1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * NXP Wireless LAN device driver: Channel, Frequence and Power
4 *
5 * Copyright 2011-2020 NXP
6 */
7
8#include "decl.h"
9#include "ioctl.h"
10#include "util.h"
11#include "fw.h"
12#include "main.h"
13#include "cfg80211.h"
14
15/* 100mW */
16#define MWIFIEX_TX_PWR_DEFAULT     20
17/* 100mW */
18#define MWIFIEX_TX_PWR_US_DEFAULT      20
19/* 50mW */
20#define MWIFIEX_TX_PWR_JP_DEFAULT      16
21/* 100mW */
22#define MWIFIEX_TX_PWR_FR_100MW        20
23/* 10mW */
24#define MWIFIEX_TX_PWR_FR_10MW         10
25/* 100mW */
26#define MWIFIEX_TX_PWR_EMEA_DEFAULT    20
27
28static u8 adhoc_rates_b[B_SUPPORTED_RATES] = { 0x82, 0x84, 0x8b, 0x96, 0 };
29
30static u8 adhoc_rates_g[G_SUPPORTED_RATES] = { 0x8c, 0x12, 0x98, 0x24,
31					       0xb0, 0x48, 0x60, 0x6c, 0 };
32
33static u8 adhoc_rates_bg[BG_SUPPORTED_RATES] = { 0x82, 0x84, 0x8b, 0x96,
34						 0x0c, 0x12, 0x18, 0x24,
35						 0x30, 0x48, 0x60, 0x6c, 0 };
36
37static u8 adhoc_rates_a[A_SUPPORTED_RATES] = { 0x8c, 0x12, 0x98, 0x24,
38					       0xb0, 0x48, 0x60, 0x6c, 0 };
39static u8 supported_rates_a[A_SUPPORTED_RATES] = { 0x0c, 0x12, 0x18, 0x24,
40					0xb0, 0x48, 0x60, 0x6c, 0 };
41static u16 mwifiex_data_rates[MWIFIEX_SUPPORTED_RATES_EXT] = { 0x02, 0x04,
42					0x0B, 0x16, 0x00, 0x0C, 0x12, 0x18,
43					0x24, 0x30, 0x48, 0x60, 0x6C, 0x90,
44					0x0D, 0x1A, 0x27, 0x34, 0x4E, 0x68,
45					0x75, 0x82, 0x0C, 0x1B, 0x36, 0x51,
46					0x6C, 0xA2, 0xD8, 0xF3, 0x10E, 0x00 };
47
48static u8 supported_rates_b[B_SUPPORTED_RATES] = { 0x02, 0x04, 0x0b, 0x16, 0 };
49
50static u8 supported_rates_g[G_SUPPORTED_RATES] = { 0x0c, 0x12, 0x18, 0x24,
51					0x30, 0x48, 0x60, 0x6c, 0 };
52
53static u8 supported_rates_bg[BG_SUPPORTED_RATES] = { 0x02, 0x04, 0x0b, 0x0c,
54					0x12, 0x16, 0x18, 0x24, 0x30, 0x48,
55					0x60, 0x6c, 0 };
56
57u16 region_code_index[MWIFIEX_MAX_REGION_CODE] = { 0x00, 0x10, 0x20, 0x30,
58						0x31, 0x32, 0x40, 0x41, 0x50 };
59
60static u8 supported_rates_n[N_SUPPORTED_RATES] = { 0x02, 0x04, 0 };
61
62/* For every mcs_rate line, the first 8 bytes are for stream 1x1,
63 * and all 16 bytes are for stream 2x2.
64 */
65static const u16 mcs_rate[4][16] = {
66	/* LGI 40M */
67	{ 0x1b, 0x36, 0x51, 0x6c, 0xa2, 0xd8, 0xf3, 0x10e,
68	  0x36, 0x6c, 0xa2, 0xd8, 0x144, 0x1b0, 0x1e6, 0x21c },
69
70	/* SGI 40M */
71	{ 0x1e, 0x3c, 0x5a, 0x78, 0xb4, 0xf0, 0x10e, 0x12c,
72	  0x3c, 0x78, 0xb4, 0xf0, 0x168, 0x1e0, 0x21c, 0x258 },
73
74	/* LGI 20M */
75	{ 0x0d, 0x1a, 0x27, 0x34, 0x4e, 0x68, 0x75, 0x82,
76	  0x1a, 0x34, 0x4e, 0x68, 0x9c, 0xd0, 0xea, 0x104 },
77
78	/* SGI 20M */
79	{ 0x0e, 0x1c, 0x2b, 0x39, 0x56, 0x73, 0x82, 0x90,
80	  0x1c, 0x39, 0x56, 0x73, 0xad, 0xe7, 0x104, 0x120 }
81};
82
83/* AC rates */
84static const u16 ac_mcs_rate_nss1[8][10] = {
85	/* LG 160M */
86	{ 0x75, 0xEA, 0x15F, 0x1D4, 0x2BE, 0x3A8, 0x41D,
87	  0x492, 0x57C, 0x618 },
88
89	/* SG 160M */
90	{ 0x82, 0x104, 0x186, 0x208, 0x30C, 0x410, 0x492,
91	  0x514, 0x618, 0x6C6 },
92
93	/* LG 80M */
94	{ 0x3B, 0x75, 0xB0, 0xEA, 0x15F, 0x1D4, 0x20F,
95	  0x249, 0x2BE, 0x30C },
96
97	/* SG 80M */
98	{ 0x41, 0x82, 0xC3, 0x104, 0x186, 0x208, 0x249,
99	  0x28A, 0x30C, 0x363 },
100
101	/* LG 40M */
102	{ 0x1B, 0x36, 0x51, 0x6C, 0xA2, 0xD8, 0xF3,
103	  0x10E, 0x144, 0x168 },
104
105	/* SG 40M */
106	{ 0x1E, 0x3C, 0x5A, 0x78, 0xB4, 0xF0, 0x10E,
107	  0x12C, 0x168, 0x190 },
108
109	/* LG 20M */
110	{ 0xD, 0x1A, 0x27, 0x34, 0x4E, 0x68, 0x75, 0x82, 0x9C, 0x00 },
111
112	/* SG 20M */
113	{ 0xF, 0x1D, 0x2C, 0x3A, 0x57, 0x74, 0x82, 0x91, 0xAE, 0x00 },
114};
115
116/* NSS2 note: the value in the table is 2 multiplier of the actual rate */
117static const u16 ac_mcs_rate_nss2[8][10] = {
118	/* LG 160M */
119	{ 0xEA, 0x1D4, 0x2BE, 0x3A8, 0x57C, 0x750, 0x83A,
120	  0x924, 0xAF8, 0xC30 },
121
122	/* SG 160M */
123	{ 0x104, 0x208, 0x30C, 0x410, 0x618, 0x820, 0x924,
124	  0xA28, 0xC30, 0xD8B },
125
126	/* LG 80M */
127	{ 0x75, 0xEA, 0x15F, 0x1D4, 0x2BE, 0x3A8, 0x41D,
128	  0x492, 0x57C, 0x618 },
129
130	/* SG 80M */
131	{ 0x82, 0x104, 0x186, 0x208, 0x30C, 0x410, 0x492,
132	  0x514, 0x618, 0x6C6 },
133
134	/* LG 40M */
135	{ 0x36, 0x6C, 0xA2, 0xD8, 0x144, 0x1B0, 0x1E6,
136	  0x21C, 0x288, 0x2D0 },
137
138	/* SG 40M */
139	{ 0x3C, 0x78, 0xB4, 0xF0, 0x168, 0x1E0, 0x21C,
140	  0x258, 0x2D0, 0x320 },
141
142	/* LG 20M */
143	{ 0x1A, 0x34, 0x4A, 0x68, 0x9C, 0xD0, 0xEA, 0x104,
144	  0x138, 0x00 },
145
146	/* SG 20M */
147	{ 0x1D, 0x3A, 0x57, 0x74, 0xAE, 0xE6, 0x104, 0x121,
148	  0x15B, 0x00 },
149};
150
151struct region_code_mapping {
152	u8 code;
153	u8 region[IEEE80211_COUNTRY_STRING_LEN];
154};
155
156static struct region_code_mapping region_code_mapping_t[] = {
157	{ 0x10, "US " }, /* US FCC */
158	{ 0x20, "CA " }, /* IC Canada */
159	{ 0x30, "FR " }, /* France */
160	{ 0x31, "ES " }, /* Spain */
161	{ 0x32, "FR " }, /* France */
162	{ 0x40, "JP " }, /* Japan */
163	{ 0x41, "JP " }, /* Japan */
164	{ 0x50, "CN " }, /* China */
165};
166
167/* This function converts integer code to region string */
168u8 *mwifiex_11d_code_2_region(u8 code)
169{
170	u8 i;
171
172	/* Look for code in mapping table */
173	for (i = 0; i < ARRAY_SIZE(region_code_mapping_t); i++)
174		if (region_code_mapping_t[i].code == code)
175			return region_code_mapping_t[i].region;
176
177	return NULL;
178}
179
180/*
181 * This function maps an index in supported rates table into
182 * the corresponding data rate.
183 */
184u32 mwifiex_index_to_acs_data_rate(struct mwifiex_private *priv,
185				   u8 index, u8 ht_info)
186{
187	u32 rate = 0;
188	u8 mcs_index = 0;
189	u8 bw = 0;
190	u8 gi = 0;
191
192	if ((ht_info & 0x3) == MWIFIEX_RATE_FORMAT_VHT) {
193		mcs_index = min(index & 0xF, 9);
194
195		/* 20M: bw=0, 40M: bw=1, 80M: bw=2, 160M: bw=3 */
196		bw = (ht_info & 0xC) >> 2;
197
198		/* LGI: gi =0, SGI: gi = 1 */
199		gi = (ht_info & 0x10) >> 4;
200
201		if ((index >> 4) == 1)	/* NSS = 2 */
202			rate = ac_mcs_rate_nss2[2 * (3 - bw) + gi][mcs_index];
203		else			/* NSS = 1 */
204			rate = ac_mcs_rate_nss1[2 * (3 - bw) + gi][mcs_index];
205	} else if ((ht_info & 0x3) == MWIFIEX_RATE_FORMAT_HT) {
206		/* 20M: bw=0, 40M: bw=1 */
207		bw = (ht_info & 0xC) >> 2;
208
209		/* LGI: gi =0, SGI: gi = 1 */
210		gi = (ht_info & 0x10) >> 4;
211
212		if (index == MWIFIEX_RATE_BITMAP_MCS0) {
213			if (gi == 1)
214				rate = 0x0D;    /* MCS 32 SGI rate */
215			else
216				rate = 0x0C;    /* MCS 32 LGI rate */
217		} else if (index < 16) {
218			if ((bw == 1) || (bw == 0))
219				rate = mcs_rate[2 * (1 - bw) + gi][index];
220			else
221				rate = mwifiex_data_rates[0];
222		} else {
223			rate = mwifiex_data_rates[0];
224		}
225	} else {
226		/* 11n non-HT rates */
227		if (index >= MWIFIEX_SUPPORTED_RATES_EXT)
228			index = 0;
229		rate = mwifiex_data_rates[index];
230	}
231
232	return rate;
233}
234
235/* This function maps an index in supported rates table into
236 * the corresponding data rate.
237 */
238u32 mwifiex_index_to_data_rate(struct mwifiex_private *priv,
239			       u8 index, u8 ht_info)
240{
241	u32 mcs_num_supp =
242		(priv->adapter->user_dev_mcs_support == HT_STREAM_2X2) ? 16 : 8;
243	u32 rate;
244
245	if (priv->adapter->is_hw_11ac_capable)
246		return mwifiex_index_to_acs_data_rate(priv, index, ht_info);
247
248	if (ht_info & BIT(0)) {
249		if (index == MWIFIEX_RATE_BITMAP_MCS0) {
250			if (ht_info & BIT(2))
251				rate = 0x0D;	/* MCS 32 SGI rate */
252			else
253				rate = 0x0C;	/* MCS 32 LGI rate */
254		} else if (index < mcs_num_supp) {
255			if (ht_info & BIT(1)) {
256				if (ht_info & BIT(2))
257					/* SGI, 40M */
258					rate = mcs_rate[1][index];
259				else
260					/* LGI, 40M */
261					rate = mcs_rate[0][index];
262			} else {
263				if (ht_info & BIT(2))
264					/* SGI, 20M */
265					rate = mcs_rate[3][index];
266				else
267					/* LGI, 20M */
268					rate = mcs_rate[2][index];
269			}
270		} else
271			rate = mwifiex_data_rates[0];
272	} else {
273		if (index >= MWIFIEX_SUPPORTED_RATES_EXT)
274			index = 0;
275		rate = mwifiex_data_rates[index];
276	}
277	return rate;
278}
279
280/*
281 * This function returns the current active data rates.
282 *
283 * The result may vary depending upon connection status.
284 */
285u32 mwifiex_get_active_data_rates(struct mwifiex_private *priv, u8 *rates)
286{
287	if (!priv->media_connected)
288		return mwifiex_get_supported_rates(priv, rates);
289	else
290		return mwifiex_copy_rates(rates, 0,
291					  priv->curr_bss_params.data_rates,
292					  priv->curr_bss_params.num_of_rates);
293}
294
295/*
296 * This function locates the Channel-Frequency-Power triplet based upon
297 * band and channel/frequency parameters.
298 */
299struct mwifiex_chan_freq_power *
300mwifiex_get_cfp(struct mwifiex_private *priv, u8 band, u16 channel, u32 freq)
301{
302	struct mwifiex_chan_freq_power *cfp = NULL;
303	struct ieee80211_supported_band *sband;
304	struct ieee80211_channel *ch = NULL;
305	int i;
306
307	if (!channel && !freq)
308		return cfp;
309
310	if (mwifiex_band_to_radio_type(band) == HostCmd_SCAN_RADIO_TYPE_BG)
311		sband = priv->wdev.wiphy->bands[NL80211_BAND_2GHZ];
312	else
313		sband = priv->wdev.wiphy->bands[NL80211_BAND_5GHZ];
314
315	if (!sband) {
316		mwifiex_dbg(priv->adapter, ERROR,
317			    "%s: cannot find cfp by band %d\n",
318			    __func__, band);
319		return cfp;
320	}
321
322	for (i = 0; i < sband->n_channels; i++) {
323		ch = &sband->channels[i];
324
325		if (ch->flags & IEEE80211_CHAN_DISABLED)
326			continue;
327
328		if (freq) {
329			if (ch->center_freq == freq)
330				break;
331		} else {
332			/* find by valid channel*/
333			if (ch->hw_value == channel ||
334			    channel == FIRST_VALID_CHANNEL)
335				break;
336		}
337	}
338	if (i == sband->n_channels) {
339		mwifiex_dbg(priv->adapter, WARN,
340			    "%s: cannot find cfp by band %d\t"
341			    "& channel=%d freq=%d\n",
342			    __func__, band, channel, freq);
343	} else {
344		if (!ch)
345			return cfp;
346
347		priv->cfp.channel = ch->hw_value;
348		priv->cfp.freq = ch->center_freq;
349		priv->cfp.max_tx_power = ch->max_power;
350		cfp = &priv->cfp;
351	}
352
353	return cfp;
354}
355
356/*
357 * This function checks if the data rate is set to auto.
358 */
359u8
360mwifiex_is_rate_auto(struct mwifiex_private *priv)
361{
362	u32 i;
363	int rate_num = 0;
364
365	for (i = 0; i < ARRAY_SIZE(priv->bitmap_rates); i++)
366		if (priv->bitmap_rates[i])
367			rate_num++;
368
369	if (rate_num > 1)
370		return true;
371	else
372		return false;
373}
374
375/* This function gets the supported data rates from bitmask inside
376 * cfg80211_scan_request.
377 */
378u32 mwifiex_get_rates_from_cfg80211(struct mwifiex_private *priv,
379				    u8 *rates, u8 radio_type)
380{
381	struct wiphy *wiphy = priv->adapter->wiphy;
382	struct cfg80211_scan_request *request = priv->scan_request;
383	u32 num_rates, rate_mask;
384	struct ieee80211_supported_band *sband;
385	int i;
386
387	if (radio_type) {
388		sband = wiphy->bands[NL80211_BAND_5GHZ];
389		if (WARN_ON_ONCE(!sband))
390			return 0;
391		rate_mask = request->rates[NL80211_BAND_5GHZ];
392	} else {
393		sband = wiphy->bands[NL80211_BAND_2GHZ];
394		if (WARN_ON_ONCE(!sband))
395			return 0;
396		rate_mask = request->rates[NL80211_BAND_2GHZ];
397	}
398
399	num_rates = 0;
400	for (i = 0; i < sband->n_bitrates; i++) {
401		if ((BIT(i) & rate_mask) == 0)
402			continue; /* skip rate */
403		rates[num_rates++] = (u8)(sband->bitrates[i].bitrate / 5);
404	}
405
406	return num_rates;
407}
408
409/* This function gets the supported data rates. The function works in
410 * both Ad-Hoc and infra mode by printing the band and returning the
411 * data rates.
412 */
413u32 mwifiex_get_supported_rates(struct mwifiex_private *priv, u8 *rates)
414{
415	u32 k = 0;
416	struct mwifiex_adapter *adapter = priv->adapter;
417
418	if (priv->bss_mode == NL80211_IFTYPE_STATION ||
419	    priv->bss_mode == NL80211_IFTYPE_P2P_CLIENT) {
420		switch (adapter->config_bands) {
421		case BAND_B:
422			mwifiex_dbg(adapter, INFO, "info: infra band=%d\t"
423				    "supported_rates_b\n",
424				    adapter->config_bands);
425			k = mwifiex_copy_rates(rates, k, supported_rates_b,
426					       sizeof(supported_rates_b));
427			break;
428		case BAND_G:
429		case BAND_G | BAND_GN:
430			mwifiex_dbg(adapter, INFO, "info: infra band=%d\t"
431				    "supported_rates_g\n",
432				    adapter->config_bands);
433			k = mwifiex_copy_rates(rates, k, supported_rates_g,
434					       sizeof(supported_rates_g));
435			break;
436		case BAND_B | BAND_G:
437		case BAND_A | BAND_B | BAND_G:
438		case BAND_A | BAND_B:
439		case BAND_A | BAND_B | BAND_G | BAND_GN | BAND_AN:
440		case BAND_A | BAND_B | BAND_G | BAND_GN | BAND_AN | BAND_AAC:
441		case BAND_B | BAND_G | BAND_GN:
442			mwifiex_dbg(adapter, INFO, "info: infra band=%d\t"
443				    "supported_rates_bg\n",
444				    adapter->config_bands);
445			k = mwifiex_copy_rates(rates, k, supported_rates_bg,
446					       sizeof(supported_rates_bg));
447			break;
448		case BAND_A:
449		case BAND_A | BAND_G:
450			mwifiex_dbg(adapter, INFO, "info: infra band=%d\t"
451				    "supported_rates_a\n",
452				    adapter->config_bands);
453			k = mwifiex_copy_rates(rates, k, supported_rates_a,
454					       sizeof(supported_rates_a));
455			break;
456		case BAND_AN:
457		case BAND_A | BAND_AN:
458		case BAND_A | BAND_AN | BAND_AAC:
459		case BAND_A | BAND_G | BAND_AN | BAND_GN:
460		case BAND_A | BAND_G | BAND_AN | BAND_GN | BAND_AAC:
461			mwifiex_dbg(adapter, INFO, "info: infra band=%d\t"
462				    "supported_rates_a\n",
463				    adapter->config_bands);
464			k = mwifiex_copy_rates(rates, k, supported_rates_a,
465					       sizeof(supported_rates_a));
466			break;
467		case BAND_GN:
468			mwifiex_dbg(adapter, INFO, "info: infra band=%d\t"
469				    "supported_rates_n\n",
470				    adapter->config_bands);
471			k = mwifiex_copy_rates(rates, k, supported_rates_n,
472					       sizeof(supported_rates_n));
473			break;
474		}
475	} else {
476		/* Ad-hoc mode */
477		switch (adapter->adhoc_start_band) {
478		case BAND_B:
479			mwifiex_dbg(adapter, INFO, "info: adhoc B\n");
480			k = mwifiex_copy_rates(rates, k, adhoc_rates_b,
481					       sizeof(adhoc_rates_b));
482			break;
483		case BAND_G:
484		case BAND_G | BAND_GN:
485			mwifiex_dbg(adapter, INFO, "info: adhoc G only\n");
486			k = mwifiex_copy_rates(rates, k, adhoc_rates_g,
487					       sizeof(adhoc_rates_g));
488			break;
489		case BAND_B | BAND_G:
490		case BAND_B | BAND_G | BAND_GN:
491			mwifiex_dbg(adapter, INFO, "info: adhoc BG\n");
492			k = mwifiex_copy_rates(rates, k, adhoc_rates_bg,
493					       sizeof(adhoc_rates_bg));
494			break;
495		case BAND_A:
496		case BAND_A | BAND_AN:
497			mwifiex_dbg(adapter, INFO, "info: adhoc A\n");
498			k = mwifiex_copy_rates(rates, k, adhoc_rates_a,
499					       sizeof(adhoc_rates_a));
500			break;
501		}
502	}
503
504	return k;
505}
506
507u8 mwifiex_adjust_data_rate(struct mwifiex_private *priv,
508			    u8 rx_rate, u8 rate_info)
509{
510	u8 rate_index = 0;
511
512	/* HT40 */
513	if ((rate_info & BIT(0)) && (rate_info & BIT(1)))
514		rate_index = MWIFIEX_RATE_INDEX_MCS0 +
515			     MWIFIEX_BW20_MCS_NUM + rx_rate;
516	else if (rate_info & BIT(0)) /* HT20 */
517		rate_index = MWIFIEX_RATE_INDEX_MCS0 + rx_rate;
518	else
519		rate_index = (rx_rate > MWIFIEX_RATE_INDEX_OFDM0) ?
520			      rx_rate - 1 : rx_rate;
521
522	if (rate_index >= MWIFIEX_MAX_AC_RX_RATES)
523		rate_index = MWIFIEX_MAX_AC_RX_RATES - 1;
524
525	return rate_index;
526}
527