1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * NXP Wireless LAN device driver: station command response handling
4 *
5 * Copyright 2011-2020 NXP
6 */
7
8#include "decl.h"
9#include "ioctl.h"
10#include "util.h"
11#include "fw.h"
12#include "main.h"
13#include "wmm.h"
14#include "11n.h"
15#include "11ac.h"
16
17
18/*
19 * This function handles the command response error case.
20 *
21 * For scan response error, the function cancels all the pending
22 * scan commands and generates an event to inform the applications
23 * of the scan completion.
24 *
25 * For Power Save command failure, we do not retry enter PS
26 * command in case of Ad-hoc mode.
27 *
28 * For all other response errors, the current command buffer is freed
29 * and returned to the free command queue.
30 */
31static void
32mwifiex_process_cmdresp_error(struct mwifiex_private *priv,
33			      struct host_cmd_ds_command *resp)
34{
35	struct mwifiex_adapter *adapter = priv->adapter;
36	struct host_cmd_ds_802_11_ps_mode_enh *pm;
37
38	mwifiex_dbg(adapter, ERROR,
39		    "CMD_RESP: cmd %#x error, result=%#x\n",
40		    resp->command, resp->result);
41
42	if (adapter->curr_cmd->wait_q_enabled)
43		adapter->cmd_wait_q.status = -1;
44
45	switch (le16_to_cpu(resp->command)) {
46	case HostCmd_CMD_802_11_PS_MODE_ENH:
47		pm = &resp->params.psmode_enh;
48		mwifiex_dbg(adapter, ERROR,
49			    "PS_MODE_ENH cmd failed: result=0x%x action=0x%X\n",
50			    resp->result, le16_to_cpu(pm->action));
51		/* We do not re-try enter-ps command in ad-hoc mode. */
52		if (le16_to_cpu(pm->action) == EN_AUTO_PS &&
53		    (le16_to_cpu(pm->params.ps_bitmap) & BITMAP_STA_PS) &&
54		    priv->bss_mode == NL80211_IFTYPE_ADHOC)
55			adapter->ps_mode = MWIFIEX_802_11_POWER_MODE_CAM;
56
57		break;
58	case HostCmd_CMD_802_11_SCAN:
59	case HostCmd_CMD_802_11_SCAN_EXT:
60		mwifiex_cancel_scan(adapter);
61		break;
62
63	case HostCmd_CMD_MAC_CONTROL:
64		break;
65
66	case HostCmd_CMD_SDIO_SP_RX_AGGR_CFG:
67		mwifiex_dbg(adapter, MSG,
68			    "SDIO RX single-port aggregation Not support\n");
69		break;
70
71	default:
72		break;
73	}
74	/* Handling errors here */
75	mwifiex_recycle_cmd_node(adapter, adapter->curr_cmd);
76
77	spin_lock_bh(&adapter->mwifiex_cmd_lock);
78	adapter->curr_cmd = NULL;
79	spin_unlock_bh(&adapter->mwifiex_cmd_lock);
80}
81
82/*
83 * This function handles the command response of get RSSI info.
84 *
85 * Handling includes changing the header fields into CPU format
86 * and saving the following parameters in driver -
87 *      - Last data and beacon RSSI value
88 *      - Average data and beacon RSSI value
89 *      - Last data and beacon NF value
90 *      - Average data and beacon NF value
91 *
92 * The parameters are send to the application as well, along with
93 * calculated SNR values.
94 */
95static int mwifiex_ret_802_11_rssi_info(struct mwifiex_private *priv,
96					struct host_cmd_ds_command *resp)
97{
98	struct host_cmd_ds_802_11_rssi_info_rsp *rssi_info_rsp =
99						&resp->params.rssi_info_rsp;
100	struct mwifiex_ds_misc_subsc_evt *subsc_evt =
101						&priv->async_subsc_evt_storage;
102
103	priv->data_rssi_last = le16_to_cpu(rssi_info_rsp->data_rssi_last);
104	priv->data_nf_last = le16_to_cpu(rssi_info_rsp->data_nf_last);
105
106	priv->data_rssi_avg = le16_to_cpu(rssi_info_rsp->data_rssi_avg);
107	priv->data_nf_avg = le16_to_cpu(rssi_info_rsp->data_nf_avg);
108
109	priv->bcn_rssi_last = le16_to_cpu(rssi_info_rsp->bcn_rssi_last);
110	priv->bcn_nf_last = le16_to_cpu(rssi_info_rsp->bcn_nf_last);
111
112	priv->bcn_rssi_avg = le16_to_cpu(rssi_info_rsp->bcn_rssi_avg);
113	priv->bcn_nf_avg = le16_to_cpu(rssi_info_rsp->bcn_nf_avg);
114
115	if (priv->subsc_evt_rssi_state == EVENT_HANDLED)
116		return 0;
117
118	memset(subsc_evt, 0x00, sizeof(struct mwifiex_ds_misc_subsc_evt));
119
120	/* Resubscribe low and high rssi events with new thresholds */
121	subsc_evt->events = BITMASK_BCN_RSSI_LOW | BITMASK_BCN_RSSI_HIGH;
122	subsc_evt->action = HostCmd_ACT_BITWISE_SET;
123	if (priv->subsc_evt_rssi_state == RSSI_LOW_RECVD) {
124		subsc_evt->bcn_l_rssi_cfg.abs_value = abs(priv->bcn_rssi_avg -
125				priv->cqm_rssi_hyst);
126		subsc_evt->bcn_h_rssi_cfg.abs_value = abs(priv->cqm_rssi_thold);
127	} else if (priv->subsc_evt_rssi_state == RSSI_HIGH_RECVD) {
128		subsc_evt->bcn_l_rssi_cfg.abs_value = abs(priv->cqm_rssi_thold);
129		subsc_evt->bcn_h_rssi_cfg.abs_value = abs(priv->bcn_rssi_avg +
130				priv->cqm_rssi_hyst);
131	}
132	subsc_evt->bcn_l_rssi_cfg.evt_freq = 1;
133	subsc_evt->bcn_h_rssi_cfg.evt_freq = 1;
134
135	priv->subsc_evt_rssi_state = EVENT_HANDLED;
136
137	mwifiex_send_cmd(priv, HostCmd_CMD_802_11_SUBSCRIBE_EVENT,
138			 0, 0, subsc_evt, false);
139
140	return 0;
141}
142
143/*
144 * This function handles the command response of set/get SNMP
145 * MIB parameters.
146 *
147 * Handling includes changing the header fields into CPU format
148 * and saving the parameter in driver.
149 *
150 * The following parameters are supported -
151 *      - Fragmentation threshold
152 *      - RTS threshold
153 *      - Short retry limit
154 */
155static int mwifiex_ret_802_11_snmp_mib(struct mwifiex_private *priv,
156				       struct host_cmd_ds_command *resp,
157				       u32 *data_buf)
158{
159	struct host_cmd_ds_802_11_snmp_mib *smib = &resp->params.smib;
160	u16 oid = le16_to_cpu(smib->oid);
161	u16 query_type = le16_to_cpu(smib->query_type);
162	u32 ul_temp;
163
164	mwifiex_dbg(priv->adapter, INFO,
165		    "info: SNMP_RESP: oid value = %#x,\t"
166		    "query_type = %#x, buf size = %#x\n",
167		    oid, query_type, le16_to_cpu(smib->buf_size));
168	if (query_type == HostCmd_ACT_GEN_GET) {
169		ul_temp = get_unaligned_le16(smib->value);
170		if (data_buf)
171			*data_buf = ul_temp;
172		switch (oid) {
173		case FRAG_THRESH_I:
174			mwifiex_dbg(priv->adapter, INFO,
175				    "info: SNMP_RESP: FragThsd =%u\n",
176				    ul_temp);
177			break;
178		case RTS_THRESH_I:
179			mwifiex_dbg(priv->adapter, INFO,
180				    "info: SNMP_RESP: RTSThsd =%u\n",
181				    ul_temp);
182			break;
183		case SHORT_RETRY_LIM_I:
184			mwifiex_dbg(priv->adapter, INFO,
185				    "info: SNMP_RESP: TxRetryCount=%u\n",
186				    ul_temp);
187			break;
188		case DTIM_PERIOD_I:
189			mwifiex_dbg(priv->adapter, INFO,
190				    "info: SNMP_RESP: DTIM period=%u\n",
191				    ul_temp);
192			break;
193		default:
194			break;
195		}
196	}
197
198	return 0;
199}
200
201/*
202 * This function handles the command response of get log request
203 *
204 * Handling includes changing the header fields into CPU format
205 * and sending the received parameters to application.
206 */
207static int mwifiex_ret_get_log(struct mwifiex_private *priv,
208			       struct host_cmd_ds_command *resp,
209			       struct mwifiex_ds_get_stats *stats)
210{
211	struct host_cmd_ds_802_11_get_log *get_log =
212		&resp->params.get_log;
213
214	if (stats) {
215		stats->mcast_tx_frame = le32_to_cpu(get_log->mcast_tx_frame);
216		stats->failed = le32_to_cpu(get_log->failed);
217		stats->retry = le32_to_cpu(get_log->retry);
218		stats->multi_retry = le32_to_cpu(get_log->multi_retry);
219		stats->frame_dup = le32_to_cpu(get_log->frame_dup);
220		stats->rts_success = le32_to_cpu(get_log->rts_success);
221		stats->rts_failure = le32_to_cpu(get_log->rts_failure);
222		stats->ack_failure = le32_to_cpu(get_log->ack_failure);
223		stats->rx_frag = le32_to_cpu(get_log->rx_frag);
224		stats->mcast_rx_frame = le32_to_cpu(get_log->mcast_rx_frame);
225		stats->fcs_error = le32_to_cpu(get_log->fcs_error);
226		stats->tx_frame = le32_to_cpu(get_log->tx_frame);
227		stats->wep_icv_error[0] =
228			le32_to_cpu(get_log->wep_icv_err_cnt[0]);
229		stats->wep_icv_error[1] =
230			le32_to_cpu(get_log->wep_icv_err_cnt[1]);
231		stats->wep_icv_error[2] =
232			le32_to_cpu(get_log->wep_icv_err_cnt[2]);
233		stats->wep_icv_error[3] =
234			le32_to_cpu(get_log->wep_icv_err_cnt[3]);
235		stats->bcn_rcv_cnt = le32_to_cpu(get_log->bcn_rcv_cnt);
236		stats->bcn_miss_cnt = le32_to_cpu(get_log->bcn_miss_cnt);
237	}
238
239	return 0;
240}
241
242/*
243 * This function handles the command response of set/get Tx rate
244 * configurations.
245 *
246 * Handling includes changing the header fields into CPU format
247 * and saving the following parameters in driver -
248 *      - DSSS rate bitmap
249 *      - OFDM rate bitmap
250 *      - HT MCS rate bitmaps
251 *
252 * Based on the new rate bitmaps, the function re-evaluates if
253 * auto data rate has been activated. If not, it sends another
254 * query to the firmware to get the current Tx data rate.
255 */
256static int mwifiex_ret_tx_rate_cfg(struct mwifiex_private *priv,
257				   struct host_cmd_ds_command *resp)
258{
259	struct host_cmd_ds_tx_rate_cfg *rate_cfg = &resp->params.tx_rate_cfg;
260	struct mwifiex_rate_scope *rate_scope;
261	struct mwifiex_ie_types_header *head;
262	u16 tlv, tlv_buf_len, tlv_buf_left;
263	u8 *tlv_buf;
264	u32 i;
265
266	tlv_buf = ((u8 *)rate_cfg) + sizeof(struct host_cmd_ds_tx_rate_cfg);
267	tlv_buf_left = le16_to_cpu(resp->size) - S_DS_GEN - sizeof(*rate_cfg);
268
269	while (tlv_buf_left >= sizeof(*head)) {
270		head = (struct mwifiex_ie_types_header *)tlv_buf;
271		tlv = le16_to_cpu(head->type);
272		tlv_buf_len = le16_to_cpu(head->len);
273
274		if (tlv_buf_left < (sizeof(*head) + tlv_buf_len))
275			break;
276
277		switch (tlv) {
278		case TLV_TYPE_RATE_SCOPE:
279			rate_scope = (struct mwifiex_rate_scope *) tlv_buf;
280			priv->bitmap_rates[0] =
281				le16_to_cpu(rate_scope->hr_dsss_rate_bitmap);
282			priv->bitmap_rates[1] =
283				le16_to_cpu(rate_scope->ofdm_rate_bitmap);
284			for (i = 0;
285			     i < ARRAY_SIZE(rate_scope->ht_mcs_rate_bitmap);
286			     i++)
287				priv->bitmap_rates[2 + i] =
288					le16_to_cpu(rate_scope->
289						    ht_mcs_rate_bitmap[i]);
290
291			if (priv->adapter->fw_api_ver == MWIFIEX_FW_V15) {
292				for (i = 0; i < ARRAY_SIZE(rate_scope->
293							   vht_mcs_rate_bitmap);
294				     i++)
295					priv->bitmap_rates[10 + i] =
296					    le16_to_cpu(rate_scope->
297							vht_mcs_rate_bitmap[i]);
298			}
299			break;
300			/* Add RATE_DROP tlv here */
301		}
302
303		tlv_buf += (sizeof(*head) + tlv_buf_len);
304		tlv_buf_left -= (sizeof(*head) + tlv_buf_len);
305	}
306
307	priv->is_data_rate_auto = mwifiex_is_rate_auto(priv);
308
309	if (priv->is_data_rate_auto)
310		priv->data_rate = 0;
311	else
312		return mwifiex_send_cmd(priv, HostCmd_CMD_802_11_TX_RATE_QUERY,
313					HostCmd_ACT_GEN_GET, 0, NULL, false);
314
315	return 0;
316}
317
318/*
319 * This function handles the command response of get Tx power level.
320 *
321 * Handling includes saving the maximum and minimum Tx power levels
322 * in driver, as well as sending the values to user.
323 */
324static int mwifiex_get_power_level(struct mwifiex_private *priv, void *data_buf)
325{
326	int length, max_power = -1, min_power = -1;
327	struct mwifiex_types_power_group *pg_tlv_hdr;
328	struct mwifiex_power_group *pg;
329
330	if (!data_buf)
331		return -1;
332
333	pg_tlv_hdr = (struct mwifiex_types_power_group *)((u8 *)data_buf);
334	pg = (struct mwifiex_power_group *)
335		((u8 *) pg_tlv_hdr + sizeof(struct mwifiex_types_power_group));
336	length = le16_to_cpu(pg_tlv_hdr->length);
337
338	/* At least one structure required to update power */
339	if (length < sizeof(struct mwifiex_power_group))
340		return 0;
341
342	max_power = pg->power_max;
343	min_power = pg->power_min;
344	length -= sizeof(struct mwifiex_power_group);
345
346	while (length >= sizeof(struct mwifiex_power_group)) {
347		pg++;
348		if (max_power < pg->power_max)
349			max_power = pg->power_max;
350
351		if (min_power > pg->power_min)
352			min_power = pg->power_min;
353
354		length -= sizeof(struct mwifiex_power_group);
355	}
356	priv->min_tx_power_level = (u8) min_power;
357	priv->max_tx_power_level = (u8) max_power;
358
359	return 0;
360}
361
362/*
363 * This function handles the command response of set/get Tx power
364 * configurations.
365 *
366 * Handling includes changing the header fields into CPU format
367 * and saving the current Tx power level in driver.
368 */
369static int mwifiex_ret_tx_power_cfg(struct mwifiex_private *priv,
370				    struct host_cmd_ds_command *resp)
371{
372	struct mwifiex_adapter *adapter = priv->adapter;
373	struct host_cmd_ds_txpwr_cfg *txp_cfg = &resp->params.txp_cfg;
374	struct mwifiex_types_power_group *pg_tlv_hdr;
375	struct mwifiex_power_group *pg;
376	u16 action = le16_to_cpu(txp_cfg->action);
377	u16 tlv_buf_left;
378
379	pg_tlv_hdr = (struct mwifiex_types_power_group *)
380		((u8 *)txp_cfg +
381		 sizeof(struct host_cmd_ds_txpwr_cfg));
382
383	pg = (struct mwifiex_power_group *)
384		((u8 *)pg_tlv_hdr +
385		 sizeof(struct mwifiex_types_power_group));
386
387	tlv_buf_left = le16_to_cpu(resp->size) - S_DS_GEN - sizeof(*txp_cfg);
388	if (tlv_buf_left <
389			le16_to_cpu(pg_tlv_hdr->length) + sizeof(*pg_tlv_hdr))
390		return 0;
391
392	switch (action) {
393	case HostCmd_ACT_GEN_GET:
394		if (adapter->hw_status == MWIFIEX_HW_STATUS_INITIALIZING)
395			mwifiex_get_power_level(priv, pg_tlv_hdr);
396
397		priv->tx_power_level = (u16) pg->power_min;
398		break;
399
400	case HostCmd_ACT_GEN_SET:
401		if (!le32_to_cpu(txp_cfg->mode))
402			break;
403
404		if (pg->power_max == pg->power_min)
405			priv->tx_power_level = (u16) pg->power_min;
406		break;
407	default:
408		mwifiex_dbg(adapter, ERROR,
409			    "CMD_RESP: unknown cmd action %d\n",
410			    action);
411		return 0;
412	}
413	mwifiex_dbg(adapter, INFO,
414		    "info: Current TxPower Level = %d, Max Power=%d, Min Power=%d\n",
415		    priv->tx_power_level, priv->max_tx_power_level,
416		    priv->min_tx_power_level);
417
418	return 0;
419}
420
421/*
422 * This function handles the command response of get RF Tx power.
423 */
424static int mwifiex_ret_rf_tx_power(struct mwifiex_private *priv,
425				   struct host_cmd_ds_command *resp)
426{
427	struct host_cmd_ds_rf_tx_pwr *txp = &resp->params.txp;
428	u16 action = le16_to_cpu(txp->action);
429
430	priv->tx_power_level = le16_to_cpu(txp->cur_level);
431
432	if (action == HostCmd_ACT_GEN_GET) {
433		priv->max_tx_power_level = txp->max_power;
434		priv->min_tx_power_level = txp->min_power;
435	}
436
437	mwifiex_dbg(priv->adapter, INFO,
438		    "Current TxPower Level=%d, Max Power=%d, Min Power=%d\n",
439		    priv->tx_power_level, priv->max_tx_power_level,
440		    priv->min_tx_power_level);
441
442	return 0;
443}
444
445/*
446 * This function handles the command response of set rf antenna
447 */
448static int mwifiex_ret_rf_antenna(struct mwifiex_private *priv,
449				  struct host_cmd_ds_command *resp)
450{
451	struct host_cmd_ds_rf_ant_mimo *ant_mimo = &resp->params.ant_mimo;
452	struct host_cmd_ds_rf_ant_siso *ant_siso = &resp->params.ant_siso;
453	struct mwifiex_adapter *adapter = priv->adapter;
454
455	if (adapter->hw_dev_mcs_support == HT_STREAM_2X2) {
456		priv->tx_ant = le16_to_cpu(ant_mimo->tx_ant_mode);
457		priv->rx_ant = le16_to_cpu(ant_mimo->rx_ant_mode);
458		mwifiex_dbg(adapter, INFO,
459			    "RF_ANT_RESP: Tx action = 0x%x, Tx Mode = 0x%04x\t"
460			    "Rx action = 0x%x, Rx Mode = 0x%04x\n",
461			    le16_to_cpu(ant_mimo->action_tx),
462			    le16_to_cpu(ant_mimo->tx_ant_mode),
463			    le16_to_cpu(ant_mimo->action_rx),
464			    le16_to_cpu(ant_mimo->rx_ant_mode));
465	} else {
466		priv->tx_ant = le16_to_cpu(ant_siso->ant_mode);
467		priv->rx_ant = le16_to_cpu(ant_siso->ant_mode);
468		mwifiex_dbg(adapter, INFO,
469			    "RF_ANT_RESP: action = 0x%x, Mode = 0x%04x\n",
470			    le16_to_cpu(ant_siso->action),
471			    le16_to_cpu(ant_siso->ant_mode));
472	}
473	return 0;
474}
475
476/*
477 * This function handles the command response of set/get MAC address.
478 *
479 * Handling includes saving the MAC address in driver.
480 */
481static int mwifiex_ret_802_11_mac_address(struct mwifiex_private *priv,
482					  struct host_cmd_ds_command *resp)
483{
484	struct host_cmd_ds_802_11_mac_address *cmd_mac_addr =
485							&resp->params.mac_addr;
486
487	memcpy(priv->curr_addr, cmd_mac_addr->mac_addr, ETH_ALEN);
488
489	mwifiex_dbg(priv->adapter, INFO,
490		    "info: set mac address: %pM\n", priv->curr_addr);
491
492	return 0;
493}
494
495/*
496 * This function handles the command response of set/get MAC multicast
497 * address.
498 */
499static int mwifiex_ret_mac_multicast_adr(struct mwifiex_private *priv,
500					 struct host_cmd_ds_command *resp)
501{
502	return 0;
503}
504
505/*
506 * This function handles the command response of get Tx rate query.
507 *
508 * Handling includes changing the header fields into CPU format
509 * and saving the Tx rate and HT information parameters in driver.
510 *
511 * Both rate configuration and current data rate can be retrieved
512 * with this request.
513 */
514static int mwifiex_ret_802_11_tx_rate_query(struct mwifiex_private *priv,
515					    struct host_cmd_ds_command *resp)
516{
517	priv->tx_rate = resp->params.tx_rate.tx_rate;
518	priv->tx_htinfo = resp->params.tx_rate.ht_info;
519	if (!priv->is_data_rate_auto)
520		priv->data_rate =
521			mwifiex_index_to_data_rate(priv, priv->tx_rate,
522						   priv->tx_htinfo);
523
524	return 0;
525}
526
527/*
528 * This function handles the command response of a deauthenticate
529 * command.
530 *
531 * If the deauthenticated MAC matches the current BSS MAC, the connection
532 * state is reset.
533 */
534static int mwifiex_ret_802_11_deauthenticate(struct mwifiex_private *priv,
535					     struct host_cmd_ds_command *resp)
536{
537	struct mwifiex_adapter *adapter = priv->adapter;
538
539	adapter->dbg.num_cmd_deauth++;
540	if (!memcmp(resp->params.deauth.mac_addr,
541		    &priv->curr_bss_params.bss_descriptor.mac_address,
542		    sizeof(resp->params.deauth.mac_addr)))
543		mwifiex_reset_connect_state(priv, WLAN_REASON_DEAUTH_LEAVING,
544					    false);
545
546	return 0;
547}
548
549/*
550 * This function handles the command response of ad-hoc stop.
551 *
552 * The function resets the connection state in driver.
553 */
554static int mwifiex_ret_802_11_ad_hoc_stop(struct mwifiex_private *priv,
555					  struct host_cmd_ds_command *resp)
556{
557	mwifiex_reset_connect_state(priv, WLAN_REASON_DEAUTH_LEAVING, false);
558	return 0;
559}
560
561/*
562 * This function handles the command response of set/get v1 key material.
563 *
564 * Handling includes updating the driver parameters to reflect the
565 * changes.
566 */
567static int mwifiex_ret_802_11_key_material_v1(struct mwifiex_private *priv,
568					      struct host_cmd_ds_command *resp)
569{
570	struct host_cmd_ds_802_11_key_material *key =
571						&resp->params.key_material;
572	int len;
573
574	len = le16_to_cpu(key->key_param_set.key_len);
575	if (len > sizeof(key->key_param_set.key))
576		return -EINVAL;
577
578	if (le16_to_cpu(key->action) == HostCmd_ACT_GEN_SET) {
579		if ((le16_to_cpu(key->key_param_set.key_info) & KEY_MCAST)) {
580			mwifiex_dbg(priv->adapter, INFO,
581				    "info: key: GTK is set\n");
582			priv->wpa_is_gtk_set = true;
583			priv->scan_block = false;
584			priv->port_open = true;
585		}
586	}
587
588	memset(priv->aes_key.key_param_set.key, 0,
589	       sizeof(key->key_param_set.key));
590	priv->aes_key.key_param_set.key_len = cpu_to_le16(len);
591	memcpy(priv->aes_key.key_param_set.key, key->key_param_set.key, len);
592
593	return 0;
594}
595
596/*
597 * This function handles the command response of set/get v2 key material.
598 *
599 * Handling includes updating the driver parameters to reflect the
600 * changes.
601 */
602static int mwifiex_ret_802_11_key_material_v2(struct mwifiex_private *priv,
603					      struct host_cmd_ds_command *resp)
604{
605	struct host_cmd_ds_802_11_key_material_v2 *key_v2;
606	int len;
607
608	key_v2 = &resp->params.key_material_v2;
609
610	len = le16_to_cpu(key_v2->key_param_set.key_params.aes.key_len);
611	if (len > sizeof(key_v2->key_param_set.key_params.aes.key))
612		return -EINVAL;
613
614	if (le16_to_cpu(key_v2->action) == HostCmd_ACT_GEN_SET) {
615		if ((le16_to_cpu(key_v2->key_param_set.key_info) & KEY_MCAST)) {
616			mwifiex_dbg(priv->adapter, INFO, "info: key: GTK is set\n");
617			priv->wpa_is_gtk_set = true;
618			priv->scan_block = false;
619			priv->port_open = true;
620		}
621	}
622
623	if (key_v2->key_param_set.key_type != KEY_TYPE_ID_AES)
624		return 0;
625
626	memset(priv->aes_key_v2.key_param_set.key_params.aes.key, 0,
627	       sizeof(key_v2->key_param_set.key_params.aes.key));
628	priv->aes_key_v2.key_param_set.key_params.aes.key_len =
629				cpu_to_le16(len);
630	memcpy(priv->aes_key_v2.key_param_set.key_params.aes.key,
631	       key_v2->key_param_set.key_params.aes.key, len);
632
633	return 0;
634}
635
636/* Wrapper function for processing response of key material command */
637static int mwifiex_ret_802_11_key_material(struct mwifiex_private *priv,
638					   struct host_cmd_ds_command *resp)
639{
640	if (priv->adapter->key_api_major_ver == KEY_API_VER_MAJOR_V2)
641		return mwifiex_ret_802_11_key_material_v2(priv, resp);
642	else
643		return mwifiex_ret_802_11_key_material_v1(priv, resp);
644}
645
646/*
647 * This function handles the command response of get 11d domain information.
648 */
649static int mwifiex_ret_802_11d_domain_info(struct mwifiex_private *priv,
650					   struct host_cmd_ds_command *resp)
651{
652	struct host_cmd_ds_802_11d_domain_info_rsp *domain_info =
653		&resp->params.domain_info_resp;
654	struct mwifiex_ietypes_domain_param_set *domain = &domain_info->domain;
655	u16 action = le16_to_cpu(domain_info->action);
656	u8 no_of_triplet;
657
658	no_of_triplet = (u8) ((le16_to_cpu(domain->header.len)
659				- IEEE80211_COUNTRY_STRING_LEN)
660			      / sizeof(struct ieee80211_country_ie_triplet));
661
662	mwifiex_dbg(priv->adapter, INFO,
663		    "info: 11D Domain Info Resp: no_of_triplet=%d\n",
664		    no_of_triplet);
665
666	if (no_of_triplet > MWIFIEX_MAX_TRIPLET_802_11D) {
667		mwifiex_dbg(priv->adapter, FATAL,
668			    "11D: invalid number of triplets %d returned\n",
669			    no_of_triplet);
670		return -1;
671	}
672
673	switch (action) {
674	case HostCmd_ACT_GEN_SET:  /* Proc Set Action */
675		break;
676	case HostCmd_ACT_GEN_GET:
677		break;
678	default:
679		mwifiex_dbg(priv->adapter, ERROR,
680			    "11D: invalid action:%d\n", domain_info->action);
681		return -1;
682	}
683
684	return 0;
685}
686
687/*
688 * This function handles the command response of get extended version.
689 *
690 * Handling includes forming the extended version string and sending it
691 * to application.
692 */
693static int mwifiex_ret_ver_ext(struct mwifiex_private *priv,
694			       struct host_cmd_ds_command *resp,
695			       struct host_cmd_ds_version_ext *version_ext)
696{
697	struct host_cmd_ds_version_ext *ver_ext = &resp->params.verext;
698
699	if (test_and_clear_bit(MWIFIEX_IS_REQUESTING_FW_VEREXT, &priv->adapter->work_flags)) {
700		if (strncmp(ver_ext->version_str, "ChipRev:20, BB:9b(10.00), RF:40(21)",
701			    MWIFIEX_VERSION_STR_LENGTH) == 0) {
702			struct mwifiex_ds_auto_ds auto_ds = {
703				.auto_ds = DEEP_SLEEP_OFF,
704			};
705
706			mwifiex_dbg(priv->adapter, MSG,
707				    "Bad HW revision detected, disabling deep sleep\n");
708
709			if (mwifiex_send_cmd(priv, HostCmd_CMD_802_11_PS_MODE_ENH,
710					     DIS_AUTO_PS, BITMAP_AUTO_DS, &auto_ds, false)) {
711				mwifiex_dbg(priv->adapter, MSG,
712					    "Disabling deep sleep failed.\n");
713			}
714		}
715
716		return 0;
717	}
718
719	if (version_ext) {
720		version_ext->version_str_sel = ver_ext->version_str_sel;
721		memcpy(version_ext->version_str, ver_ext->version_str,
722		       MWIFIEX_VERSION_STR_LENGTH);
723		memcpy(priv->version_str, ver_ext->version_str,
724		       MWIFIEX_VERSION_STR_LENGTH);
725
726		/* Ensure the version string from the firmware is 0-terminated */
727		priv->version_str[MWIFIEX_VERSION_STR_LENGTH - 1] = '\0';
728	}
729	return 0;
730}
731
732/*
733 * This function handles the command response of remain on channel.
734 */
735static int
736mwifiex_ret_remain_on_chan(struct mwifiex_private *priv,
737			   struct host_cmd_ds_command *resp,
738			   struct host_cmd_ds_remain_on_chan *roc_cfg)
739{
740	struct host_cmd_ds_remain_on_chan *resp_cfg = &resp->params.roc_cfg;
741
742	if (roc_cfg)
743		memcpy(roc_cfg, resp_cfg, sizeof(*roc_cfg));
744
745	return 0;
746}
747
748/*
749 * This function handles the command response of P2P mode cfg.
750 */
751static int
752mwifiex_ret_p2p_mode_cfg(struct mwifiex_private *priv,
753			 struct host_cmd_ds_command *resp,
754			 void *data_buf)
755{
756	struct host_cmd_ds_p2p_mode_cfg *mode_cfg = &resp->params.mode_cfg;
757
758	if (data_buf)
759		put_unaligned_le16(le16_to_cpu(mode_cfg->mode), data_buf);
760
761	return 0;
762}
763
764/* This function handles the command response of mem_access command
765 */
766static int
767mwifiex_ret_mem_access(struct mwifiex_private *priv,
768		       struct host_cmd_ds_command *resp, void *pioctl_buf)
769{
770	struct host_cmd_ds_mem_access *mem = (void *)&resp->params.mem;
771
772	priv->mem_rw.addr = le32_to_cpu(mem->addr);
773	priv->mem_rw.value = le32_to_cpu(mem->value);
774
775	return 0;
776}
777/*
778 * This function handles the command response of register access.
779 *
780 * The register value and offset are returned to the user. For EEPROM
781 * access, the byte count is also returned.
782 */
783static int mwifiex_ret_reg_access(u16 type, struct host_cmd_ds_command *resp,
784				  void *data_buf)
785{
786	struct mwifiex_ds_reg_rw *reg_rw;
787	struct mwifiex_ds_read_eeprom *eeprom;
788	union reg {
789		struct host_cmd_ds_mac_reg_access *mac;
790		struct host_cmd_ds_bbp_reg_access *bbp;
791		struct host_cmd_ds_rf_reg_access *rf;
792		struct host_cmd_ds_pmic_reg_access *pmic;
793		struct host_cmd_ds_802_11_eeprom_access *eeprom;
794	} r;
795
796	if (!data_buf)
797		return 0;
798
799	reg_rw = data_buf;
800	eeprom = data_buf;
801	switch (type) {
802	case HostCmd_CMD_MAC_REG_ACCESS:
803		r.mac = &resp->params.mac_reg;
804		reg_rw->offset = (u32) le16_to_cpu(r.mac->offset);
805		reg_rw->value = le32_to_cpu(r.mac->value);
806		break;
807	case HostCmd_CMD_BBP_REG_ACCESS:
808		r.bbp = &resp->params.bbp_reg;
809		reg_rw->offset = (u32) le16_to_cpu(r.bbp->offset);
810		reg_rw->value = (u32) r.bbp->value;
811		break;
812
813	case HostCmd_CMD_RF_REG_ACCESS:
814		r.rf = &resp->params.rf_reg;
815		reg_rw->offset = (u32) le16_to_cpu(r.rf->offset);
816		reg_rw->value = (u32) r.bbp->value;
817		break;
818	case HostCmd_CMD_PMIC_REG_ACCESS:
819		r.pmic = &resp->params.pmic_reg;
820		reg_rw->offset = (u32) le16_to_cpu(r.pmic->offset);
821		reg_rw->value = (u32) r.pmic->value;
822		break;
823	case HostCmd_CMD_CAU_REG_ACCESS:
824		r.rf = &resp->params.rf_reg;
825		reg_rw->offset = (u32) le16_to_cpu(r.rf->offset);
826		reg_rw->value = (u32) r.rf->value;
827		break;
828	case HostCmd_CMD_802_11_EEPROM_ACCESS:
829		r.eeprom = &resp->params.eeprom;
830		pr_debug("info: EEPROM read len=%x\n",
831				le16_to_cpu(r.eeprom->byte_count));
832		if (eeprom->byte_count < le16_to_cpu(r.eeprom->byte_count)) {
833			eeprom->byte_count = 0;
834			pr_debug("info: EEPROM read length is too big\n");
835			return -1;
836		}
837		eeprom->offset = le16_to_cpu(r.eeprom->offset);
838		eeprom->byte_count = le16_to_cpu(r.eeprom->byte_count);
839		if (eeprom->byte_count > 0)
840			memcpy(&eeprom->value, &r.eeprom->value,
841			       min((u16)MAX_EEPROM_DATA, eeprom->byte_count));
842		break;
843	default:
844		return -1;
845	}
846	return 0;
847}
848
849/*
850 * This function handles the command response of get IBSS coalescing status.
851 *
852 * If the received BSSID is different than the current one, the current BSSID,
853 * beacon interval, ATIM window and ERP information are updated, along with
854 * changing the ad-hoc state accordingly.
855 */
856static int mwifiex_ret_ibss_coalescing_status(struct mwifiex_private *priv,
857					      struct host_cmd_ds_command *resp)
858{
859	struct host_cmd_ds_802_11_ibss_status *ibss_coal_resp =
860					&(resp->params.ibss_coalescing);
861
862	if (le16_to_cpu(ibss_coal_resp->action) == HostCmd_ACT_GEN_SET)
863		return 0;
864
865	mwifiex_dbg(priv->adapter, INFO,
866		    "info: new BSSID %pM\n", ibss_coal_resp->bssid);
867
868	/* If rsp has NULL BSSID, Just return..... No Action */
869	if (is_zero_ether_addr(ibss_coal_resp->bssid)) {
870		mwifiex_dbg(priv->adapter, FATAL, "new BSSID is NULL\n");
871		return 0;
872	}
873
874	/* If BSSID is diff, modify current BSS parameters */
875	if (!ether_addr_equal(priv->curr_bss_params.bss_descriptor.mac_address, ibss_coal_resp->bssid)) {
876		/* BSSID */
877		memcpy(priv->curr_bss_params.bss_descriptor.mac_address,
878		       ibss_coal_resp->bssid, ETH_ALEN);
879
880		/* Beacon Interval */
881		priv->curr_bss_params.bss_descriptor.beacon_period
882			= le16_to_cpu(ibss_coal_resp->beacon_interval);
883
884		/* ERP Information */
885		priv->curr_bss_params.bss_descriptor.erp_flags =
886			(u8) le16_to_cpu(ibss_coal_resp->use_g_rate_protect);
887
888		priv->adhoc_state = ADHOC_COALESCED;
889	}
890
891	return 0;
892}
893static int mwifiex_ret_tdls_oper(struct mwifiex_private *priv,
894				 struct host_cmd_ds_command *resp)
895{
896	struct host_cmd_ds_tdls_oper *cmd_tdls_oper = &resp->params.tdls_oper;
897	u16 reason = le16_to_cpu(cmd_tdls_oper->reason);
898	u16 action = le16_to_cpu(cmd_tdls_oper->tdls_action);
899	struct mwifiex_sta_node *node =
900			   mwifiex_get_sta_entry(priv, cmd_tdls_oper->peer_mac);
901
902	switch (action) {
903	case ACT_TDLS_DELETE:
904		if (reason) {
905			if (!node || reason == TDLS_ERR_LINK_NONEXISTENT)
906				mwifiex_dbg(priv->adapter, MSG,
907					    "TDLS link delete for %pM failed: reason %d\n",
908					    cmd_tdls_oper->peer_mac, reason);
909			else
910				mwifiex_dbg(priv->adapter, ERROR,
911					    "TDLS link delete for %pM failed: reason %d\n",
912					    cmd_tdls_oper->peer_mac, reason);
913		} else {
914			mwifiex_dbg(priv->adapter, MSG,
915				    "TDLS link delete for %pM successful\n",
916				    cmd_tdls_oper->peer_mac);
917		}
918		break;
919	case ACT_TDLS_CREATE:
920		if (reason) {
921			mwifiex_dbg(priv->adapter, ERROR,
922				    "TDLS link creation for %pM failed: reason %d",
923				    cmd_tdls_oper->peer_mac, reason);
924			if (node && reason != TDLS_ERR_LINK_EXISTS)
925				node->tdls_status = TDLS_SETUP_FAILURE;
926		} else {
927			mwifiex_dbg(priv->adapter, MSG,
928				    "TDLS link creation for %pM successful",
929				    cmd_tdls_oper->peer_mac);
930		}
931		break;
932	case ACT_TDLS_CONFIG:
933		if (reason) {
934			mwifiex_dbg(priv->adapter, ERROR,
935				    "TDLS link config for %pM failed, reason %d\n",
936				    cmd_tdls_oper->peer_mac, reason);
937			if (node)
938				node->tdls_status = TDLS_SETUP_FAILURE;
939		} else {
940			mwifiex_dbg(priv->adapter, MSG,
941				    "TDLS link config for %pM successful\n",
942				    cmd_tdls_oper->peer_mac);
943		}
944		break;
945	default:
946		mwifiex_dbg(priv->adapter, ERROR,
947			    "Unknown TDLS command action response %d", action);
948		return -1;
949	}
950
951	return 0;
952}
953/*
954 * This function handles the command response for subscribe event command.
955 */
956static int mwifiex_ret_subsc_evt(struct mwifiex_private *priv,
957				 struct host_cmd_ds_command *resp)
958{
959	struct host_cmd_ds_802_11_subsc_evt *cmd_sub_event =
960		&resp->params.subsc_evt;
961
962	/* For every subscribe event command (Get/Set/Clear), FW reports the
963	 * current set of subscribed events*/
964	mwifiex_dbg(priv->adapter, EVENT,
965		    "Bitmap of currently subscribed events: %16x\n",
966		    le16_to_cpu(cmd_sub_event->events));
967
968	return 0;
969}
970
971static int mwifiex_ret_uap_sta_list(struct mwifiex_private *priv,
972				    struct host_cmd_ds_command *resp)
973{
974	struct host_cmd_ds_sta_list *sta_list =
975		&resp->params.sta_list;
976	struct mwifiex_ie_types_sta_info *sta_info = (void *)&sta_list->tlv;
977	int i;
978	struct mwifiex_sta_node *sta_node;
979
980	for (i = 0; i < (le16_to_cpu(sta_list->sta_count)); i++) {
981		sta_node = mwifiex_get_sta_entry(priv, sta_info->mac);
982		if (unlikely(!sta_node))
983			continue;
984
985		sta_node->stats.rssi = sta_info->rssi;
986		sta_info++;
987	}
988
989	return 0;
990}
991
992/* This function handles the command response of set_cfg_data */
993static int mwifiex_ret_cfg_data(struct mwifiex_private *priv,
994				struct host_cmd_ds_command *resp)
995{
996	if (resp->result != HostCmd_RESULT_OK) {
997		mwifiex_dbg(priv->adapter, ERROR, "Cal data cmd resp failed\n");
998		return -1;
999	}
1000
1001	return 0;
1002}
1003
1004/** This Function handles the command response of sdio rx aggr */
1005static int mwifiex_ret_sdio_rx_aggr_cfg(struct mwifiex_private *priv,
1006					struct host_cmd_ds_command *resp)
1007{
1008	struct mwifiex_adapter *adapter = priv->adapter;
1009	struct host_cmd_sdio_sp_rx_aggr_cfg *cfg =
1010				&resp->params.sdio_rx_aggr_cfg;
1011
1012	adapter->sdio_rx_aggr_enable = cfg->enable;
1013	adapter->sdio_rx_block_size = le16_to_cpu(cfg->block_size);
1014
1015	return 0;
1016}
1017
1018static int mwifiex_ret_robust_coex(struct mwifiex_private *priv,
1019				   struct host_cmd_ds_command *resp,
1020				   bool *is_timeshare)
1021{
1022	struct host_cmd_ds_robust_coex *coex = &resp->params.coex;
1023	struct mwifiex_ie_types_robust_coex *coex_tlv;
1024	u16 action = le16_to_cpu(coex->action);
1025	u32 mode;
1026
1027	coex_tlv = (struct mwifiex_ie_types_robust_coex
1028		    *)((u8 *)coex + sizeof(struct host_cmd_ds_robust_coex));
1029	if (action == HostCmd_ACT_GEN_GET) {
1030		mode = le32_to_cpu(coex_tlv->mode);
1031		if (mode == MWIFIEX_COEX_MODE_TIMESHARE)
1032			*is_timeshare = true;
1033		else
1034			*is_timeshare = false;
1035	}
1036
1037	return 0;
1038}
1039
1040static struct ieee80211_regdomain *
1041mwifiex_create_custom_regdomain(struct mwifiex_private *priv,
1042				u8 *buf, u16 buf_len)
1043{
1044	u16 num_chan = buf_len / 2;
1045	struct ieee80211_regdomain *regd;
1046	struct ieee80211_reg_rule *rule;
1047	bool new_rule;
1048	int idx, freq, prev_freq = 0;
1049	u32 bw, prev_bw = 0;
1050	u8 chflags, prev_chflags = 0, valid_rules = 0;
1051
1052	if (WARN_ON_ONCE(num_chan > NL80211_MAX_SUPP_REG_RULES))
1053		return ERR_PTR(-EINVAL);
1054
1055	regd = kzalloc(struct_size(regd, reg_rules, num_chan), GFP_KERNEL);
1056	if (!regd)
1057		return ERR_PTR(-ENOMEM);
1058
1059	for (idx = 0; idx < num_chan; idx++) {
1060		u8 chan;
1061		enum nl80211_band band;
1062
1063		chan = *buf++;
1064		if (!chan) {
1065			kfree(regd);
1066			return NULL;
1067		}
1068		chflags = *buf++;
1069		band = (chan <= 14) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
1070		freq = ieee80211_channel_to_frequency(chan, band);
1071		new_rule = false;
1072
1073		if (chflags & MWIFIEX_CHANNEL_DISABLED)
1074			continue;
1075
1076		if (band == NL80211_BAND_5GHZ) {
1077			if (!(chflags & MWIFIEX_CHANNEL_NOHT80))
1078				bw = MHZ_TO_KHZ(80);
1079			else if (!(chflags & MWIFIEX_CHANNEL_NOHT40))
1080				bw = MHZ_TO_KHZ(40);
1081			else
1082				bw = MHZ_TO_KHZ(20);
1083		} else {
1084			if (!(chflags & MWIFIEX_CHANNEL_NOHT40))
1085				bw = MHZ_TO_KHZ(40);
1086			else
1087				bw = MHZ_TO_KHZ(20);
1088		}
1089
1090		if (idx == 0 || prev_chflags != chflags || prev_bw != bw ||
1091		    freq - prev_freq > 20) {
1092			valid_rules++;
1093			new_rule = true;
1094		}
1095
1096		rule = &regd->reg_rules[valid_rules - 1];
1097
1098		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(freq + 10);
1099
1100		prev_chflags = chflags;
1101		prev_freq = freq;
1102		prev_bw = bw;
1103
1104		if (!new_rule)
1105			continue;
1106
1107		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(freq - 10);
1108		rule->power_rule.max_eirp = DBM_TO_MBM(19);
1109
1110		if (chflags & MWIFIEX_CHANNEL_PASSIVE)
1111			rule->flags = NL80211_RRF_NO_IR;
1112
1113		if (chflags & MWIFIEX_CHANNEL_DFS)
1114			rule->flags = NL80211_RRF_DFS;
1115
1116		rule->freq_range.max_bandwidth_khz = bw;
1117	}
1118
1119	regd->n_reg_rules = valid_rules;
1120	regd->alpha2[0] = '9';
1121	regd->alpha2[1] = '9';
1122
1123	return regd;
1124}
1125
1126static int mwifiex_ret_chan_region_cfg(struct mwifiex_private *priv,
1127				       struct host_cmd_ds_command *resp)
1128{
1129	struct host_cmd_ds_chan_region_cfg *reg = &resp->params.reg_cfg;
1130	u16 action = le16_to_cpu(reg->action);
1131	u16 tlv, tlv_buf_len, tlv_buf_left;
1132	struct mwifiex_ie_types_header *head;
1133	struct ieee80211_regdomain *regd;
1134	u8 *tlv_buf;
1135
1136	if (action != HostCmd_ACT_GEN_GET)
1137		return 0;
1138
1139	tlv_buf = (u8 *)reg + sizeof(*reg);
1140	tlv_buf_left = le16_to_cpu(resp->size) - S_DS_GEN - sizeof(*reg);
1141
1142	while (tlv_buf_left >= sizeof(*head)) {
1143		head = (struct mwifiex_ie_types_header *)tlv_buf;
1144		tlv = le16_to_cpu(head->type);
1145		tlv_buf_len = le16_to_cpu(head->len);
1146
1147		if (tlv_buf_left < (sizeof(*head) + tlv_buf_len))
1148			break;
1149
1150		switch (tlv) {
1151		case TLV_TYPE_CHAN_ATTR_CFG:
1152			mwifiex_dbg_dump(priv->adapter, CMD_D, "CHAN:",
1153					 (u8 *)head + sizeof(*head),
1154					 tlv_buf_len);
1155			regd = mwifiex_create_custom_regdomain(priv,
1156				(u8 *)head + sizeof(*head), tlv_buf_len);
1157			if (!IS_ERR(regd))
1158				priv->adapter->regd = regd;
1159			break;
1160		}
1161
1162		tlv_buf += (sizeof(*head) + tlv_buf_len);
1163		tlv_buf_left -= (sizeof(*head) + tlv_buf_len);
1164	}
1165
1166	return 0;
1167}
1168
1169static int mwifiex_ret_pkt_aggr_ctrl(struct mwifiex_private *priv,
1170				     struct host_cmd_ds_command *resp)
1171{
1172	struct host_cmd_ds_pkt_aggr_ctrl *pkt_aggr_ctrl =
1173					&resp->params.pkt_aggr_ctrl;
1174	struct mwifiex_adapter *adapter = priv->adapter;
1175
1176	adapter->bus_aggr.enable = le16_to_cpu(pkt_aggr_ctrl->enable);
1177	if (adapter->bus_aggr.enable)
1178		adapter->intf_hdr_len = INTF_HEADER_LEN;
1179	adapter->bus_aggr.mode = MWIFIEX_BUS_AGGR_MODE_LEN_V2;
1180	adapter->bus_aggr.tx_aggr_max_size =
1181				le16_to_cpu(pkt_aggr_ctrl->tx_aggr_max_size);
1182	adapter->bus_aggr.tx_aggr_max_num =
1183				le16_to_cpu(pkt_aggr_ctrl->tx_aggr_max_num);
1184	adapter->bus_aggr.tx_aggr_align =
1185				le16_to_cpu(pkt_aggr_ctrl->tx_aggr_align);
1186
1187	return 0;
1188}
1189
1190static int mwifiex_ret_get_chan_info(struct mwifiex_private *priv,
1191				     struct host_cmd_ds_command *resp,
1192				     struct mwifiex_channel_band *channel_band)
1193{
1194	struct host_cmd_ds_sta_configure *sta_cfg_cmd = &resp->params.sta_cfg;
1195	struct host_cmd_tlv_channel_band *tlv_band_channel;
1196
1197	tlv_band_channel =
1198	(struct host_cmd_tlv_channel_band *)sta_cfg_cmd->tlv_buffer;
1199	memcpy(&channel_band->band_config, &tlv_band_channel->band_config,
1200	       sizeof(struct mwifiex_band_config));
1201	channel_band->channel = tlv_band_channel->channel;
1202
1203	return 0;
1204}
1205
1206/*
1207 * This function handles the command responses.
1208 *
1209 * This is a generic function, which calls command specific
1210 * response handlers based on the command ID.
1211 */
1212int mwifiex_process_sta_cmdresp(struct mwifiex_private *priv, u16 cmdresp_no,
1213				struct host_cmd_ds_command *resp)
1214{
1215	int ret = 0;
1216	struct mwifiex_adapter *adapter = priv->adapter;
1217	void *data_buf = adapter->curr_cmd->data_buf;
1218
1219	/* If the command is not successful, cleanup and return failure */
1220	if (resp->result != HostCmd_RESULT_OK) {
1221		mwifiex_process_cmdresp_error(priv, resp);
1222		return -1;
1223	}
1224	/* Command successful, handle response */
1225	switch (cmdresp_no) {
1226	case HostCmd_CMD_GET_HW_SPEC:
1227		ret = mwifiex_ret_get_hw_spec(priv, resp);
1228		break;
1229	case HostCmd_CMD_CFG_DATA:
1230		ret = mwifiex_ret_cfg_data(priv, resp);
1231		break;
1232	case HostCmd_CMD_MAC_CONTROL:
1233		break;
1234	case HostCmd_CMD_802_11_MAC_ADDRESS:
1235		ret = mwifiex_ret_802_11_mac_address(priv, resp);
1236		break;
1237	case HostCmd_CMD_MAC_MULTICAST_ADR:
1238		ret = mwifiex_ret_mac_multicast_adr(priv, resp);
1239		break;
1240	case HostCmd_CMD_TX_RATE_CFG:
1241		ret = mwifiex_ret_tx_rate_cfg(priv, resp);
1242		break;
1243	case HostCmd_CMD_802_11_SCAN:
1244		ret = mwifiex_ret_802_11_scan(priv, resp);
1245		adapter->curr_cmd->wait_q_enabled = false;
1246		break;
1247	case HostCmd_CMD_802_11_SCAN_EXT:
1248		ret = mwifiex_ret_802_11_scan_ext(priv, resp);
1249		adapter->curr_cmd->wait_q_enabled = false;
1250		break;
1251	case HostCmd_CMD_802_11_BG_SCAN_QUERY:
1252		ret = mwifiex_ret_802_11_scan(priv, resp);
1253		cfg80211_sched_scan_results(priv->wdev.wiphy, 0);
1254		mwifiex_dbg(adapter, CMD,
1255			    "info: CMD_RESP: BG_SCAN result is ready!\n");
1256		break;
1257	case HostCmd_CMD_802_11_BG_SCAN_CONFIG:
1258		break;
1259	case HostCmd_CMD_TXPWR_CFG:
1260		ret = mwifiex_ret_tx_power_cfg(priv, resp);
1261		break;
1262	case HostCmd_CMD_RF_TX_PWR:
1263		ret = mwifiex_ret_rf_tx_power(priv, resp);
1264		break;
1265	case HostCmd_CMD_RF_ANTENNA:
1266		ret = mwifiex_ret_rf_antenna(priv, resp);
1267		break;
1268	case HostCmd_CMD_802_11_PS_MODE_ENH:
1269		ret = mwifiex_ret_enh_power_mode(priv, resp, data_buf);
1270		break;
1271	case HostCmd_CMD_802_11_HS_CFG_ENH:
1272		ret = mwifiex_ret_802_11_hs_cfg(priv, resp);
1273		break;
1274	case HostCmd_CMD_802_11_ASSOCIATE:
1275		ret = mwifiex_ret_802_11_associate(priv, resp);
1276		break;
1277	case HostCmd_CMD_802_11_DEAUTHENTICATE:
1278		ret = mwifiex_ret_802_11_deauthenticate(priv, resp);
1279		break;
1280	case HostCmd_CMD_802_11_AD_HOC_START:
1281	case HostCmd_CMD_802_11_AD_HOC_JOIN:
1282		ret = mwifiex_ret_802_11_ad_hoc(priv, resp);
1283		break;
1284	case HostCmd_CMD_802_11_AD_HOC_STOP:
1285		ret = mwifiex_ret_802_11_ad_hoc_stop(priv, resp);
1286		break;
1287	case HostCmd_CMD_802_11_GET_LOG:
1288		ret = mwifiex_ret_get_log(priv, resp, data_buf);
1289		break;
1290	case HostCmd_CMD_RSSI_INFO:
1291		ret = mwifiex_ret_802_11_rssi_info(priv, resp);
1292		break;
1293	case HostCmd_CMD_802_11_SNMP_MIB:
1294		ret = mwifiex_ret_802_11_snmp_mib(priv, resp, data_buf);
1295		break;
1296	case HostCmd_CMD_802_11_TX_RATE_QUERY:
1297		ret = mwifiex_ret_802_11_tx_rate_query(priv, resp);
1298		break;
1299	case HostCmd_CMD_VERSION_EXT:
1300		ret = mwifiex_ret_ver_ext(priv, resp, data_buf);
1301		break;
1302	case HostCmd_CMD_REMAIN_ON_CHAN:
1303		ret = mwifiex_ret_remain_on_chan(priv, resp, data_buf);
1304		break;
1305	case HostCmd_CMD_11AC_CFG:
1306		break;
1307	case HostCmd_CMD_PACKET_AGGR_CTRL:
1308		ret = mwifiex_ret_pkt_aggr_ctrl(priv, resp);
1309		break;
1310	case HostCmd_CMD_P2P_MODE_CFG:
1311		ret = mwifiex_ret_p2p_mode_cfg(priv, resp, data_buf);
1312		break;
1313	case HostCmd_CMD_MGMT_FRAME_REG:
1314	case HostCmd_CMD_FUNC_INIT:
1315	case HostCmd_CMD_FUNC_SHUTDOWN:
1316		break;
1317	case HostCmd_CMD_802_11_KEY_MATERIAL:
1318		ret = mwifiex_ret_802_11_key_material(priv, resp);
1319		break;
1320	case HostCmd_CMD_802_11D_DOMAIN_INFO:
1321		ret = mwifiex_ret_802_11d_domain_info(priv, resp);
1322		break;
1323	case HostCmd_CMD_11N_ADDBA_REQ:
1324		ret = mwifiex_ret_11n_addba_req(priv, resp);
1325		break;
1326	case HostCmd_CMD_11N_DELBA:
1327		ret = mwifiex_ret_11n_delba(priv, resp);
1328		break;
1329	case HostCmd_CMD_11N_ADDBA_RSP:
1330		ret = mwifiex_ret_11n_addba_resp(priv, resp);
1331		break;
1332	case HostCmd_CMD_RECONFIGURE_TX_BUFF:
1333		if (0xffff == (u16)le16_to_cpu(resp->params.tx_buf.buff_size)) {
1334			if (adapter->iface_type == MWIFIEX_USB &&
1335			    adapter->usb_mc_setup) {
1336				if (adapter->if_ops.multi_port_resync)
1337					adapter->if_ops.
1338						multi_port_resync(adapter);
1339				adapter->usb_mc_setup = false;
1340				adapter->tx_lock_flag = false;
1341			}
1342			break;
1343		}
1344		adapter->tx_buf_size = (u16) le16_to_cpu(resp->params.
1345							     tx_buf.buff_size);
1346		adapter->tx_buf_size = (adapter->tx_buf_size
1347					/ MWIFIEX_SDIO_BLOCK_SIZE)
1348				       * MWIFIEX_SDIO_BLOCK_SIZE;
1349		adapter->curr_tx_buf_size = adapter->tx_buf_size;
1350		mwifiex_dbg(adapter, CMD, "cmd: curr_tx_buf_size=%d\n",
1351			    adapter->curr_tx_buf_size);
1352
1353		if (adapter->if_ops.update_mp_end_port)
1354			adapter->if_ops.update_mp_end_port(adapter,
1355				le16_to_cpu(resp->params.tx_buf.mp_end_port));
1356		break;
1357	case HostCmd_CMD_AMSDU_AGGR_CTRL:
1358		break;
1359	case HostCmd_CMD_WMM_GET_STATUS:
1360		ret = mwifiex_ret_wmm_get_status(priv, resp);
1361		break;
1362	case HostCmd_CMD_802_11_IBSS_COALESCING_STATUS:
1363		ret = mwifiex_ret_ibss_coalescing_status(priv, resp);
1364		break;
1365	case HostCmd_CMD_MEM_ACCESS:
1366		ret = mwifiex_ret_mem_access(priv, resp, data_buf);
1367		break;
1368	case HostCmd_CMD_MAC_REG_ACCESS:
1369	case HostCmd_CMD_BBP_REG_ACCESS:
1370	case HostCmd_CMD_RF_REG_ACCESS:
1371	case HostCmd_CMD_PMIC_REG_ACCESS:
1372	case HostCmd_CMD_CAU_REG_ACCESS:
1373	case HostCmd_CMD_802_11_EEPROM_ACCESS:
1374		ret = mwifiex_ret_reg_access(cmdresp_no, resp, data_buf);
1375		break;
1376	case HostCmd_CMD_SET_BSS_MODE:
1377		break;
1378	case HostCmd_CMD_11N_CFG:
1379		break;
1380	case HostCmd_CMD_PCIE_DESC_DETAILS:
1381		break;
1382	case HostCmd_CMD_802_11_SUBSCRIBE_EVENT:
1383		ret = mwifiex_ret_subsc_evt(priv, resp);
1384		break;
1385	case HostCmd_CMD_UAP_SYS_CONFIG:
1386		break;
1387	case HOST_CMD_APCMD_STA_LIST:
1388		ret = mwifiex_ret_uap_sta_list(priv, resp);
1389		break;
1390	case HostCmd_CMD_UAP_BSS_START:
1391		adapter->tx_lock_flag = false;
1392		adapter->pps_uapsd_mode = false;
1393		adapter->delay_null_pkt = false;
1394		priv->bss_started = 1;
1395		break;
1396	case HostCmd_CMD_UAP_BSS_STOP:
1397		priv->bss_started = 0;
1398		break;
1399	case HostCmd_CMD_UAP_STA_DEAUTH:
1400		break;
1401	case HOST_CMD_APCMD_SYS_RESET:
1402		break;
1403	case HostCmd_CMD_MEF_CFG:
1404		break;
1405	case HostCmd_CMD_COALESCE_CFG:
1406		break;
1407	case HostCmd_CMD_TDLS_OPER:
1408		ret = mwifiex_ret_tdls_oper(priv, resp);
1409		break;
1410	case HostCmd_CMD_MC_POLICY:
1411		break;
1412	case HostCmd_CMD_CHAN_REPORT_REQUEST:
1413		break;
1414	case HostCmd_CMD_SDIO_SP_RX_AGGR_CFG:
1415		ret = mwifiex_ret_sdio_rx_aggr_cfg(priv, resp);
1416		break;
1417	case HostCmd_CMD_HS_WAKEUP_REASON:
1418		ret = mwifiex_ret_wakeup_reason(priv, resp, data_buf);
1419		break;
1420	case HostCmd_CMD_TDLS_CONFIG:
1421		break;
1422	case HostCmd_CMD_ROBUST_COEX:
1423		ret = mwifiex_ret_robust_coex(priv, resp, data_buf);
1424		break;
1425	case HostCmd_CMD_GTK_REKEY_OFFLOAD_CFG:
1426		break;
1427	case HostCmd_CMD_CHAN_REGION_CFG:
1428		ret = mwifiex_ret_chan_region_cfg(priv, resp);
1429		break;
1430	case HostCmd_CMD_STA_CONFIGURE:
1431		ret = mwifiex_ret_get_chan_info(priv, resp, data_buf);
1432		break;
1433	default:
1434		mwifiex_dbg(adapter, ERROR,
1435			    "CMD_RESP: unknown cmd response %#x\n",
1436			    resp->command);
1437		break;
1438	}
1439
1440	return ret;
1441}
1442