtlpriv, COMP_QOS, DBG_TRACE,
280				"HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl);
281			rtl_write_byte(rtlpriv, ACMHWCTRL, acm_ctrl);
282			break;
283		}
284	case HW_VAR_RCR:{
285			rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
286			rtlpci->receive_config = ((u32 *) (val))[0];
287			break;
288		}
289	case HW_VAR_RETRY_LIMIT:{
290			u8 retry_limit = val[0];
291
292			rtl_write_word(rtlpriv, RETRY_LIMIT,
293				       retry_limit << RETRY_LIMIT_SHORT_SHIFT |
294				       retry_limit << RETRY_LIMIT_LONG_SHIFT);
295			break;
296		}
297	case HW_VAR_DUAL_TSF_RST: {
298			break;
299		}
300	case HW_VAR_EFUSE_BYTES: {
301			rtlefuse->efuse_usedbytes = *((u16 *) val);
302			break;
303		}
304	case HW_VAR_EFUSE_USAGE: {
305			rtlefuse->efuse_usedpercentage = *val;
306			break;
307		}
308	case HW_VAR_IO_CMD: {
309			break;
310		}
311	case HW_VAR_WPA_CONFIG: {
312			rtl_write_byte(rtlpriv, REG_SECR, *val);
313			break;
314		}
315	case HW_VAR_SET_RPWM:{
316			break;
317		}
318	case HW_VAR_H2C_FW_PWRMODE:{
319			break;
320		}
321	case HW_VAR_FW_PSMODE_STATUS: {
322			ppsc->fw_current_inpsmode = *((bool *) val);
323			break;
324		}
325	case HW_VAR_H2C_FW_JOINBSSRPT:{
326			break;
327		}
328	case HW_VAR_AID:{
329			break;
330		}
331	case HW_VAR_CORRECT_TSF:{
332			break;
333		}
334	case HW_VAR_MRC: {
335			bool bmrc_toset = *((bool *)val);
336			u8 u1bdata = 0;
337
338			if (bmrc_toset) {
339				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
340					      MASKBYTE0, 0x33);
341				u1bdata = (u8)rtl_get_bbreg(hw,
342						ROFDM1_TRXPATHENABLE,
343						MASKBYTE0);
344				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
345					      MASKBYTE0,
346					      ((u1bdata & 0xf0) | 0x03));
347				u1bdata = (u8)rtl_get_bbreg(hw,
348						ROFDM0_TRXPATHENABLE,
349						MASKBYTE1);
350				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
351					      MASKBYTE1,
352					      (u1bdata | 0x04));
353
354				/* Update current settings. */
355				rtlpriv->dm.current_mrc_switch = bmrc_toset;
356			} else {
357				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
358					      MASKBYTE0, 0x13);
359				u1bdata = (u8)rtl_get_bbreg(hw,
360						 ROFDM1_TRXPATHENABLE,
361						 MASKBYTE0);
362				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
363					      MASKBYTE0,
364					      ((u1bdata & 0xf0) | 0x01));
365				u1bdata = (u8)rtl_get_bbreg(hw,
366						ROFDM0_TRXPATHENABLE,
367						MASKBYTE1);
368				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
369					      MASKBYTE1, (u1bdata & 0xfb));
370
371				/* Update current settings. */
372				rtlpriv->dm.current_mrc_switch = bmrc_toset;
373			}
374
375			break;
376		}
377	case HW_VAR_FW_LPS_ACTION: {
378		bool enter_fwlps = *((bool *)val);
379		u8 rpwm_val, fw_pwrmode;
380		bool fw_current_inps;
381
382		if (enter_fwlps) {
383			rpwm_val = 0x02;	/* RF off */
384			fw_current_inps = true;
385			rtlpriv->cfg->ops->set_hw_reg(hw,
386					HW_VAR_FW_PSMODE_STATUS,
387					(u8 *)(&fw_current_inps));
388			rtlpriv->cfg->ops->set_hw_reg(hw,
389					HW_VAR_H2C_FW_PWRMODE,
390					&ppsc->fwctrl_psmode);
391
392			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
393						      &rpwm_val);
394		} else {
395			rpwm_val = 0x0C;	/* RF on */
396			fw_pwrmode = FW_PS_ACTIVE_MODE;
397			fw_current_inps = false;
398			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
399						      &rpwm_val);
400			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
401						      &fw_pwrmode);
402
403			rtlpriv->cfg->ops->set_hw_reg(hw,
404					HW_VAR_FW_PSMODE_STATUS,
405					(u8 *)(&fw_current_inps));
406		}
407		break; }
408	default:
409		pr_err("switch case %#x not processed\n", variable);
410		break;
411	}
412
413}
414
415void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
416{
417	struct rtl_priv *rtlpriv = rtl_priv(hw);
418	u8 sec_reg_value = 0x0;
419
420	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
421		"PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
422		rtlpriv->sec.pairwise_enc_algorithm,
423		rtlpriv->sec.group_enc_algorithm);
424
425	if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
426		rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
427			"not open hw encryption\n");
428		return;
429	}
430
431	sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
432
433	if (rtlpriv->sec.use_defaultkey) {
434		sec_reg_value |= SCR_TXUSEDK;
435		sec_reg_value |= SCR_RXUSEDK;
436	}
437
438	rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
439		sec_reg_value);
440
441	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
442
443}
444
445static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw, u8 data)
446{
447	struct rtl_priv *rtlpriv = rtl_priv(hw);
448	u8 waitcount = 100;
449	bool bresult = false;
450	u8 tmpvalue;
451
452	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
453
454	/* Wait the MAC synchronized. */
455	udelay(400);
456
457	/* Check if it is set ready. */
458	tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
459	bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
460
461	if (!(data & (BIT(6) | BIT(7)))) {
462		waitcount = 100;
463		tmpvalue = 0;
464
465		while (1) {
466			waitcount--;
467
468			tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
469			if ((tmpvalue & BIT(6)))
470				break;
471
472			pr_err("wait for BIT(6) return value %x\n", tmpvalue);
473			if (waitcount == 0)
474				break;
475
476			udelay(10);
477		}
478
479		if (waitcount == 0)
480			bresult = false;
481		else
482			bresult = true;
483	}
484
485	return bresult;
486}
487
488void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
489{
490	struct rtl_priv *rtlpriv = rtl_priv(hw);
491	u8 u1tmp;
492
493	/* The following config GPIO function */
494	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
495	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
496
497	/* config GPIO3 to input */
498	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
499	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
500
501}
502
503static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
504{
505	struct rtl_priv *rtlpriv = rtl_priv(hw);
506	u8 u1tmp;
507	u8 retval = ERFON;
508
509	/* The following config GPIO function */
510	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
511	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
512
513	/* config GPIO3 to input */
514	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
515	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
516
517	/* On some of the platform, driver cannot read correct
518	 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
519	mdelay(10);
520
521	/* check GPIO3 */
522	u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
523	retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
524
525	return retval;
526}
527
528static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
529{
530	struct rtl_priv *rtlpriv = rtl_priv(hw);
531	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
532	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
533
534	u8 i;
535	u8 tmpu1b;
536	u16 tmpu2b;
537	u8 pollingcnt = 20;
538
539	if (rtlpci->first_init) {
540		/* Reset PCIE Digital */
541		tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
542		tmpu1b &= 0xFE;
543		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
544		udelay(1);
545		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
546	}
547
548	/* Switch to SW IO control */
549	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
550	if (tmpu1b & BIT(7)) {
551		tmpu1b &= ~(BIT(6) | BIT(7));
552
553		/* Set failed, return to prevent hang. */
554		if (!_rtl92se_halset_sysclk(hw, tmpu1b))
555			return;
556	}
557
558	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
559	udelay(50);
560	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
561	udelay(50);
562
563	/* Clear FW RPWM for FW control LPS.*/
564	rtl_write_byte(rtlpriv, RPWM, 0x0);
565
566	/* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
567	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
568	tmpu1b &= 0x73;
569	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
570	/* wait for BIT 10/11/15 to pull high automatically!! */
571	mdelay(1);
572
573	rtl_write_byte(rtlpriv, CMDR, 0);
574	rtl_write_byte(rtlpriv, TCR, 0);
575
576	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
577	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
578	tmpu1b |= 0x08;
579	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
580	tmpu1b &= ~(BIT(3));
581	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
582
583	/* Enable AFE clock source */
584	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
585	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
586	/* Delay 1.5ms */
587	mdelay(2);
588	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
589	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
590
591	/* Enable AFE Macro Block's Bandgap */
592	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
593	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
594	mdelay(1);
595
596	/* Enable AFE Mbias */
597	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
598	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
599	mdelay(1);
600
601	/* Enable LDOA15 block	*/
602	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
603	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
604
605	/* Set Digital Vdd to Retention isolation Path. */
606	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
607	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
608
609	/* For warm reboot NIC disappera bug. */
610	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
611	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
612
613	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
614
615	/* Enable AFE PLL Macro Block */
616	/* We need to delay 100u before enabling PLL. */
617	udelay(200);
618	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
619	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
620
621	/* for divider reset  */
622	udelay(100);
623	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
624		       BIT(4) | BIT(6)));
625	udelay(10);
626	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
627	udelay(10);
628
629	/* Enable MAC 80MHZ clock  */
630	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
631	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
632	mdelay(1);
633
634	/* Release isolation AFE PLL & MD */
635	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
636
637	/* Enable MAC clock */
638	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
639	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
640
641	/* Enable Core digital and enable IOREG R/W */
642	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
643	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
644
645	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
646	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
647
648	/* enable REG_EN */
649	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
650
651	/* Switch the control path. */
652	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
653	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
654
655	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
656	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
657	if (!_rtl92se_halset_sysclk(hw, tmpu1b))
658		return; /* Set failed, return to prevent hang. */
659
660	rtl_write_word(rtlpriv, CMDR, 0x07FC);
661
662	/* MH We must enable the section of code to prevent load IMEM fail. */
663	/* Load MAC register from WMAc temporarily We simulate macreg. */
664	/* txt HW will provide MAC txt later  */
665	rtl_write_byte(rtlpriv, 0x6, 0x30);
666	rtl_write_byte(rtlpriv, 0x49, 0xf0);
667
668	rtl_write_byte(rtlpriv, 0x4b, 0x81);
669
670	rtl_write_byte(rtlpriv, 0xb5, 0x21);
671
672	rtl_write_byte(rtlpriv, 0xdc, 0xff);
673	rtl_write_byte(rtlpriv, 0xdd, 0xff);
674	rtl_write_byte(rtlpriv, 0xde, 0xff);
675	rtl_write_byte(rtlpriv, 0xdf, 0xff);
676
677	rtl_write_byte(rtlpriv, 0x11a, 0x00);
678	rtl_write_byte(rtlpriv, 0x11b, 0x00);
679
680	for (i = 0; i < 32; i++)
681		rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
682
683	rtl_write_byte(rtlpriv, 0x236, 0xff);
684
685	rtl_write_byte(rtlpriv, 0x503, 0x22);
686
687	if (ppsc->support_aspm && !ppsc->support_backdoor)
688		rtl_write_byte(rtlpriv, 0x560, 0x40);
689	else
690		rtl_write_byte(rtlpriv, 0x560, 0x00);
691
692	rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
693
694	/* Set RX Desc Address */
695	rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
696	rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
697
698	/* Set TX Desc Address */
699	rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
700	rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
701	rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
702	rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
703	rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
704	rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
705	rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
706	rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
707	rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
708
709	rtl_write_word(rtlpriv, CMDR, 0x37FC);
710
711	/* To make sure that TxDMA can ready to download FW. */
712	/* We should reset TxDMA if IMEM RPT was not ready. */
713	do {
714		tmpu1b = rtl_read_byte(rtlpriv, TCR);
715		if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
716			break;
717
718		udelay(5);
719	} while (pollingcnt--);
720
721	if (pollingcnt <= 0) {
722		pr_err("Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
723		       tmpu1b);
724		tmpu1b = rtl_read_byte(rtlpriv, CMDR);
725		rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
726		udelay(2);
727		/* Reset TxDMA */
728		rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
729	}
730
731	/* After MACIO reset,we must refresh LED state. */
732	if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
733	   (ppsc->rfoff_reason == 0)) {
734		enum rtl_led_pin pin0 = rtlpriv->ledctl.sw_led0;
735		enum rf_pwrstate rfpwr_state_toset;
736		rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
737
738		if (rfpwr_state_toset == ERFON)
739			rtl92se_sw_led_on(hw, pin0);
740	}
741}
742
743static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
744{
745	struct rtl_priv *rtlpriv = rtl_priv(hw);
746	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
747	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
748	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
749	u8 i;
750	u16 tmpu2b;
751
752	/* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
753
754	/* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
755	/* Turn on 0x40 Command register */
756	rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
757			SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
758			RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
759
760	/* Set TCR TX DMA pre 2 FULL enable bit	*/
761	rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
762			TXDMAPRE2FULL);
763
764	/* Set RCR	*/
765	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
766
767	/* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
768
769	/* 4. Timing Control Register  (Offset: 0x0080 - 0x009F) */
770	/* Set CCK/OFDM SIFS */
771	/* CCK SIFS shall always be 10us. */
772	rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
773	rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
774
775	/* Set AckTimeout */
776	rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
777
778	/* Beacon related */
779	rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
780	rtl_write_word(rtlpriv, ATIMWND, 2);
781
782	/* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
783	/* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
784	/* Firmware allocate now, associate with FW internal setting.!!! */
785
786	/* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
787	/* 5.3 Set driver info, we only accept PHY status now. */
788	/* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO  */
789	rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
790
791	/* 6. Adaptive Control Register  (Offset: 0x0160 - 0x01CF) */
792	/* Set RRSR to all legacy rate and HT rate
793	 * CCK rate is supported by default.
794	 * CCK rate will be filtered out only when associated
795	 * AP does not support it.
796	 * Only enable ACK rate to OFDM 24M
797	 * Disable RRSR for CCK rate in A-Cut	*/
798
799	if (rtlhal->version == VERSION_8192S_ACUT)
800		rtl_write_byte(rtlpriv, RRSR, 0xf0);
801	else if (rtlhal->version == VERSION_8192S_BCUT)
802		rtl_write_byte(rtlpriv, RRSR, 0xff);
803	rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
804	rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
805
806	/* A-Cut IC do not support CCK rate. We forbid ARFR to */
807	/* fallback to CCK rate */
808	for (i = 0; i < 8; i++) {
809		/*Disable RRSR for CCK rate in A-Cut */
810		if (rtlhal->version == VERSION_8192S_ACUT)
811			rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
812	}
813
814	/* Different rate use different AMPDU size */
815	/* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
816	rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
817	/* MCS0/1/2/3 use max AMPDU size 4*2=8K */
818	rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
819	/* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
820	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
821	/* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
822	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
823	/* MCS12/13/14/15 use max AMPDU size 15*2=30K */
824	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
825
826	/* Set Data / Response auto rate fallack retry count */
827	rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
828	rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
829	rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
830	rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
831
832	/* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
833	/* Set all rate to support SG */
834	rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
835
836	/* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
837	/* Set NAV protection length */
838	rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
839	/* CF-END Threshold */
840	rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
841	/* Set AMPDU minimum space */
842	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
843	/* Set TXOP stall control for several queue/HI/BCN/MGT/ */
844	rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
845
846	/* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
847	/* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
848	/* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
849	/* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
850	/* 13. Test mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
851
852	/* 14. Set driver info, we only accept PHY status now. */
853	rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
854
855	/* 15. For EEPROM R/W Workaround */
856	/* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
857	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
858	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
859	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
860	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
861
862	/* 17. For EFUSE */
863	/* We may R/W EFUSE in EEPROM mode */
864	if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
865		u8	tempval;
866
867		tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
868		tempval &= 0xFE;
869		rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
870
871		/* Change Program timing */
872		rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
873		rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n");
874	}
875
876	rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n");
877
878}
879
880static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
881{
882	struct rtl_priv *rtlpriv = rtl_priv(hw);
883	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
884	struct rtl_phy *rtlphy = &(rtlpriv->phy);
885	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
886
887	u8 reg_bw_opmode = 0;
888	u32 reg_rrsr = 0;
889	u8 regtmp = 0;
890
891	reg_bw_opmode = BW_OPMODE_20MHZ;
892	reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
893
894	regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
895	reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
896	rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
897	rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
898
899	/* Set Retry Limit here */
900	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
901			(u8 *)(&rtlpci->shortretry_limit));
902
903	rtl_write_byte(rtlpriv, MLT, 0x8f);
904
905	/* For Min Spacing configuration. */
906	switch (rtlphy->rf_type) {
907	case RF_1T2R:
908	case RF_1T1R:
909		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
910		break;
911	case RF_2T2R:
912	case RF_2T2R_GREEN:
913		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
914		break;
915	}
916	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
917}
918
919int rtl92se_hw_init(struct ieee80211_hw *hw)
920{
921	struct rtl_priv *rtlpriv = rtl_priv(hw);
922	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
923	struct rtl_phy *rtlphy = &(rtlpriv->phy);
924	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
925	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
926	u8 tmp_byte = 0;
927	unsigned long flags;
928	bool rtstatus = true;
929	u8 tmp_u1b;
930	int err = false;
931	u8 i;
932	int wdcapra_add[] = {
933		EDCAPARA_BE, EDCAPARA_BK,
934		EDCAPARA_VI, EDCAPARA_VO};
935	u8 secr_value = 0x0;
936
937	rtlpci->being_init_adapter = true;
938
939	/* As this function can take a very long time (up to 350 ms)
940	 * and can be called with irqs disabled, reenable the irqs
941	 * to let the other devices continue being serviced.
942	 *
943	 * It is safe doing so since our own interrupts will only be enabled
944	 * in a subsequent step.
945	 */
946	local_save_flags(flags);
947	local_irq_enable();
948
949	rtlpriv->intf_ops->disable_aspm(hw);
950
951	/* 1. MAC Initialize */
952	/* Before FW download, we have to set some MAC register */
953	_rtl92se_macconfig_before_fwdownload(hw);
954
955	rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
956			PMC_FSM) >> 16) & 0xF);
957
958	rtl8192se_gpiobit3_cfg_inputmode(hw);
959
960	/* 2. download firmware */
961	rtstatus = rtl92s_download_fw(hw);
962	if (!rtstatus) {
963		rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
964			"Failed to download FW. Init HW without FW now... Please copy FW into /lib/firmware/rtlwifi\n");
965		err = 1;
966		goto exit;
967	}
968
969	/* After FW download, we have to reset MAC register */
970	_rtl92se_macconfig_after_fwdownload(hw);
971
972	/*Retrieve default FW Cmd IO map. */
973	rtlhal->fwcmd_iomap =	rtl_read_word(rtlpriv, LBUS_MON_ADDR);
974	rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
975
976	/* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
977	if (!rtl92s_phy_mac_config(hw)) {
978		pr_err("MAC Config failed\n");
979		err = rtstatus;
980		goto exit;
981	}
982
983	/* because last function modify RCR, so we update
984	 * rcr var here, or TP will unstable for receive_config
985	 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
986	 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
987	 */
988	rtlpci->receive_config = rtl_read_dword(rtlpriv, RCR);
989	rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
990	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
991
992	/* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
993	/* We must set flag avoid BB/RF config period later!! */
994	rtl_write_dword(rtlpriv, CMDR, 0x37FC);
995
996	/* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
997	if (!rtl92s_phy_bb_config(hw)) {
998		pr_err("BB Config failed\n");
999		err = rtstatus;
1000		goto exit;
1001	}
1002
1003	/* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
1004	/* Before initalizing RF. We can not use FW to do RF-R/W. */
1005
1006	rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
1007
1008	/* Before RF-R/W we must execute the IO from Scott's suggestion. */
1009	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
1010	if (rtlhal->version == VERSION_8192S_ACUT)
1011		rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
1012	else
1013		rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
1014
1015	if (!rtl92s_phy_rf_config(hw)) {
1016		rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n");
1017		err = rtstatus;
1018		goto exit;
1019	}
1020
1021	/* After read predefined TXT, we must set BB/MAC/RF
1022	 * register as our requirement */
1023
1024	rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
1025							   (enum radio_path)0,
1026							   RF_CHNLBW,
1027							   RFREG_OFFSET_MASK);
1028	rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
1029							   (enum radio_path)1,
1030							   RF_CHNLBW,
1031							   RFREG_OFFSET_MASK);
1032
1033	/*---- Set CCK and OFDM Block "ON"----*/
1034	rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
1035	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
1036
1037	/*3 Set Hardware(Do nothing now) */
1038	_rtl92se_hw_configure(hw);
1039
1040	/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1041	/* TX power index for different rate set. */
1042	/* Get original hw reg values */
1043	rtl92s_phy_get_hw_reg_originalvalue(hw);
1044	/* Write correct tx power index */
1045	rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
1046
1047	/* We must set MAC address after firmware download. */
1048	for (i = 0; i < 6; i++)
1049		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1050
1051	/* EEPROM R/W workaround */
1052	tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
1053	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
1054
1055	rtl_write_byte(rtlpriv, 0x4d, 0x0);
1056
1057	if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
1058		tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
1059		tmp_byte = tmp_byte | BIT(5);
1060		rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
1061		rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
1062	}
1063
1064	/* We enable high power and RA related mechanism after NIC
1065	 * initialized. */
1066	if (hal_get_firmwareversion(rtlpriv) >= 0x35) {
1067		/* Fw v.53 and later. */
1068		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
1069	} else if (hal_get_firmwareversion(rtlpriv) == 0x34) {
1070		/* Fw v.52. */
1071		rtl_write_dword(rtlpriv, WFM5, FW_RA_INIT);
1072		rtl92s_phy_chk_fwcmd_iodone(hw);
1073	} else {
1074		/* Compatible earlier FW version. */
1075		rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET);
1076		rtl92s_phy_chk_fwcmd_iodone(hw);
1077		rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE);
1078		rtl92s_phy_chk_fwcmd_iodone(hw);
1079		rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH);
1080		rtl92s_phy_chk_fwcmd_iodone(hw);
1081	}
1082
1083	/* Add to prevent ASPM bug. */
1084	/* Always enable hst and NIC clock request. */
1085	rtl92s_phy_switch_ephy_parameter(hw);
1086
1087	/* Security related
1088	 * 1. Clear all H/W keys.
1089	 * 2. Enable H/W encryption/decryption. */
1090	rtl_cam_reset_all_entry(hw);
1091	secr_value |= SCR_TXENCENABLE;
1092	secr_value |= SCR_RXENCENABLE;
1093	secr_value |= SCR_NOSKMC;
1094	rtl_write_byte(rtlpriv, REG_SECR, secr_value);
1095
1096	for (i = 0; i < 4; i++)
1097		rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
1098
1099	if (rtlphy->rf_type == RF_1T2R) {
1100		bool mrc2set = true;
1101		/* Turn on B-Path */
1102		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
1103	}
1104
1105	rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
1106	rtl92s_dm_init(hw);
1107exit:
1108	local_irq_restore(flags);
1109	rtlpci->being_init_adapter = false;
1110	return err;
1111}
1112
1113void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr)
1114{
1115	/* This is a stub. */
1116}
1117
1118void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1119{
1120	struct rtl_priv *rtlpriv = rtl_priv(hw);
1121	u32 reg_rcr;
1122
1123	if (rtlpriv->psc.rfpwr_state != ERFON)
1124		return;
1125
1126	rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1127
1128	if (check_bssid) {
1129		reg_rcr |= (RCR_CBSSID);
1130		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1131	} else if (!check_bssid) {
1132		reg_rcr &= (~RCR_CBSSID);
1133		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1134	}
1135
1136}
1137
1138static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
1139				     enum nl80211_iftype type)
1140{
1141	struct rtl_priv *rtlpriv = rtl_priv(hw);
1142	u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1143	u32 temp;
1144	bt_msr &= ~MSR_LINK_MASK;
1145
1146	switch (type) {
1147	case NL80211_IFTYPE_UNSPECIFIED:
1148		bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
1149		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1150			"Set Network type to NO LINK!\n");
1151		break;
1152	case NL80211_IFTYPE_ADHOC:
1153		bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
1154		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1155			"Set Network type to Ad Hoc!\n");
1156		break;
1157	case NL80211_IFTYPE_STATION:
1158		bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
1159		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1160			"Set Network type to STA!\n");
1161		break;
1162	case NL80211_IFTYPE_AP:
1163		bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
1164		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1165			"Set Network type to AP!\n");
1166		break;
1167	default:
1168		pr_err("Network type %d not supported!\n", type);
1169		return 1;
1170
1171	}
1172
1173	if (type != NL80211_IFTYPE_AP &&
1174	    rtlpriv->mac80211.link_state < MAC80211_LINKED)
1175		bt_msr = rtl_read_byte(rtlpriv, MSR) & ~MSR_LINK_MASK;
1176	rtl_write_byte(rtlpriv, MSR, bt_msr);
1177
1178	temp = rtl_read_dword(rtlpriv, TCR);
1179	rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
1180	rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
1181
1182
1183	return 0;
1184}
1185
1186/* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
1187int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1188{
1189	struct rtl_priv *rtlpriv = rtl_priv(hw);
1190
1191	if (_rtl92se_set_media_status(hw, type))
1192		return -EOPNOTSUPP;
1193
1194	if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1195		if (type != NL80211_IFTYPE_AP)
1196			rtl92se_set_check_bssid(hw, true);
1197	} else {
1198		rtl92se_set_check_bssid(hw, false);
1199	}
1200
1201	return 0;
1202}
1203
1204/* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
1205void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
1206{
1207	struct rtl_priv *rtlpriv = rtl_priv(hw);
1208	rtl92s_dm_init_edca_turbo(hw);
1209
1210	switch (aci) {
1211	case AC1_BK:
1212		rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
1213		break;
1214	case AC0_BE:
1215		/* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
1216		break;
1217	case AC2_VI:
1218		rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
1219		break;
1220	case AC3_VO:
1221		rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
1222		break;
1223	default:
1224		WARN_ONCE(true, "rtl8192se: invalid aci: %d !\n", aci);
1225		break;
1226	}
1227}
1228
1229void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
1230{
1231	struct rtl_priv *rtlpriv = rtl_priv(hw);
1232	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1233
1234	rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
1235	/* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
1236	rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
1237	rtlpci->irq_enabled = true;
1238}
1239
1240void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
1241{
1242	struct rtl_priv *rtlpriv;
1243	struct rtl_pci *rtlpci;
1244
1245	rtlpriv = rtl_priv(hw);
1246	/* if firmware not available, no interrupts */
1247	if (!rtlpriv || !rtlpriv->max_fw_size)
1248		return;
1249	rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1250	rtl_write_dword(rtlpriv, INTA_MASK, 0);
1251	rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
1252	rtlpci->irq_enabled = false;
1253}
1254
1255static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
1256{
1257	struct rtl_priv *rtlpriv = rtl_priv(hw);
1258	u8 waitcnt = 100;
1259	bool result = false;
1260	u8 tmp;
1261
1262	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
1263
1264	/* Wait the MAC synchronized. */
1265	udelay(400);
1266
1267	/* Check if it is set ready. */
1268	tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1269	result = ((tmp & BIT(7)) == (data & BIT(7)));
1270
1271	if (!(data & (BIT(6) | BIT(7)))) {
1272		waitcnt = 100;
1273		tmp = 0;
1274
1275		while (1) {
1276			waitcnt--;
1277			tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1278
1279			if ((tmp & BIT(6)))
1280				break;
1281
1282			pr_err("wait for BIT(6) return value %x\n", tmp);
1283
1284			if (waitcnt == 0)
1285				break;
1286			udelay(10);
1287		}
1288
1289		if (waitcnt == 0)
1290			result = false;
1291		else
1292			result = true;
1293	}
1294
1295	return result;
1296}
1297
1298static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
1299{
1300	struct rtl_priv *rtlpriv = rtl_priv(hw);
1301	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1302	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1303	u8 u1btmp;
1304
1305	if (rtlhal->driver_is_goingto_unload)
1306		rtl_write_byte(rtlpriv, 0x560, 0x0);
1307
1308	/* Power save for BB/RF */
1309	u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
1310	u1btmp |= BIT(0);
1311	rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
1312	rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
1313	rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
1314	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1315	udelay(100);
1316	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1317	rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
1318	udelay(10);
1319	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1320	udelay(10);
1321	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1322	udelay(10);
1323	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1324	rtl_write_word(rtlpriv, CMDR, 0x0000);
1325
1326	if (rtlhal->driver_is_goingto_unload) {
1327		u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
1328		u1btmp &= ~(BIT(0));
1329		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
1330	}
1331
1332	u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1333
1334	/* Add description. After switch control path. register
1335	 * after page1 will be invisible. We can not do any IO
1336	 * for register>0x40. After resume&MACIO reset, we need
1337	 * to remember previous reg content. */
1338	if (u1btmp & BIT(7)) {
1339		u1btmp &= ~(BIT(6) | BIT(7));
1340		if (!_rtl92s_set_sysclk(hw, u1btmp)) {
1341			pr_err("Switch ctrl path fail\n");
1342			return;
1343		}
1344	}
1345
1346	/* Power save for MAC */
1347	if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS  &&
1348		!rtlhal->driver_is_goingto_unload) {
1349		/* enable LED function */
1350		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1351	/* SW/HW radio off or halt adapter!! For example S3/S4 */
1352	} else {
1353		/* LED function disable. Power range is about 8mA now. */
1354		/* if write 0xF1 disconnect_pci power
1355		 *	 ifconfig wlan0 down power are both high 35:70 */
1356		/* if write oxF9 disconnect_pci power
1357		 * ifconfig wlan0 down power are both low  12:45*/
1358		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1359	}
1360
1361	rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
1362	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
1363	rtl_write_byte(rtlpriv,  AFE_PLL_CTRL, 0x00);
1364	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1365	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
1366	RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1367
1368}
1369
1370static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
1371{
1372	struct rtl_priv *rtlpriv = rtl_priv(hw);
1373	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1374	enum rtl_led_pin pin0 = rtlpriv->ledctl.sw_led0;
1375
1376	if (rtlpci->up_first_time)
1377		return;
1378
1379	if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
1380		rtl92se_sw_led_on(hw, pin0);
1381	else
1382		rtl92se_sw_led_off(hw, pin0);
1383}
1384
1385
1386static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
1387{
1388	struct rtl_priv *rtlpriv = rtl_priv(hw);
1389	u16 tmpu2b;
1390	u8 tmpu1b;
1391
1392	rtlpriv->psc.pwrdomain_protect = true;
1393
1394	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1395	if (tmpu1b & BIT(7)) {
1396		tmpu1b &= ~(BIT(6) | BIT(7));
1397		if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1398			rtlpriv->psc.pwrdomain_protect = false;
1399			return;
1400		}
1401	}
1402
1403	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
1404	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1405
1406	/* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
1407	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
1408
1409	/* If IPS we need to turn LED on. So we not
1410	 * disable BIT 3/7 of reg3. */
1411	if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
1412		tmpu1b &= 0xFB;
1413	else
1414		tmpu1b &= 0x73;
1415
1416	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
1417	/* wait for BIT 10/11/15 to pull high automatically!! */
1418	mdelay(1);
1419
1420	rtl_write_byte(rtlpriv, CMDR, 0);
1421	rtl_write_byte(rtlpriv, TCR, 0);
1422
1423	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
1424	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
1425	tmpu1b |= 0x08;
1426	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1427	tmpu1b &= ~(BIT(3));
1428	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1429
1430	/* Enable AFE clock source */
1431	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
1432	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
1433	/* Delay 1.5ms */
1434	udelay(1500);
1435	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
1436	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
1437
1438	/* Enable AFE Macro Block's Bandgap */
1439	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1440	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
1441	mdelay(1);
1442
1443	/* Enable AFE Mbias */
1444	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1445	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
1446	mdelay(1);
1447
1448	/* Enable LDOA15 block */
1449	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
1450	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
1451
1452	/* Set Digital Vdd to Retention isolation Path. */
1453	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
1454	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
1455
1456
1457	/* For warm reboot NIC disappera bug. */
1458	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1459	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
1460
1461	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
1462
1463	/* Enable AFE PLL Macro Block */
1464	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
1465	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
1466	/* Enable MAC 80MHZ clock */
1467	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
1468	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
1469	mdelay(1);
1470
1471	/* Release isolation AFE PLL & MD */
1472	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
1473
1474	/* Enable MAC clock */
1475	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1476	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
1477
1478	/* Enable Core digital and enable IOREG R/W */
1479	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1480	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
1481	/* enable REG_EN */
1482	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
1483
1484	/* Switch the control path. */
1485	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1486	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
1487
1488	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1489	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
1490	if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1491		rtlpriv->psc.pwrdomain_protect = false;
1492		return;
1493	}
1494
1495	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1496
1497	/* After MACIO reset,we must refresh LED state. */
1498	_rtl92se_gen_refreshledstate(hw);
1499
1500	rtlpriv->psc.pwrdomain_protect = false;
1501}
1502
1503void rtl92se_card_disable(struct ieee80211_hw *hw)
1504{
1505	struct rtl_priv *rtlpriv = rtl_priv(hw);
1506	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1507	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1508	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1509	enum nl80211_iftype opmode;
1510	u8 wait = 30;
1511
1512	rtlpriv->intf_ops->enable_aspm(hw);
1513
1514	if (rtlpci->driver_is_goingto_unload ||
1515		ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1516		rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1517
1518	/* we should chnge GPIO to input mode
1519	 * this will drop away current about 25mA*/
1520	rtl8192se_gpiobit3_cfg_inputmode(hw);
1521
1522	/* this is very important for ips power save */
1523	while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
1524		if (rtlpriv->psc.pwrdomain_protect)
1525			mdelay(20);
1526		else
1527			break;
1528	}
1529
1530	mac->link_state = MAC80211_NOLINK;
1531	opmode = NL80211_IFTYPE_UNSPECIFIED;
1532	_rtl92se_set_media_status(hw, opmode);
1533
1534	_rtl92s_phy_set_rfhalt(hw);
1535	udelay(100);
1536}
1537
1538void rtl92se_interrupt_recognized(struct ieee80211_hw *hw,
1539				  struct rtl_int *intvec)
1540{
1541	struct rtl_priv *rtlpriv = rtl_priv(hw);
1542	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1543
1544	intvec->inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1545	rtl_write_dword(rtlpriv, ISR, intvec->inta);
1546
1547	intvec->intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
1548	rtl_write_dword(rtlpriv, ISR + 4, intvec->intb);
1549}
1550
1551void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
1552{
1553	struct rtl_priv *rtlpriv = rtl_priv(hw);
1554	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1555	u16 atim_window = 2;
1556
1557	/* ATIM Window (in unit of TU). */
1558	rtl_write_word(rtlpriv, ATIMWND, atim_window);
1559
1560	/* Beacon interval (in unit of TU). */
1561	rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
1562
1563	/* DrvErlyInt (in unit of TU). (Time to send
1564	 * interrupt to notify driver to change
1565	 * beacon content) */
1566	rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
1567
1568	/* BcnDMATIM(in unit of us). Indicates the
1569	 * time before TBTT to perform beacon queue DMA  */
1570	rtl_write_word(rtlpriv, BCN_DMATIME, 256);
1571
1572	/* Force beacon frame transmission even
1573	 * after receiving beacon frame from
1574	 * other ad hoc STA */
1575	rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
1576
1577	/*for beacon changed */
1578	rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
1579}
1580
1581void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
1582{
1583	struct rtl_priv *rtlpriv = rtl_priv(hw);
1584	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1585	u16 bcn_interval = mac->beacon_interval;
1586
1587	/* Beacon interval (in unit of TU). */
1588	rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
1589	/* 2008.10.24 added by tynli for beacon changed. */
1590	rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
1591}
1592
1593void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
1594		u32 add_msr, u32 rm_msr)
1595{
1596	struct rtl_priv *rtlpriv = rtl_priv(hw);
1597	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1598
1599	rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1600		add_msr, rm_msr);
1601
1602	if (add_msr)
1603		rtlpci->irq_mask[0] |= add_msr;
1604
1605	if (rm_msr)
1606		rtlpci->irq_mask[0] &= (~rm_msr);
1607
1608	rtl92se_disable_interrupt(hw);
1609	rtl92se_enable_interrupt(hw);
1610}
1611
1612static void _rtl8192se_get_ic_inferiority(struct ieee80211_hw *hw)
1613{
1614	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1615	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1616	u8 efuse_id;
1617
1618	rtlhal->ic_class = IC_INFERIORITY_A;
1619
1620	/* Only retrieving while using EFUSE. */
1621	if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
1622		!rtlefuse->autoload_failflag) {
1623		efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
1624
1625		if (efuse_id == 0xfe)
1626			rtlhal->ic_class = IC_INFERIORITY_B;
1627	}
1628}
1629
1630static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
1631{
1632	struct rtl_priv *rtlpriv = rtl_priv(hw);
1633	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1634	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1635	struct device *dev = &rtl_pcipriv(hw)->dev.pdev->dev;
1636	u16 i, usvalue;
1637	u16	eeprom_id;
1638	u8 tempval;
1639	u8 hwinfo[HWSET_MAX_SIZE_92S];
1640	u8 rf_path, index;
1641
1642	switch (rtlefuse->epromtype) {
1643	case EEPROM_BOOT_EFUSE:
1644		rtl_efuse_shadow_map_update(hw);
1645		break;
1646
1647	case EEPROM_93C46:
1648		pr_err("RTL819X Not boot from eeprom, check it !!\n");
1649		return;
1650
1651	default:
1652		dev_warn(dev, "no efuse data\n");
1653		return;
1654	}
1655
1656	memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
1657	       HWSET_MAX_SIZE_92S);
1658
1659	RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1660		      hwinfo, HWSET_MAX_SIZE_92S);
1661
1662	eeprom_id = *((u16 *)&hwinfo[0]);
1663	if (eeprom_id != RTL8190_EEPROM_ID) {
1664		rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
1665			"EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1666		rtlefuse->autoload_failflag = true;
1667	} else {
1668		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1669		rtlefuse->autoload_failflag = false;
1670	}
1671
1672	if (rtlefuse->autoload_failflag)
1673		return;
1674
1675	_rtl8192se_get_ic_inferiority(hw);
1676
1677	/* Read IC Version && Channel Plan */
1678	/* VID, DID	 SE	0xA-D */
1679	rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1680	rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1681	rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1682	rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1683	rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1684
1685	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1686		"EEPROMId = 0x%4x\n", eeprom_id);
1687	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1688		"EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1689	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1690		"EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1691	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1692		"EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1693	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1694		"EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1695
1696	for (i = 0; i < 6; i += 2) {
1697		usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
1698		*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1699	}
1700
1701	for (i = 0; i < 6; i++)
1702		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1703
1704	rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1705
1706	/* Get Tx Power Level by Channel */
1707	/* Read Tx power of Channel 1 ~ 14 from EEPROM. */
1708	/* 92S suupport RF A & B */
1709	for (rf_path = 0; rf_path < 2; rf_path++) {
1710		for (i = 0; i < 3; i++) {
1711			/* Read CCK RF A & B Tx power  */
1712			rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
1713			hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
1714
1715			/* Read OFDM RF A & B Tx power for 1T */
1716			rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
1717			hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
1718
1719			/* Read OFDM RF A & B Tx power for 2T */
1720			rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i]
1721				 = hwinfo[EEPROM_TXPOWERBASE + 12 +
1722				   rf_path * 3 + i];
1723		}
1724	}
1725
1726	for (rf_path = 0; rf_path < 2; rf_path++)
1727		for (i = 0; i < 3; i++)
1728			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1729				"RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
1730				rf_path, i,
1731				rtlefuse->eeprom_chnlarea_txpwr_cck
1732				[rf_path][i]);
1733	for (rf_path = 0; rf_path < 2; rf_path++)
1734		for (i = 0; i < 3; i++)
1735			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1736				"RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
1737				rf_path, i,
1738				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1739				[rf_path][i]);
1740	for (rf_path = 0; rf_path < 2; rf_path++)
1741		for (i = 0; i < 3; i++)
1742			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1743				"RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
1744				rf_path, i,
1745				rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1746				[rf_path][i]);
1747
1748	for (rf_path = 0; rf_path < 2; rf_path++) {
1749
1750		/* Assign dedicated channel tx power */
1751		for (i = 0; i < 14; i++)	{
1752			/* channel 1~3 use the same Tx Power Level. */
1753			if (i < 3)
1754				index = 0;
1755			/* Channel 4-8 */
1756			else if (i < 8)
1757				index = 1;
1758			/* Channel 9-14 */
1759			else
1760				index = 2;
1761
1762			/* Record A & B CCK /OFDM - 1T/2T Channel area
1763			 * tx power */
1764			rtlefuse->txpwrlevel_cck[rf_path][i]  =
1765				rtlefuse->eeprom_chnlarea_txpwr_cck
1766							[rf_path][index];
1767			rtlefuse->txpwrlevel_ht40_1s[rf_path][i]  =
1768				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1769							[rf_path][index];
1770			rtlefuse->txpwrlevel_ht40_2s[rf_path][i]  =
1771				rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1772							[rf_path][index];
1773		}
1774
1775		for (i = 0; i < 14; i++) {
1776			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1777				"RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
1778				rf_path, i,
1779				rtlefuse->txpwrlevel_cck[rf_path][i],
1780				rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
1781				rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
1782		}
1783	}
1784
1785	for (rf_path = 0; rf_path < 2; rf_path++) {
1786		for (i = 0; i < 3; i++) {
1787			/* Read Power diff limit. */
1788			rtlefuse->eeprom_pwrgroup[rf_path][i] =
1789				hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
1790		}
1791	}
1792
1793	for (rf_path = 0; rf_path < 2; rf_path++) {
1794		/* Fill Pwr group */
1795		for (i = 0; i < 14; i++) {
1796			/* Chanel 1-3 */
1797			if (i < 3)
1798				index = 0;
1799			/* Channel 4-8 */
1800			else if (i < 8)
1801				index = 1;
1802			/* Channel 9-13 */
1803			else
1804				index = 2;
1805
1806			rtlefuse->pwrgroup_ht20[rf_path][i] =
1807				(rtlefuse->eeprom_pwrgroup[rf_path][index] &
1808				0xf);
1809			rtlefuse->pwrgroup_ht40[rf_path][i] =
1810				((rtlefuse->eeprom_pwrgroup[rf_path][index] &
1811				0xf0) >> 4);
1812
1813			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1814				"RF-%d pwrgroup_ht20[%d] = 0x%x\n",
1815				rf_path, i,
1816				rtlefuse->pwrgroup_ht20[rf_path][i]);
1817			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1818				"RF-%d pwrgroup_ht40[%d] = 0x%x\n",
1819				rf_path, i,
1820				rtlefuse->pwrgroup_ht40[rf_path][i]);
1821			}
1822	}
1823
1824	for (i = 0; i < 14; i++) {
1825		/* Read tx power difference between HT OFDM 20/40 MHZ */
1826		/* channel 1-3 */
1827		if (i < 3)
1828			index = 0;
1829		/* Channel 4-8 */
1830		else if (i < 8)
1831			index = 1;
1832		/* Channel 9-14 */
1833		else
1834			index = 2;
1835
1836		tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff;
1837		rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
1838		rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
1839						 ((tempval >> 4) & 0xF);
1840
1841		/* Read OFDM<->HT tx power diff */
1842		/* Channel 1-3 */
1843		if (i < 3)
1844			index = 0;
1845		/* Channel 4-8 */
1846		else if (i < 8)
1847			index = 0x11;
1848		/* Channel 9-14 */
1849		else
1850			index = 1;
1851
1852		tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff;
1853		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
1854				 (tempval & 0xF);
1855		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
1856				 ((tempval >> 4) & 0xF);
1857
1858		tempval = hwinfo[TX_PWR_SAFETY_CHK];
1859		rtlefuse->txpwr_safetyflag = (tempval & 0x01);
1860	}
1861
1862	rtlefuse->eeprom_regulatory = 0;
1863	if (rtlefuse->eeprom_version >= 2) {
1864		/* BIT(0)~2 */
1865		if (rtlefuse->eeprom_version >= 4)
1866			rtlefuse->eeprom_regulatory =
1867				 (hwinfo[EEPROM_REGULATORY] & 0x7);
1868		else /* BIT(0) */
1869			rtlefuse->eeprom_regulatory =
1870				 (hwinfo[EEPROM_REGULATORY] & 0x1);
1871	}
1872	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1873		"eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1874
1875	for (i = 0; i < 14; i++)
1876		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1877			"RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
1878			i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
1879	for (i = 0; i < 14; i++)
1880		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1881			"RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
1882			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
1883	for (i = 0; i < 14; i++)
1884		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1885			"RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
1886			i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
1887	for (i = 0; i < 14; i++)
1888		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1889			"RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
1890			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
1891
1892	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1893		"TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag);
1894
1895	/* Read RF-indication and Tx Power gain
1896	 * index diff of legacy to HT OFDM rate. */
1897	tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff;
1898	rtlefuse->eeprom_txpowerdiff = tempval;
1899	rtlefuse->legacy_ht_txpowerdiff =
1900		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
1901
1902	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1903		"TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff);
1904
1905	/* Get TSSI value for each path. */
1906	usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
1907	rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
1908	usvalue = hwinfo[EEPROM_TSSI_B];
1909	rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
1910
1911	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
1912		rtlefuse->eeprom_tssi[RF90_PATH_A],
1913		rtlefuse->eeprom_tssi[RF90_PATH_B]);
1914
1915	/* Read antenna tx power offset of B/C/D to A  from EEPROM */
1916	/* and read ThermalMeter from EEPROM */
1917	tempval = hwinfo[EEPROM_THERMALMETER];
1918	rtlefuse->eeprom_thermalmeter = tempval;
1919	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1920		"thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1921
1922	/* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
1923	rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
1924	rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
1925
1926	/* Read CrystalCap from EEPROM */
1927	tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4;
1928	rtlefuse->eeprom_crystalcap = tempval;
1929	/* CrystalCap, BIT(12)~15 */
1930	rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
1931
1932	/* Read IC Version && Channel Plan */
1933	/* Version ID, Channel plan */
1934	rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN];
1935	rtlefuse->txpwr_fromeprom = true;
1936	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1937		"EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan);
1938
1939	/* Read Customer ID or Board Type!!! */
1940	tempval = hwinfo[EEPROM_BOARDTYPE];
1941	/* Change RF type definition */
1942	if (tempval == 0)
1943		rtlphy->rf_type = RF_2T2R;
1944	else if (tempval == 1)
1945		rtlphy->rf_type = RF_1T2R;
1946	else if (tempval == 2)
1947		rtlphy->rf_type = RF_1T2R;
1948	else if (tempval == 3)
1949		rtlphy->rf_type = RF_1T1R;
1950
1951	/* 1T2R but 1SS (1x1 receive combining) */
1952	rtlefuse->b1x1_recvcombine = false;
1953	if (rtlphy->rf_type == RF_1T2R) {
1954		tempval = rtl_read_byte(rtlpriv, 0x07);
1955		if (!(tempval & BIT(0))) {
1956			rtlefuse->b1x1_recvcombine = true;
1957			rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1958				"RF_TYPE=1T2R but only 1SS\n");
1959		}
1960	}
1961	rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
1962	rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID];
1963
1964	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x\n",
1965		rtlefuse->eeprom_oemid);
1966
1967	/* set channel paln to world wide 13 */
1968	rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
1969}
1970
1971void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
1972{
1973	struct rtl_priv *rtlpriv = rtl_priv(hw);
1974	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1975	u8 tmp_u1b = 0;
1976
1977	tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
1978
1979	if (tmp_u1b & BIT(4)) {
1980		rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
1981		rtlefuse->epromtype = EEPROM_93C46;
1982	} else {
1983		rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
1984		rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
1985	}
1986
1987	if (tmp_u1b & BIT(5)) {
1988		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1989		rtlefuse->autoload_failflag = false;
1990		_rtl92se_read_adapter_info(hw);
1991	} else {
1992		pr_err("Autoload ERR!!\n");
1993		rtlefuse->autoload_failflag = true;
1994	}
1995}
1996
1997static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
1998					  struct ieee80211_sta *sta)
1999{
2000	struct rtl_priv *rtlpriv = rtl_priv(hw);
2001	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2002	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2003	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2004	u32 ratr_value;
2005	u8 ratr_index = 0;
2006	u8 nmode = mac->ht_enable;
2007	u8 mimo_ps = IEEE80211_SMPS_OFF;
2008	u16 shortgi_rate = 0;
2009	u32 tmp_ratr_value = 0;
2010	u8 curtxbw_40mhz = mac->bw_40;
2011	u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2012				1 : 0;
2013	u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2014				1 : 0;
2015	enum wireless_mode wirelessmode = mac->mode;
2016
2017	if (rtlhal->current_bandtype == BAND_ON_5G)
2018		ratr_value = sta->deflink.supp_rates[1] << 4;
2019	else
2020		ratr_value = sta->deflink.supp_rates[0];
2021	if (mac->opmode == NL80211_IFTYPE_ADHOC)
2022		ratr_value = 0xfff;
2023	ratr_value |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 |
2024			sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
2025	switch (wirelessmode) {
2026	case WIRELESS_MODE_B:
2027		ratr_value &= 0x0000000D;
2028		break;
2029	case WIRELESS_MODE_G:
2030		ratr_value &= 0x00000FF5;
2031		break;
2032	case WIRELESS_MODE_N_24G:
2033	case WIRELESS_MODE_N_5G:
2034		nmode = 1;
2035		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2036			ratr_value &= 0x0007F005;
2037		} else {
2038			u32 ratr_mask;
2039
2040			if (get_rf_type(rtlphy) == RF_1T2R ||
2041			    get_rf_type(rtlphy) == RF_1T1R) {
2042				if (curtxbw_40mhz)
2043					ratr_mask = 0x000ff015;
2044				else
2045					ratr_mask = 0x000ff005;
2046			} else {
2047				if (curtxbw_40mhz)
2048					ratr_mask = 0x0f0ff015;
2049				else
2050					ratr_mask = 0x0f0ff005;
2051			}
2052
2053			ratr_value &= ratr_mask;
2054		}
2055		break;
2056	default:
2057		if (rtlphy->rf_type == RF_1T2R)
2058			ratr_value &= 0x000ff0ff;
2059		else
2060			ratr_value &= 0x0f0ff0ff;
2061
2062		break;
2063	}
2064
2065	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2066		ratr_value &= 0x0FFFFFFF;
2067	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2068		ratr_value &= 0x0FFFFFF0;
2069
2070	if (nmode && ((curtxbw_40mhz &&
2071			 curshortgi_40mhz) || (!curtxbw_40mhz &&
2072						 curshortgi_20mhz))) {
2073
2074		ratr_value |= 0x10000000;
2075		tmp_ratr_value = (ratr_value >> 12);
2076
2077		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2078			if ((1 << shortgi_rate) & tmp_ratr_value)
2079				break;
2080		}
2081
2082		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2083		    (shortgi_rate << 4) | (shortgi_rate);
2084
2085		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2086	}
2087
2088	rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
2089	if (ratr_value & 0xfffff000)
2090		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
2091	else
2092		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
2093
2094	rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
2095		rtl_read_dword(rtlpriv, ARFR0));
2096}
2097
2098static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
2099					 struct ieee80211_sta *sta,
2100					 u8 rssi_level, bool update_bw)
2101{
2102	struct rtl_priv *rtlpriv = rtl_priv(hw);
2103	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2104	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2105	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2106	struct rtl_sta_info *sta_entry = NULL;
2107	u32 ratr_bitmap;
2108	u8 ratr_index = 0;
2109	u8 curtxbw_40mhz = (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
2110	u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2111				1 : 0;
2112	u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2113				1 : 0;
2114	enum wireless_mode wirelessmode = 0;
2115	bool shortgi = false;
2116	u32 ratr_value = 0;
2117	u8 shortgi_rate = 0;
2118	u32 mask = 0;
2119	u32 band = 0;
2120	bool bmulticast = false;
2121	u8 macid = 0;
2122	u8 mimo_ps = IEEE80211_SMPS_OFF;
2123
2124	sta_entry = (struct rtl_sta_info *) sta->drv_priv;
2125	wirelessmode = sta_entry->wireless_mode;
2126	if (mac->opmode == NL80211_IFTYPE_STATION)
2127		curtxbw_40mhz = mac->bw_40;
2128	else if (mac->opmode == NL80211_IFTYPE_AP ||
2129		mac->opmode == NL80211_IFTYPE_ADHOC)
2130		macid = sta->aid + 1;
2131
2132	if (rtlhal->current_bandtype == BAND_ON_5G)
2133		ratr_bitmap = sta->deflink.supp_rates[1] << 4;
2134	else
2135		ratr_bitmap = sta->deflink.supp_rates[0];
2136	if (mac->opmode == NL80211_IFTYPE_ADHOC)
2137		ratr_bitmap = 0xfff;
2138	ratr_bitmap |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 |
2139			sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
2140	switch (wirelessmode) {
2141	case WIRELESS_MODE_B:
2142		band |= WIRELESS_11B;
2143		ratr_index = RATR_INX_WIRELESS_B;
2144		if (ratr_bitmap & 0x0000000c)
2145			ratr_bitmap &= 0x0000000d;
2146		else
2147			ratr_bitmap &= 0x0000000f;
2148		break;
2149	case WIRELESS_MODE_G:
2150		band |= (WIRELESS_11G | WIRELESS_11B);
2151		ratr_index = RATR_INX_WIRELESS_GB;
2152
2153		if (rssi_level == 1)
2154			ratr_bitmap &= 0x00000f00;
2155		else if (rssi_level == 2)
2156			ratr_bitmap &= 0x00000ff0;
2157		else
2158			ratr_bitmap &= 0x00000ff5;
2159		break;
2160	case WIRELESS_MODE_A:
2161		band |= WIRELESS_11A;
2162		ratr_index = RATR_INX_WIRELESS_A;
2163		ratr_bitmap &= 0x00000ff0;
2164		break;
2165	case WIRELESS_MODE_N_24G:
2166	case WIRELESS_MODE_N_5G:
2167		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2168		ratr_index = RATR_INX_WIRELESS_NGB;
2169
2170		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2171			if (rssi_level == 1)
2172				ratr_bitmap &= 0x00070000;
2173			else if (rssi_level == 2)
2174				ratr_bitmap &= 0x0007f000;
2175			else
2176				ratr_bitmap &= 0x0007f005;
2177		} else {
2178			if (rtlphy->rf_type == RF_1T2R ||
2179				rtlphy->rf_type == RF_1T1R) {
2180				if (rssi_level == 1) {
2181						ratr_bitmap &= 0x000f0000;
2182				} else if (rssi_level == 3) {
2183					ratr_bitmap &= 0x000fc000;
2184				} else if (rssi_level == 5) {
2185						ratr_bitmap &= 0x000ff000;
2186				} else {
2187					if (curtxbw_40mhz)
2188						ratr_bitmap &= 0x000ff015;
2189					else
2190						ratr_bitmap &= 0x000ff005;
2191				}
2192			} else {
2193				if (rssi_level == 1) {
2194					ratr_bitmap &= 0x0f8f0000;
2195				} else if (rssi_level == 3) {
2196					ratr_bitmap &= 0x0f8fc000;
2197				} else if (rssi_level == 5) {
2198					ratr_bitmap &= 0x0f8ff000;
2199				} else {
2200					if (curtxbw_40mhz)
2201						ratr_bitmap &= 0x0f8ff015;
2202					else
2203						ratr_bitmap &= 0x0f8ff005;
2204				}
2205			}
2206		}
2207
2208		if ((curtxbw_40mhz && curshortgi_40mhz) ||
2209		    (!curtxbw_40mhz && curshortgi_20mhz)) {
2210			if (macid == 0)
2211				shortgi = true;
2212			else if (macid == 1)
2213				shortgi = false;
2214		}
2215		break;
2216	default:
2217		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2218		ratr_index = RATR_INX_WIRELESS_NGB;
2219
2220		if (rtlphy->rf_type == RF_1T2R)
2221			ratr_bitmap &= 0x000ff0ff;
2222		else
2223			ratr_bitmap &= 0x0f8ff0ff;
2224		break;
2225	}
2226	sta_entry->ratr_index = ratr_index;
2227
2228	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2229		ratr_bitmap &= 0x0FFFFFFF;
2230	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2231		ratr_bitmap &= 0x0FFFFFF0;
2232
2233	if (shortgi) {
2234		ratr_bitmap |= 0x10000000;
2235		/* Get MAX MCS available. */
2236		ratr_value = (ratr_bitmap >> 12);
2237		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2238			if ((1 << shortgi_rate) & ratr_value)
2239				break;
2240		}
2241
2242		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2243			(shortgi_rate << 4) | (shortgi_rate);
2244		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2245	}
2246
2247	mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
2248
2249	rtl_dbg(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n",
2250		mask, ratr_bitmap);
2251	rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
2252	rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
2253
2254	if (macid != 0)
2255		sta_entry->ratr_index = ratr_index;
2256}
2257
2258void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
2259		struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
2260{
2261	struct rtl_priv *rtlpriv = rtl_priv(hw);
2262
2263	if (rtlpriv->dm.useramask)
2264		rtl92se_update_hal_rate_mask(hw, sta, rssi_level, update_bw);
2265	else
2266		rtl92se_update_hal_rate_table(hw, sta);
2267}
2268
2269void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
2270{
2271	struct rtl_priv *rtlpriv = rtl_priv(hw);
2272	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2273	u16 sifs_timer;
2274
2275	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2276				      &mac->slot_time);
2277	sifs_timer = 0x0e0e;
2278	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2279
2280}
2281
2282/* this ifunction is for RFKILL, it's different with windows,
2283 * because UI will disable wireless when GPIO Radio Off.
2284 * And here we not check or Disable/Enable ASPM like windows*/
2285bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2286{
2287	struct rtl_priv *rtlpriv = rtl_priv(hw);
2288	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2289	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2290	enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
2291	unsigned long flag = 0;
2292	bool actuallyset = false;
2293	bool turnonbypowerdomain = false;
2294
2295	/* just 8191se can check gpio before firstup, 92c/92d have fixed it */
2296	if (rtlpci->up_first_time || rtlpci->being_init_adapter)
2297		return false;
2298
2299	if (ppsc->swrf_processing)
2300		return false;
2301
2302	spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2303	if (ppsc->rfchange_inprogress) {
2304		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2305		return false;
2306	} else {
2307		ppsc->rfchange_inprogress = true;
2308		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2309	}
2310
2311	/* cur_rfstate = ppsc->rfpwr_state;*/
2312
2313	/* because after _rtl92s_phy_set_rfhalt, all power
2314	 * closed, so we must open some power for GPIO check,
2315	 * or we will always check GPIO RFOFF here,
2316	 * And we should close power after GPIO check */
2317	if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
2318		_rtl92se_power_domain_init(hw);
2319		turnonbypowerdomain = true;
2320	}
2321
2322	rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
2323
2324	if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
2325		rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
2326			"RFKILL-HW Radio ON, RF ON\n");
2327
2328		rfpwr_toset = ERFON;
2329		ppsc->hwradiooff = false;
2330		actuallyset = true;
2331	} else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) {
2332		rtl_dbg(rtlpriv, COMP_RF,
2333			DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n");
2334
2335		rfpwr_toset = ERFOFF;
2336		ppsc->hwradiooff = true;
2337		actuallyset = true;
2338	}
2339
2340	if (actuallyset) {
2341		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2342		ppsc->rfchange_inprogress = false;
2343		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2344
2345	/* this not include ifconfig wlan0 down case */
2346	/* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
2347	} else {
2348		/* because power_domain_init may be happen when
2349		 * _rtl92s_phy_set_rfhalt, this will open some powers
2350		 * and cause current increasing about 40 mA for ips,
2351		 * rfoff and ifconfig down, so we set
2352		 * _rtl92s_phy_set_rfhalt again here */
2353		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
2354			turnonbypowerdomain) {
2355			_rtl92s_phy_set_rfhalt(hw);
2356			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2357		}
2358
2359		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2360		ppsc->rfchange_inprogress = false;
2361		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2362	}
2363
2364	*valid = 1;
2365	return !ppsc->hwradiooff;
2366
2367}
2368
2369/* Is_wepkey just used for WEP used as group & pairwise key
2370 * if pairwise is AES ang group is WEP Is_wepkey == false.*/
2371void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
2372	bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
2373{
2374	struct rtl_priv *rtlpriv = rtl_priv(hw);
2375	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2376	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2377	u8 *macaddr = p_macaddr;
2378
2379	u32 entry_id = 0;
2380	bool is_pairwise = false;
2381
2382	static u8 cam_const_addr[4][6] = {
2383		{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2384		{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2385		{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2386		{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2387	};
2388	static u8 cam_const_broad[] = {
2389		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2390	};
2391
2392	if (clear_all) {
2393		u8 idx = 0;
2394		u8 cam_offset = 0;
2395		u8 clear_number = 5;
2396
2397		rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2398
2399		for (idx = 0; idx < clear_number; idx++) {
2400			rtl_cam_mark_invalid(hw, cam_offset + idx);
2401			rtl_cam_empty_entry(hw, cam_offset + idx);
2402
2403			if (idx < 5) {
2404				memset(rtlpriv->sec.key_buf[idx], 0,
2405				       MAX_KEY_LEN);
2406				rtlpriv->sec.key_len[idx] = 0;
2407			}
2408		}
2409
2410	} else {
2411		switch (enc_algo) {
2412		case WEP40_ENCRYPTION:
2413			enc_algo = CAM_WEP40;
2414			break;
2415		case WEP104_ENCRYPTION:
2416			enc_algo = CAM_WEP104;
2417			break;
2418		case TKIP_ENCRYPTION:
2419			enc_algo = CAM_TKIP;
2420			break;
2421		case AESCCMP_ENCRYPTION:
2422			enc_algo = CAM_AES;
2423			break;
2424		default:
2425			pr_err("switch case %#x not processed\n",
2426			       enc_algo);
2427			enc_algo = CAM_TKIP;
2428			break;
2429		}
2430
2431		if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2432			macaddr = cam_const_addr[key_index];
2433			entry_id = key_index;
2434		} else {
2435			if (is_group) {
2436				macaddr = cam_const_broad;
2437				entry_id = key_index;
2438			} else {
2439				if (mac->opmode == NL80211_IFTYPE_AP) {
2440					entry_id = rtl_cam_get_free_entry(hw,
2441								 p_macaddr);
2442					if (entry_id >=  TOTAL_CAM_ENTRY) {
2443						pr_err("Can not find free hw security cam entry\n");
2444						return;
2445					}
2446				} else {
2447					entry_id = CAM_PAIRWISE_KEY_POSITION;
2448				}
2449
2450				key_index = PAIRWISE_KEYIDX;
2451				is_pairwise = true;
2452			}
2453		}
2454
2455		if (rtlpriv->sec.key_len[key_index] == 0) {
2456			rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2457				"delete one entry, entry_id is %d\n",
2458				entry_id);
2459			if (mac->opmode == NL80211_IFTYPE_AP)
2460				rtl_cam_del_entry(hw, p_macaddr);
2461			rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2462		} else {
2463			rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2464				"add one entry\n");
2465			if (is_pairwise) {
2466				rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2467					"set Pairwise key\n");
2468
2469				rtl_cam_add_one_entry(hw, macaddr, key_index,
2470					entry_id, enc_algo,
2471					CAM_CONFIG_NO_USEDK,
2472					rtlpriv->sec.key_buf[key_index]);
2473			} else {
2474				rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2475					"set group key\n");
2476
2477				if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2478					rtl_cam_add_one_entry(hw,
2479						rtlefuse->dev_addr,
2480						PAIRWISE_KEYIDX,
2481						CAM_PAIRWISE_KEY_POSITION,
2482						enc_algo, CAM_CONFIG_NO_USEDK,
2483						rtlpriv->sec.key_buf[entry_id]);
2484				}
2485
2486				rtl_cam_add_one_entry(hw, macaddr, key_index,
2487					      entry_id, enc_algo,
2488					      CAM_CONFIG_NO_USEDK,
2489					      rtlpriv->sec.key_buf[entry_id]);
2490			}
2491
2492		}
2493	}
2494}
2495
2496void rtl92se_suspend(struct ieee80211_hw *hw)
2497{
2498	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2499
2500	rtlpci->up_first_time = true;
2501}
2502
2503void rtl92se_resume(struct ieee80211_hw *hw)
2504{
2505	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2506	u32 val;
2507
2508	pci_read_config_dword(rtlpci->pdev, 0x40, &val);
2509	if ((val & 0x0000ff00) != 0)
2510		pci_write_config_dword(rtlpci->pdev, 0x40,
2511			val & 0xffff00ff);
2512}
2513